A robust alternative to the aJIVE (angle based Joint and Individual Variation Explained) method (Feng et al 2018: <doi:10.1016/j.jmva.2018.03.008>) for the estimation of joint and individual components in the presence of outliers in multi-source data. It decomposes the multi-source data into joint, individual and residual (noise) contributions. The decomposition is robust to outliers and noise in the data. The method is illustrated in Ponzi et al (2021) <doi:10.48550/arXiv.2101.09110>.
Version: | 1.0 |
Depends: | R (≥ 3.1.0) |
Imports: | ggplot2, doParallel, foreach |
Suggests: | knitr, rmarkdown, testthat (≥ 2.1.0), cowplot, reshape2, dplyr |
Published: | 2021-02-04 |
DOI: | 10.32614/CRAN.package.RaJIVE |
Author: | Erica Ponzi [aut, cre], Abhik Ghosh [aut] |
Maintainer: | Erica Ponzi <erica.ponzi at medisin.uio.no> |
License: | MIT + file LICENSE |
NeedsCompilation: | no |
Materials: | README |
CRAN checks: | RaJIVE results |
Reference manual: | RaJIVE.pdf |
Package source: | RaJIVE_1.0.tar.gz |
Windows binaries: | r-devel: RaJIVE_1.0.zip, r-release: RaJIVE_1.0.zip, r-oldrel: RaJIVE_1.0.zip |
macOS binaries: | r-devel (arm64): RaJIVE_1.0.tgz, r-release (arm64): RaJIVE_1.0.tgz, r-oldrel (arm64): RaJIVE_1.0.tgz, r-devel (x86_64): RaJIVE_1.0.tgz, r-release (x86_64): RaJIVE_1.0.tgz, r-oldrel (x86_64): RaJIVE_1.0.tgz |
Please use the canonical form https://CRAN.R-project.org/package=RaJIVE to link to this page.