Package 'InteractionPoweR'

January 20, 2025

Title Power Analyses for Interaction Effects in Cross-Sectional Regressions

Version 0.2.2

Description Power analysis for regression models which test the interaction of two or three independent variables on a single dependent variable. Includes options for correlated interacting variables and specifying variable reliability. Two-way interactions can include continuous, binary, or ordinal variables. Power analyses can be done either analytically or via simulation. Includes tools for simulating single data sets and visualizing power analysis results. The primary functions are power_interaction_r2() and power_interaction() for two-way interactions, and power_interaction_3way_r2() for three-way interactions. Please cite as: Baranger DAA, Finsaas MC, Goldstein BL, Vize CE, Lynam DR, Olino TM (2023). ``Tutorial: Power analyses for interaction effects in cross-sectional regressions." <doi:10.1177/25152459231187531>.

Maintainer David Baranger < dbaranger@gmail.com>

Brandon Goldstein [ctb], Megan Finsaas [ctb], Thomas Olino [ctb],

```
URL https://dbaranger.github.io/InteractionPoweR/,
      https://doi.org/10.1177/25152459231187531
BugReports https://github.com/dbaranger/InteractionPoweR/issues
License GPL (>= 3)
Encoding UTF-8
LazyData true
RoxygenNote 7.3.1
Depends R (>= 3.5.0)
Imports dplyr, parallel, doParallel, foreach, ggplot2, polynom,
      chngpt, rlang, tidyr, stats, ggbeeswarm, Matrix
NeedsCompilation no
Author David Baranger [aut, cre] (<a href="https://orcid.org/0000-0002-6659-357X">https://orcid.org/0000-0002-6659-357X</a>,
       davidbaranger.com),
```

2 compute_adjustment

```
Colin Vize [ctb],
Don Lynam [ctb]
```

Repository CRAN

Date/Publication 2024-07-09 19:30:02 UTC

Contents

comp	ute_adjustment compute_adjustment	
Index		19
	test_interaction	1 /
	simple.slopes.3way	
	power_interaction_r2_covs	
	power_interaction_r2	
	power_interaction_3way_r2	
	power_interaction	10
	power_estimate	9
	plot_simple_slope	9
	plot_power_curve	8
	plot_interaction	7
	norm2ordinal	
	name_key	
	generate_interaction	
	generate.interaction.cov.input	
	cor.mat.3way	
	compute_adjustment	- 2

Description

Computes how much variable correlations need to be adjusted so that they have the desired correlation structure after transformation. Intended for internal use only.

```
compute_adjustment(
    r.x1.y,
    r.x2.y,
    r.x1x2.y,
    r.x1.x2,
    N.adjustment = 1e+06,
    tol = 0.005,
    iter = 10,
    k.x1,
    k.x2,
    k.y
)
```

cor.mat.3way

Arguments

r.x1.y	Internal use only
r.x2.y	Internal use only
r.x1x2.y	Internal use only
r.x1.x2	Internal use only
N.adjustment	Internal use only
tol	Internal use only
iter	Internal use only
k.x1	Internal use only
k.x2	Internal use only
k.y	Internal use only

Value

Correlation adjustments.

Examples

```
compute_adjustment(r.x1.y = .2, r.x2.y = .2, r.x1x2.y = .1, r.x1.x2 = .2, k.x1 = 0, k.x2=0, k.y=2)
```

cor.mat.3way

See the correlation matrix for a 3-way interaction

Description

Prints or plots the correlation matrix for a 3-way interaction

Usage

```
cor.mat.3way(power.results, row.num = 1, return.plot = FALSE)
```

Arguments

 $power.results \quad Data\ frame\ of\ results\ from\ power_interaction_3way_r2().$

row.num Which row to show? Can only be a single number. Default is 1.

return.plot Return a matrix (FALSE, default), or a plot (TRUE)?

Value

A matrix or a ggplot2 object

4 generate_interaction

Examples

```
power_analysis = power_interaction_3way_r2(detailed_results = TRUE,N = c(1000),
r.x1.y = .2,r.x2.y = .3,r.x3.y = .1,r.x1x2.y = .01,r.x1x3.y = .05,r.x2x3.y = .1,
b.x1x2x3 = 0.1,r.x1.x2 = .1,r.x1.x3 = .1,r.x2.x3 = .1,
rel.x1 = 1,rel.x2 = 1,rel.x3 = 1,rel.y = 1)
cor.mat.3way(power_analysis)
```

Description

Companion function to 'power_interaction_r2_covs()'. Generates a formatted list for users to specify the analysis parameters.

Usage

```
generate.interaction.cov.input(c.num)
```

Arguments

c.num

Number of covariates in the model.

Value

A list to be used with the 'power_interaction_r2_covs()' function.

Examples

```
ex1 = generate.interaction.cov.input(c.num=2) ex1$correlationsr.y.x1x2 = c(0.1,0.2,0.3)
```

```
generate_interaction Generate interaction data set
```

Description

Simulate a single data set with an interaction ($y \sim x1 + x2 + x1*x2$). All values other than 'N' are population-level effects - the values within any single simulated data set will vary around the defined values.

generate_interaction 5

Usage

```
generate_interaction(
 N,
 r.x1.y,
 r.x2.y,
 r.x1x2.y,
 r.x1.x2,
 rel.x1 = 1,
 rel.x2 = 1,
  rel.y = 1,
 k.x1 = 0,
  k.x2 = 0,
  k.y = 0,
  adjust.correlations = TRUE,
  tol = 0.005,
  iter = 10,
 N.adjustment = 1e+06,
  r.x1.y.adjust = NULL,
  r.x2.y.adjust = NULL,
  r.x1.x2.adjust = NULL,
  r.x1x2.y.adjust = NULL,
  internal.adjust = FALSE,
  skew.x1 = NA,
  skew.x2 = NA,
  skew.y = NA
)
```

Arguments

N	Sample size. Must be a positive integer. Has no default value.
r.x1.y	Pearson's correlation between x1 and y. Must be between -1 and 1. Has no default value.
r.x2.y	Pearson's correlation between x2 and y. Must be between -1 and 1. Assumed to be the 'moderator' in some functions. Has no default value.
r.x1x2.y	Pearson's correlation between the interaction term $x1x2$ ($x1 * x2$) and y. Must be between -1 and 1. Has no default value.
r.x1.x2	Pearson's correlation between x1 and x2. Must be between -1 and 1. Has no default value.
rel.x1	Reliability of x1 (e.g. test-retest reliability, ICC, Cronbach's alpha). Default is 1 (perfect reliability). Must be greater than 0 and less than or equal to 1.
rel.x2	Reliability of x2 (e.g. test-retest reliability, ICC, Cronbach's alpha). Default is 1 (perfect reliability). Must be greater than 0 and less than or equal to 1.
rel.y	Reliability of xy (e.g. test-retest reliability, ICC, Cronbach's alpha). Default is 1 (perfect reliability). Must be greater than 0 and less than or equal to 1.
k.x1	Number of discrete values for x1. Can be used to make a variable binary or ordinal.

name_key

k.x2	Number of discrete values for x2. Can be used to make a variable binary or ordinal.
k.y	Number of discrete values for y.Can be used to make a variable binary or ordinal.
adjust.correlat	tions
	If variables are ordinal or binary, should correlations be adjusted so that output data has the specified correlation structure? Default is TRUE.
tol	Correlation adjustment tolerance. When adjust.correlations = TRUE, correlations are adjusted so that the population correlation is within $r='tol'$ of the target. Default = 0.005.
iter	Max number of iterations to run the correlation adjustment for. Typically only a couple are needed. Default = 10.
N.adjustment	Sample size to use when adjusting correlations. Default = 1000000.
r.x1.y.adjust	Internal use only.
r.x2.y.adjust	Internal use only.
r.x1.x2.adjust	Internal use only.
r.x1x2.y.adjust	t
	Internal use only.
internal.adjust	
	Internal use only.
skew.x1	No longer supported.
skew.x2	No longer supported.
skew.y	No longer supported.

Value

A data frame containing variables 'x1', 'x2', 'y', and 'x1x2'. 'x1x2' is x1*x2. The correlations between these variables are drawn from the defined population-level values. Output variables are all z-scored (mean=0, sd=1).

Examples

```
\label{eq:dataset} $$ $$ dataset <- generate\_interaction(N = 10,r.x1.y = 0,r.x2.y = .1,r.x1x2.y = -.2,r.x1.x2 = .3)$
```

 $name_key$

Name key for plotting

Description

Expanded variable names so that plots look nicer.

Usage

```
data(name_key)
```

Format

A data frame with 25 rows and 2 variables

norm2ordinal 7

norm2ordinal

norm2ordinal

Description

Transforms a vector with a normal distribution to a binomial distribution with two values.

Usage

```
norm2ordinal(x, k)
```

Arguments

x Input vector

k Number of discrete values (e.g., 2=binary, 5=likert scale)

Value

A ordinal or binary variable

Examples

```
norm2ordinal(x = rnorm(n = 100, mean = 0, sd = 1), k=2)
```

plot_interaction

Plot interaction

Description

Plots a single simulated interaction data set

Usage

```
plot_interaction(data, q = 3)
```

Arguments

data Output of generate_interaction().

q Simple slope quantiles. Default is 2. X2 is the default moderator, unless X1 is

already binary. Must be a positive integer > 1.

Value

A ggplot2 object

8 plot_power_curve

Examples

```
dataset <- generate_interaction(N = 250,r.x1.y = 0,r.x2.y = .1,r.x1x2.y = -.2,r.x1.x2 = .3) plot_interaction(dataset,q=3)
```

plot_power_curve

Plot power curve

Description

Plot the output of power_interaction().

Usage

```
plot_power_curve(
  power_data,
  x = NULL,
  group = NULL,
  facets = NULL,
  power_target = 0.8
)
```

Arguments

Data frame of results from power_interaction(). Can accept the raw results if up to 3 parameters were varied during simulation. Any more and data should be filtered first.

x Optional, the x-axis of the plot. Default is the first variable after 'pwr'.

group Optional, grouping variable for the line color. Default is the second variable after 'pwr', if present.

facets Optional, grouping variable for plot facets. Default is the third variable after

'pwr' if present.

power_target The target power. Default is 80%.

Value

A ggplot2 object

Examples

```
power_analysis <- power_interaction(n.iter = 10,N = seq(100,300,by=100),
r.x1.y = 0,r.x2.y = .1,r.x1x2.y = -.2,r.x1.x2 = .3,detailed_results = TRUE)
plot_power_curve(power_analysis)</pre>
```

plot_simple_slope 9

|--|--|

Description

Plots the simple slope min and max estimates from power_interaction().

Usage

```
plot_simple_slope(power_data, x = NULL, facets = NULL)
```

Arguments

power_data Data frame of results from power_interaction(). Can accept the raw results if up to 2 parameters were varied during simulation. Any more and data should be

filtered first.

x Optional, the x-axis of the plot. Default is the first variable after 'pwr'.

facets Optional, grouping variable for plot facets. Default is the second variable after

'pwr' if present.

Value

A ggplot2 object

Examples

```
power_analysis <- power_interaction(n.iter = 10,N = seq(100,300,by=100), r.x1.y = 0,r.x2.y = .1,r.x1x2.y = -.2,r.x1.x2 = .3,detailed_results = TRUE) plot_simple_slope(power_analysis)
```

Description

Uses regression to estimate the value needed to attain the target power, given a set of simulation results.

Usage

```
power_estimate(power_data, x, power_target)
```

Arguments

power_data Output of power_interaction().

x The name of the target variable as a character string.

power_target The desired power level. Must be between 0 and 1 (e.g., 0.8 for 80% power).

power_interaction

Value

A data frame containing the value of x that achieves the target power for each combination of settings. Will return NA if target power is outside the simulation data.

Examples

```
simulation_results = power_interaction_r2(N=seq(100,300,by=10),
r.x1.y=0.2, r.x2.y=.2,r.x1x2.y=0.2,r.x1.x2=.2)
power_estimate(power_data = simulation_results, x = "N", power_target = .8)
```

power_interaction

Power analysis for interactions

Description

Power analysis for interaction models, by simulation. A set of n.iter simulations is run for each unique combination of model settings.

```
power_interaction(
  n.iter,
 Ν,
  r.x1.y,
  r.x2.y,
  r.x1x2.y,
  r.x1.x2,
  rel.x1 = 1,
  rel.x2 = 1,
  rel.y = 1,
  k.x1 = 0,
  k.x2 = 0,
  k.y = 0,
  adjust.correlations = TRUE,
  alpha = 0.05,
  q = 2,
  c1 = NULL,
  ss.IQR = 1.5,
 N.adjustment = 1e+06,
  detailed_results = FALSE,
  full_simulation = FALSE,
  tol = 0.005,
  iter = 10,
  skew.x1 = NA,
  skew.x2 = NA,
  skew.y = NA
)
```

power_interaction 11

Arguments	
n.iter	Number of iterations. The number of simulations to run for each unique setting combination. Must be a positive integer.
N	Sample size. Must be a positive integer. Has no default value. Can be a single value or a vector of values.
r.x1.y	Pearson's correlation between x1 and y. Must be between -1 and 1 Has no default value. Can be a single value or a vector of values.
r.x2.y	Pearson's correlation between x2 and y. Must be between -1 and 1 Assumed to be the 'moderator' in some functions. Has no default value. Can be a single value or a vector of values.
r.x1x2.y	Pearson's correlation between the interaction term $x1x2$ ($x1 * x2$) and y. Must be between -1 and 1 Has no default value. Can be a single value or a vector of values.
r.x1.x2	Pearson's correlation between x1 and x2. Must be between -1 and 1 Has no default value. Can be a single value or a vector of values.
rel.x1	Reliability of x1 (e.g. test-retest reliability, ICC, Cronbach's alpha). Default is 1 (perfect reliability). Must be greater than 0 and less than or equal to 1.
rel.x2	Reliability of x2 (e.g. test-retest reliability, ICC, Cronbach's alpha). Default is 1 (perfect reliability). Must be greater than 0 and less than or equal to 1.
rel.y	Reliability of xy (e.g. test-retest reliability, ICC, Cronbach's alpha). Default is 1 (perfect reliability). Must be greater than 0 and less than or equal to 1.
k.x1	Number of discrete values for x1. Can be used to make a variable binary or ordinal.
k.x2	Number of discrete values for x2. Can be used to make a variable binary or ordinal.
k.y	Number of discrete values for y. Can be used to make a variable binary or ordinal.
adjust.correla	tions
	If variables are ordinal or binary, should correlations be adjusted so that output data has the specified correlation structure? Default is TRUE.
alpha	The alpha. At what p-value is the interaction deemed significant? Default is 0.05.
q	Simple slopes. How many quantiles should $x2$ be split into for simple slope testing? Default is 2. Simple slope testing returns the effect-size (slope) of $y\sim x1$ for the two most extreme quantiles of $x2$. If $q=3$ then the two slopes are $y\sim x1$ for the bottom 33% of $x2$, and the top 33% of $x2$.
cl	Number of clusters to use for running simulations in parallel (recommended). Default is 1 (i.e. not in parallel).
ss.IQR	Simple slope IQR. Multiplier when estimating the distribution of simple slopes within each simulation setting. Default is 1.5.
N.adjustment	Sample size for simulations where correlation matrix is corrected to allow for

binary/ordinal variables. Default is 1000000

detailed_results

Default is FALSE. Should detailed results be reported?

full_simulation

Default is FALSE. If TRUE, will return a list that includes the full per-simulation

results.

tol Correlation adjustment tolerance. When adjust.correlations = TRUE, correla-

tions are adjusted so that the population correlation is within r='tol' of the target.

Default = 0.005.

iter Max number of iterations to run the correlation adjustment for. Typically only a

couple are needed. Default = 10.

skew.x1 No longer supported. skew.x2 No longer supported. skew.y No longer supported.

Value

A data frame containing the power (% significant results) for each unique setting combination. If full_simulation = TRUE will return a list, with one data frame that includes power, and a second that includes raw simulation results.

Examples

```
power_interaction(n.iter=10, N=10,r.x1.y=0.2, r.x2.y=.2,r.x1x2.y=0.5,r.x1.x2=.2)
```

```
power_interaction_3way_r2
```

Analytic power analysis for 3-way interactions

Description

Power analysis for 3-way interaction models, computed via change in R2. Valid for interactions with continuous, normally distributed, variables. Either b.x1x2x3 or f2 can be used to specify the magnitude of the interaction effect size.

```
power_interaction_3way_r2(
    N,
    b.x1x2x3,
    r.x1.y,
    r.x2.y,
    r.x3.y,
    r.x1x2.y,
    r.x1x3.y,
    r.x1x3.y,
    r.x2x3.y,
    r.x2x3.y,
    r.x1.x2,
```

```
r.x1.x3,
r.x2.x3,
rel.x1 = 1,
rel.x2 = 1,
rel.x3 = 1,
rel.y = 1,
alpha = 0.05,
detailed_results = FALSE,
cl = NULL
)
```

Arguments

N	Sample size. Must be a positive integer. Has no default value. Can be a single
	value or a vector of values.

- b.x1x2x3 Regression coefficient of the 3-way interaction term x1x2x3. Should not be specified if f2 is specified. Must be between -1 and 1. Default is NULL. Can be a single value or a vector of values.
- Pearson's correlation between x1 and y. Must be between -1 and 1. Has no default value. Can be a single value or a vector of values.
- r.x2.y Pearson's correlation between x2 and y. Must be between -1 and 1. Assumed to be the 'moderator' in some functions. Has no default value. Can be a single value or a vector of values.
- r.x3.y Pearson's correlation between x3 and y. Must be between -1 and 1. Assumed to be the 'moderator' in some functions. Has no default value. Can be a single value or a vector of values.
- Pearson's correlation between the interaction term x1x2 (x1 * x2) and y. Must be between -1 and 1. Has no default value. Can be a single value or a vector of values.
- Pearson's correlation between the interaction term x1x2 (x1 * x3) and y. Must be between -1 and 1. Has no default value. Can be a single value or a vector of values.
- Pearson's correlation between the interaction term x1x2 (x2 * x3) and y. Must be between -1 and 1. Has no default value. Can be a single value or a vector of values.
- Pearson's correlation between x1 and x2. Must be between -1 and 1. Has no default value. Can be a single value or a vector of values.
- r.x1.x3 Pearson's correlation between x1 and x3. Must be between -1 and 1. Has no default value. Can be a single value or a vector of values.
- r.x2.x3 Pearson's correlation between x2 and x3. Must be between -1 and 1. Has no default value. Can be a single value or a vector of values.
- Reliability of x1 (e.g. test-retest reliability, ICC, Cronbach's alpha). Default is 1 (perfect reliability). Must be greater than 0 and less than or equal to 1.
- Reliability of x2 (e.g. test-retest reliability, ICC, Cronbach's alpha). Default is 1 (perfect reliability). Must be greater than 0 and less than or equal to 1.

power_interaction_r2

	rel.x3	Reliability of x3 (e.g. test-retest reliability, ICC, Cronbach's alpha). Default is 1 (perfect reliability). Must be greater than 0 and less than or equal to 1.
	rel.y	Reliability of xy (e.g. test-retest reliability, ICC, Cronbach's alpha). Default is 1 (perfect reliability). Must be greater than 0 and less than or equal to 1.
	alpha	The alpha. At what p-value is the interaction deemed significant? Default is 0.05 .
detailed_results		
		Default is FALSE. Should detailed results be reported? Returns regression slopes, f2, r2, and the full correlation matrix.
	cl	Number of clusters to use for running simulations in parallel. Default is NULL (i.e. not in parallel). Useful when running several thousand analyses at once.

Value

A data frame containing the power for each unique setting combination.

Examples

```
power_interaction_3way_r2(N=1000,r.x1.y = .1,r.x2.y = .2,r.x3.y = .3, r.x1x2.y = .05,r.x1x3.y = .07,r.x2x3.y = .09,b.x1x2x3 =0.01, r.x1.x2 = .2,r.x1.x3 = .4,r.x2.x3 = .3)
```

power_interaction_r2 Analytic power analysis for interactions

Description

Power analysis for interaction models, computed via change in R2. Valid for interactions with continuous, normally distributed, variables.

```
power_interaction_r2(
    N,
    r.x1.y,
    r.x2.y,
    r.x1x2.y,
    rel.x1 = 1,
    rel.x2 = 1,
    rel.y = 1,
    alpha = 0.05,
    detailed_results = FALSE
)
```

Arguments

N	Sample size. Must be a positive integer. Has no default value. Can be a single value or a vector of values.
r.x1.y	Pearson's correlation between x1 and y. Must be between -1 and 1. Has no default value. Can be a single value or a vector of values.
r.x2.y	Pearson's correlation between x2 and y. Must be between -1 and 1. Assumed to be the 'moderator' in some functions. Has no default value. Can be a single value or a vector of values.
r.x1x2.y	Pearson's correlation between the interaction term $x1x2$ ($x1 * x2$) and y. Must be between -1 and 1. Has no default value. Can be a single value or a vector of values.
r.x1.x2	Pearson's correlation between x1 and x2. Must be between -1 and 1. Has no default value. Can be a single value or a vector of values.
rel.x1	Reliability of x1 (e.g. test-retest reliability, ICC, Cronbach's alpha). Default is 1 (perfect reliability). Must be greater than 0 and less than or equal to 1.
rel.x2	Reliability of x2 (e.g. test-retest reliability, ICC, Cronbach's alpha). Default is 1 (perfect reliability). Must be greater than 0 and less than or equal to 1.
rel.y	Reliability of xy (e.g. test-retest reliability, ICC, Cronbach's alpha). Default is 1 (perfect reliability). Must be greater than 0 and less than or equal to 1.
alpha	The alpha. At what p-value is the interaction deemed significant? Default is 0.05 .
detailed_result	ts

Default is FALSE. Should detailed results be reported?

Value

A data frame containing the power for each unique setting combination.

Examples

```
power\_interaction\_r2(N=seq(100,300,by=10),r.x1.y=0.2, \ r.x2.y=.2,r.x1x2.y=0.2,r.x1.x2=.2)
```

power_interaction_r2_covs

Analytic interaction power analysis with covariates

Description

Analytic power analysis of an interaction model with covariates. Additional covariate x main effect interaction terms are additionally added.

16 simple.slopes.3way

Usage

```
power_interaction_r2_covs(
  cov.input,
  N,
  alpha = 0.05,
  detailed_results = FALSE,
  cl = NULL
)
```

Arguments

cov.input Output of 'power_interaction_r2_covs()'. Variable correlations and reliabilities

are set by first modifying this list.

N Sample size. Must be a positive integer. Has no default value. Can be a single

value or a vector of values.

alpha The alpha. At what p-value is the interaction deemed significant? Default is

0.05.

detailed_results

Default is FALSE. Should detailed results be reported?

cl Number of clusters to use for running simulations in parallel. Default is NULL

(i.e. not in parallel). Useful when running several thousand analyses at once.

Value

A data frame containing the analytic power for each unique setting combination.

Examples

```
ex1 = generate.interaction.cov.input(c.num=2)
ex1$correlations$r.y.x1x2 = c(0.1,0.2,0.3)
power_interaction_r2_covs(cov.input = ex1,N=100)
```

simple.slopes.3way

See the simple slopes for a 3-way interaction

Description

Prints or plots the simple slopes for a 3-way interaction

Usage

```
simple.slopes.3way(power.results, row.num = 1, return.plot = FALSE)
```

Arguments

power.results Data frame of results from power_interaction_3way_r2().

row.num Which row to show? Can only be a single number. Default is 1.

return.plot Return a matrix (FALSE, default), or a plot (TRUE)?

17 test_interaction

Value

A matrix or a ggplot2 object

Examples

```
power_analysis = power_interaction_3way_r2(detailed_results = TRUE,N = c(1000),
r.x1.y = .2, r.x2.y = .3, r.x3.y = .1, r.x1x2.y = .01, r.x1x3.y = .05, r.x2x3.y = .1,
b.x1x2x3 = 0.1,r.x1.x2 = .1,r.x1.x3 = .1,r.x2.x3 = .1,
rel.x1 = 1, rel.x2 = 1, rel.x3 = 1, rel.y = 1)
simple.slopes.3way(power_analysis)
```

test_interaction

Test interaction

Description

Test the interaction from a single simulated data set.

Usage

```
test_interaction(
  data,
  alpha = 0.05,
  detailed_results = FALSE,
 q = 2,
  simple = FALSE
)
```

Arguments

q

Simulated data set. Output of 'generate_interaction()'. data

alpha The alpha. At what p-value is the interaction deemed significant? Default is

0.05.

detailed_results

Should results beyond the linear model (change in R2, simple slopes, correla-

tions, and confidence intervals) be returned? Default is FALSE.

Simple slopes. How many quantiles should x2 be split into for simple slope testing? Default is 2. Simple slope testing returns the effect-size (slope) of y~x1 for the two most extreme quantiles of x2. If q=3 then the two slopes are y~x1

for the bottom 33% of x2, and the top 33% of x2.

simple For internal use. Default is FALSE.

Value

Either a named list or a data frame containing the results of the regression y~x1+x2+x1*x2, the pearson's correlation between y, x1,x2, and x1x2, and the slopes of the simple slopes.

18 test_interaction

Examples

```
dataset <- generate_interaction(N = 250,r.x1.y = 0,r.x2.y = .1,r.x1x2.y = -.2,r.x1.x2 = .3) test_interaction(data = dataset, alpha=0.05, q=2)
```

Index

```
compute\_adjustment, 2
cor.mat.3way, 3
{\tt generate.interaction.cov.input,4}
generate_interaction, 4
\mathsf{name\_key}, \textcolor{red}{6}
norm2ordinal, 7
plot_interaction, 7
plot_power_curve, 8
plot_simple_slope, 9
power_estimate, 9
power\_interaction, 10
power_interaction_3way_r2, 12
power_interaction_r2, 14
power_interaction_r2_covs, 15
simple.slopes.3way, 16
test\_interaction, 17
```