
Package ‘PCDimension’
January 20, 2025

Version 1.1.13

Date 2022-06-30

Title Finding the Number of Significant Principal Components

Author Kevin R. Coombes, Min Wang

Maintainer Kevin R. Coombes <krc@silicovore.com>

Description Implements methods to automate the Auer-Gervini graphical
Bayesian approach for determining the number of significant
principal components. Automation uses clustering, change points, or
simple statistical models to distinguish ``long'' from ``short'' steps
in a graph showing the posterior number of components as a function
of a prior parameter. See <doi:10.1101/237883>.

Depends R (>= 3.1), ClassDiscovery

Imports methods, stats, graphics, oompaBase, kernlab, changepoint, cpm

Suggests MASS, nFactors

License Apache License (== 2.0)

biocViews Clustering

URL http://oompa.r-forge.r-project.org/

NeedsCompilation no

Repository CRAN

Date/Publication 2022-06-30 17:30:02 UTC

Contents
agDimFunction . 2
AuerGervini-class . 4
brokenStick . 6
compareAgDimMethods . 7
rndLambdaF . 8
spca-data . 10

Index 11

1

https://doi.org/10.1101/237883
http://oompa.r-forge.r-project.org/

2 agDimFunction

agDimFunction Divide Steps into "Long" and "Short" to Compute Auer-Gervini Di-
mension

Description

Auer and Gervini developed a Bayesian graphical method to determine the number d of significant
principal components; a brief overview is included in the help for the AuerGervini class. The
output of their method is a step function that displays the maximum a posteriori (MAP) choice of
d as a step function of a one-parameter family of prior distributions, and they recommend choosing
the highest "long" step. The functions described here help automate the process of dividing the step
lengths into "long" and "short" classes.

Usage

agDimTwiceMean(stepLength)
agDimKmeans(stepLength)
agDimKmeans3(stepLength)
agDimSpectral(stepLength)
agDimTtest(stepLength, extra=0)
agDimTtest2(stepLength)
agDimCPT(stepLength)
makeAgCpmFun(method)

Arguments

stepLength A numeric vector

method A character string describing a method supported by the detectChangePointBatch
function in the cpm package.

extra Just ignore this. Don’t use it. It’s a hack to avoid having to maintain two different
versions of the same code.

Details

The agDimTwiceMean function implements a simple and naive rule: a step is considered long if it
as least twice the mean length.

The agDimKmeans uses the kmeans algorithm with k = 2 to divide the step lengths into two classes.
Starting centers for the groups are taken to be the minimum and maximum values.

The agDimKmeans3 function uses kmeans with k = 3, using the median as the third center. Only
one of the three groups is considered "short".

The agDimSpectral applies spectral clustering (as implemented by the specc function from the
kernlab package) to divide the steps lengths into two groups.

The agDimTtest and agDimTtest2 functions implement two variants of a novel algorithm special-
ized for this particular task. The idea is to start by sorting the step lengths so that

L1 ≤ L2 ≤ · · · ≤ Ln.

agDimFunction 3

Then, for each i ∈ 3, . . . , N − 1, we compute the mean and standard deviation of the first i step
lengths. Finally, one computes the likelhood that Li+1 comes from the normal distribution defined
by the first i lengths. If the probability that Li+1 is larger is less than 0.01, then it is chosen as the
"smallest long step".

The novel method just described can also be viewed as a way to detect a particular kind of change
point. So, we also provide the agDimCPT function that uses the changepoint detection algorithm im-
plement by the cpt.mean function in the changepoint package. More generally, the makeAgCpmFun
allows you to use any of the changepoint models implemented as part of the detectChangePointBatch
function in the cpm package.

Value

Each of the functions agDimTwiceMean, agDimKmeans, agDimKmeans3, agDimSpectral, agDimTtest,
agDimTtest2, and agDimCPT returns a logical vector whose length is equal to the input stepLength.
TRUE values identify "long" steps and FALSE values identify "short" steps.

The makeAgCpmFun returns a function that takes one argument (a numeric stepLength vector) and
returns a logical vector of the same length.

Note: Our simulations suggest that "TwiceMean" and "CPM" give the best results.

Author(s)

Kevin R. Coombes <krc@silicovore.com>, Min Wang <wang.1807@osu.edu>.

References

P Auer, D Gervini. Choosing principal components: a new graphical method based on Bayesian
model selection. Communications in Statistics-Simulation and Computation 37 (5), 962-977

See Also

The functions described here implerment different algorithms that can be used by the agDimension
function to automatically compute the number of significant principal components based on the
AuerGervini approach. Several of these functions are wrappers around functions defined in other
packages, including specc in the kernlab package, cpt.mean in the changepoint package, and
detectChangePointBatch in the cpm package.

Examples

simulate variances
lambda <- rev(sort(diff(sort(c(0, 1, runif(9))))))
apply the Auer-Gervini method
ag <- AuerGervini(lambda, dd=c(3,10))
Review the results
summary(ag)
agDimension(ag)
agDimension(ag, agDimKmeans)
agDimension(ag, agDimSpectral)
f <- makeAgCpmFun("Exponential")
agDimension(ag, f)

4 AuerGervini-class

AuerGervini-class Estimating Number of Principal Components Using the Auer-Gervini
Method

Description

Auer and Gervini [1] described a graphical Bayesian method for estimating the number of statis-
tically significant principal components. We have implemented their method in the AuerGervini
class, and enhanced it by automating the final selection.

Usage

AuerGervini(Lambda, dd=NULL, epsilon = 2e-16)
agDimension(object, agfun=agDimTwiceMean)

Arguments

Lambda Either a SamplePCA object or a numerical vector of variances from a principal
components analysis.

dd A vector of length 2 containing the dimensions of the data used to created the
Auer-Gervini object. If Lambda is a SamplePCA object, then the dimensions are
taken from it, ignoring the dd argument.

epsilon A numeric value. Used to remove any variances that are less than epsilon;
defaults to 2e-16. Should only be needed in rare cases where negative variances
show up because of round-off error.

object An object of the AuerGervini class.
agfun A function that takes one argument (a vector of step lengths) and returns a logical

vector of the same length (where true indicates "long" as opposed to "short"
steps).

Details

The Auer-Gervini method for determining the number of principal components is based on a Bayesian
model that assaerts that the vector of explained variances (eigenvalues) should have the form

a1 ≤ a2 ≤ · · · ≤ ad < ad+1 = ad+2 = . . . an

with the goal being to find the true dimension d. They consider a set of prior distributions on
d ∈ {1, . . . , n} that decay exponentially, with the rate of decay controlled by a parameter θ. For
each value of θ, one selects the value of d that has the maximum a posteriori (MAP) probability.
Auer and Gervini show that the dimensions selected by this procedure write d as a non-increasing
step function of θ. The values of θ where the steps change are stored in the changePoints slot, and
the corresponding d-values are stored in the dLevels slot.

Auer and Gervini go on to advise using their method as a graphical approach, manually (or vi-
sually?) selecting the highest step that is "long". Our implementation provides several different
algorithms for automatically deciding what is "long" enough. The simplest (but fairly naive) ap-
proach is to take anything that is longer than twice the mean; other algorithms are described in
agDimFunction.

AuerGervini-class 5

Value

The AuerGervini function constructs and returns an object of the AuerGervini class.

The agDimension function computes the number of significant principal components. The general
idea is that one starts by computing the length of each step in the Auer-Gerivni plot, and must then
separate these into "long" and "short" classes. We provide a variety of different algorithms to carry
out this process; the default algorithm in the function agDimTwiceMean defines a step as "long" if it
more than twice the mean step length.

Objects from the Class

Objects should be created using the AuerGervini constructor.

Slots

Lambda: A numeric vector containing the explained variances in decreasing order.

dimensions Numeric vector of length 2 containing the dimnesions of the underlying data matrix.

dLevels: Object of class numeric; see details

changePoints: Object of class numeric; see details

Methods

plot signature(x = "AuerGervini", y = "missing"): ...

summary signature(object = "AuerGervini"): ...

Author(s)

Kevin R. Coombes <krc@silicovore.com>

References

[1] P Auer, D Gervini. Choosing principal components: a new graphical method based on Bayesian
model selection. Communications in Statistics-Simulation and Computation 37 (5), 962-977.

[2] Wang M, Kornbla SM, Coombes KR. Decomposing the Apoptosis Pathway Into Biologically
Interpretable Principal Components. Preprint: bioRxiv, 2017. <doi://10.1101/237883>.

See Also

agDimFunction to get a complete list of the functions implementing different algorithms to separate
the step lengths into two classes.

Examples

showClass("AuerGervini")
simulate variances
lambda <- rev(sort(diff(sort(c(0, 1, runif(9))))))
apply the Auer-Gervini method
ag <- AuerGervini(lambda, dd=c(3,10))
Review the results

6 brokenStick

summary(ag)
agDimension(ag)
agDimension(ag, agDimKmeans)
Look at the results graphically
plot(ag, agfun=list(agDimTwiceMean, agDimKmeans))

brokenStick The Broken Stick Method

Description

The Broken Stick model is one proposed method for estimating the number of statistically signifi-
cant principal components.

Usage

brokenStick(k, n)
bsDimension(lambda, FUZZ = 0.005)

Arguments

k An integer between 1 and n.

n An integer; the total number of principal components.

lambda The set of variances from each component from a principal components analy-
sis. These are assumed to be already sorted in decreasing order. You can also
supply a SamplePCA object, and the variances will be automatically extracted.

FUZZ A real number; anything smaller than FUZZ is assumed to equal zero for all
practical purposes.

Details

The Broken Stick model is one proposed method for estimating the number of statistically signif-
icant principal components. The idea is to model N variances by taking a stick of unit length and
breaking it into N pieces by randomly (and simultaneously) selecting break points from a uniform
distribution.

Value

The brokenStick function returns, as a real number, the expected value of the k-th longest piece
when breaking a stick of length one into n total pieces. Most commonly used via the idiom
brokenStick(1:N, N) to get the entire vector of lengths at one time.

The bsDimension function returns an integer, the number of significant components under this
model. This is computed by finding the last point at which the observed variance is bugger than the
expected value under the broken stick model by at least FUZZ.

Author(s)

Kevin R. Coombes <krc@silicovore.com>

compareAgDimMethods 7

References

Jackson, D. A. (1993). Stopping rules in principal components analysis: a comparison of heuristical
and statistical approaches. Ecology 74, 2204–2214.

Legendre, P. and Legendre, L. (1998) Numerical Ecology. 2nd English ed. Elsevier.

See Also

Better methods to address this question are based on the Auer-Gervini method; see AuerGervini.

Examples

brokenStick(1:10, 10)
sum(brokenStick(1:10, 10))
fakeVar <- c(30, 20, 8, 4, 3, 2, 1)
bsDimension(fakeVar)

compareAgDimMethods Compare Methods to Divide Steps into "Long" and "Short"

Description

Auer and Gervini developed a Bayesian graphical method to determine the number d of significant
principal components; a brief overview is included in the help for the AuerGervini class. The
output of their method is a step function that displays the maximum a posteriori (MAP) choice of
d as a step function of a one-parameter family of prior distributions, and they recommend choosing
the highest "long" step. The functions described here help automate the process of dividing the step
lengths into "long" and "short" classes.

Usage

compareAgDimMethods(object, agfuns)

Arguments

object An object of the AuerGervini class

agfuns A list of functions

Details

This method simply iterates over the list of functions that implement different algorithms/methods
to determine the PC dimension.

Value

Returns an integer vector of te same length as the list of agfuns, containing the number of significant
principal components computed by each method.

8 rndLambdaF

Author(s)

Kevin R. Coombes <krc@silicovore.com>, Min Wang <wang.1807@osu.edu>.

References

P Auer, D Gervini. Choosing principal components: a new graphical method based on Bayesian
model selection. Communications in Statistics-Simulation and Computation 37 (5), 962-977

See Also

AuerGervini, agDimension.

Examples

simulate variances
lambda <- rev(sort(diff(sort(c(0, 1, runif(9))))))
apply the Auer-Gervini method
ag <- AuerGervini(lambda, dd=c(3,10))
try different methods
agfuns <- list(twice=agDimTwiceMean,

km=agDimKmeans,
cpt=agDimCPT)

compareAgDimMethods(ag, agfuns)

rndLambdaF Principal Component Statistics Based on Randomization

Description

Implements randomization-based procedures to estimate the number of principal components.

Usage

rndLambdaF(data, B = 1000, alpha = 0.05)

Arguments

data A numeric data matrix.

B An integer; the number of times to scramble the data columns.

alpha A real number between 0 and 1; the significance level.

rndLambdaF 9

Details

The randomization procedures implemented here were first developed by ter Brack [1,2]. In a
simulation study, Peres-Neto and colleagues concluded that these methods were among the best [3].
Our own simulations on larger data matrices find that rnd-Lambda performs well (comparably to
Auer-Gervini, though slower), but that rnd-F works poorly.

The test procedure is: (1) randomize the values with all the attribute columns of the data matrix; (2)
perform PCA on the scrambled data matrix; and (3) compute the test statistics. All three steps are
repeated a total of (B - 1) times, where B is large enough to guarantee accuracy when estimating
p-values; in practice, B is usually set to 1000. In each randomization, two test statistics are com-
puted: (1) the eigenvalue λk for the k-th principal component; and (2) a pseudo F-ratio computed
as λk/

∑n
i=k+1 λi. Finally, the p-value for each k and each statistic of interest is estimated to be

the proportion of the test statistics in all data sets that are greater than or equal to the one in the
observed data matrix.

Value

A named vector of length two, containing the predicted number of principal components based on
the rnd-Lambda and rnd-F statistics.

Author(s)

Kevin R. Coombes <krc@silicovore.com>, Min Wang <wang.1807@osu.edu>.

References

[1] ter Braak CFJ. CANOCO – a Fortran program for canonical community ordination by [par-
tial] [detrended] [canonical] correspondence analysis, principal component analysis and redundancy
analysis (version 2.1). Agricultural Mathematics Group, Report LWA-88- 02, Wageningen, 1988.

[2] ter Braak CFJ. Update notes: CANOCO (version 3.1). Agricultural Mathematics Group, Wa-
geningen, 1990.

[3] Peres-Neto PR, Jackson DA and Somers KM. How many principal components? Stopping
rules for determining the number of non-trivial axes revisited. Computational Statistics and Data
Analysis 2005; 49: 974–997.

See Also

AuerGervini-class

Examples

dataset <- matrix(rnorm(200*15, 6), ncol=15)
rndLambdaF(dataset)

10 spca-data

spca-data Sample PCA Dataset

Description

This data set contains an object of the class SamplePCA. This object results from performing a
principal components analysis on a simulated data set.

Usage

data(spca)

Format

A SamplePCA object based on a simulated data matrix with 204 rows and 14 columns, with true
"principal component dimension" equal to one. That is, there should be one significant principal
component.

Source

Simulations are described in detail in the Thresher package, which depends on the PCDimension
package.

See Also

The ClassDiscovery package contains the SamplePCA class and functions.

Index

∗ classes
AuerGervini-class, 4

∗ cluster
brokenStick, 6

∗ datasets
spca-data, 10

∗ models
agDimFunction, 2
AuerGervini-class, 4
brokenStick, 6
compareAgDimMethods, 7
rndLambdaF, 8

agDimCPT (agDimFunction), 2
agDimension, 3, 8
agDimension (AuerGervini-class), 4
agDimFunction, 2, 4, 5
agDimKmeans (agDimFunction), 2
agDimKmeans3 (agDimFunction), 2
agDimSpectral (agDimFunction), 2
agDimTtest (agDimFunction), 2
agDimTtest2 (agDimFunction), 2
agDimTwiceMean, 5
agDimTwiceMean (agDimFunction), 2
AuerGervini, 2, 3, 7, 8
AuerGervini (AuerGervini-class), 4
AuerGervini-class, 4, 9

brokenStick, 6
bsDimension (brokenStick), 6

compareAgDimMethods, 7
cpt.mean, 3

detectChangePointBatch, 2, 3

kmeans, 2

makeAgCpmFun (agDimFunction), 2

PCDimension (AuerGervini-class), 4

plot,AuerGervini,missing-method
(AuerGervini-class), 4

rndLambdaF, 8

SamplePCA, 6, 10
spca (spca-data), 10
spca-data, 10
specc, 2, 3
summary,AuerGervini-method

(AuerGervini-class), 4

11

	agDimFunction
	AuerGervini-class
	brokenStick
	compareAgDimMethods
	rndLambdaF
	spca-data
	Index

