## ----echo=FALSE--------------------------------------------------------------- knitr::opts_chunk$set(fig.width=8, fig.height=8, dpi=50, dev='jpeg') ## ----results='hide', message=FALSE-------------------------------------------- library(RaceID) sc <- SCseq(intestinalData) ## ----------------------------------------------------------------------------- sc <- filterdata(sc,mintotal=2000) ## ----------------------------------------------------------------------------- fdata <- getfdata(sc) ## ----------------------------------------------------------------------------- sc <- compdist(sc,metric="pearson") ## ----results='hide', message=FALSE-------------------------------------------- sc <- clustexp(sc) ## ----------------------------------------------------------------------------- plotsaturation(sc,disp=FALSE) ## ----------------------------------------------------------------------------- plotsaturation(sc,disp=TRUE) ## ----------------------------------------------------------------------------- plotjaccard(sc) ## ----results='hide', message=FALSE-------------------------------------------- sc <- clustexp(sc,cln=7,sat=FALSE) ## ----results='hide', message=FALSE-------------------------------------------- sc <- findoutliers(sc) ## ----------------------------------------------------------------------------- plotbackground(sc) ## ----------------------------------------------------------------------------- plotsensitivity(sc) ## ----------------------------------------------------------------------------- plotoutlierprobs(sc) ## ----eval=FALSE--------------------------------------------------------------- # clustheatmap(sc) ## ----------------------------------------------------------------------------- sc <- comptsne(sc) ## ----------------------------------------------------------------------------- sc <- compfr(sc,knn=10) ## ----------------------------------------------------------------------------- sc <- compumap(sc) ## ----------------------------------------------------------------------------- plotmap(sc) ## ----eval=FALSE--------------------------------------------------------------- # plotmap(sc,fr=TRUE) ## ----eval=FALSE--------------------------------------------------------------- # plotmap(sc,um=TRUE) ## ----------------------------------------------------------------------------- types <- sub("(\\_\\d+)$","", colnames(sc@ndata)) subset <- types[grep("IV|V",types)] plotsymbolsmap(sc,types,subset=subset,cex=1) ## ----------------------------------------------------------------------------- plotexpmap(sc,"Lyz1",logsc=TRUE,cex=1) g <- c("Apoa1", "Apoa1bp", "Apoa2", "Apoa4", "Apoa5") plotexpmap(sc,g,n="Apoa genes",logsc=TRUE,cex=1) ## ----------------------------------------------------------------------------- sample <- colnames(sc@ndata)[grep("^I5d",colnames(sc@ndata))] plotexpmap(sc,"Lyz1",cells=sample,logsc=TRUE,cex=1) ## ----------------------------------------------------------------------------- genes <- c("Lyz1","Defa20","Agr2","Clca3","Muc2","Chgb","Neurog3","Apoa1","Aldob","Lgr5","Clca4","Mki67","Pcna") plotmarkergenes(sc,genes=genes) ## ----------------------------------------------------------------------------- d <- clustdiffgenes(sc,4,pvalue=.01) dg <- d$dg head(dg,25) ## ----------------------------------------------------------------------------- types <- sub("(\\_\\d+)$","", colnames(sc@ndata)) genes <- head(rownames(dg)[dg$fc>1],10) plotmarkergenes(sc,genes,samples=types) ## ----eval=FALSE--------------------------------------------------------------- # plotmarkergenes(sc,genes,cl=c(2,3,1,4),samples=types,order.cells=TRUE) ## ----------------------------------------------------------------------------- fractDotPlot(sc, genes, cluster=c(2,3,1,4), zsc=TRUE) ## ----------------------------------------------------------------------------- samples <- sub("(\\d.+)$","", colnames(sc@ndata)) fractDotPlot(sc, genes, samples=samples, subset=c("I","II","III"), logscale=TRUE) ## ----------------------------------------------------------------------------- A <- names(sc@cpart)[sc@cpart %in% c(2,3)] B <- names(sc@cpart)[sc@cpart %in% c(4)] x <- diffexpnb(getfdata(sc,n=c(A,B)), A=A, B=B ) plotdiffgenesnb(x,pthr=.05,lthr=.5,mthr=-1,Aname="Cl.2,3",Bname="Cl.4",show_names=TRUE,padj=TRUE) ## ----------------------------------------------------------------------------- ltr <- Ltree(sc) ## ----------------------------------------------------------------------------- ltr <- compentropy(ltr) ## ----------------------------------------------------------------------------- ltr <- projcells(ltr,cthr=5,nmode=FALSE) ## ----results='hide', message=FALSE-------------------------------------------- ltr <- projback(ltr,pdishuf=100) ## ----results='hide', message=FALSE-------------------------------------------- ltr <- lineagegraph(ltr) ## ----------------------------------------------------------------------------- ltr <- comppvalue(ltr,pthr=0.1) ## ----------------------------------------------------------------------------- plotgraph(ltr,scthr=0.2,showCells=FALSE,showMap=TRUE) ## ----------------------------------------------------------------------------- x <- compscore(ltr,scthr=0.2) ## ----------------------------------------------------------------------------- plotdistanceratio(ltr) ## ----------------------------------------------------------------------------- plotspantree(ltr) ## ----------------------------------------------------------------------------- plotspantree(ltr,projections=TRUE) ## ----------------------------------------------------------------------------- plotlinkscore(ltr) projenrichment(ltr) ## ----------------------------------------------------------------------------- x <- getproj(ltr,i=3) ## ----------------------------------------------------------------------------- x <- branchcells(ltr,list("1.3","3.8")) head(x$diffgenes$z) ## ----------------------------------------------------------------------------- plotmap(x$scl,fr=TRUE) ## ----------------------------------------------------------------------------- ltr <- Ltree(sc) ltr <- compentropy(ltr) ## ----------------------------------------------------------------------------- ltr <- projcells(ltr,cthr=5,nmode=TRUE,knn=3) ## ----results='hide', message=FALSE-------------------------------------------- ltr <- lineagegraph(ltr) ltr <- comppvalue(ltr,pthr=0.05) ## ----------------------------------------------------------------------------- plotgraph(ltr,showCells=FALSE,showMap=TRUE) x <- compscore(ltr) ## ----eval=FALSE--------------------------------------------------------------- # n <- colnames(intestinalData) # b <- list(n[grep("^I5",n)],n[grep("^II5",n)],n[grep("^III5",n)],n[grep("^IV5",n)],n[grep("^V5",n)]) ## ----eval=FALSE--------------------------------------------------------------- # sc <- SCseq(intestinalData) # sc <- filterdata(sc,mintotal=2000,LBatch=b,bmode="RaceID",knn=10) ## ----results='hide', message=FALSE, eval=FALSE-------------------------------- # sc <- compdist(sc,knn=5,metric="pearson") ## ----results='hide', message=FALSE, eval=FALSE-------------------------------- # sc <- clustexp(sc) # sc <- findoutliers(sc) # sc <- compfr(sc) # sc <- comptsne(sc) # plotmap(sc,fr=TRUE) ## ----eval=FALSE--------------------------------------------------------------- # types <- sub("(\\_\\d+)$","", colnames(sc@ndata)) # plotsymbolsmap(sc,types,fr=TRUE) ## ----eval=FALSE--------------------------------------------------------------- # plotexpmap(sc,"Mki67",imputed=TRUE,fr=TRUE) # plotmarkergenes(sc,c("Clca4","Mki67","Defa24","Defa20","Agr2","Apoa1"),imputed=TRUE,samples=types) ## ----eval=FALSE--------------------------------------------------------------- # k <- imputeexp(sc) ## ----results='hide', message=FALSE, eval=FALSE-------------------------------- # sc <- SCseq(intestinalData) # sc <- filterdata(sc,mintotal=2000) # vars <- data.frame(row.names=colnames(intestinalData),batch=sub("(\\_\\d+)$","",colnames(intestinalData))) # sc <- varRegression(sc,vars) # sc <- compdist(sc,metric="pearson") # sc <- clustexp(sc) # sc <- findoutliers(sc) # sc <- comptsne(sc) # sc <- compfr(sc) # plotmap(sc) ## ----results='hide', message=FALSE, eval=FALSE-------------------------------- # sc <- SCseq(intestinalData) # sc <- filterdata(sc,mintotal=2000) # sc <- CCcorrect(sc,dimR=TRUE) # plotdimsat(sc) # plotdimsat(sc,change=FALSE) # sc <- filterdata(sc,mintotal=2000) # sc <- CCcorrect(sc,nComp=9) # sc <- compdist(sc,metric="pearson") # sc <- clustexp(sc) # sc <- findoutliers(sc) # sc <- comptsne(sc) # sc <- compfr(sc) # plotmap(sc) ## ----results='hide', message=FALSE, eval=FALSE-------------------------------- # sc <- SCseq(intestinalData) # sc <- filterdata(sc,mintotal=2000) # sc <- compdist(sc,metric="pearson") # sc <- clustexp(sc) # sc <- findoutliers(sc) # sc <- rfcorrect(sc) # sc <- comptsne(sc) # sc <- compfr(sc) # plotmap(sc) ## ----results='hide', message=FALSE, eval=FALSE-------------------------------- # sc <- SCseq(intestinalData) # sc <- filterdata(sc,mintotal=2000) # sc <- compdist(sc) ## ----results='hide', message=FALSE, eval=FALSE-------------------------------- # sc <- clustexp(sc,samp=1000,FUNcluster="hclust") ## ----results='hide', message=FALSE, eval=FALSE-------------------------------- # sc <- findoutliers(sc,probthr=1e-4) ## ----results='hide', message=FALSE, eval=FALSE-------------------------------- # sc <- comptsne(sc,perplexity=100) # plotmap(sc) ## ----results='hide', message=FALSE, eval=FALSE-------------------------------- # sc <- compfr(sc,knn=10) # plotmap(sc,fr=TRUE) ## ----------------------------------------------------------------------------- n <- cellsfromtree(ltr,c(2,1,4)) ## ----------------------------------------------------------------------------- x <- getfdata(ltr@sc) ## ----results='hide', message=FALSE, warnings=FALSE---------------------------- library(FateID) fs <- filterset(x,n=n$f) ## ----------------------------------------------------------------------------- s1d <- getsom(fs,nb=100,alpha=.5) ## ----------------------------------------------------------------------------- ps <- procsom(s1d,corthr=.85,minsom=3) ## ----------------------------------------------------------------------------- y <- ltr@sc@cpart[n$f] fcol <- ltr@sc@fcol ## ----eval=FALSE--------------------------------------------------------------- # plotheatmap(ps$nodes.z,xpart=y,xcol=fcol,ypart=unique(ps$nodes),xgrid=FALSE,ygrid=TRUE,xlab=FALSE) ## ----------------------------------------------------------------------------- plotheatmap(ps$all.z,xpart=y,xcol=fcol,ypart=ps$nodes,xgrid=FALSE,ygrid=TRUE,xlab=FALSE) ## ----eval=FALSE--------------------------------------------------------------- # plotheatmap(ps$all.e,xpart=y,xcol=fcol,ypart=ps$nodes,xgrid=FALSE,ygrid=TRUE,xlab=FALSE) ## ----eval=FALSE--------------------------------------------------------------- # plotheatmap(ps$all.b,xpart=y,xcol=fcol,ypart=ps$nodes,xgrid=FALSE,ygrid=TRUE,xlab=FALSE) ## ----------------------------------------------------------------------------- g <- names(ps$nodes)[ps$nodes == 24] ## ----------------------------------------------------------------------------- plotexpression(fs,y,g,n$f,col=fcol,name="Node 24",cluster=FALSE,alpha=.5,types=NULL) ## ----------------------------------------------------------------------------- plotexpression(fs,y,"Clca4",n$f,col=fcol,cluster=FALSE,alpha=.5,types=NULL) ## ----------------------------------------------------------------------------- plotexpression(fs,y,g,n$f,col=fcol,name="Node 24",cluster=FALSE,alpha=.5,types=sub("\\_\\d+","",n$f)) ## ----------------------------------------------------------------------------- sc <- SCseq(intestinalData) sc <- filterdata(sc,mintotal=1000,FGenes=grep("^Gm\\d",rownames(intestinalData),value=TRUE),CGenes=grep("^(mt|Rp(l|s))",rownames(intestinalData),value=TRUE)) ## ----------------------------------------------------------------------------- expData <- getExpData(sc) res <- pruneKnn(expData,no_cores=1) ## ----eval=FALSE--------------------------------------------------------------- # plotRegNB(expData,res,"(Intercept)") ## ----eval=FALSE--------------------------------------------------------------- # plotRegNB(expData,res,"beta") ## ----eval=FALSE--------------------------------------------------------------- # plotRegNB(expData,res,"theta") ## ----------------------------------------------------------------------------- plotPearsonRes(res,log=TRUE,xlim=c(-.1,.2)) ## ----------------------------------------------------------------------------- plotPC(res) ## ----------------------------------------------------------------------------- plotPC(res,logDiff=TRUE) ## ----------------------------------------------------------------------------- cl <- graphCluster(res,pvalue=0.01) ## ----eval=FALSE--------------------------------------------------------------- # install.packages("reticulate") # reticulate::use_python("/usr/bin/python3", required=TRUE) # #confirm that leiden, igraph, and python are available (should return TRUE). # reticulate::py_module_available("leidenalg") && reticulate::py_module_available("igraph") # reticulate::py_available() ## ----eval=FALSE--------------------------------------------------------------- # cl <- graphCluster(res,pvalue=0.01,use.leiden=TRUE,leiden.resolution=1.5) ## ----------------------------------------------------------------------------- sc <- updateSC(sc,res=res,cl=cl) ## ----------------------------------------------------------------------------- plotmap(sc,fr=TRUE) ## ----eval=FALSE--------------------------------------------------------------- # sc <- comptsne(sc,perplexity=50) # plotmap(sc) ## ----------------------------------------------------------------------------- sc <- compumap(sc,min_dist=0.5) plotmap(sc,um=TRUE) ## ----------------------------------------------------------------------------- probs <- transitionProbs(res,cl,pvalue=0.01) ## ----------------------------------------------------------------------------- plotTrProbs(sc,probs,um=TRUE) ## ----warning = FALSE---------------------------------------------------------- nn <- inspectKNN(20,expData,res,cl,object=sc,pvalue=0.01,plotSymbol=TRUE,um=TRUE,cex=1) ## ----warning = FALSE---------------------------------------------------------- head(nn$pv.neighbours) ## ----warning = FALSE---------------------------------------------------------- head(nn$expr.neighbours) ## ----warning = FALSE---------------------------------------------------------- nn <- inspectKNN(20,expData,res,cl,object=sc,pvalue=0.01,plotSymbol=FALSE) ## ----eval = FALSE------------------------------------------------------------- # nn <- inspectKNN(20,expData,res,cl,object=sc,pvalue=0.01,plotSymbol=FALSE,cv=TRUE) ## ----------------------------------------------------------------------------- x <- getFilteredCounts(sc,minexpr=5,minnumber=20) noise <- compTBNoise(res,x,pvalue=0.01,gamma = 0.5,no_cores=1) ## ----------------------------------------------------------------------------- plotUMINoise(sc,noise,log.scale=TRUE) ## ----------------------------------------------------------------------------- sc <- updateSC(sc,res=res,cl=cl,noise=noise) ## ----------------------------------------------------------------------------- plotexpmap(sc,"Clca4",logsc=TRUE,um=TRUE,cex=1) ## ----------------------------------------------------------------------------- plotexpmap(sc,"Clca4",logsc=TRUE,um=TRUE,noise=TRUE,cex=1) ## ----------------------------------------------------------------------------- plotExpNoise("Clca4",sc,noise,norm=TRUE,log="xy") ## ----------------------------------------------------------------------------- genes <- c("Lyz1","Agr2","Clca3","Apoa1","Aldob","Clca4","Mki67","Pcna") ph <- plotmarkergenes(sc,genes=genes,noise=FALSE) plotmarkergenes(sc,genes=genes[ph$tree_row$order],noise=TRUE,cluster_rows=FALSE) ## ----------------------------------------------------------------------------- fractDotPlot(sc, genes, zsc=TRUE) ## ----------------------------------------------------------------------------- ngenes <- diffNoisyGenesTB(noise,cl,set=1,no_cores=1) head(ngenes) ## ----------------------------------------------------------------------------- genes <- head(rownames(ngenes),50) ph <- plotmarkergenes(sc,genes=genes,noise=TRUE,cluster_rows=FALSE,zsc=TRUE) ## ----eval=FALSE--------------------------------------------------------------- # ph <- plotmarkergenes(sc,genes=genes,noise=TRUE,cluster_rows=TRUE,cluster_cols=TRUE) ## ----eval=FALSE--------------------------------------------------------------- # plotmarkergenes(sc,genes=ph$tree_row$labels[ ph$tree_row$order ],noise=FALSE,cells=ph$tree_col$labels[ ph$tree_col$order ], order.cells=TRUE,cluster_rows=FALSE) ## ----------------------------------------------------------------------------- mgenes <- maxNoisyGenesTB(noise,cl=cl,set=3) head(mgenes) plotmarkergenes(sc,genes=head(names(mgenes),50),noise=TRUE) ## ----------------------------------------------------------------------------- ngenes <- diffNoisyGenesTB(noise, cl, set=1, bgr=c(2,4)) plotDiffNoise(ngenes) ## ----eval=FALSE--------------------------------------------------------------- # dgenes <- clustdiffgenes(sc,1,bgr=c(2,4),pvalue=0.01) # plotdiffgenesnb(dgenes,xlim=c(-6,3)) ## ----------------------------------------------------------------------------- violinMarkerPlot(c("Mki67","Pcna"),sc,set=c(2,3,1)) ## ----------------------------------------------------------------------------- violinMarkerPlot(c("Mki67","Pcna"),sc,noise,set=c(2,3,1)) ## ----------------------------------------------------------------------------- qn <- quantKnn(res, noise, sc, pvalue = 0.01, minN = 5, no_cores = 1) ## ----------------------------------------------------------------------------- StemCluster <- 2 ## ----------------------------------------------------------------------------- plotQuantMap(qn,"noise.av",sc,um=TRUE,ceil=.6,cex=1) plotQuantMap(qn,"noise.av",sc,box=TRUE,cluster=StemCluster) ## ----------------------------------------------------------------------------- plotQuantMap(qn,"local.corr",sc,um=TRUE,logsc=TRUE,cex=1) plotQuantMap(qn,"local.corr",sc,box=TRUE,logsc=TRUE,cluster=StemCluster) ## ----------------------------------------------------------------------------- plotQuantMap(qn,"umi",sc,um=TRUE,logsc=TRUE,cex=1) plotQuantMap(qn,"umi",sc,box=TRUE,logsc=TRUE,cluster=StemCluster) ## ----------------------------------------------------------------------------- plotQQ(qn,"umi","noise.av",sc,cluster=StemCluster,log="yx",cex=1) ## ----------------------------------------------------------------------------- plotQQ(qn,"local.corr","noise.av",sc,cluster=StemCluster,log="xy",cex=1) ## ----------------------------------------------------------------------------- plotTrProbs(sc,probs,um=TRUE) ## ----------------------------------------------------------------------------- plotexpmap(sc,"Apoa1",um=TRUE,cex=1,logsc=TRUE) ## ----results='hide', message=FALSE-------------------------------------------- # ordered set of clusters on the trajectory set <- c(2,3,1) # if slingshot is available, run with useSlingshot=TRUE (default) pt <- pseudoTime(sc,m="umap",set=set,useSlingshot=FALSE) ## ----------------------------------------------------------------------------- plotPT(pt,sc,clusters=FALSE) ## ----------------------------------------------------------------------------- plotPT(pt,sc,clusters=TRUE,lineages=TRUE) ## ----------------------------------------------------------------------------- fs <- extractCounts(sc,minexpr=5,minnumber=20,pt=pt) ## ----results='hide', message=FALSE, warnings=FALSE---------------------------- library(FateID) s1d <- getsom(fs,nb=50,alpha=1) ps <- procsom(s1d,corthr=.85,minsom=0) part <- pt$part ord <- pt$ord plotheatmap(ps$all.z, xpart=part[ord], xcol=sc@fcol, ypart=ps$nodes, xgrid=FALSE, ygrid=TRUE, xlab=TRUE) ## ----------------------------------------------------------------------------- plotexpression(fs,y=part,g="Apoa1",n=ord,col=sc@fcol,cex=1,alpha=1) ## ----------------------------------------------------------------------------- genes <- c("Mki67","Pcna","Apoa1") plotexpressionProfile(fs,y=part,g=genes,n=ord,alpha=1,col=rainbow(length(genes)),lwd=2) ## ----------------------------------------------------------------------------- genes <- getNode(ps,1) plotexpressionProfile(fs,y=part,g=head(genes,10),n=ord,alpha=1,lwd=2) ## ----------------------------------------------------------------------------- fsn <- extractCounts(sc,minexpr=5,minnumber=20,pt=pt,noise=TRUE) s1dn <- getsom(fsn,nb=25,alpha=1) psn <- procsom(s1dn,corthr=.85,minsom=0) ## ----eval=FALSE--------------------------------------------------------------- # plotheatmap(psn$all.z, xpart=part[ord], xcol=sc@fcol, ypart=ps$nodes, xgrid=FALSE, ygrid=TRUE, xlab=TRUE) ## ----------------------------------------------------------------------------- plotexpression(fsn,y=part,g="Apoa1",n=ord, col=sc@fcol,cex=1,alpha=1,ylab="Noise") genes <- c("Mki67","Pcna","Apoa1") plotexpressionProfile(fsn,y=part,g=genes,n=ord,alpha=1,col=rainbow(length(genes)),lwd=2,ylab="Noise") genes <- getNode(psn,1) plotexpressionProfile(fsn,y=part,g=head(genes,10),n=ord,alpha=1,lwd=2,ylab="Noise") ## ----eval=FALSE--------------------------------------------------------------- # sc <- SCseq(intestinalData) # sc <- filterdata(sc,mintotal=1000,FGenes=grep("^Gm\\d",rownames(intestinalData),value=TRUE),CGenes=grep("^(mt|Rp(l|s))",rownames(intestinalData),value=TRUE)) # expData <- getExpData(sc) # # batch <- sub("5d.+","",colnames(expData)) # names(batch) <- colnames(expData) # head(batch) # # require(Matrix) # S_score <- colMeans(sc@ndata[intersect(cc_genes$s,rownames(sc@ndata)),]) # G2M_score <- colMeans(sc@ndata[intersect(cc_genes$g2m,rownames(sc@ndata)),]) # regVar <- data.frame(S_score=S_score, G2M_score=G2M_score) # rownames(regVar) <- colnames(expData) # # res <- pruneKnn(expData,no_cores=1,batch=batch,regVar=regVar) # cl <- graphCluster(res,pvalue=0.01) # probs <- transitionProbs(res,cl) # x <- getFilteredCounts(sc,minexpr=5,minnumber=5) # noise <- compTBNoise(res,x,pvalue=0.01,no_cores=1) # sc <- updateSC(sc,res=res,cl=cl,noise=noise) # sc <- compumap(sc,min_dist=0.5) # sc <- comptsne(sc,perplexity=50) # # plotmap(sc,cex=1) # plotmap(sc,fr=TRUE,cex=1) # plotmap(sc,um=TRUE,cex=1) # plotsymbolsmap(sc,batch,um=TRUE,cex=1) # plotexpmap(sc,"Mki67",um=TRUE,cex=1,log=TRUE) # plotexpmap(sc,"Pcna",um=TRUE,cex=1,log=TRUE) ## ----eval=FALSE--------------------------------------------------------------- # # library(Seurat) # library(RaceID) # # Se <- CreateSeuratObject(counts = intestinalData, project = "intestine", min.cells = 3, min.features = 200) # Se <- NormalizeData(Se, normalization.method = "LogNormalize", scale.factor = 10000) # Se <- FindVariableFeatures(Se, selection.method = "vst", nfeatures = 2000) # # all.genes <- rownames(Se) # Se <- ScaleData(Se, features = all.genes) # Se <- RunPCA(Se, features = VariableFeatures(object = Se)) # Se <- RunUMAP(Se, dims = 1:30, verbose = FALSE) # Se <- RunTSNE(Se, dims = 1:30, verbose = FALSE) # Se <- FindNeighbors(Se, dims = 1:10) # Se <- FindClusters(Se, resolution = 0.5) # DimPlot(Se, label = TRUE) + NoLegend() # # res <- pruneKnn(Se) # ## without pruning (fast) # ## res <- pruneKnn(Se,do.prune=FALSE,no_cores=1) # sc <- Seurat2SCseq(Se) # plotmap(sc,um=TRUE) # # noise <- compTBNoise(res,getExpData(sc),no_cores=1) # sc <- updateSC(sc,noise=noise) # plotexpmap(sc,"Clca4",um=TRUE,cex=1,log=TRUE) # plotexpmap(sc,"Clca4",um=TRUE,noise=TRUE,cex=1) ## ----eval=FALSE--------------------------------------------------------------- # require(Matrix) # require(RaceID) # x <- readMM("matrix.mtx") # f <- read.csv("features.tsv",sep="\t",header=FALSE) # b <- read.csv("barcodes.tsv",sep="\t",header=FALSE) # rownames(x) <- f[,1] # colnames(x) <- b[,1] # # sc <- SCseq(x) ## ----eval=FALSE--------------------------------------------------------------- # require(Matrix) # require(RaceID) # x <- readMM("matrix.mtx") # f <- read.csv("features.tsv",sep="\t",header=FALSE) # b <- read.csv("barcodes.tsv",sep="\t",header=FALSE) # rownames(x) <- f[,1] # colnames(x) <- b[,1] # # sc <- SCseq(x) # sc <- filterdata(sc,mintotal=1000,CGenes=rownames(x)[grep("^(mt|Rp(l|s)|Gm\\d)",rownames(x))]) # expData <- getExpData(sc) # res <- pruneKnn(expData,no_cores=5) # cl <- graphCluster(res,pvalue=0.01) # probs <- transitionProbs(res,cl) # # ## compute noise from corrected variance # noise <- compTBNoise(res,expData,pvalue=0.01,no_cores=5) # sc <- updateSC(sc,res=res,cl=cl,noise=noise) # # sc <- comptsne(sc) # sc <- compumap(sc) #