
Package ‘WRSS’
January 20, 2025

Type Package

Title Water Resources System Simulator

Depends R (>= 3.0.0), graphics, stats, Hmisc, nloptr

Version 3.1

Date 2022-05-17

Author Rezgar Arabzadeh; Parisa Aberi; Kaveh Panaghi; Shahab Araghinejad; Majid Montaseri

Maintainer Rezgar Arabzadeh <rezgararabzadeh@ut.ac.ir>

Description Water resources system simulator is a tool for simulation and analysis of large-scale wa-
ter resources systems. 'WRSS' proposes functions and methods for construction, simula-
tion and analysis of primary storage and hydropower water resources features (e.g. reser-
voirs, aquifers, and etc.) based on Standard Operating Policy (SOP).

License GPL-3

Imports ggplot2, GGally, network

Repository CRAN

NeedsCompilation no

Date/Publication 2022-05-29 18:10:02 UTC

Contents
WRSS-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
addObjectToArea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
aquiferRouting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
cap_design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
cap_design.base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
cap_design.default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
createAquifer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
createAquifer.base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
createAquifer.default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
createArea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
createArea.base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
createArea.default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
createDemandSite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1



2 WRSS-package

createDemandSite.base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
createDemandSite.default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
createDiversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
createDiversion.base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
createDiversion.default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
createJunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
createJunction.base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
createJunction.default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
createReservoir . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
createReservoir.base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
createReservoir.default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
createRiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
createRiver.base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
createRiver.default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
diversionRouting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
GOF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
GOF.base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
GOF.default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
plot.createArea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
plot.sim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
reservoirRouting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
rippl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
riverRouting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
set.as . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
sim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
sim.base . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
sim.default . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
zarrineh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Index 60

WRSS-package Water Resources System Simulator

Description

The WRSS is an object-oriented R package, which provides tools for simulation and analysis of
large-scale supply and hydropower water resources systems. The package includes functions and
methods for building, simulation, and visualization of water resources components.

Details

Package: WRSS
Type: Package
Version: 3.0
Date: 2022-05-17



WRSS-package 3

License: GPL-3

the package includes three major types of functions as follows:

1- functions for construction and manipulatation of water resources features:

a) createArea constructor for basin/study area objects

b) createJunction constructor for junction objects

c) createRiver constructor for reach, river, and channel objects

d) createReservoir constructor for reservoir objects

e) createDiversion constructor for diversion objects

f) createAquifer constructor for aquifer objects

g) createDemandSite constructor for demand site objects

h) set.as WRSS objects connector

i) addObjectToArea adds objects form mentioned above constructors to a basin inherited from
class of createBasin

2- functions for analysis and operation of water resources objects using Standard Operating Policy
(SOP):

a) riverRouting river operation using

b) reservoirRouting reservoir operation

c) aquiferRouting aquifer operation

d) diversionRouting diversion operation

e) sim simulates an objects inherited from class of createArea

f) rippl computes no-failure storage volume using the sequent peak algorithm(SPA)

g) cap_design computes RRV measures for a range of design parameters

3- functions for performance analysis and visualization.

a) plot.sim plots the results of simulations for an object inherited from class of sim

b) plot.createArea plots an object from class of createArea

c) risk computes risk-based criateria for an object inherited from class of sim

d) GOF Goodness of fit function

Author(s)

Rezgar Arabzadeh; Parisa Aberi; Kaveh Panaghi; Shahab Araghinejad; Majid Montaseri

Maintainer: Rezgar Arabzadeh <rezgararabzadeh@ut.ac.ir>

References

Loucks, Daniel P., et al. Water resources systems planning and management: an introduction to
methods, models and applications. Paris: Unesco, 2005. Arabzadeh, R.; Aberi, P.; Hesarkazzazi, S.;
Hajibabaei, M.; Rauch, W.; Nikmehr, S.; Sitzenfrei, R. WRSS: An Object-Oriented R Package for
Large-Scale Water Resources Operation. Water 2021, 13, 3037. https://doi.org/10.3390/w13213037



4 WRSS-package

See Also

addObjectToArea, plot.sim

Examples

###---------- loading data
data(zarrineh)

###---------- Constructing main features of Zerrineh river basin
Area<-createArea(name='Zerrineh',location='Kurdistan',

simulation=list(start='1900-01-01',
end='1909-12-01',
interval='month'))

###---------- Bukan dam
Q<-zarrineh$bukan$timeSeries[,1]
E<-zarrineh$bukan$timeSeries[,2]
R<-zarrineh$bukan$timeSeries[,3]
D<-zarrineh$bukan$timeSeries[,4]
A<-zarrineh$bukan$timeSeries[,5]
RC<-zarrineh$bukan$ratingCurve
min<-zarrineh$bukan$capacity[1]$min
max<-zarrineh$bukan$capacity[2]$max
bukan<-createReservoir(name='bukan',netEvaporation=E,

initialStorage=max,
geometry=list(deadStorage=min,

capacity=max,
storageAreaTable=RC))

Zerrineh<-createRiver(name='Zerrineh-River',downstream=bukan,discharge=Q)
R<-createDemandSite(name='E1',demandTS=R,suppliers=list(bukan),priority=1)
D<-createDemandSite(name='U1',demandTS=D,suppliers=list(bukan),priority=2)
A<-createDemandSite(name='A1',demandTS=A,suppliers=list(bukan),priority=3)
Area<-addObjectToArea(Area,Zerrineh)
Area<-addObjectToArea(Area,bukan)
Area<-addObjectToArea(Area,R)
Area<-addObjectToArea(Area,D)
Area<-addObjectToArea(Area,A)

###---------- a junction located in Bukan dam upstream
J<-createJunction(name='J1', downstream=Zerrineh)
Area<-addObjectToArea(Area,J)

###---------- Markhuz dam
Q<-zarrineh$Markhuz$timeSeries[,1]
E<-zarrineh$Markhuz$timeSeries[,2]
A<-zarrineh$Markhuz$timeSeries[,3]
RC<-zarrineh$Markhuz$ratingCurve
min<-zarrineh$Markhuz$capacity[1]$min
max<-zarrineh$Markhuz$capacity[2]$max
Markhuz<-createReservoir(name='Markhuz',netEvaporation=E,

downstream=J,initialStorage=max,
geometry=list(deadStorage=min,



WRSS-package 5

capacity=max,
storageAreaTable=RC))

River<-createRiver(name='Markhuz-River',downstream=Markhuz,discharge=Q)
A<-createDemandSite(name='A3',demandTS=A,returnFlowFraction=0.3,

suppliers=list(Markhuz),downstream=J,priority=1)
Area<-addObjectToArea(Area, River)
Area<-addObjectToArea(Area, Markhuz)
Area<-addObjectToArea(Area, A)

###---------- Cheragh Veys dam
Q<-zarrineh$cheraghVeys$timeSeries[,1]
E<-zarrineh$cheraghVeys$timeSeries[,2]
R<-zarrineh$cheraghVeys$timeSeries[,3]
D<-zarrineh$cheraghVeys$timeSeries[,4]
A<-zarrineh$cheraghVeys$timeSeries[,5]
RC<-zarrineh$cheraghVeys$ratingCurve
min<-zarrineh$cheraghVeys$capacity[1]$min
max<-zarrineh$cheraghVeys$capacity[2]$max
cheraghVeys<-createReservoir(name='cheraghVeys',netEvaporation=E,

downstream=J,initialStorage=max,
geometry=list(deadStorage=min,

capacity=max,
storageAreaTable=RC))

River<-createRiver(name='Cheragh Veys-River',downstream=cheraghVeys,discharge=Q)
R<-createDemandSite(name='E2',demandTS=R,returnFlowFraction=1.0,

suppliers=list(cheraghVeys),downstream=J,priority=1)
D<-createDemandSite(name='U2',demandTS=D,returnFlowFraction=0.7,

suppliers=list(cheraghVeys),downstream=J,priority=2)
A<-createDemandSite(name='A2',demandTS=A,returnFlowFraction=0.3,

suppliers=list(cheraghVeys),downstream=J,priority=3)
Area<-addObjectToArea(Area, River)
Area<-addObjectToArea(Area, cheraghVeys)
Area<-addObjectToArea(Area, R)
Area<-addObjectToArea(Area, D)
Area<-addObjectToArea(Area, A)

###---------- Sonata dam
Q<-zarrineh$Sonata$timeSeries[,1]
E<-zarrineh$Sonata$timeSeries[,2]
R<-zarrineh$Sonata$timeSeries[,3]
A<-zarrineh$Sonata$timeSeries[,4]
RC<-zarrineh$Sonata$ratingCurve
min<-zarrineh$Sonata$capacity[1]$min
max<-zarrineh$Sonata$capacity[2]$max
Sonata<-createReservoir(name='Sonata',netEvaporation=E,downstream=J,

initialStorage=max,
geometry=list(deadStorage=min,

capacity=max,
storageAreaTable=RC))

River<-createRiver(name='Sonata-River',downstream=Sonata,discharge=Q)
R<-createDemandSite(name='E3',demandTS=R,returnFlowFraction=1.0,

suppliers=list(Sonata),downstream=J,priority=1)
A<-createDemandSite(name='A4',demandTS=A,returnFlowFraction=0.3,



6 addObjectToArea

suppliers=list(Sonata),downstream=J,priority=2)
Area<-addObjectToArea(Area, River)
Area<-addObjectToArea(Area, Sonata)
Area<-addObjectToArea(Area, R)
Area<-addObjectToArea(Area, A)

###---------- Sarogh dam
Q<-zarrineh$Sarogh$timeSeries[,1]
E<-zarrineh$Sarogh$timeSeries[,2]
D<-zarrineh$Sarogh$timeSeries[,3]
A<-zarrineh$Sarogh$timeSeries[,4]
RC<-zarrineh$Sarogh$ratingCurve
min<-zarrineh$Sarogh$capacity[1]$min
max<-zarrineh$Sarogh$capacity[2]$max
Sarogh<-createReservoir(name='Sarogh',netEvaporation=E,downstream=J,

initialStorage=max,
geometry=list(deadStorage=min,

capacity=max,
storageAreaTable=RC))

River<-createRiver(name='Sarogh-River',downstream=Sarogh,discharge=Q)
D<-createDemandSite(name='U3',demandTS=D,returnFlowFraction=0.7,

suppliers=list(Sarogh),downstream=J,priority=1)
A<-createDemandSite(name='A5',demandTS=A,returnFlowFraction=0.3,

suppliers=list(Sarogh),downstream=J,priority=2)
Area<-addObjectToArea(Area, River)
Area<-addObjectToArea(Area, Sarogh)
Area<-addObjectToArea(Area, D)
Area<-addObjectToArea(Area, A)
## Not run:
plot(Area)

## End(Not run)
plot(sim(Area))

addObjectToArea Adds a feature to area

Description

This function adds objects from the basin primary features to the object inherited from class of
createArea.

Usage

addObjectToArea(area, object)

Arguments

area An object inherited from createArea



addObjectToArea 7

object An objects inherited from any of the following constructors: createAquifer
, createRiver, createReservoir, createJunction, createDiversion, and
createDemandSite.

Details

The examples included in this documentation show construction and simulation of primary features
of a water resources system using WRSS package. The Figure below presents schematic layouts
attributed to the examples at the rest of the page:



8 addObjectToArea



addObjectToArea 9

Value

an object from class of createArea

Author(s)

Rezgar Arabzadeh

References

Loucks, Daniel P., et al. Water resources systems planning and management: an introduction to
methods, models and applications. Paris: Unesco, 2005.

See Also

sim

Examples

#--------------------1st Example--------------------
R<-createRiver(name="river1",discharge=rnorm(120,5,1.5))
Res<-createReservoir(name="res3",type='storage',

priority=1,netEvaporation=rnorm(120,0.5,0.1),
geometry=list(deadStorage= 10 ,capacity= 90 ,
storageAreaTable= cbind(seq(0,90,10),seq(0,9,1))))

waterVariation<-round(sin(seq(0,pi,length.out=12))*
100/sum(sin(seq(0,pi,length.out=12))))

D<-createDemandSite(name ="Agri1",
demandParams=list(waterUseRate=1,

waterVariation=waterVariation,
cropArea=1000))

R<-set.as(Res,R,'downstream')
D<-set.as(Res,D,'supplier')

area<-createArea(name="unknown",location="unknown",
simulation=list(start='2000-01-01',

end ='2000-04-29',
interval='day'))

area<-addObjectToArea(area,R)
area<-addObjectToArea(area,Res)
area<-addObjectToArea(area,D)
## Not run:
plot(area)
simulated<-sim(area)
plot(simulated)

## End(Not run)

#--------------------2nd Example--------------------
Res<-createReservoir(name="res3",type='storage',

priority=1,netEvaporation=rnorm(120,0.5,0.1),
geometry=list(deadStorage= 10 ,capacity= 90 ,



10 addObjectToArea

storageAreaTable= cbind(seq(0,90,10),seq(0,9,1))))
R<-createRiver(name="river1",discharge=rnorm(120,5,1.5))
waterVariation<-round(sin(seq(0,pi,length.out=12))*

100/sum(sin(seq(0,pi,length.out=12))))
D1<-createDemandSite(name ="Agri1",

demandParams=list(waterUseRate=1,
waterVariation=waterVariation,
cropArea=1000),

returnFlowFraction =0.2,priority=1)
D2<-createDemandSite(name ="Agri2",

demandParams=list(waterUseRate=1,
waterVariation=waterVariation,
cropArea=1000),

returnFlowFraction =0.2,priority=1)

R<-set.as(Res,R,'downstream')
D1<-set.as(Res,D1,'supplier')
D2<-set.as(Res,D2,'supplier')

area<-createArea(name="unknown",location="unknown",
simulation=list(start='2000-01-01',

end ='2000-04-29',
interval='day'))

area<-addObjectToArea(area,R)
area<-addObjectToArea(area,Res)
area<-addObjectToArea(area,D1)
area<-addObjectToArea(area,D2)
## Not run:
plot(area)
simulated<-sim(area)
plot(simulated)

## End(Not run)

#--------------------3rd Example--------------------
J1<-createJunction(name="j1")
Res1<-createReservoir(name="res1",type='storage',

priority=1,netEvaporation=rnorm(120,0.5,0.1),
geometry=list(deadStorage= 10 ,capacity= 90 ,
storageAreaTable= cbind(seq(0,90,10),seq(0,9,1))))

Res2<-createReservoir(name="res2",type='storage',
priority=2,netEvaporation=rnorm(120,0.5,0.1),
geometry=list(deadStorage= 10 ,capacity= 90 ,
storageAreaTable= cbind(seq(0,90,10),seq(0,9,1))))

R1<-createRiver(name="river1",discharge=rnorm(120,5,1.5))
R2<-createRiver(name="river2",discharge=rnorm(120,5,1.5))
waterVariation<-round(sin(seq(0,pi,length.out=12))*

100/sum(sin(seq(0,pi,length.out=12))))
D1<-createDemandSite(name ="Agri1",

demandParams=list(waterUseRate=1,
waterVariation=waterVariation,
cropArea=1000),

returnFlowFraction =0.2,priority=1)



addObjectToArea 11

D2<-createDemandSite(name ="Agri2",
demandParams=list(waterUseRate=1,

waterVariation=waterVariation,
cropArea=1000),

returnFlowFraction =0.2,priority=2)
D3<-createDemandSite(name ="Agri3",

demandParams=list(waterUseRate=1,
waterVariation=waterVariation,
cropArea=1000),

returnFlowFraction =0.2,priority=1)
area<-createArea(name="unknown",location="unknown",

simulation=list(start='2000-01-01',
end ='2000-04-29',
interval='day'))

R1<-set.as(Res1,R1,'downstream')
R2<-set.as(Res2,R2,'downstream')
Res1<-set.as(J1,Res1,'downstream')
Res2<-set.as(J1,Res2,'downstream')
D1<-set.as(J1,D1,'downstream')
D2<-set.as(J1,D2,'downstream')
D3<-set.as(J1,D3,'downstream')
D1<-set.as(Res1,D1,'supplier')
D2<-set.as(Res1,D2,'supplier')
D2<-set.as(Res2,D2,'supplier')
D3<-set.as(Res2,D3,'supplier')

area<-addObjectToArea(area,R1)
area<-addObjectToArea(area,R2)
area<-addObjectToArea(area,Res1)
area<-addObjectToArea(area,Res2)
area<-addObjectToArea(area,D1)
area<-addObjectToArea(area,D2)
area<-addObjectToArea(area,D3)
area<-addObjectToArea(area,J1)
## Not run:
plot(area)
simulated<-sim(area)
plot(simulated)

## End(Not run)

#--------------------4th Example--------------------
J1<-createJunction(name="j1")
Res1<-createReservoir(name="res1",type='storage',

priority=1,netEvaporation=rnorm(120,0.5,0.1),downstream =J1 ,
geometry=list(deadStorage= 10 ,capacity= 90 ,
storageAreaTable= cbind(seq(0,90,10),seq(0,9,1))))

Auq1<-createAquifer(name="Aquifer1",area=100,volume=5000,
rechargeTS=rnorm(120,10,3),Sy=0.1,
leakageFraction=0.02,leakageObject=J1,priority=2)

waterVariation<-round(sin(seq(0,pi,length.out=12))*
100/sum(sin(seq(0,pi,length.out=12))))



12 addObjectToArea

R1<-createRiver(name="river1",downstream=Res1,discharge=rnorm(120,5,1.5))
R2<-createRiver(name="river2",downstream=Auq1,discharge=rnorm(120,5,1.5))
D1<-createDemandSite(name ="Agri1",

demandParams=list(waterUseRate=1,
waterVariation=waterVariation,
cropArea=1000),

returnFlowFraction =0.2,suppliers=list(Res1,Auq1),
downstream=J1,priority=1)

D2<-createDemandSite(name ="Agri2",
demandParams=list(waterUseRate=1,

waterVariation=waterVariation,
cropArea=1000),

returnFlowFraction =0.2,suppliers=list(Res1,Auq1),
downstream=J1,priority=2)

D3<-createDemandSite(name ="Agri3",
demandParams=list(waterUseRate=1,

waterVariation=waterVariation,
cropArea=1000),

returnFlowFraction =0.2,suppliers=list(Res1,Auq1),
downstream=J1,priority=1)

area<-createArea(name="unknown",location="unknown",
simulation=list(start='2000-01-01',

end ='2000-04-29',
interval='day'))

area<-addObjectToArea(area,R1)
area<-addObjectToArea(area,R2)
area<-addObjectToArea(area,Res1)
area<-addObjectToArea(area,Auq1)
area<-addObjectToArea(area,D1)
area<-addObjectToArea(area,D2)
area<-addObjectToArea(area,D3)
area<-addObjectToArea(area,J1)
## Not run:
plot(area)
simulated<-sim(area)
plot(simulated)

## End(Not run)

#--------------------5th Example--------------------
J1<-createJunction(name="junction1")
Res1<-createReservoir(name="res1",type='storage',

priority=1,netEvaporation=rnorm(120,0.5,0.1),
geometry=list(deadStorage= 10 ,capacity= 90 ,
storageAreaTable= cbind(seq(0,90,10),seq(0,9,1))))

Auq1<-createAquifer(name="Aquifer1",area=100,volume=5000,
rechargeTS=rnorm(120,10,3),Sy=0.1,priority=2)

waterVariation<-round(sin(seq(0,pi,length.out=12))*
100/sum(sin(seq(0,pi,length.out=12))))

R1<-createRiver(name="River1",
downstream=Res1,discharge=rnorm(120,20,3),
seepageFraction=0.1,seepageObject=Auq1)

D1<-createDemandSite(name ="Agri1",



addObjectToArea 13

demandParams=list(waterUseRate=1,
waterVariation=waterVariation,
cropArea=1000),

returnFlowFraction =0.2,suppliers=list(Res1),
downstream=J1,priority=1)

D2<-createDemandSite(name ="Agri2",
demandParams=list(waterUseRate=1,

waterVariation=waterVariation,
cropArea=1000),

returnFlowFraction =0.2,suppliers=list(Res1,Auq1),
downstream=J1,priority=2)

D3<-createDemandSite(name ="Agri3",
demandParams=list(waterUseRate=1,

waterVariation=waterVariation,
cropArea=1000),

returnFlowFraction =0.2,suppliers=list(R1),
downstream=Res1,priority=2)

D4<-createDemandSite(name ="Agri4",
demandParams=list(waterUseRate=1,

waterVariation=waterVariation,
cropArea=1000),

returnFlowFraction =0.2,suppliers=list(R1),
downstream=Res1,priority=1)

area<-createArea(name="unknown",location="unknown",
simulation=list(start='2000-01-01',

end ='2000-04-29',
interval='day'))

area<-addObjectToArea(area,R1)
area<-addObjectToArea(area,Res1)
area<-addObjectToArea(area,Auq1)
area<-addObjectToArea(area,D1)
area<-addObjectToArea(area,D2)
area<-addObjectToArea(area,D3)
area<-addObjectToArea(area,D4)
area<-addObjectToArea(area,J1)
## Not run:
plot(area)
simulated<-sim(area)
plot(simulated)

## End(Not run)

#--------------------6th Example--------------------
Auq1<-createAquifer(name="Aquifer1",area=100,volume=5000,

rechargeTS=rnorm(120,10,3),Sy=0.1)
waterVariation<-round(sin(seq(0,pi,length.out=12))*

100/sum(sin(seq(0,pi,length.out=12))))
D0<-createDemandSite(name ="Agri0",

demandParams=list(waterUseRate=1,
waterVariation=waterVariation,
cropArea=1000),priority=1)

Div1<-createDiversion(name="Div1",capacity=10)



14 addObjectToArea

J2<-createJunction(name="junc2")

Res2<-createReservoir(name="res2",type='storage',
priority=1,netEvaporation=rnorm(120,0.5,0.1),
geometry=list(deadStorage= 10 ,capacity= 90 ,
storageAreaTable= cbind(seq(0,90,10),seq(0,9,1))))

R2<-createRiver(name="river2",discharge=rnorm(120,12,3))
D3<-createDemandSite(name ="Agri3",

demandParams=list(waterUseRate=1,
waterVariation=waterVariation,
cropArea=1000),

returnFlowFraction =0.2,priority=2)
J1<-createJunction(name="junc1")
Res1<-createReservoir(name="res1",type='storage',

priority=1,netEvaporation=rnorm(120,0.5,0.1),
geometry=list(deadStorage= 10 ,capacity= 90 ,
storageAreaTable= cbind(seq(0,90,10),seq(0,9,1))))

R1<-createRiver(name="river1",discharge=rnorm(120,5,1))
D2<-createDemandSite(name ="Agri2",

demandParams=list(waterUseRate=1,
waterVariation=waterVariation,
cropArea=1000),

returnFlowFraction =0.2,priority=2)
D1<-createDemandSite(name ="Agri1",

demandParams=list(waterUseRate=1,
waterVariation=waterVariation,
cropArea=1000),

returnFlowFraction =0.2,priority=1)
area<-createArea(name="unknown",location="unknown",

simulation=list(start='2000-01-01',
end ='2000-04-29',
interval='day'))

R1<-set.as(Res1,R1,'downstream')
R2<-set.as(Res2,R2,'downstream')
Res1<-set.as(J1,Res1,'downstream')
Res2<-set.as(J2,Res2,'downstream')
J1<-set.as(Div1,J1,'downstream')
J2<-set.as(Auq1,J2,'downstream')
Div1<-set.as(Auq1,Div1,'divertObject')
D1<-set.as(J1,D1,'downstream')
D2<-set.as(J1,D2,'downstream')
D3<-set.as(J2,D3,'downstream')
D1<-set.as(Res1,D1,'supplier')
D2<-set.as(Res1,D2,'supplier')
D2<-set.as(Res2,D2,'supplier')
D3<-set.as(Res2,D3,'supplier')
D0<-set.as(Auq1,D0,'supplier')

area<-addObjectToArea(area,R1)
area<-addObjectToArea(area,R2)



aquiferRouting 15

area<-addObjectToArea(area,Res1)
area<-addObjectToArea(area,Res2)
area<-addObjectToArea(area,D0)
area<-addObjectToArea(area,D1)
area<-addObjectToArea(area,D2)
area<-addObjectToArea(area,D3)
area<-addObjectToArea(area,Div1)
area<-addObjectToArea(area,Auq1)
area<-addObjectToArea(area,J1)
area<-addObjectToArea(area,J2)

simulated<-sim(area)
## Not run:
plot(area)
plot(simulated)

## End(Not run)

aquiferRouting base function for aquifer simulation

Description

Given a sort of demand(s), aquiferRouting function simulates a lumped and simple model of an
unconfined aquifer under an optional givn recharge time series, rechargeTS, and specific yield, Sy.

Usage

aquiferRouting(demand, priority = NA, area, volume,
rechargeTS = NA, leakageFraction = NA,
initialStorage = NA, Sy, simulation)

Arguments

demand (optional) A matrix: is column-wise matrix of demands, at which the rows
present demands for each monthly time step and columns are for different indi-
vidual demand sites (MCM).

priority (optional) A vector: is a vector of priorities associated to demand

area The area of aquifer (Km^2)

volume The aquifer volume (MCM)

rechargeTS (optional) A vector : a vector of water flowing into the aquifer (MCM)
leakageFraction

(optional) The leakage coeffcient of aquifer storage. The leakage is computed
as the product of leakageFraction and aquifer storage. It is in [0, 1] interval

initialStorage (optional) The initial volume of aquifer at the first step of the simulation (MCM).
If missing, the function iterates to carry over the aquifer



16 aquiferRouting

Sy Specific yield (default: 0.1)

simulation A list: simulation is a list of three vectors: start, end, and interval. the
start and end components must be in 'YYYY-MM-DD' format. the interval
component can takes either of 'day','week', or 'month'.

Value

the aquiferRouting function returns a list of objects as bellow:

• release: a matrix of release(s) equivalant to each demand (MCM)

• leakage: a vector of leakage time series (MCM)

• storage: a vector of storage time series (MCM)

Author(s)

Rezgar Arabzadeh

References

Mart nez-Santos, P., and J. M. Andreu. "Lumped and distributed approaches to model natural
recharge in semiarid karst aquifers." Journal of hydrology 388.3 (2010): 389-398.

See Also

reservoirRouting

Examples

area <-200
leakageFraction<-0.01
Sy <-0.15
volume <-20000
priority <-c(3,1,1,2)
rechargeTS <-rnorm(120,60,8)
demand <-matrix(rnorm(480,10,3),120)
simulation <-list(start='2000-01-01',end='2009-12-29',interval='month')

res<-
aquiferRouting(demand =demand ,

priority =priority ,
area =area ,
volume =volume ,
rechargeTS =rechargeTS ,
leakageFraction=leakageFraction,
Sy =Sy ,
simulation =simulation)

plot(res$storage$storage,ylab='Storage (MCM)',xlab='time steps(month)',type='o')



cap_design 17

cap_design Constructor for class of cap_design

Description

Calculates the RRV measures for multiple design candidates.

Usage

cap_design(area,params,w,plot)

Arguments

area An object from class of 'createArea'

params A list of list(s), which each sub-list can contains an object from either of classes
'createDemandSite' or 'createReservoir' and a vector of scale factors mul-
tiplied to the set design parameters. For reservoirs the scale factor will be mul-
tiplied to the capacity for the and for demand site, it will be multiplied to the
demand time series

w (optional) A vector of weights of sustainability indices summing 1 with length
of equal with the number of demand site objects built-in 'params' argument or
equal with number of demand sites supplied by the reservoirs built-in 'params'.
If missing the weights will be assumed equall

plot (optional) logical: plot the resault or not. The default is TRUE

Value

A matrix of RRV and sustainability index proposed by Hashemitto et al. (1982) and Loucks (1997).

Author(s)

Rezgar Arabzadeh

References

Hashimoto, T., Stedinger, J. R., & Loucks, D. P. (1982). Reliability, resiliency, and vulnerability
criteria for water resource system performance evaluation. Water resources research, 18(1), 14-20.
Loucks, D. P. (1997). Quantifying trends in system sustainability. Hydrological Sciences Journal,
42(4), 513-530.

See Also

addObjectToArea



18 cap_design.base

Examples

Res1<-createReservoir(name="res1",type='storage',
priority=1,netEvaporation=rnorm(120,0.5,0.1),
geometry=list(deadStorage= 10 ,capacity= 50 ,

storageAreaTable= cbind(seq(0,90,10),seq(0,9,1))))
R1<-createRiver(name="river1",discharge=rnorm(120,25,1.5))
waterVariation<-round(sin(seq(0,pi,length.out=12))*

100/sum(sin(seq(0,pi,length.out=12))))
D1<-createDemandSite(name ="Agri1",

demandParams=list(waterUseRate=1,
waterVariation=waterVariation,
cropArea=500),

returnFlowFraction =0.2,priority=2)
area<-createArea(name="unknown",location="unknown",

simulation=list(start='2000-01-01',
end ='2000-04-29',
interval='day'))

R1<-set.as(Res1,R1,'downstream')
D1<-set.as(Res1,D1,'supplier')
area<-addObjectToArea(area,R1)
area<-addObjectToArea(area,Res1)
area<-addObjectToArea(area,D1)
params<-list(

list(Res1,seq(0.5,1.5,0.1))
)
cap_design(area,params)

cap_design.base base function for class of cap_design

Description

Calculates the RRV measures for multiple design candidates.

Usage

## S3 method for class 'base'
cap_design(area,params,w,plot)

Arguments

area An object from class of 'createArea'

params A list of list(s), which each sub-list can contains an object from either of classes
'createDemandSite' or 'createReservoir' and a vector of scale factors mul-
tiplied to the set design parameters. For reservoirs the scale factor will be mul-
tiplied to the capacity for the and for demand site, it will be multiplied to the
demand time series



cap_design.default 19

w (optional) A vector of weights of sustainability indices summing 1 with length
of equal with the number of demand site objects built-in 'params' argument or
equal with number of demand sites supplied by the reservoirs built-in 'params'.
If missing the weights will be assumed equall

plot (optional) logical: plot the resault or not. The default is TRUE

Value

A matrix of RRV and sustainability index proposed by Hashemitto et al. (1982) and Loucks (1997).

Author(s)

Rezgar Arabzadeh

References

Hashimoto, T., Stedinger, J. R., & Loucks, D. P. (1982). Reliability, resiliency, and vulnerability
criteria for water resource system performance evaluation. Water resources research, 18(1), 14-20.
Loucks, D. P. (1997). Quantifying trends in system sustainability. Hydrological Sciences Journal,
42(4), 513-530.

See Also

cap_design

cap_design.default default function for class of cap_design

Description

Calculates the RRV measures for multiple design candidates.

Usage

## Default S3 method:
cap_design(area,params,w=NA,plot=TRUE)

Arguments

area An object from class of 'createArea'

params A list of list(s), which each sub-list can contains an object from either of classes
'createDemandSite' or 'createReservoir' and a vector of scale factors mul-
tiplied to the set design parameters. For reservoirs the scale factor will be mul-
tiplied to the capacity for the and for demand site, it will be multiplied to the
demand time series



20 createAquifer

w (optional) A vector of weights of sustainability indices summing 1 with length
of equal with the number of demand site objects built-in 'params' argument or
equal with number of demand sites supplied by the reservoirs built-in 'params'.
If missing the weights will be assumed equall

plot (optional) logical: plot the resault or not. The default is TRUE

Value

A matrix of RRV and sustainability index proposed by Hashemitto et al. (1982) and Loucks (1997).

Author(s)

Rezgar Arabzadeh

References

Hashimoto, T., Stedinger, J. R., & Loucks, D. P. (1982). Reliability, resiliency, and vulnerability
criteria for water resource system performance evaluation. Water resources research, 18(1), 14-20.
Loucks, D. P. (1997). Quantifying trends in system sustainability. Hydrological Sciences Journal,
42(4), 513-530.

See Also

cap_design

createAquifer Constructor for class of createAquifer

Description

this function constructs an object from class of createAquifer that prescribes a simplified lupmped
model of unconfined aquifer.

Usage

createAquifer(name, area, volume,
rechargeTS, Sy, leakageFraction,
initialStorage, leakageObject, priority)

Arguments

name (optional) A string: the name of the aquifer

area The area of aquifer (Km^2)

volume The aquifer volume (MCM)

rechargeTS (optional) A vector : a vector of water flowing into the aquifer (MCM)

Sy Specific yield (default: 0.1)



createAquifer.base 21

leakageFraction

(optional) The leakage coeffcient of aquifer storage. The leakage is computed
as the product of leakageFraction and aquifer storage. It is in [0, 1] interval

initialStorage (optional) The initial volume of aquifer in the first step of the simulation (MCM).
If missing, the function iterates to carry over the aquifer.

leakageObject (optional) an object; from either of classes of createAquifer , createRiver,
createReservoir, createJunction, createDiversion, or createDemandSite;
which leakage volume pours to it.

priority (optional) An integer: the supplying priority. priority is a value in [1, 99]
interval. If missing, the priority is set to Inf.

Value

An object from class of createAquifer

Author(s)

Rezgar Arabzadeh

References

Mart nez-Santos, P., and J. M. Andreu. "Lumped and distributed approaches to model natural
recharge in semiarid karst aquifers." Journal of hydrology 388.3 (2010): 389-398.

See Also

addObjectToArea

createAquifer.base base function for class of createAquifer

Description

this function constructs an object from class of createAquifer that prescribes a simplified lupmped
model of unconfined aquifer.

Usage

## S3 method for class 'base'
createAquifer(name, area, volume,

rechargeTS, Sy,leakageFraction,
initialStorage, leakageObject, priority)



22 createAquifer.default

Arguments

name (optional) A string: the name of the aquifer

area The area of aquifer (Km^2)

volume The aquifer volume (MCM)

rechargeTS (optional) A vector : a vector of water flowing into the aquifer (MCM)

Sy Specific yield (default: 0.1)
leakageFraction

(optional) The leakage coeffcient of aquifer storage. The leakage is computed
as the product of leakageFraction and aquifer storage. It is in [0, 1] interval

initialStorage (optional) The initial volume of aquifer in the first step of the simulation (MCM).
If missing, the function iterates to carry over the aquifer.

leakageObject (optional) an object; from either of classes of createAquifer , createRiver,
createReservoir, createJunction, createDiversion, or createDemandSite;
which leakage volume pours to it.

priority (optional) An integer: the supplying priority. Is a value in [1, 99] interval. If
missing, the priority is set to Inf.

Value

An object from class of list

See Also

createAquifer

createAquifer.default default function for class of createAquifer

Description

this function constructs an object from class of createAquifer that prescribes a simplified lupmped
model of unconfined aquifer.

Usage

## Default S3 method:
createAquifer(name = "Aquifer1",

area ,
volume ,
rechargeTS = NA ,
Sy = 0.1,
leakageFraction = NA ,
initialStorage = NA ,
leakageObject = NA ,
priority = NA)



createArea 23

Arguments

name (optional) A string: the name of the aquifer

area The area of aquifer (Km^2)

volume The aquifer volume (MCM)

rechargeTS (optional) A vector : a vector of water flowing into the aquifer (MCM)

Sy Specific yield (default: 0.1)
leakageFraction

(optional) The leakage coeffcient of aquifer storage. The leakage is computed
as the product of leakageFraction and aquifer storage. It is in [0, 1] interval

initialStorage (optional) The initial volume of aquifer in the first step of the simulation (MCM).
If missing, the function iterates to carry over the aquifer.

leakageObject (optional) an object; from either of classes of createAquifer , createRiver,
createReservoir, createJunction, createDiversion, or createDemandSite;
which leakage volume pours to it.

priority (optional) An integer: the supplying priority. priority is a value in [1, 99]
interval. If missing, the priority is set to Inf.

Value

An object from class of createAquifer

See Also

createAquifer

createArea Constructor for class of createArea

Description

this function constructs an object from class of createArea, supporting objects inherited from any
of the folowing classes: createAquifer, createDemandSite, createDiversion, createJunction,
createReservoir,and createRiver.

Usage

createArea(name, location, simulation)

Arguments

name (optional) A string: the name of the aquifer

location (optional) A string: the physical location of name

simulation A list: simulation is a list of three vectors: start, end, and interval. the
start and end components must be in 'YYYY-MM-DD' format. The interval
component can takes either of 'day','week', or 'month'



24 createArea.base

Value

An object from class of createArea

Author(s)

Rezgar Arabzadeh

See Also

addObjectToArea

createArea.base base function for class of createArea

Description

this function constructs an object from class of createArea, supporting objects inherited from any
of the folowing classes: createAquifer, createDemandSite, createDiversion, createJunction,
createReservoir,and createRiver.

Usage

## S3 method for class 'base'
createArea(name, location, simulation)

Arguments

name (optional) A string: the name of the aquifer

location (optional) A string: the physical location of name

simulation A list: simulation is a list of three vectors: start, end, and interval. the
start and end components must be in 'YYYY-MM-DD' format and the interval
component is a string that can takes either of 'day','week', or 'month'

Value

An object from class of list

See Also

createArea



createArea.default 25

createArea.default default function for class of createArea

Description

this function constructs an object from class of createArea, supporting objects inherited from the
any of folowing classes: createAquifer, createDemandSite, createDiversion, createJunction,
createReservoir,and createRiver.

Usage

## Default S3 method:
createArea(name = "unknown", location = "unknown",

simulation = list(start = NULL, end = NULL, interval=NULL))

Arguments

name (optional) A string: the name of the aquifer

location (optional) A string: the physical location of createArea

simulation A list: simulation is a list of three vectors: start, end, and interval. the
start and end components must be in 'YYYY-MM-DD' format and the interval
component can takes either of 'day','week', or 'month'

Value

An object from class of createArea

See Also

createArea

createDemandSite Constructor for class of createDemandSite

Description

this function constructs an object from class of createDemandSite, which represents a demand site
such as domestic, agricultural, and etc, with a specified demand time series.

Usage

createDemandSite(name, demandTS, demandParams,
returnFlowFraction, suppliers,
downstream, priority)



26 createDemandSite

Arguments

name (optional) A string: the name of the demand site

demandTS A vector: a vector of demand time series (MCM). If demandParams is null,
providing the demandTS is compulsory.

demandParams A list: If demandTS is missing, the demandParams must be provided to establish
demandTS. The demandParams includes three parts as follows:

• waterUseRate: The total water demand per hectare (MCM) per a given
water cycle.

• waterVariation: A vector of the precentages for water demand distribu-
tion within a water cycle (the precentages in each interval). For instance,
if the cycle is annually and the interval is 'month'ly, the waterVariation
could be a vector of length of 12, for which its indices signify the monthly
portion of water demand, in precentage, by the total water demand required
for the whole cycle.

• cropArea: the area of cropping farms (in hectare).

returnFlowFraction

(optional) returnFlowFraction is fraction of total supplied water to the de-
mand site. The return flow is computed as the product of returnFlowFraction
and the amount of water the demand sites receives. returnFlowFraction must
be in [0, 1] interval.

suppliers (optional) A list of object(s) inherited from the folowing classes: createAquifer,
createRiver, createReservoir, codecreateDiversion.

downstream (optional) An object from either of classes of createAquifer , createRiver,
createReservoir, createJunction, createDiversion, or createDemandSite;
which return flow volume pours to it.

priority (optional) An integer: the priority to be supplied. A value in [1, 99] interval.

Value

An object from class of createDemandSite

Author(s)

Rezgar Arabzadeh

See Also

addObjectToArea



createDemandSite.base 27

createDemandSite.base base function for class of createDemandSite

Description

this function constructs an object from class of createDemandSite, which represents a demand site
such as domestic, agricultural, and etc, with a specified demand time series.

Usage

## S3 method for class 'base'
createDemandSite(name, demandTS, demandParams,

returnFlowFraction, suppliers,
downstream, priority)

Arguments

name (optional) A string: the name of the demand site
demandTS A vector: a vector of demand time series (MCM). If demandParams is null,

providing the demandTS is compulsory.
demandParams A list: If demandTS is missing, the demandParams must be provided to establish

demandTS. The demandParams includes three parts as follows:
• waterUseRate: The total water demand per hectare (MCM) per a given

water cycle
• waterVariation: A vector of the precentages for water demand distribu-

tion within a water cycle (the precentages in each interval). For instance,
if the cycle is annually and the interval is 'month'ly, the waterVariation
could be a vector of length of 12, for which its indices signify the monthly
portion of water demand, in precentage, by the total water demand required
for the whole cycle

• cropArea: the area of cropping farms (in hectare)
returnFlowFraction

(optional) returnFlowFraction is fraction of total supplied water to the de-
mand site. The return flow is computed as the product of returnFlowFraction
and the amount of water the demand sites receives. returnFlowFraction must
be in [0, 1] interval.

suppliers (optional) A list of object(s) inherited from the folowing classes: createAquifer,
createRiver, createReservoir, codecreateDiversion.

downstream (optional) An object from either of classes of createAquifer , createRiver,
createReservoir, createJunction, createDiversion, or createDemandSite;
which return flow volume pours to it.

priority (optional) An integer: the priority to be supplied. A value in [1, 99] interval.

Value

An object from class of list



28 createDemandSite.default

See Also

createDemandSite

createDemandSite.default

default function for class of createDemandSite

Description

this function constructs an object from class of createDemandSite, which represents a demand site
such as domestic, agricultural, and etc, with a specified demand time series.

Usage

## Default S3 method:
createDemandSite(name ="Unknown",

demandTS =NA ,
demandParams=list(waterUseRate=NULL ,

waterVariation=NULL ,
cropArea=NULL) ,

returnFlowFraction =0.0 ,
suppliers = NA ,
downstream =NA ,
priority =NA)

Arguments

name (optional) A string: the name of the demand site

demandTS A vector: a vector of demand time series (MCM). If demandParams is null,
providing the demandTS is compulsory.

demandParams A list: If demandTS is missing, the demandParams must be provided to establish
demandTS. The demandParams includes three parts as follows:

• waterUseRate: The total water demand per hectare (MCM) per a given
water cycle.

• waterVariation: A vector of the precentages for water demand distribu-
tion within a water cycle (the precentages in each interval). For instance,
if the cycle is annually and the interval is 'month'ly, the waterVariation
could be a vector of length of 12, for which its indices signify the monthly
portion of water demand, in precentage, by the total water demand required
for the whole cycle.

• cropArea: the area of cropping farms (in hectare).
returnFlowFraction

(optional) returnFlowFraction is fraction of total supplied water to the de-
mand site. The return flow is computed as the product of returnFlowFraction
and the amount of water the demand sites receives. returnFlowFraction must
be in [0, 1] interval.



createDiversion 29

suppliers (optional) A list of object(s) inherited from the folowing classes: createAquifer,
createRiver, createReservoir, codecreateDiversion.

downstream (optional) An object from either of classes of createAquifer , createRiver,
createReservoir, createJunction, createDiversion, or createDemandSite;
which return flow volume pours to it.

priority (optional) An integer: the priority to be supplied. A value in [1, 99] interval.

Value

An object from class of createDemandSite

See Also

createDemandSite

createDiversion Constructor for class of createDiversion

Description

this function constructs an object from class of createDiversion, acting as a diversion dam which
is able to divert water up to a specified capacity.

Usage

createDiversion(name, capacity,
divertObject, downstream, priority)

Arguments

name (optional) A string: the name of the diversion

capacity The maximum capacity of diversion dam (CMS).

divertObject (optional) An object from either of classes of createAquifer , createRiver,
createReservoir, createJunction, createDiversion, or createDemandSite;
which recieves the diverted water volume.

downstream (optional) An object from either of classes of createAquifer , createRiver,
createReservoir, createJunction, createDiversion, or createDemandSite;
which overflow volume pours to it.

priority (optional) An integer: the supplying priority. priority is a value in [1, 99]
interval. If missing, the priority is set to Inf.

Value

An object from class of createDiversion



30 createDiversion.base

Author(s)

Rezgar Arabzadeh

See Also

addObjectToArea

createDiversion.base base function for class of createDiversion

Description

this function constructs an object from class of createDiversion, acting as a diversion dam which
is able to divert water up to a specified capacity.

Usage

## S3 method for class 'base'
createDiversion(name, capacity,

divertObject, downstream, priority)

Arguments

name (optional) A string: the name of the diversion

capacity The maximum capacity of diversion dam (CMS).

divertObject (optional) An object from either of classes of createAquifer , createRiver,
createReservoir, createJunction, createDiversion, or createDemandSite;
which recieves the diverted water volume.

downstream (optional) An object from either of classes of createAquifer , createRiver,
createReservoir, createJunction, createDiversion, or createDemandSite;
which overflow volume pours to it.

priority (optional) An integer: the supplying priority. priority is a value in [1, 99]
interval. If missing, the priority is set to Inf.

Value

An object from class of list

See Also

createDiversion



createDiversion.default 31

createDiversion.default

default function for class of createDiversion

Description

this function constructs an object from class of createDiversion, acting as a diversion dam which
is able to divert water up to a specified capacity.

Usage

## Default S3 method:
createDiversion(name = "Div1",

capacity ,
divertObject = NA,
downstream = NA,
priority = NA)

Arguments

name (optional) A string: the name of the diversion

capacity The maximum capacity of diversion dam (CMS).

divertObject (optional) An object from either of classes of createAquifer , createRiver,
createReservoir, createJunction, createDiversion, or createDemandSite;
which recieves the diverted water volume.

downstream (optional) An object from either of classes of createAquifer , createRiver,
createReservoir, createJunction, createDiversion, or createDemandSite;
which overflow volume pours to it.

priority (optional) An integer: the supplying priority. priority is a value in [1, 99]
interval. If missing, the priority is set to Inf.

Value

An object from class of createDiversion

See Also

createDiversion



32 createJunction.base

createJunction Constructor for class of createJunction

Description

this function constructs an object from class of createDiversion, acting as a junction in the basin
which is able to aggregate outflow water from upper tributaries and/or objects in the upstream.

Usage

createJunction(name, downstream)

Arguments

name (optional) A string: the name of the junction

downstream (optional) An object from either of classes of createAquifer , createRiver,
createReservoir, createJunction, createDiversion, or createDemandSite;
which outflow volume pours to it.

Value

An object from class of createJunction

Author(s)

Rezgar Arabzadeh

See Also

addObjectToArea

createJunction.base base function for class of createJunction

Description

this function constructs an object from class of createDiversion, acting as a junction in the basin
which is able to aggregate outflow water from upper tributaries and/or objects in the upstream.

Usage

## S3 method for class 'base'
createJunction(name, downstream)



createJunction.default 33

Arguments

name (optional) A string: the name of the junction

downstream (optional) An object from either of classes of createAquifer , createRiver,
createReservoir, createJunction, createDiversion, or createDemandSite;
which outflow volume pours to it.

Value

An object from class of list

See Also

createJunction

createJunction.default

default function for class of createJunction

Description

this function constructs an object from class of createDiversion, acting as a junction in the basin
which is able to aggregate outflow water from upper tributaries and/or objects in the upstream.

Usage

## Default S3 method:
createJunction(name = "junc1", downstream = NA)

Arguments

name (optional) A string: the name of the junction

downstream (optional) An object from either of classes of createAquifer , createRiver,
createReservoir, createJunction, createDiversion, or createDemandSite;
which outflow volume pours to it.

Value

An object from class of list

See Also

createJunction



34 createReservoir

createReservoir Constructor for class of createReservoir

Description

this function constructs an object from class of createReservoir, which is able to simulate a
storage reservoir under given a sort of demand(s).

Usage

createReservoir(type,
name,
priority,
downstream,
netEvaporation,
seepageFraction,
seepageObject,
geometry,
plant,
penstock,
initialStorage)

Arguments

type A string: the type of the reservoir being instantiated: by default ’storage’, how-
ever, it can be ’hydropower’

name (optional) A string: the name of the reservoir.

priority (optional) An integer: the supplying priority. priority is a value in [1, 99]
interval. If missing, the priority is set to Inf.

downstream (optional) An object; from either of classes of createAquifer , createRiver,
createReservoir, createJunction, createDiversion, or createDemandSite;
which spillage volume pours to it.

netEvaporation A vector: is a vector of net evaporation depth time series at the location of dam
site (meter). If omitted, the evaporation is assumed to be zero.

seepageFraction

(optional) The seepage coeffcient of reservoir storage. The seepage is computed
as the product of seepageFraction and reservoir storage. It is in [0, 1] interval

seepageObject (optional) An object; from either of classes of createAquifer , createRiver,
createReservoir, createJunction, createDiversion, or createDemandSite;
which seepage volume pours to it.

geometry A list of reservoir geometric specifications:

• storageAreaTable: is a matrix whose first column includes reservoir vol-
ume (MCM) for different elevation levels and the second column contains
reservoir area (in Km^2) corresponding to the first column



createReservoir 35

• storageElevationTable: is a matrix whose first column includes reser-
voir volume (MCM) for different elevation levels and the second column
contains elevation (in meter) corresponding to the first column

• dischargeElevationTable: is a matrix whose first column includes the
capacity of reservoir tailwater discharge rate (in cms) for different elevation
levels and the second column contains elevation levels corresponding to the
first column, required if the type = 'hydropower' and the item submerged
= TRUE

• deadStorage: refers to water in a reservoir that cannot be drained by grav-
ity through the dam outlet works (MCM)

• capacity: The maximum capacity of the reservoir

plant A list of power plant specifications. It is provided if type = 'hydropower':

• installedCapacity: the plant installed capacity (MW)
• efficiency: is a matrix whose first column includes discharge rate (in

cms) and the second column turbine effeciency, in [0 1] interval, corre-
sponding to the first column

• designHead: A vector of length of two, containing the minimum and max-
imum design water head (in meter) of the turbine respecively, that the it is
in active state

• designFlow: A vector of length of two, containing the minimum and max-
imum design flow rate (in cms) of the turbine respecively, that the it is in
active state

• turbineAxisElevation: The elevation of axis of the installed turbine (in
meter)

• submerged: logical: if the turbine is of type of submeged on, TRUE, other-
wise, FALSE

• loss: losses associated with the turbine (in meter)

penstock (optional) A list of penstock specifications. It is provided if type = 'hydropower':

• diameter: The diameter of the penstock (in meter)
• length: The length of the penstock (in meter)
• roughness: pipe roughness coefficient used for Hazen-Williams formula-

tion

initialStorage (optional) The initial stored water at the reservoir in the first step of the simula-
tion (MCM). If is missing the the function iterate to carry over the reservoir.

Value

An object from class of createReservoir

Author(s)

Rezgar Arabzadeh

See Also

addObjectToArea



36 createReservoir.base

createReservoir.base base function for class of createReservoir

Description

this function constructs an object from class of createReservoir, which is able to simulate a
storage reservoir under given a sort of demand(s).

Usage

## S3 method for class 'base'
createReservoir(type,

name,
priority,
downstream,
netEvaporation,
seepageFraction,
seepageObject,
geometry,
plant,
penstock,
initialStorage)

Arguments

type A string: the type of the reservoir being instantiated: by default ’storage’, how-
ever, it can be ’hydropower’

name (optional) A string: the name of the reservoir.

priority (optional) An integer: the supplying priority. priority is a value in [1, 99]
interval. If missing, the priority is set to Inf.

downstream (optional) An object; from either of classes of createAquifer , createRiver,
createReservoir, createJunction, createDiversion, or createDemandSite;
which spillage volume pours to it.

netEvaporation A vector: is a vector of net evaporation depth time series at the location of dam
site (meter). If omitted, the evaporation is assumed to be zero.

seepageFraction

(optional) The seepage coeffcient of reservoir storage. The seepage is computed
as the product of seepageFraction and reservoir storage. It is in [0, 1] interval

seepageObject (optional) An object; from either of classes of createAquifer , createRiver,
createReservoir, createJunction, createDiversion, or createDemandSite;
which seepage volume pours to it.

geometry A list of reservoir geometric specifications:

• storageAreaTable: is a matrix whose first column includes reservoir vol-
ume (MCM) for different elevation levels and the second column contains
reservoir area (in Km^2) corresponding to the first column



createReservoir.base 37

• storageElevationTable: is a matrix whose first column includes reser-
voir volume (MCM) for different elevation levels and the second column
contains elevation (in meter) corresponding to the first column

• dischargeElevationTable: is a matrix whose first column includes the
capacity of reservoir tailwater discharge rate (in cms) for different elevation
levels and the second column contains elevation levels corresponding to the
first column, required if the type = 'hydropower' and the item submerged
= TRUE

• deadStorage: refers to water in a reservoir that cannot be drained by grav-
ity through the dam outlet works (MCM)

• capacity: The maximum capacity of the reservoir

plant A list of power plant specifications. It is provided if type = 'hydropower':

• installedCapacity: the plant installed capacity (MW)
• efficiency: is a matrix whose first column includes discharge rate (in

cms) and the second column turbine effeciency, in [0 1] interval, corre-
sponding to the first column

• designHead: A vector of length of two, containing the minimum and max-
imum design water head (in meter) of the turbine respecively, that the it is
in active state

• designFlow: A vector of length of two, containing the minimum and max-
imum design flow rate (in cms) of the turbine respecively, that the it is in
active state

• turbineAxisElevation: The elevation of axis of the installed turbine (in
meter)

• submerged: logical: if the turbine is of type of submeged on, TRUE, other-
wise, FALSE

• loss: losses associated with the turbine (in meter)

penstock (optional) A list of penstock specifications. It is provided if type = 'hydropower':

• diameter: The diameter of the penstock (in meter)
• length: The length of the penstock (in meter)
• roughness: pipe roughness coefficient used for Hazen-Williams formula-

tion

initialStorage (optional) The initial stored water at the reservoir in the first step of the simula-
tion (MCM). If is missing the the function iterate to carry over the reservoir.

Value

An object from class of list

See Also

createReservoir



38 createReservoir.default

createReservoir.default

default function for class of createReservoir

Description

this function constructs an object from class of createReservoir, which is able to simulate a
storage reservoir under given a sort of demand(s).

Usage

## Default S3 method:
createReservoir(type='storage',

name='unknown',
priority=NA,
downstream=NA,
netEvaporation=NA,
seepageFraction=NA,
seepageObject=NA,
geometry=list(storageAreaTable=NULL,

storageElevationTable=NULL,
dischargeElevationTable=NULL,
deadStorage=NULL,
capacity=NULL),

plant=list(installedCapacity=NULL,
efficiency=NULL,
designHead=NULL,
designFlow=NULL,
turbineAxisElevation=NULL,
submerged=FALSE,
loss=0),

penstock=list(diameter=NULL,
length=NULL,
roughness=110),

initialStorage=NA)

Arguments

type A string: the type of the reservoir being instantiated: by default ’storage’, how-
ever, it can be ’hydropower’

name (optional) A string: the name of the reservoir.

priority (optional) An integer: the supplying priority. priority is a value in [1, 99]
interval. If missing, the priority is set to Inf.

downstream (optional) An object; from either of classes of createAquifer , createRiver,
createReservoir, createJunction, createDiversion, or createDemandSite;
which spillage volume pours to it.



createReservoir.default 39

netEvaporation A vector: is a vector of net evaporation depth time series at the location of dam
site (meter). If omitted, the evaporation is assumed to be zero.

seepageFraction

(optional) The seepage coeffcient of reservoir storage. The seepage is computed
as the product of seepageFraction and reservoir storage. It is in [0, 1] interval

seepageObject (optional) An object; from either of classes of createAquifer , createRiver,
createReservoir, createJunction, createDiversion, or createDemandSite;
which seepage volume pours to it.

geometry A list of reservoir geometric specifications:
• storageAreaTable: is a matrix whose first column includes reservoir vol-

ume (MCM) for different elevation levels and the second column contains
reservoir area (in Km^2) corresponding to the first column

• storageElevationTable: is a matrix whose first column includes reser-
voir volume (MCM) for different elevation levels and the second column
contains elevation (in meter) corresponding to the first column

• dischargeElevationTable: is a matrix whose first column includes the
capacity of reservoir tailwater discharge rate (in cms) for different elevation
levels and the second column contains elevation levels corresponding to the
first column, required if the type = 'hydropower' and the item submerged
= TRUE

• deadStorage: refers to water in a reservoir that cannot be drained by grav-
ity through the dam outlet works (MCM)

• capacity: The maximum capacity of the reservoir
plant A list of power plant specifications. It is provided if type = 'hydropower':

• installedCapacity: the plant installed capacity (MW)
• efficiency: is a matrix whose first column includes discharge rate (in

cms) and the second column turbine effeciency, in [0 1] interval, corre-
sponding to the first column

• designHead: A vector of length of two, containing the minimum and max-
imum design water head (in meter) of the turbine respecively, that the it is
in active state

• designFlow: A vector of length of two, containing the minimum and max-
imum design flow rate (in cms) of the turbine respecively, that the it is in
active state

• turbineAxisElevation: The elevation of axis of the installed turbine (in
meter)

• submerged: logical: if the turbine is of type of submeged on, TRUE, other-
wise, FALSE

• loss: losses associated with the turbine (in meter)
penstock (optional) A list of penstock specifications. It is provided if type = 'hydropower'

• diameter: The diameter of the penstock (in meter)
• length: The length of the penstock (in meter)
• roughness: pipe roughness coefficient used for Hazen-Williams formula-

tion
initialStorage (optional) The initial stored water at the reservoir in the first step of the simula-

tion (MCM). If is missing the the function iterate to carry over the reservoir.



40 createRiver

Value

An object from class of createReservoir

See Also

createReservoir

createRiver Constructor for class of createRiver

Description

this function constructs an object from class of createRiver, which is able to act as a chanel or
resource to supply a seort of demand(s).

Usage

createRiver(name, downstream, seepageFraction,
seepageObject, discharge, priority)

Arguments

name (optional) A string: the name of the river
downstream (optional) An object; from either of classes of createAquifer , createRiver,

createReservoir, createJunction, createDiversion, or createDemandSite;
which outflow volume pours to it.

seepageFraction

(optional) The seepage coeffcient of river discharge flow. The seepage is com-
puted as the product of seepageFraction and river discharge. It is in [0, 1]
interval

seepageObject (optional) An object; from either of classes of createAquifer , createRiver,
createReservoir, createJunction, createDiversion, or createDemandSite;
which seepage volume pours to it.

discharge (optional) A vector: is a vector of river discharge time series (MCM).
priority (optional) An integer: the supplying priority. priority is a value in [1, 99]

interval. If missing, the priority is set to Inf.

Value

An object from class of createRiver

Author(s)

Rezgar Arabzadeh

See Also

addObjectToArea



createRiver.base 41

createRiver.base base function for class of createRiver

Description

this function constructs an object from class of createRiver, which is able to act as a chanel or
resource to supply a seort of demand(s).

Usage

## S3 method for class 'base'
createRiver(name, downstream, seepageFraction,

seepageObject, discharge, priority)

Arguments

name (optional) A string: the name of the river

downstream (optional) An object; from either of classes of createAquifer , createRiver,
createReservoir, createJunction, createDiversion, or createDemandSite;
which outflow volume pours to it.

seepageFraction

(optional) The seepage coeffcient of river discharge flow. The seepage is com-
puted as the product of seepageFraction and river discharge. It is in [0, 1]
interval

seepageObject (optional) An object; from either of classes of createAquifer , createRiver,
createReservoir, createJunction, createDiversion, or createDemandSite;
which seepage volume pours to it.

discharge (optional) A vector: is a vector of river discharge time series (MCM).

priority (optional) An integer: the supplying priority. priority is a value in [1, 99]
interval. If missing, the priority is set to Inf.

Value

An object from class of list

See Also

createRiver



42 createRiver.default

createRiver.default default function for class of createRiver

Description

this function constructs an object from class of createRiver, which is able to act as a chanel or
resource to supply a seort of demand(s).

Usage

## Default S3 method:
createRiver(name = "river1",

downstream = NA,
seepageFraction = NA,
seepageObject = NA,
discharge = NA,
priority = NA)

Arguments

name (optional) A string: the name of the river

downstream (optional) An object; from either of classes of createAquifer , createRiver,
createReservoir, createJunction, createDiversion, or createDemandSite;
which outflow volume pours to it.

seepageFraction

(optional) The seepage coeffcient of river discharge flow. The seepage is com-
puted as the product of seepageFraction and river discharge. It is in [0, 1]
interval

seepageObject (optional) An object; from either of classes of createAquifer , createRiver,
createReservoir, createJunction, createDiversion, or createDemandSite;
which seepage volume pours to it.

discharge (optional) A vector: is a vector of river discharge time series (MCM).

priority (optional) An integer: the supplying priority. priority is a value in [1, 99]
interval. If missing, the priority is set to Inf.

Value

An object from class of createRiver

See Also

createRiver



diversionRouting 43

diversionRouting base function for diversion simulation

Description

Given a sort of demand(s), diversionRouting function enable us to simulate the performance and
effect of a diversion dam under a givn recharge time series, inflow, on the drainage network.

Usage

diversionRouting(demand=NA, priority = NA,
capacity, inflow, simulation)

Arguments

demand A matrix: is column-wise matrix of demands, at which the rows presents de-
mands for each time step and columns are for different individual demand sites
(MCM).

priority A vector: is a vector of priorities associated to demand

capacity The maximum capacity of diversion dam (CMS).

inflow A vector : a vector of water flowing into the diversion (MCM)

simulation A list: simulation is a list of three vectors: start, end, and interval. the
start and end components must be in 'YYYY-MM-DD' format. the interval
component can takes either of 'day','week', or 'month'.

Value

the diversionRouting function returns a list of features given as below:

• release : a matrix of release(s) equivalant to each demand (MCM)

• diverted: a vector of diverted volumes (MCM), release(s) are included

• overflow: a vector of overflow passing through the diversion (MCM)

Author(s)

Rezgar Arabzadeh

See Also

aquiferRouting



44 GOF

Examples

demand <-matrix(rnorm(480,10,3),120)
priority <-sample(1:3,4,replace=TRUE)
capacity <-12
inflow <-rlnorm(120,log(50),log(4))
simulation <-list(start='2000-01-01',end='2009-12-29',interval='month')
res<-diversionRouting(demand=demand,

priority=priority,
capacity=capacity,
inflow=inflow,
simulation=simulation)

plot(ecdf(res$diverted$diverted),xlab='cms',ylab='exceedance probability')

GOF Goodness of fit

Description

this function calculates the goodness of fit (gof) using chi-squared test.

Usage

GOF(basin,object,observed)

Arguments

basin An object from class of sim.

object An object from either of classes of createAquifer , createRiver, createReservoir,
createJunction, createDiversion, or createDemandSite; which is associ-
ated with observed time series and exists in the basin.

observed A vector of observed time series.

Value

A list with class "htest".

Author(s)

Rezgar Arabzadeh

See Also

sim



GOF 45

Examples

J1<-createJunction(name="j1")
Res1<-createReservoir(name="res1",type='storage',

priority=1,netEvaporation=rnorm(120,0.5,0.1),
geometry=list(deadStorage= 10 ,capacity= 90 ,

storageAreaTable= cbind(seq(0,90,10),seq(0,9,1))))
Res2<-createReservoir(name="res2",type='storage',

priority=2,netEvaporation=rnorm(120,0.5,0.1),
geometry=list(deadStorage= 10 ,capacity= 90 ,

storageAreaTable= cbind(seq(0,90,10),seq(0,9,1))))
R1<-createRiver(name="river1",discharge=rnorm(120,5,1.5))
R2<-createRiver(name="river2",discharge=rnorm(120,5,1.5))
waterVariation<-round(sin(seq(0,pi,length.out=12))*

100/sum(sin(seq(0,pi,length.out=12))))
D1<-createDemandSite(name ="Agri1",

demandParams=list(waterUseRate=1,
waterVariation=waterVariation,
cropArea=1000),

returnFlowFraction =0.2,priority=1)
D2<-createDemandSite(name ="Agri2",

demandParams=list(waterUseRate=1,
waterVariation=waterVariation,
cropArea=1000),

returnFlowFraction =0.2,priority=2)
D3<-createDemandSite(name ="Agri3",

demandParams=list(waterUseRate=1,
waterVariation=waterVariation,
cropArea=1000),

returnFlowFraction =0.2,priority=1)
area<-createArea(name="unknown",location="unknown",

simulation=list(start='2000-01-01',
end ='2000-04-29',
interval='day'))

R1<-set.as(Res1,R1,'downstream')
R2<-set.as(Res2,R2,'downstream')
Res1<-set.as(J1,Res1,'downstream')
Res2<-set.as(J1,Res2,'downstream')
D1<-set.as(J1,D1,'downstream')
D2<-set.as(J1,D2,'downstream')
D3<-set.as(J1,D3,'downstream')
D1<-set.as(Res1,D1,'supplier')
D2<-set.as(Res1,D2,'supplier')
D2<-set.as(Res2,D2,'supplier')
D3<-set.as(Res2,D3,'supplier')

area<-addObjectToArea(area,R1)
area<-addObjectToArea(area,R2)
area<-addObjectToArea(area,Res1)
area<-addObjectToArea(area,Res2)
area<-addObjectToArea(area,D1)
area<-addObjectToArea(area,D2)



46 GOF.base

area<-addObjectToArea(area,D3)
area<-addObjectToArea(area,J1)
## Not run:

plot(area)

## End(Not run)
simulated<-sim(area)
observed<-apply(simulated$operation$operation$junctions[[1]]$operation$outflow,1,sum)
observed<-observed+rnorm(length(observed),mean(observed)*0.2,sd(observed)*0.1)
GOF(simulated,J1,observed)

GOF.base base function for class of GOF

Description

this function calculates the goodness of fit (gof) using chi-squared test.

Usage

## S3 method for class 'base'
GOF(basin,object,observed)

Arguments

basin An object from class of sim.

object An object from either of classes of createAquifer , createRiver, createReservoir,
createJunction, createDiversion, or createDemandSite; which is associ-
ated with observed time series and exists in the basin.

observed A vector of observed time series.

Value

A list with class "htest".

Author(s)

Rezgar Arabzadeh

See Also

GOF



GOF.default 47

GOF.default default function for class of GOF

Description

this function calculates the goodness of fit (gof) using chi-squared test.

Usage

## Default S3 method:
GOF(basin,object,observed)

Arguments

basin An object from class of sim.

object An object from either of classes of createAquifer , createRiver, createReservoir,
createJunction, createDiversion, or createDemandSite; which is associ-
ated with observed time series and exists in the basin.

observed A vector of observed time series.

Value

A list with class "htest".

Author(s)

Rezgar Arabzadeh

See Also

GOF

plot.createArea plot method for an object from class of createArea

Description

plot method for objects inherited from class of createArea

Usage

## S3 method for class 'createArea'
plot(x,...)



48 plot.sim

Arguments

x an object from class of createArea

... other objects that can be passed to plot function

Author(s)

Rezgar Arabzadeh

See Also

createArea

plot.sim plot method for an WRSS object

Description

plot method for objects inherited from class of sim

Usage

## S3 method for class 'sim'
plot(x,...)

Arguments

x an object from class of sim

... other objects that can be passed to plot function

Author(s)

Rezgar Arabzadeh

See Also

sim



reservoirRouting 49

reservoirRouting base function for reservoir simulation

Description

Given a sort of demand(s), reservoirRouting function simulates the effect of a dam under givn
hydrometeorological time series, e.g. inflow and netEvaporation, on the drainage network.

Usage

reservoirRouting(type='storage',
inflow,
netEvaporation=NA,
demand=NA,
priority=NA,
seepageFraction=NA,
geometry=list(storageAreaTable=NULL,

storageElevationTable=NULL,
dischargeElevationTable=NULL,
deadStorage=0,
capacity=NULL),

plant=list(installedCapacity=NULL,
efficiency=NULL,
designHead=NULL,
designFlow=NULL,
turbineAxisElevation=NULL,
submerged=FALSE,
loss=0),

penstock=list(diameter=NULL,
length=0,
roughness=110),

initialStorage=NA,
simulation)

Arguments

type A string: the type of the reservoir being instantiated: by default ’storage’, how-
ever, it can be ’hydropower’

inflow A vector : a vector of water flowing into the diversion (MCM)

netEvaporation A vector: is a vector of net evaporation depth time series at the location of dam
site (meter). If omitted, the evaporation is assumed to be zero.

demand A matrix: is column-wise matrix of demands, at which the rows presents de-
mands for each monthly time steps and columns are for different individual de-
mand sites (MCM).

priority (optional) A vector: is a vector of priorities associated to demand



50 reservoirRouting

seepageFraction

(optional) The seepage coeffcient of reservoir storage. The seepage is computed
as the product of seepageFraction and reservoir storage.

geometry A list of reservoir geometric specifications:

• storageAreaTable: is a matrix whose first column includes reservoir vol-
ume (MCM) for different elevation levels and the second column contains
reservoir area (in Km^2) corresponding to the first column

• storageElevationTable: is a matrix whose first column includes reser-
voir volume (MCM) for different elevation levels and the second column
contains elevation (in meter) corresponding to the first column

• dischargeElevationTable: is a matrix whose first column includes the
capacity of reservoir tailwater discharge rate (in cms) for different elevation
levels and the second column contains elevation levels corresponding to the
first column, required if the type = 'hydropower' and the item submerged
= TRUE

• deadStorage: refers to water in a reservoir that cannot be drained by grav-
ity through the dam outlet works (MCM)

• capacity: The maximum capacity of the reservoir

plant A list of power plant specifications. It is provided if type = 'hydropower':

• efficiency: is a matrix whose first column includes discharge rate (in
cms) and the second column turbine effeciency, in [0 1] interval, corre-
sponding to the first column

• designHead: A vector of length of two, containing the minimum and max-
imum design water head (in meter) of the turbine respecively, that the it is
in active state

• designFlow: A vector of length of two, containing the minimum and max-
imum design flow rate (in cms) of the turbine respecively, that the it is in
active state

• turbineAxisElevation: The elevation of axis of the installed turbine (in
meter)

• submerged: logical: if the turbine is of type of submeged on, TRUE, other-
wise, FALSE

• loss: losses associated with the turbine (in meter)

penstock (optional) A list of penstock specifications. It is provided if type = 'hydropower'

• diameter: The diameter of the penstock (in meter)
• length: The length of the penstock (in meter)
• roughness: pipe roughness coefficient used for Hazen-Williams formula-

tion

initialStorage (optional) The initial stored water at the reservoir in the first step of the simula-
tion (MCM). If is missing the the function iterate to carry over the reservoir.

simulation A list: simulation is a list of three vectors: start, end, and interval. the
start and end components must be in 'YYYY-MM-DD' format. the interval
component can takes either of 'day','week', or 'month'.



reservoirRouting 51

Value

the reservoirRouting function returns a list of features given as folows:

• release: a matrix of release(s) equivalant to each demand (MCM)

• spill : a vector of spilage time series (MCM)

• seepage: a vector of steepage time series (MCM)

• storage: a vector of storage time series (MCM)

• loss : a vector of evaporation loss time series (MCM)

Author(s)

Rezgar Arabzadeh

References

Yeh, William WG. "Reservoir management and operations models: A state of the art review." Water
resources research 21.12 (1985): 1797-1818.

See Also

aquiferRouting

Examples

type <-c('storage','hydropower')
demand <-matrix(rnorm(480,10,3),120)
priority <-sample(1:3,4,replace=TRUE)
inflow <-rlnorm(120,log(50),log(4))
netEvaporation <-rnorm(120,0.4,0.1)
simulation <-list(start='2000-01-01',end='2009-12-29',interval='month')
seepageFraction<-0.05
geometry <-list(storageAreaTable=cbind(seq(0,100,10),seq(0,10,1)),

storageElevationTable=cbind(seq(0,100,10),seq(0,200,20)),
dischargeElevationTable=cbind(seq(0,50,10),seq(0,10,2)),
deadStorage=50,
capacity=100)

plant <-list(installedCapacity=50,
efficiency=cbind(c(5,25,45),c(0.5,0.9,0.7)),
designHead=c(100,200),
designFlow=c(10,40),
turbineAxisElevation=5,
submerged=TRUE,
loss=2)

penstock <-list(diameter=2,
length=50,
roughness=110)

#-----Storage Reservoir----------
reservoirRouting(type=type[1],

inflow=inflow,



52 rippl

netEvaporation=netEvaporation,
demand=demand,
priority=priority,
seepageFraction=seepageFraction,
geometry=geometry,
plant=plant,
penstock=penstock,
simulation=simulation)

## Not run:
##-----Takes Several Minutes----------

#-----Hydropower Reservoir with demand----------
reservoirRouting(type=type[2],

inflow=inflow,
netEvaporation=netEvaporation,
demand=demand,
priority=priority,
seepageFraction=seepageFraction,
geometry=geometry,
plant=plant,
penstock=penstock,
simulation=simulation)

#-----Hydropower Reservoir----------
reservoirRouting(type=type[2],

inflow=inflow,
netEvaporation=netEvaporation,
priority=priority,
seepageFraction=seepageFraction,
geometry=geometry,
plant=plant,
penstock=penstock,
simulation=simulation)

## End(Not run)

rippl Rippl’s method

Description

Computes the Rippl-no-failure storage for given set of discharges and target.

Usage

rippl(discharge,target,plot=TRUE)



risk 53

Arguments

discharge a vector of natural discharge at the reservoir site.

target a vector of demand time series with length equal that of discharge. If the time
scale doesn’t match, the target will be cycled or truncated.

plot logical: whether plot the Rippl’s method process or merely report the result.

Value

no-failure storage value for the given time series, discharge and target.

References

Rippl, Wengel. The capacity of storage reservoirs for water supply. Van Nostrand’s Engineering
Magazine (1879-1886) 29.175 (1883): 67.

See Also

sim

Examples

## Not run:
rippl(Nile,mean(Nile)*0.95)

## End(Not run)

risk risk-based criteria

Description

this function returns risk-based criteria for demand site(s) built-in the object inherited from class of
sim.

Usage

risk(object , s.const = 0.95)

Arguments

object an object from class of sim

s.const satisfactory constant: a value in [0, 1] interval, which refers to the level at which
if a demand is supplied over the s.const is considered fully supplied.

Details

This function computes the riks criteria based on the formulations proposed by Hashimoto et.al
(1982).



54 risk

Value

a matrix of criteria

Author(s)

Rezgar Arabzadeh

References

Hashimoto, Tsuyoshi, Jery R. Stedinger, and Daniel P. Loucks. "Reliability, resiliency, and vulner-
ability criteria for water resource system performance evaluation." Water resources research 18.1
(1982): 14-20.

See Also

sim

Examples

Res<-createReservoir(name="R1",type='storage',
netEvaporation=rnorm(120,0.5,0.1),
geometry=list(deadStorage= 10,

capacity= 700,
storageAreaTable= cbind(seq(0,900,100),seq(0,9,1))))

R<-createRiver(name="Riv1",downstream=Res,discharge=rnorm(120,500,4))
waterVariation<-round(sin(seq(0,pi,length.out=12))*

100/sum(sin(seq(0,pi,length.out=12))))
D1<-createDemandSite(name ="D1",

demandParams=list(waterUseRate=5,
waterVariation=waterVariation,
cropArea=500),

suppliers=list(Res),priority=1)
D2<-createDemandSite(name ="D2",

demandParams=list(waterUseRate=5,
waterVariation=waterVariation,
cropArea=500),

suppliers=list(Res),priority=2)
D3<-createDemandSite(name ="D3",

demandParams=list(waterUseRate=5,
waterVariation=waterVariation,
cropArea=500),

suppliers=list(Res),priority=3)
area<-createArea(simulation=list(start='2000-01-01',end='2009-12-29',interval='month'))
area<-addObjectToArea(area,R)
area<-addObjectToArea(area,Res)
area<-addObjectToArea(area,D1)
area<-addObjectToArea(area,D2)
area<-addObjectToArea(area,D3)
risk(sim(area))



riverRouting 55

riverRouting base function for rivers and reachs simulation

Description

Given a sort of demand(s), riverRouting function enable us to simulate rivers and channels under
givn a hydrologic time series, inflow, and optional demand(s).

Usage

riverRouting(demand=NA, priority = NA, discharge, seepageFraction=NA, simulation)

Arguments

demand (optional) A matrix: is column-wise matrix of demands, at which the rows
presents demands for each time step and columns are for different individual
demand sites (MCM).

priority (optional) A vector: is a vector of priorities associated to demand

discharge (optional) A vector : a vector of water flowing into the diversion (MCM)
seepageFraction

(optional) The seepage coeffcient of river discharge flow. The seepage is com-
puted as the product of seepageFraction and river discharge. It is in [0, 1]
interval

simulation A list: simulation is a list of three vectors: start, end, and interval. the
start and end components must be in 'YYYY-MM-DD' format. the interval
component can takes either of 'day','week', or 'month'.

Value

the riverRouting returns a matrix of release(s) corresponding to each demand(s).

Author(s)

Rezgar Arabzadeh

See Also

diversionRouting

Examples

demand <-matrix(rnorm(480,15,3),120)
priority <-sample(1:3,4,replace=TRUE)
discharge <-rlnorm(120,log(50),log(4))
simulation <-list(start='2000-01-01',end='2000-04-29',interval='day')

riverRouting(demand = demand ,



56 set.as

priority = priority ,
discharge = discharge,
simulation= simulation)

set.as WRSS objects connector

Description

this function connects a base object as a either of: 'downstream', 'supplier', 'leakageObject',
'seepageObject', or 'divertObject' to a target object, which are both instantiated by WRSS
constructors.

Usage

set.as(base,target,type='downstream')

Arguments

base An object; from either of classes of createAquifer , createRiver, createReservoir,
createJunction, createDiversion, or createDemandSite

target An object; from either of classes of createAquifer , createRiver, createReservoir,
createJunction, createDiversion, or createDemandSite

type the type of base object to be set as to the target object: 'downstream',
'supplier', 'leakageObject', 'seepageObject', or 'divertObject'

Value

an object from class of target object.

Author(s)

Rezgar Arabzadeh

See Also

addObjectToArea



sim 57

sim Constructor for class of sim

Description

sim simulates an object inherited from class of createArea using Standard Operating Policy (SOP).

Usage

sim(object)

Arguments

object an object inherited from class of createArea.

Value

an object inherited from class of sim. Address keys to access components built-in an object inherited
from class of sim is as figure below:

Author(s)

Rezgar Arabzadeh

References

Loucks, Daniel P., et al. Water resources systems planning and management: an introduction to
methods, models and applications. Paris: Unesco, 2005.



58 sim.default

See Also

addObjectToArea

sim.base base function for class of sim

Description

sim simulates an object inherited from class of createArea using Standard Operating Policy (SOP).

Usage

## S3 method for class 'base'
sim(object)

Arguments

object an object inherited from class of createArea.

Value

an object inherited from class of list and including features as list(s), which are accessable as
follows:

reservoirs: operation$reservoirs rivers: operation$rivers junctions: operation$junctions aquifers:
operation$aquifers diversions: operation$diversions demands: operation$demands

See Also

sim

sim.default default function for class of sim

Description

sim simulates an object inherited from class of createArea using Standard Operating Policy (SOP).

Usage

## Default S3 method:
sim(object)

Arguments

object an object inherited from class of createArea.



zarrineh 59

Value

an object inherited from class of sim and including features as list(s), which are accessable as
follows:

reservoirs: $operation$operation$reservoirs rivers: $operation$operation$rivers junctions: $opera-
tion$operation$junctions aquifers: $operation$operation$aquifers diversions: $operation$operation$diversions
demands: $operation$operation$demands

See Also

sim

zarrineh data of Zarrineh-rud river basin

Description

The zarrineh object, is a list of objects including time series and detail a five-reservoir systen in
the Zarrineh-rud river basin.

Format

list object

References

Iran Water Resources Management Company, 2016.



Index

∗ graphs
plot.createArea, 47
plot.sim, 48

∗ list
addObjectToArea, 6
aquiferRouting, 15
cap_design, 17
cap_design.base, 18
cap_design.default, 19
createAquifer, 20
createAquifer.base, 21
createAquifer.default, 22
createArea, 23
createArea.base, 24
createArea.default, 25
createDemandSite, 25
createDemandSite.base, 27
createDemandSite.default, 28
createDiversion, 29
createDiversion.base, 30
createDiversion.default, 31
createJunction, 32
createJunction.base, 32
createJunction.default, 33
createReservoir, 34
createReservoir.base, 36
createReservoir.default, 38
createRiver, 40
createRiver.base, 41
createRiver.default, 42
diversionRouting, 43
GOF, 44
GOF.base, 46
GOF.default, 47
reservoirRouting, 49
set.as, 56
sim, 57
sim.base, 58
sim.default, 58

∗ matrix
addObjectToArea, 6
aquiferRouting, 15
diversionRouting, 43
reservoirRouting, 49
rippl, 52
risk, 53
riverRouting, 55
sim.base, 58

∗ package
WRSS-package, 2

∗ plot
rippl, 52

addObjectToArea, 3, 4, 6, 17, 21, 24, 26, 30,
32, 35, 40, 56, 58

aquiferRouting, 3, 15, 43, 51

cap_design, 3, 17, 19, 20
cap_design.base, 18
cap_design.default, 19
createAquifer, 3, 7, 20, 21–23, 26, 27,

29–34, 36, 38–42, 44, 46, 47, 56
createAquifer.base, 21
createAquifer.default, 22
createArea, 3, 6, 23, 24, 25, 48
createArea.base, 24
createArea.default, 25
createDemandSite, 3, 7, 21–23, 25, 26–34,

36, 38–42, 44, 46, 47, 56
createDemandSite.base, 27
createDemandSite.default, 28
createDiversion, 3, 7, 21–23, 26, 27, 29, 29,

30–34, 36, 38–42, 44, 46, 47, 56
createDiversion.base, 30
createDiversion.default, 31
createJunction, 3, 7, 21–23, 26, 27, 29–32,

32, 33, 34, 36, 38–42, 44, 46, 47, 56
createJunction.base, 32
createJunction.default, 33

60



INDEX 61

createReservoir, 3, 7, 21–23, 26, 27, 29–34,
34, 36–42, 44, 46, 47, 56

createReservoir.base, 36
createReservoir.default, 38
createRiver, 3, 7, 21–23, 26, 27, 29–34, 36,

38–40, 40, 41, 42, 44, 46, 47, 56
createRiver.base, 41
createRiver.default, 42

diversionRouting, 3, 43, 55

GOF, 3, 44, 46, 47
GOF.base, 46
GOF.default, 47

plot.createArea, 3, 47
plot.sim, 3, 4, 48

reservoirRouting, 3, 16, 49
rippl, 3, 52
risk, 3, 53
riverRouting, 3, 55

set.as, 3, 56
sim, 3, 9, 44, 48, 53, 54, 57, 58, 59
sim.base, 58
sim.default, 58

WRSS (WRSS-package), 2
WRSS-package, 2

zarrineh, 59


	WRSS-package
	addObjectToArea
	aquiferRouting
	cap_design
	cap_design.base
	cap_design.default
	createAquifer
	createAquifer.base
	createAquifer.default
	createArea
	createArea.base
	createArea.default
	createDemandSite
	createDemandSite.base
	createDemandSite.default
	createDiversion
	createDiversion.base
	createDiversion.default
	createJunction
	createJunction.base
	createJunction.default
	createReservoir
	createReservoir.base
	createReservoir.default
	createRiver
	createRiver.base
	createRiver.default
	diversionRouting
	GOF
	GOF.base
	GOF.default
	plot.createArea
	plot.sim
	reservoirRouting
	rippl
	risk
	riverRouting
	set.as
	sim
	sim.base
	sim.default
	zarrineh
	Index

