Package 'OptimalSurrogate'

January 20, 2025

Title Model Free Approach to Quantifying Surrogacy

Version 1.0
Description Identifies an optimal transformation of a surrogate marker such that the proportion of treatment effect explained can be inferred based on the transformation of the surrogate and nonparametrically estimates two model-free quantities of this proportion. Details are described in Wang et al (2020) <doi:10.1093 asz065="" biomet="">.</doi:10.1093>
License GPL-3
Depends R (>= 3.0)
Imports splines, MASS, stats
NeedsCompilation no
Author Xuan Wang [aut], Layla Parast [aut, cre], Ming Yang [aut], Lu Tian [aut], Tianxi Cai [aut]
Maintainer Layla Parast <pre></pre>
Repository CRAN
Date/Publication 2022-09-27 10:20:07 UTC
Contents
marker_cont
Index

pte_cont

marker_cont	Simulated data with continuous surrogate marker	

Description

Simulated data with continuous surrogate marker

marker_disc	Simulated data with discrete surrogate marker

Description

Simulated data with discrete surrogate marker

pte_cont	PTE estimation with a continuous surrogate marker	

Description

PTE estimation with continuous surrogate marker

Usage

```
pte_cont(sob, yob, aob, var = TRUE, conf.int = TRUE, rep = 500)
```

Arguments

sob	CONTINUOUS surrogate marker
yob	outcome of interest (continuous or binary)
aob	treatment assignment (1: treatment; 0: control)
var	whether variance should be calculated (TRUE/FALSE)
conf.int	whether 95% confidence intervals should be calculated (TRUE/FALSE)
rep	number of resampling replications (default is 500)

Value

Estimates	Estimates of the treatment effect on the priamry outcome, delta, the treatment effect on the transformation of the surrogate, delta.gs, two versions of the proportion of treatment effect explained by the surrogate, pte1 and pte2; if var = TRUE, standard error estimates are also provided (se); if conf.int = TRUE, 95% confidence intervals are also provided
Transformed.S	the transformed surrogate, $g(s)$, for each value of the surrogate, s ; if var = TRUE, standard error estimates are also provided (se); if conf.int = TRUE, 95% confidence intervals are also provided

pte_disc 3

Examples

```
data(marker_cont)
out <- pte_cont(</pre>
       sob = marker_cont$sob,
       yob = marker_cont$yob,
       aob = marker_cont$aob, var = FALSE, conf.int = FALSE)
out
x <- as.numeric(names(out$Transformed.S))</pre>
plot(x, out$Transformed.S, ylim = range(out$Transformed.S), type = "1",
                   las = 1, xlab = "Surrogate Marker", ylab = "Optimal Transformation")
out <- pte_cont(</pre>
       sob = marker_cont$sob,
       yob = marker_cont$yob,
       aob = marker_cont$aob,
       var = TRUE, conf.int = TRUE, rep = 1000)
out$Estimates
x <- as.numeric(rownames(out$Transformed.S))</pre>
plot(x, out\$Transformed.S[, "est"], ylim = range(out\$Transformed.S[, -2]), type = "l", vlim = range(out\$Tr
                   las = 1, xlab = "Surrogate Marker", ylab = "Optimal Transformation")
       lines(x, outTransformed.S[, "lower"], lty = 2)
       lines(x, out$Transformed.S[, "upper"], lty = 2)
```

pte_disc

PTE estimation with a discrete surrogate marker

Description

PTE estimation with discrete surrogate marker

Usage

```
pte_disc(sob, yob, aob, var = TRUE, conf.int = TRUE, rep = 500)
```

Arguments

sob	DISCRETE surrogate marker
yob	outcome of interest (continuous or binary)
aob	treatment assignment (1: treatment; 0: control)
var	whether variance should be calculated (TRUE/FALSE)
conf.int	whether 95% confidence intervals should be calculated (TRUE/FALSE)
rep	number of resampling replications (default is 500)

pte_disc

Value

Estimates Estimates of the treatment effect on the priamry outcome, delta, the treatment

effect on the transformation of the surrogate, delta.gs, two versions of the proportion of treatment effect explained by the surrogate, pte1 and pte2; if var = TRUE, standard error estimates are also provided (se); if conf.int = TRUE, 95%

confidence intervals are also provided

 $\label{eq:transformed.S} \textbf{Transformed.S} \quad \text{the transformed surrogate, } g(s), \text{ for each value of the surrogate, } s; \text{ if } var = TRUE, \\ \textbf{TRUE}, \textbf$

standard error estimates are also provided (se); if conf.int = TRUE, 95% confi-

dence intervals are also provided

Examples

```
data(marker_disc)
out <- pte_disc(
    sob = marker_disc$sob,
    yob = marker_disc$yob,
    aob = marker_disc$aob, var = FALSE, conf.int = FALSE)
out

out <- pte_disc(
    sob = marker_disc$sob,
    yob = marker_disc$yob,
    aob = marker_disc$aob,
    var = TRUE, conf.int = TRUE, rep = 1000)
out</pre>
```

Index

```
marker_cont, 2
marker_disc, 2

pte_cont, 2
pte_disc, 3
```