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Description

Collection of Methods Constructed using the Kernel-Based Quadratic Distances

QuadratiK provides the first implementation, in R and Python, of a comprehensive set of goodness-
of-fit tests and a clustering technique for d-dimensional spherical data d ≥ 2 using kernel-based
quadratic distances. It includes:

• Goodness-of-Fit Tests: The software implements one, two, and k-sample tests for goodness
of fit, offering an efficient and mathematically sound way to assess the fit of probability dis-
tributions. Our tests are particularly useful for large, high dimensional data sets where the
assessment of fit of probability models is of interest. Specifically, we offer tests for normality,
as well as two- and k-sample tests, where testing equality of two or more distributions is of
interest, that is H0 : F1 = F2 and H0 : F1 = . . . = Fk respectively. The proposed tests per-
form well in terms of level and power for contiguous alternatives, heavy tailed distributions
and in higher dimensions.
Expanded capabilities include supporting tests for uniformity on the d-dimensional Sphere
based on the Poisson kernel, exhibiting excellent results especially in the case of multimodal
distributions.

• Poisson kernel-based distribution (PKBD): the package offers functions for computing the
density value and for generating random samples from a PKBD. The Poisson kernel-based
densities are based on the normalized Poisson kernel and are defined on the d-dimensional
unit sphere. Given a vector µ ∈ Sd−1, and a parameter ρ such that 0 < ρ < 1, the probability
density function of a d-variate Poisson kernel-based density is defined by:

f(x|ρ, µ) = 1− ρ2

ωd||x− ρµ||d
,

where µ is a vector orienting the center of the distribution, ρ is a parameter to control the
concentration of the distribution around the vector µ and it is related to the variance of the
distribution. Furthermore, ωd = 2πd/2[Γ(d/2)]−1 is the surface area of the unit sphere in Rd

(see Golzy and Markatou, 2020).
• Clustering Algorithm for Spherical Data: the package incorporates a unique clustering

algorithm specifically tailored for d-dimensional spherical data and it is especially useful in
the presence of noise in the data and the presence of non-negligible overlap between clusters.
This algorithm leverages a mixture of Poisson kernel-based densities on the Sphere, enabling
effective clustering of spherical data or data that has been spherically transformed.

• Additional Features: Alongside these functionalities, the software includes additional graph-
ical functions, aiding users in validating and representing the cluster results as well as enhanc-
ing the interpretability and usability of the analysis.

For an introduction to QuadratiK see the vignette Introduction to the QuadratiK Package.

Details

The work has been supported by Kaleida Health Foundation and the National Science Foundation.

Note

The QuadratiK package is also available in Python on PyPI https://pypi.org/project/QuadratiK/
and also as a Dashboard application. Usage instruction for the Dashboard can be found at <https://quadratik.readthedocs.io/en/latest/user_guide/
dashboard_application_usage.html>.

../doc/Introduction.html
https://pypi.org/project/QuadratiK/
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Author(s)

Giovanni Saraceno, Marianthi Markatou, Raktim Mukhopadhyay, Mojgan Golzy

Maintainer: Giovanni Saraceno <giovanni.saracen@unipd.it>

References

Saraceno, G., Markatou, M., Mukhopadhyay, R. and Golzy, M. (2024). Goodness-of-Fit and Clus-
tering of Spherical Data: the QuadratiK package in R and Python. arXiv preprint arXiv:2402.02290.

Ding, Y., Markatou, M. and Saraceno, G. (2023). “Poisson Kernel-Based Tests for Uniformity on
the d-Dimensional Sphere.” Statistica Sinica. doi: doi:10.5705/ss.202022.0347.

Golzy, M. and Markatou, M. (2020) Poisson Kernel-Based Clustering on the Sphere: Convergence
Properties, Identifiability, and a Method of Sampling, Journal of Computational and Graphical
Statistics, 29:4, 758-770, DOI: 10.1080/10618600.2020.1740713.

Markatou, M. and Saraceno, G. (2024). “A Unified Framework for Multivariate Two- and k-Sample
Kernel-based Quadratic Distance Goodness-of-Fit Tests.”
https://doi.org/10.48550/arXiv.2407.16374

See Also

Useful links:

• https://CRAN.R-project.org/package=QuadratiK

• https://github.com/ropensci/QuadratiK/

• https://docs.ropensci.org/QuadratiK/

• Report bugs at https://github.com/ropensci/QuadratiK/issues

breast_cancer Breast Cancer Wisconsin (Diagnostic)

Description

The breast_cancer Wisconsin data has 569 rows and 31 columns. The first 30 variables report the
features that are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass.
They describe characteristics of the cell nuclei present in the image. The last column indicates the
class labels (Benign = 0 or Malignant = 1).

Usage

breast_cancer

Format

A data frame of 569 observations and 31 variables.

https://CRAN.R-project.org/package=QuadratiK
https://github.com/ropensci/QuadratiK/
https://docs.ropensci.org/QuadratiK/
https://github.com/ropensci/QuadratiK/issues
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Source

Wolberg, W., Mangasarian, O., Street, N., & Street, W. (1993). Breast Cancer Wisconsin (Diagnos-
tic). UCI Machine Learning Repository. https://doi.org/10.24432/C5DW2B.

References

Street, W. N., Wolberg, W. H., & Mangasarian, O. L. (1993, July). Nuclear feature extraction for
breast tumor diagnosis. In Biomedical image processing and biomedical visualization (Vol. 1905,
pp. 861-870). SPIE.

Examples

data(breast_cancer)
summary(breast_cancer)

dpkb The Poisson kernel-based Distribution (PKBD)

Description

The Poisson kernel-based densities are based on the normalized Poisson kernel and are defined on
the (d−1)-dimensional unit sphere. Given a vector µ ∈ Sd−1, where Sd−1 = {x ∈ Rd : ||x|| = 1},
and a parameter ρ such that 0 < ρ < 1, the probability density function of a d-variate Poisson
kernel-based density is defined by:

f(x|ρ, µ) = 1− ρ2

ωd||x− ρµ||d
,

where µ is a vector orienting the center of the distribution, ρ is a parameter to control the concentra-
tion of the distribution around the vector µ and it is related to the variance of the distribution. Recall
that, for x = (x1, . . . , xd) ∈ Rd, ||x|| =

√
x2
1 + . . .+ x2

d. Furthermore, ωd = 2πd/2[Γ(d/2)]−1 is
the surface area of the unit sphere in Rd (see Golzy and Markatou, 2020). When ρ → 0, the Pois-
son kernel-based density tends to the uniform density on the sphere. Connections of the PKBDs to
other distributions are discussed in detail in Golzy and Markatou (2020). Here we note that when
d = 2, PKBDs reduce to the wrapped Cauchy distribution. Additionally, with precise choice of
the parameters ρ and µ the two-dimensional PKBD becomes a two-dimensional projected normal
distribution. However, the connection with the d-dimensional projected normal distributions does
not carry beyond d = 2. Golzy and Markatou (2020) proposed an acceptance-rejection method for
simulating data from a PKBD using von Mises-Fisher envelopes (rejvmf method). Furthermore
Sablica, Hornik and Leydold (2023) proposed new ways for simulating from the PKBD, using
angular central Gaussian envelopes (rejacg) or using the projected Saw distributions (rejpsaw).
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Usage

dpkb(x, mu, rho, logdens = FALSE)

rpkb(
n,
mu,
rho,
method = "rejacg",
tol.eps = .Machine$double.eps^0.25,
max.iter = 1000

)

Arguments

x n× d-matrix (or data.frame) of n data point on the sphere Sd−1, with d ≥ 2.

mu location vector parameter with length indicating the dimension of generated
points.

rho Concentration parameter, with 0 ≤ rho < 1.

logdens Logical; if ’TRUE’, densities are returned in logarithmic scale.

n number of observations.

method string that indicates the method used for sampling observations. The available
methods are

• 'rejvmf' acceptance-rejection algorithm using von Mises-Fisher envelopes
(Algorithm in Table 2 of Golzy and Markatou 2020);

• 'rejacg' using angular central Gaussian envelopes (Algorithm in Table 1
of Sablica et al. 2023);

• 'rejpsaw' using projected Saw distributions (Algorithm in Table 2 of Sablica
et al. 2023).

tol.eps the desired accuracy of convergence tolerance (for ’rejacg’ method).

max.iter the maximum number of iterations (for ’rejacg’ method).

Details

This function dpkb() computes the density value for a given point x from the Poisson kernel-based
distribution with mean direction vector mu and concentration parameter rho.

The number of observations generated is determined by n for rpkb(). This function returns the
(n× d)-matrix of generated n observations on S(d−1).

A limitation of the rejvmf is that the method does not ensure the computational feasibility of the
sampler for ρ approaching 1.

If the chosen method is ’rejacg’, the function uniroot, from the stat package, is used to estimate
the beta parameter. In this case, the complete results are provided as output.

Value

dpkb gives the density value; rpkb generates random observations from the PKBD.



kb.test 7

Note

If the required packages (movMF for rejvmf method, and Tinflex for rejpsaw) are not installed,
the function will display a message asking the user to install the missing package(s).

References

Golzy, M. and Markatou, M. (2020) Poisson Kernel-Based Clustering on the Sphere: Convergence
Properties, Identifiability, and a Method of Sampling, Journal of Computational and Graphical
Statistics, 29:4, 758-770, DOI: 10.1080/10618600.2020.1740713.

Sablica L., Hornik K. and Leydold J. (2023) "Efficient sampling from the PKBD distribution",
Electronic Journal of Statistics, 17(2), 2180-2209.

Examples

# Generate some data from pkbd density
pkbd_dat <- rpkb(10, c(0.5, 0), 0.5)

# Calculate the PKBD density values
dens_val <- dpkb(pkbd_dat, c(0.5, 0.5), 0.5)

kb.test Kernel-based quadratic distance (KBQD) Goodness-of-Fit tests

Description

This function performs the kernel-based quadratic distance goodness-of-fit tests. It includes tests
for multivariate normality, two-sample tests and k-sample tests.

Usage

kb.test(
x,
y = NULL,
h = NULL,
method = "subsampling",
B = 150,
b = NULL,
Quantile = 0.95,
mu_hat = NULL,
Sigma_hat = NULL,
centeringType = "Nonparam",
K_threshold = 10,
alternative = "skewness"

)

## S4 method for signature 'ANY'
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kb.test(
x,
y = NULL,
h = NULL,
method = "subsampling",
B = 150,
b = 0.9,
Quantile = 0.95,
mu_hat = NULL,
Sigma_hat = NULL,
centeringType = "Nonparam",
K_threshold = 10,
alternative = "skewness"

)

## S4 method for signature 'kb.test'
show(object)

Arguments

x Numeric matrix or vector of data values.

y Numeric matrix or vector of data values. Depending on the input y, the corre-
sponding test is performed.

• if y = NULL, the function performs the tests for normality on x

• if y is a data matrix, with same dimensions of x, the function performs the
two-sample test between x and y.

• if y is a numeric or factor vector, indicating the group memberships for each
observation, the function performs the k-sample test.

h Bandwidth for the kernel function. If a value is not provided, the algorithm
for the selection of an optimal h is performed automatically. See the function
select_h for more details.

method The method used for critical value estimation ("subsampling", "bootstrap", or
"permutation")(default: "subsampling").

B The number of iterations to use for critical value estimation (default: 150).

b The size of the subsamples used in the subsampling algorithm (default: 0.8).

Quantile The quantile to use for critical value estimation, 0.95 is the default value.

mu_hat Mean vector for the reference distribution.

Sigma_hat Covariance matrix of the reference distribution.

centeringType String indicating the method used for centering the normal kernel (’Param’ or
’Nonparam’).

K_threshold maximum number of groups allowed. Default is 10. It is a control parameter.
Change in case of more than 10 samples.

alternative Family of alternative chosen for selecting h, between "location", "scale" and
"skewness" (only if h is not provided).

object Object of class kb.test
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Details

The function kb.test performs the kernel-based quadratic distance tests using the Gaussian kernel
with bandwidth parameter h. Depending on the shape of the input y the function performs the tests
of multivariate normality, the non-parametric two-sample tests or the k-sample tests.

The quadratic distance between two probability distributions F and G is defined as

dK(F,G) =

∫∫
K(x, y)d(F −G)(x)d(F −G)(y),

where G is a distribution whose goodness of fit we wish to assess and K denotes the Normal kernel
defined as

Kh(s, t) = (2π)−d/2 (detΣh)
− 1

2 exp

{
−1

2
(s− t)⊤Σ−1

h (s− t)

}
,

for every s, t ∈ Rd × Rd, with covariance matrix Σh = h2I and tuning parameter h.

• Test for Normality:
Let x1, x2, ..., xn be a random sample with empirical distribution function F̂ . We test the null
hypothesis of normality, i.e. H0 : F = G = Nd(µ,Σ).
We consider the U-statistic estimate of the sample KBQD

Un =
1

n(n− 1)

n∑
i=2

i−1∑
j=1

Kcen(xi,xj),

then the first test statistics is

Tn =
Un√

V ar(Un)
,

with V ar(Un) computed exactly following Lindsay et al.(2014), and the V-statistic estimate

Vn =
1

n

n∑
i=1

n∑
j=1

Kcen(xi,xj),

where Kcen denotes the Normal kernel Kh with parametric centering with respect to the
considered normal distribution G = Nd(µ,Σ).
The asymptotic distribution of the V-statistic is an infinite combination of weighted indepen-
dent chi-squared random variables with one degree of freedom. The cutoff value is obtained
using the Satterthwaite approximation c · χ2

DOF , where c and DOF are computed exactly
following the formulas in Lindsay et al.(2014).
For the U -statistic the cutoff is determined empirically:

– Generate data from the considered normal distribution ;
– Compute the test statistics for B Monte Carlo(MC) replications;
– Compute the 95th quantile of the empirical distribution of the test statistic.

• k-sample test:
Consider k random samples of i.i.d. observations x(i)

1 ,x
(i)
2 , . . . ,x

(i)
ni ∼ Fi, i = 1, . . . , k. We

test if the samples are generated from the same unknown distribution, that is H0 : F1 = F2 =
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. . . = Fk versus H1 : Fi ̸= Fj , for some 1 ≤ i ̸= j ≤ k.
We construct a matrix distance D̂, with off-diagonal elements

D̂ij =
1

ninj

ni∑
ℓ=1

nj∑
r=1

KF̄ (x
(i)
ℓ ,x(j)

r ), for i ̸= j

and in the diagonal

D̂ii =
1

ni(ni − 1)

ni∑
ℓ=1

ni∑
r ̸=ℓ

KF̄ (x
(i)
ℓ ,x(i)

r ), for i = j,

where KF̄ denotes the Normal kernel Kh centered non-parametrically with respect to

F̄ =
n1F̂1 + . . .+ nkF̂k

n
, with n =

k∑
i=1

ni.

We compute the trace statistic

trace(D̂n) =

k∑
i=1

D̂ii

and Dn, derived considering all the possible pairwise comparisons in the k-sample null hy-
pothesis, given as

Dn = (k − 1)trace(D̂n)− 2

k∑
i=1

k∑
j>i

D̂ij .

We compute the empirical critical value by employing numerical techniques such as the boot-
strap, permutation and subsampling algorithms:

– Generate k-tuples, of total size nB , from the pooled sample following one of the sampling
methods;

– Compute the k-sample test statistic;
– Repeat B times;
– Select the 95th quantile of the obtained values.

• Two-sample test:
Let x1, x2, ..., xn1

∼ F and y1, y2, ..., yn2
∼ G be random samples from the distributions F

and G, respectively. We test the null hypothesis that the two samples are generated from the
same unknown distribution, that is H0 : F = G vs H1 : F ̸= G. The test statistics coincide
with the k-sample test statistics when k = 2.

Kernel centering:
The arguments mu_hat and Sigma_hat indicate the normal model considered for the normality
test, that is H0 : F = N(mu_hat, Sigma_hat). For the two-sample and k-sample tests, mu_hat
and Sigma_hat can be used for the parametric centering of the kernel, in the case we want to spec-
ify the reference distribution, with centeringType = "Param". This is the default method when
the test for normality is performed. The normal kernel centered with respect to G ∼ Nd(µ,V)
can be computed as

Kcen(G)(s, t) = KΣh
(s, t)−KΣh+V(µ, t)−KΣh+V(s, µ) +KΣh+2V(µ, µ).
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We consider the non-parametric centering of the kernel with respect to F̄ = (n1F1+ . . . nkFk)/n

where n =
∑k

i=1 ni, with centeringType = "Nonparam", for the two- and k-sample tests. Let
z1, . . . , zn denote the pooled sample. For any s, t ∈ {z1, . . . , zn}, it is given by

Kcen(F̄ )(s, t) = K(s, t)− 1

n

n∑
i=1

K(s, zi)−
1

n

n∑
i=1

K(zi, t) +
1

n(n− 1)

n∑
i=1

n∑
j ̸=i

K(zi, zj).

Value

An S4 object of class kb.test containing the results of the kernel-based quadratic distance tests,
based on the normal kernel. The object contains the following slots:

• method: Description of the kernel-based quadratic distance test performed.
• x Data list of samples X (and Y).
• Un The value of the U-statistic.
• H0_Un A logical value indicating whether or not the null hypothesis is rejected according to

Un.
• CV_Un The critical value computed for the test Un.
• Vn The value of the V-statistic (if available).
• H0_Vn A logical value indicating whether or not the null hypothesis is rejected according to

Vn (if available).
• CV_Vn The critical value computed for the test Vn (if available).
• h List with the value of bandwidth parameter used for the normal kernel function. If select_h

is used, the matrix of computed power values and the corresponding power plot are also pro-
vided.

• B Number of bootstrap/permutation/subsampling replications.
• var_Un exact variance of the kernel-based U-statistic.
• cv_method The method used to estimate the critical value (one of "subsampling", "permuta-

tion" or "bootstrap").

Note

For the two- and k-sample tests, the slots Vn, H0_Vn and CV_Vn are empty, while the computed
statistics are both reported in slots Un, H0_Un and CV_Un.

A U-statistic is a type of statistic that is used to estimate a population parameter. It is based on the
idea of averaging over all possible distinct combinations of a fixed size from a sample. A V-statistic
considers all possible tuples of a certain size, not just distinct combinations and can be used in
contexts where unbiasedness is not required.

References

Markatou, M. and Saraceno, G. (2024). “A Unified Framework for Multivariate Two- and k-Sample
Kernel-based Quadratic Distance Goodness-of-Fit Tests.”
https://doi.org/10.48550/arXiv.2407.16374

Lindsay, B.G., Markatou, M. and Ray, S. (2014) "Kernels, Degrees of Freedom, and Power Proper-
ties of Quadratic Distance Goodness-of-Fit Tests", Journal of the American Statistical Association,
109:505, 395-410, DOI: 10.1080/01621459.2013.836972
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See Also

kb.test for the class definition.

Examples

# create a kb.test object
x <- matrix(rnorm(100), ncol = 2)
y <- matrix(rnorm(100), ncol = 2)

# Normality test
my_test <- kb.test(x, h=0.5)
my_test

# Two-sample test
my_test <- kb.test(x, y, h = 0.5, method = "subsampling", b = 0.9,

centeringType = "Nonparam")
my_test

# k-sample test
z <- matrix(rnorm(100, 2), ncol = 2)
dat <- rbind(x, y, z)
group <- rep(c(1, 2, 3), each = 50)
my_test <- kb.test(x = dat, y = group, h = 0.5, method = "subsampling", b = 0.9)
my_test

kb.test-class An S4 class for kernel-based distance tests with normal kernel

Description

A class to represent the results of Gaussian kernel-based quadratic distance tests. This includes the
normality test, the two-sample test statistics and the k-sample tests.

Slots

method String indicating the kernel-based quadratic distance test performed.

Un The value of the test U-statistic.

Vn The value of the test V-statistic.

H0_Un A logical value indicating whether or not the null hypothesis is rejected according to U-
statistic.

H0_Vn A logical value indicating whether or not the null hypothesis is rejected according to Vn.

data List of samples X (and Y).

CV_Un The critical value computed for the test Un.

CV_Vn The critical value computed for the test Vn.
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cv_method The method used to estimate the critical value (one of "subsampling", "permutation"
or "bootstrap").

h A list with the value of bandwidth parameter used for the Gaussian kernel. If the function
select_h is used, then also the matrix of computed power values and the resulting power
plot are provided.

B Number of bootstrap/permutation/subsampling replications.

var_Un Exact variance of the kernel-based U-statistic.

See Also

kb.test() for the function that generates this class.

Examples

# create a kb.test object
x <- matrix(rnorm(100), ncol = 2)
y <- matrix(rnorm(100), ncol = 2)
# Normality test
kb.test(x, h = 0.5)

# Two-sample test
kb.test(x, y, h=0.5, method = "subsampling", b = 0.9)

pk.test Poisson kernel-based quadratic distance test of Uniformity on the
sphere

Description

This function performs the kernel-based quadratic distance goodness-of-fit tests for Uniformity for
multivariate spherical data x on Sd−1 using the Poisson kernel with concentration parameter rho.
The Poisson kernel-based test for uniformity exhibits excellent results especially in the case of
multimodal distributions, as shown in the example of the Uniformity test on the Sphere vignette.

Usage

pk.test(x, rho, B = 300, Quantile = 0.95)

## S4 method for signature 'ANY'
pk.test(x, rho, B = 300, Quantile = 0.95)

## S4 method for signature 'pk.test'
show(object)

../doc/uniformity.html
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Arguments

x A numeric (n× d)-matrix of n data points on the Sphere S(d− 1) as rows.

rho Concentration parameter of the Poisson kernel function.

B Number of Monte Carlo iterations for critical value estimation of Un (default:
300).

Quantile The quantile to use for critical value estimation, 0.95 is the default value.

object Object of class pk.test

Details

Let x1, x2, ..., xn be a random sample with empirical distribution function F̂ . We test the null
hypothesis of uniformity on the (d − 1)-dimensional sphere, i.e. H0 : F = G, where G is the
uniform distribution on the (d− 1)-dimensional sphere Sd−1. We compute the U-statistic estimate
of the sample KBQD (Kernel-Based Quadratic Distance)

Un =
1

n(n− 1)

n∑
i=2

i−1∑
j=1

Kcen(xi,xj),

then the first test statistic is given as

Tn =
Un√

V ar(Un)
,

with

V ar(Un) =
2

n(n− 1)

[
1 + ρ2

(1− ρ2)d−1
− 1

]
,

and the V-statistic estimate of the KBQD

Vn =
1

n

n∑
i=1

n∑
j=1

Kcen(xi,xj),

where Kcen denotes the Poisson kernel Kρ centered with respect to the uniform distribution on the
(d− 1)-dimensional sphere, that is

Kcen(u,v) = Kρ(u,v)− 1

and

Kρ(u,v) =
1− ρ2

(1 + ρ2 − 2ρ(u · v))d/2
,

for every u,v ∈ Sd−1 × Sd−1.

The asymptotic distribution of the V-statistic is an infinite combination of weighted independent
chi-squared random variables with one degree of freedom. The cutoff value is obtained using the
Satterthwaite approximation c · χ2

DOF , where

c =
(1 + ρ2)− (1− ρ2)d−1

(1 + ρ)d − (1− ρ2)d−1
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and

DOF (Kcen) =

(
1 + ρ

1− ρ

)d−1
{(

1 + ρ− (1− ρ)d−1
)2

1 + ρ2 − (1− ρ2)d−1

}
.

. For the U -statistic the cutoff is determined empirically:

• Generate data from a Uniform distribution on the d-dimensional sphere;

• Compute the test statistics for B Monte Carlo(MC) replications;

• Compute the 95th quantile of the empirical distribution of the test statistic.

Value

An S4 object of class pk.test containing the results of the Poisson kernel-based tests. The object
contains the following slots:

• method: Description of the test performed.

• x Data matrix.

• Un The value of the U-statistic.

• CV_Un The empirical critical value for Un.

• H0_Vn A logical value indicating whether or not the null hypothesis is rejected according to
Un.

• Vn The value of the V-statistic Vn.

• CV_Vn The critical value for Vn computed following the asymptotic distribution.

• H0_Vn A logical value indicating whether or not the null hypothesis is rejected according to
Vn.

• rho The value of concentration parameter used for the Poisson kernel function.

• B Number of replications for the critical value of the U-statistic Un.

Note

A U-statistic is a type of statistic that is used to estimate a population parameter. It is based on the
idea of averaging over all possible distinct combinations of a fixed size from a sample. A V-statistic
considers all possible tuples of a certain size, not just distinct combinations and can be used in
contexts where unbiasedness is not required.

References

Ding, Y., Markatou, M. and Saraceno, G. (2023). “Poisson Kernel-Based Tests for Uniformity on
the d-Dimensional Sphere.” Statistica Sinica. doi:10.5705/ss.202022.0347

See Also

pk.test
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Examples

# create a pk.test object
x_sp <- sample_hypersphere(3, n_points = 100)
unif_test <- pk.test(x_sp, rho = 0.8)
unif_test

pk.test-class An S4 class for Poisson kernel-based quadratic distance tests.

Description

A class to represent the results of Poisson kernel-based quadratic distance tests for Uniformity on
the sphere.

Slots

method Description of the test.

x Matrix of data

Un The value of the U-statistic.

CV_Un The critical value for Un computed through replications.

H0_Un A logical value indicating whether or not the null hypothesis is rejected according to Un.

Vn The value of the V-statistic.

CV_Vn The critical value for Vn computed following the asymptotic distribution.

H0_Vn A logical value indicating whether or not the null hypothesis is rejected according to Vn.

rho The concentration parameter of the Poisson kernel.

B Number of replications.

var_Un exact variance of the kernel-based U-statistic.

See Also

pk.test()

Examples

# create a pk.test object
d=3
size=100
x_sp <- sample_hypersphere(d, n_points=size)
pk.test(x_sp,rho=0.8)
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pkbc Poisson kernel-based clustering on the sphere

Description

The function pkbc() performs the Poisson kernel-based clustering algorithm on the sphere pro-
posed by Golzy and Markatou (2020). The proposed algorithm is based on a mixture, with M
components, of Poisson kernel-based densities on the hypersphere Sd−1 given by

f(x|Θ) =

M∑
j=1

αjfj(x|ρj , µj)

where αj’s are the mixing proportions and fj(x|ρj , µj)’s denote the probability density function of
a d-variate Poisson kernel-based density given as

f(x|ρ, µ) = 1− ρ2

ωd||x− ρµ||d
.

The parameters αj , µj , ρj are estimated through a iterative reweighted EM algorithm.
The proposed clustering algorithm exhibits excellent results when (1) the clusters are not well sep-
arated; (2) the data points are fairly well concentrated around the vectors µj of each cluster; (3) the
percentage of noise in the data increases.

Usage

pkbc(
dat,
nClust,
maxIter = 300,
stoppingRule = "loglik",
initMethod = "sampleData",
numInit = 10

)

## S4 method for signature 'ANY'
pkbc(
dat,
nClust,
maxIter = 300,
stoppingRule = "loglik",
initMethod = "sampleData",
numInit = 10

)

## S4 method for signature 'pkbc'
show(object)
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Arguments

dat (n × d)-data matrix or data.frame of data points on the sphere to be clustered.
The observations in dat are normalized by dividing with the length of the vector
to ensure that they lie on the d-dimensional sphere. Note that d > 1.

nClust Number of clusters. It can be a single value or a numeric vector.

maxIter The maximum number of iterations before a run is terminated.

stoppingRule String describing the stopping rule to be used within each run. Currently must
be either 'max', 'membership', or 'loglik'.

initMethod String describing the initialization method to be used. Currently must be 'sampleData'.

numInit Number of initialization.

object Object of class pkbc

Details

We set all concentration parameters equal to 0.5 and all mixing proportions to be equal.
The initialization method 'sampleData' indicates that observation points are randomly chosen as
initializers of the centroids µj . This random starts strategy has a chance of not obtaining initial
representatives from the underlying clusters, then the clustering is performed numInit times and
the random start with the highest likelihood is chosen as the final estimate of the parameters.

The possible stoppingRule for each iteration are:

• 'loglik' run the algorithm until the change in log-likelihood from one iteration to the next is
less than a given threshold (1e-7)

• 'membership' run the algorithm until the membership is unchanged for all points from one
iteration to the next

• 'max' reach a maximum number of iterations maxIter

The obtained estimates are used for assigning final memberships, identifying the nClust clusters,
according to the following rule

P (xi,Θ) = arg max
j∈{1,...,k}

{αjfj(xi|µj , ρj)

f(xi,Θ)
}.

The number of clusters nClust must be provided as input to the clustering algorithm.

Value

An S4 object of class pkbc containing the results of the clustering procedure based on Poisson
kernel-based distributions. The object contains the following slots:

res_k: List of results of the Poisson kernel-based clustering algorithm for each value of number of
clusters specified in nClust. Each object in the list contains:

• postProbs Posterior probabilities of each observation for the indicated clusters.

• LogLik Maximum value of log-likelihood function



pkbc 19

• wcss Values of within-cluster sum of squares computed with Euclidean distance and cosine
similarity, respectively.

• params List of estimated parameters of the mixture model

– mu estimated centroids
– rho estimated concentration parameters rho
– alpha estimated mixing proportions

• finalMemb Vector of final memberships

• runInfo List of information of the EM algorithm iterations

– lokLikVec vector of log-likelihood values
– numIterPerRun number of E-M iterations per run

input: List of input information.

Note

The clustering algorithm is tailored for data points on the sphere Sd−1, but it can also be performed
on spherically transformed observations, i.e. data points on the Euclidean space Rd that are nor-
malized such that they lie on the corresponding (d− 1)-dimensional sphere Sd−1.

References

Golzy, M. and Markatou, M. (2020) Poisson Kernel-Based Clustering on the Sphere: Convergence
Properties, Identifiability, and a Method of Sampling, Journal of Computational and Graphical
Statistics, 29:4, 758-770, DOI: 10.1080/10618600.2020.1740713.

See Also

dpkb() and rpkb() for more information on the Poisson kernel-based distribution.
pkbc for the class definition.

Examples

# We generate three samples of 100 observations from 3-dimensional
# Poisson kernel-based densities with rho=0.8 and different mean directions
size <- 100
groups <- c(rep(1, size), rep(2, size), rep(3, size))
rho <- 0.8
set.seed(081423)
data1 <- rpkb(size, c(1, 0, 0), rho)
data2 <- rpkb(size, c(0, 1, 0), rho)
data3 <- rpkb(size, c(0, 0, 1), rho)
dat <- rbind(data1, data2, data3)

# Perform the clustering algorithm with number of clusters k=3.
pkbd <- pkbc(dat = dat, nClust = 3)
show(pkbd)
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pkbc-class A S4 class for the clustering algorithm on the sphere based on Poisson
kernel-based distributions.

Description

A class to represent the results of Poisson kernel-based clustering procedure for spherical observa-
tions.

Slots

res_k List of objects with the results of the clustering algorithm for each value of possible number
of clusters considered.

input List of input data

See Also

pkbc() for more details.

Examples

data("wireless")
res <- pkbc(as.matrix(wireless[,-8]),4)

pkbc_validation Validation of Poisson kernel-based clustering results

Description

Method for objects of class pkbc which computes evaluation measures for clustering results. The
following evaluation measures are computed: In-Group Proportion (Kapp and Tibshirani (2007)).
If true label are provided, ARI, Average Silhouette Width (Rousseeuw (1987)), Macro-Precision
and Macro-Recall are computed.

Usage

pkbc_validation(object, true_label = NULL)

Arguments

object Object of class pkbc

true_label factor or vector of true membership to clusters (if available). It must have the
same length of final memberships.



pkbc_validation 21

Details

The IGP is a statistical measure that quantifies the proportion of observations within a group that
belong to the same predefined category or class. It is often used to assess the homogeneity of a
group by evaluating how many of its members share the same label. A higher IGP indicates that
the group is more cohesive, while a lower proportion suggests greater diversity or misclassification
within the group (Kapp and Tibshirani 2007).

The Adjusted Rand Index (ARI) is a statistical measure used in data clustering analysis. It quantifies
the similarity between two partitions of a dataset by comparing the assignments of data points to
clusters. The ARI value ranges from 0 to 1, where a value of 1 indicates a perfect match between
the partitions and a value close to 0 indicates a random assignment of data points to clusters.

The average silhouette width quantifies the quality of clustering by measuring how well each object
fits within its assigned cluster. It is the mean of silhouette values, which compare the tightness of an
object within its cluster to its separation from other clusters. Higher values indicate well-separated,
cohesive clusters, making it useful for selecting the appropriate number of clusters (Rousseeuw
1987).

Macro Precision is a metric used in multi-class classification that calculates the precision for each
class independently and then takes the average of these values. Precision for a class is defined as
the proportion of true positive predictions out of all predictions made for that class.

Macro Recall is similar to Macro Precision but focuses on recall. Recall for a class is the proportion
of true positive predictions out of all actual instances of that class. Macro Recall is the average of
the recall values computed for each class.

Value

List with the following components:

• metrics Table of computed evaluation measures for each value of number of clusters in the
pkbc object. The number of cluster is indicated as column name.

• IGP List of in-group proportions for each value of number of clusters specified.

Note

Note that Macro Precision and Macro Recall depend on the assigned labels, while the ARI measures
the similarity between partition up to label switching.

If the required packages (mclust for ARI, clusterRepro for IGP, and cluster for ASW) are not
installed, the function will display a message asking the user to install the missing package(s).

References

Kapp, A.V. and Tibshirani, R. (2007) "Are clusters found in one dataset present in another dataset?",
Biostatistics, 8(1), 9–31, https://doi.org/10.1093/biostatistics/kxj029

Rousseeuw, P.J. (1987) Silhouettes: A graphical aid to the interpretation and validation of cluster
analysis. Journal of Computational and Applied Mathematics, 20, 53–65.

See Also

pkbc() for the clustering algorithm
pkbc for the class object definition.
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Examples

#We generate three samples of 100 observations from 3-dimensional
#Poisson kernel-based densities with rho=0.8 and different mean directions

size <- 20
groups <- c(rep(1, size), rep(2, size), rep(3, size))
rho <- 0.8
set.seed(081423)
data1 <- rpkb(size, c(1,0,0), rho, method = 'rejvmf')
data2 <- rpkb(size, c(0,1,0), rho, method = 'rejvmf')
data3 <- rpkb(size, c(1,0,0), rho, method = 'rejvmf')
data <- rbind(data1, data2, data3)

#Perform the clustering algorithm
pkbc_res <- pkbc(data, 3)
pkbc_validation(pkbc_res)

plot.pkbc Plotting method for Poisson kernel-based clustering

Description

Plots for a pkbc object.

Usage

## S4 method for signature 'pkbc,ANY'
plot(x, k = NULL, true_label = NULL, pca_res = FALSE, ...)

Arguments

x Object of class pkbc

k number of considered clusters. If it is not provided the scatter plot is displayed
for each value of number of clusters present in the x object

true_label factor or vector of true membership to clusters (if available). It must have the
same length of final memberships.

pca_res Logical. If TRUE the results from PCALocantore are also reported (when di-
mension is greater than 3).

... Additional arguments that can be passed to the plot function
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Details

• scatterplot: If dimension is equal to 2 or 3, points are displayed on the circle and sphere,
respectively. If dimension if greater than 3, the spherical Principal Component procedure
proposed by Locantore et al. (1999), is applied for dimensionality reduction and the first three
principal components are normalized and displayed on the sphere. For d > 3, the complete
results from the PcaLocantore function (package rrcov) are returned if pca_res=TRUE.

• elbow plot: the within cluster sum of squares (wcss) is computed using the Euclidean distance
(left) and the cosine similarity (right).

Value

The scatter-plot(s) and the elbow plot.

Note

The elbow plot is commonly used as a graphical method for choosing the appropriate number of
clusters. Specifically, plotting the wcss versus the number of clusters, the suggested number of
clusters correspond to the point in which the plotted line has the greatest change in slope, showing
an elbow.

References

Locantore, N., Marron, J.S., Simpson, D.G. et al. (1999) "Robust principal component analysis for
functional data." Test 8, 1–73. https://doi.org/10.1007/BF02595862

See Also

pkbc() for the clustering algorithm
pkbc for the class object definition.

Examples

dat <- matrix(rnorm(300), ncol = 3)
pkbc_res <- pkbc(dat, 3)
plot(pkbc_res, 3)

predict.pkbc Cluster spherical observations using a mixture of Poisson kernel-
based densities

Description

Obtain predictions of membership for spherical observations based on a mixture of Poisson kernel-
based densities estimated by pkbc
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Usage

## S4 method for signature 'pkbc'
predict(object, k, newdata = NULL)

Arguments

object Object of class pkbc

k Number of clusters to be used.

newdata a data.frame or a matrix of the data. If missing the clustering data obtained from
the pkbc object are classified.

Value

Returns a list with the following components

• Memb: vector of predicted memberships of newdata

• Probs: matrix where entry (i,j) denotes the probability that observation i belongs to the k-th
cluster.

See Also

pkbc() for the clustering algorithm
pkbc for the class object definition.

Examples

# generate data
dat <- rbind(matrix(rnorm(100), ncol = 2), matrix(rnorm(100, 5), ncol = 2))
res <- pkbc(dat, 2)

# extract membership of dat
predict(res, k = 2)
# predict membership of new data
newdat <- rbind(matrix(rnorm(10), ncol = 2), matrix(rnorm(10, 5), ncol = 2))
predict(res, k = 2, newdat)

sample_hypersphere Generate random sample from the hypersphere

Description

Generate a random sample from the uniform distribution on the hypersphere.

Usage

sample_hypersphere(d, n_points = 1)
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Arguments

d Number of dimensions.

n_points Number of sampled observations.

Value

Data matrix with the sampled observations.

Examples

x_sp <- sample_hypersphere(3,100)

select_h Select the value of the kernel tuning parameter

Description

This function computes the kernel bandwidth of the Gaussian kernel for the normality, two-sample
and k-sample kernel-based quadratic distance (KBQD) tests.

Usage

select_h(
x,
y = NULL,
alternative = NULL,
method = "subsampling",
b = 0.8,
B = 100,
delta_dim = 1,
delta = NULL,
h_values = NULL,
Nrep = 50,
n_cores = 2,
Quantile = 0.95,
power.plot = TRUE

)

Arguments

x Data set of observations from X.

y Numeric matrix or vector of data values. Depending on the input y, the selection
of h is performed for the corresponding test.

• if y = NULL, the function performs the tests for normality on x.



26 select_h

• if y is a data matrix, with same dimensions of x, the function performs the
two-sample test between x and y.

• if y is a numeric or factor vector, indicating the group memberships for each
observation, the function performs the k-sample test.

alternative Family of alternative chosen for selecting h, between "location", "scale" and
"skewness".

method The method used for critical value estimation ("subsampling", "bootstrap", or
"permutation").

b The size of the subsamples used in the subsampling algorithm .

B The number of iterations to use for critical value estimation, B = 150 as default.

delta_dim Vector of coefficient of alternative with respect to each dimension

delta Vector of parameter values indicating chosen alternatives

h_values Values of the tuning parameter used for the selection

Nrep Number of bootstrap/permutation/subsampling replications.

n_cores Number of cores used to parallel the h selection algorithm. If this is not pro-
vided, the function will detect the available cores.

Quantile The quantile to use for critical value estimation, 0.95 is the default value.

power.plot Logical. If TRUE, it is displayed the plot of power for values in h_values and
delta.

Details

The function performs the selection of the optimal value for the tuning parameter h of the normal
kernel function, for normality test, the two-sample and k-sample KBQD tests. It performs a small
simulation study, generating samples according to the family of alternative specified, for the
chosen values of h_values and delta.

We consider target alternatives Fδ(µ̂, Σ̂, λ̂), where µ̂, Σ̂ and λ̂ indicate the location, covariance and
skewness parameter estimates from the pooled sample.

• Compute the estimates of the mean µ̂, covariance matrix Σ̂ and skewness λ̂ from the pooled
sample.

• Choose the family of alternatives Fδ = Fδ(µ̂, Σ̂, λ̂).

For each value of δ and h:

• Generate X1, . . . ,Xk−1 ∼ F0, for δ = 0;

• Generate Xk ∼ Fδ;

• Compute the k-sample test statistic between X1,X2, . . . ,Xk with kernel parameter h;

• Compute the power of the test. If it is greater than 0.5, select h as optimal value.

• If an optimal value has not been selected, choose the h which corresponds to maximum power.

The available alternative are
location alternatives, Fδ = SNd(µ̂+ δ, Σ̂, λ̂),with δ = 0.2, 0.3, 0.4;
scale alternatives, Fδ = SNd(µ̂, Σ̂ ∗ δ, λ̂), δ = 0.1, 0.3, 0.5;
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skewness alternatives, Fδ = SNd(µ̂, Σ̂, λ̂+ δ), with δ = 0.2, 0.3, 0.6.
The values of h = 0.6, 1, 1.4, 1.8, 2.2 and N = 50 are set as default values.
The function select_h() allows the user to set the values of δ and h for a more extensive grid
search. We suggest to set a more extensive grid search when computational resources permit.

Value

A list with the following attributes:

• h_sel the selected value of tuning parameter h;

• power matrix of power values computed for the considered values of delta and h_values;

• power.plot power plots (if power.plot is TRUE).

Note

Please be aware that the select_h() function may take a significant amount of time to run, espe-
cially with larger datasets or when using an larger number of parameters in h_values and delta.
Consider this when applying the function to large or complex data.

References

Markatou, M. and Saraceno, G. (2024). “A Unified Framework for Multivariate Two- and k-Sample
Kernel-based Quadratic Distance Goodness-of-Fit Tests.”
https://doi.org/10.48550/arXiv.2407.16374

Saraceno, G., Markatou, M., Mukhopadhyay, R. and Golzy, M. (2024). Goodness-of-Fit and Clus-
tering of Spherical Data: the QuadratiK package in R and Python.
https://arxiv.org/abs/2402.02290.

See Also

The function select_h is used in the kb.test() function.

Examples

# Select the value of h using the mid-power algorithm

x <- matrix(rnorm(100), ncol = 2)
y <- matrix(rnorm(100), ncol = 2)
h_sel <- select_h(x, y, "skewness")
h_sel
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stats_clusters Descriptive statistics for the clusters identified by the Poisson kernel-
based clustering.

Description

Method for objects of class pkbc which computes some descriptive for each variable with respect
to the detected groups.

Method for objects of class pkbc which computes descriptive statistics for each variable with respect
to the detected groups.

Usage

stats_clusters(object, ...)

## S4 method for signature 'pkbc'
stats_clusters(object, k)

Arguments

object Object of class pkbc.

... possible additional inputs

k Number of clusters to be used.

Details

The function computes mean, standard deviation, median, inter-quantile range, minimum and max-
imum for each variable in the data set given the final membership assigned by the clustering algo-
rithm.

Value

List with computed descriptive statistics for each dimension.

See Also

pkbc() for the clustering algorithm
pkbc for the class object definition.

Examples

#We generate three samples of 100 observations from 3-dimensional
#Poisson kernel-based densities with rho=0.8 and different mean directions
dat<-matrix(rnorm(300),ncol=3)

#Perform the clustering algorithm
pkbc_res<- pkbc(dat, 3)
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stats_clusters(pkbc_res, 3)

summary.kb.test Summarizing kernel-based quadratic distance results

Description

summary method for the class kb.test

Usage

## S4 method for signature 'kb.test'
summary(object)

Arguments

object Object of class kb.test

Value

List with the following components:

• summary_tables Table of computed descriptive statistics per variable (and per group if avail-
able).

• test_results Data frame with the results of the performed kernel-based quadratic distance
test.

• qqplots Figure with qq-plots for each variable.

See Also

kb.test() and kb.test for more details.

Examples

# create a kb.test object
x <- matrix(rnorm(100),ncol=2)
# Normality test
my_test <- kb.test(x, h=0.5)
summary(my_test)
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summary.pk.test Summarizing kernel-based quadratic distance results

Description

summary method for the class pk.test

Usage

## S4 method for signature 'pk.test'
summary(object)

Arguments

object Object of class pk.test

Value

List with the following components:

• summary_tables Table of computed descriptive statistics per variable.

• test_results Data frame with the results of the performed Poisson kernel-based test.

• qqplots Figure with qq-plots for each variable against the uniform distribution.

See Also

pk.test() and pk.test for additional details.

Examples

# create a pk.test object
x_sp <- sample_hypersphere(3, n_points=100)
unif_test <- pk.test(x_sp,rho=0.8)
summary(unif_test)

summary.pkbc Summarizing PKBD mixture Fits

Description

Summary method for class "pkbc"

Usage

## S4 method for signature 'pkbc'
summary(object)
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Arguments

object Object of class pkbc

Value

Display the logLikelihood values and within cluster sum of squares (wcss) for all the values of
number of clusters provided. For each of these values the estimated mixing proportions are showed
together with a table with the assigned memberships.

See Also

pkbc() for the clustering algorithm
pkbc for the class object definition.

Examples

dat <- rbind(matrix(rnorm(100), 2), matrix(rnorm(100, 5), 2))
res <- pkbc(dat, 2:4)
summary(res)

wine Wine data set

Description

The wine data frame has 178 rows and 14 columns. The first 13 variables report 13 constituents
found in each of the three types of wines. The last column indicates the class labels (1,2 or 3).

Usage

wine

Format

A data frame containing the following columns:

• Alcohol

• Malic acid

• Ash

• Alcalinity of ash

• Magnesium

• Total phenols

• Flavanoids

• Nonflavanoid phenols

• Proanthocyanins
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• Color intensity

• Hue

• OD280/OD315 of diluted wines

• Proline

• y: class membership

Details

These data are the results of a chemical analysis of wines grown in the same region in Italy but
derived from three different cultivars. The analysis determined the quantities of 13 constituents
found in each of the three types of wines.

Source

Aeberhard, S. and Forina, M. (1991). Wine. UCI Machine Learning Repository. https://doi.org/10.24432/C5PC7J.

References

Aeberhard, S., Coomans, D. and De Vel, O. (1994). Comparative analysis of statistical pattern
recognition methods in high dimensional settings. Pattern Recognition, 27(8), 1065-1077.

Examples

data(wine)
summary(wine)

wireless Wireless Indoor Localization

Description

The wireless data frame has 2000 rows and 8 columns. The first 7 variables report the measure-
ments of the Wi-Fi signal strength received from 7 Wi-Fi routers in an office location in Pittsburgh
(USA). The last column indicates the class labels.

Usage

wireless
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Format

A data frame containing the following columns:

• V1 Signal strength from router 1.

• V2 Signal strength from router 2.

• V3 Signal strength from router 3.

• V4 Signal strength from router 4.

• V5 Signal strength from router 5.

• V6 Signal strength from router 6.

• V7 Signal strength from router 7.

• V8 Group memberships, from 1 to 4.

Details

The Wi-Fi signal strength is measured in dBm, decibel milliwatts, which is expressed as a negative
value ranging from -100 to 0. The labels correspond to 4 different rooms. In total, we have 4 groups
with 500 observations each.

Source

Bhatt, R. (2017). Wireless Indoor Localization. UCI Machine Learning Repository.
https://doi.org/10.24432/C51880.

References

Rohra, J.G., Perumal, B., Narayanan, S.J., Thakur, P. and Bhatt, R.B. (2017). "User Localization
in an Indoor Environment Using Fuzzy Hybrid of Particle Swarm Optimization & Gravitational
Search Algorithm with Neural Networks". In: Deep, K., et al. Proceedings of Sixth International
Conference on Soft Computing for Problem Solving. Advances in Intelligent Systems and Com-
puting, vol 546. Springer, Singapore. https://doi.org/10.1007/978-981-10-3322-3_27

Examples

data(wireless)
summary(wireless)
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