The GRIN2 package is an improved version of GRIN software that streamlines its use in practice to analyze genomic lesion data, accelerate its computing, and expand its analysis capabilities to answer additional scientific questions including a rigorous evaluation of the association of genomic lesions with RNA expression.
- Genomic Landscape of T-ALL
- RNA-seq and WES data for 265 patients identified 6,887 genomic lesions
- Clinical outcome data
data(clin.data)
data(lesion.data)
data(expr.data)
head(lesion.data)
#> ID chrom loc.start loc.end lsn.type
#> 1 PARFIH 16 67650782 67650782 mutation
#> 2 PARFIH 3 49759671 49759671 mutation
#> 3 PARFIH 1 6313912 6313912 mutation
#> 4 PARFIH 1 235929422 235929422 mutation
#> 5 PARFIH 4 142053653 142053653 mutation
#> 6 PARFIH 9 27206737 27206737 mutation
# Specify a folder on your local machine to store the analysis results:
# resultsPath=tempdir()
# knitr::opts_knit$set(root.dir = normalizePath(path = resultsPath))
hg19.ann=get.ensembl.annotation("Human_GRCh37")
# "Human_GRCh38" can be used instead of "Human_GRCh37" to retrieve data for hg38
# 1) Gene annotation data that include around 20,000 coding genes and 25,000 Non-coding processed transcripts such as lncRNAs, miRNAs, snRNA and snoRNAs:
gene.annotation=hg19.ann$gene.annotation
# 2)Annotation data for regulatory features retrieved from ensembl regulatory build that include around 500,000 feauters (promoters, enhancer, TF and CTCF binding sites, etc...). Ensembl imports publicly available data from different large epigenomic consortia that includes ENCODE, Roadmap Epigenomics and Blueprint (118 epigenome):
hg19.reg.annotation=hg19.ann$reg.annotation.predicted
# 3)Annotation data for experimentally validated regulatory features retrieved from FANTOM5 project:
hg19.reg.FANTOM=hg19.ann$reg.annotation.validated
# Instead of retrieving annotation data from Ensembl BioMart, users can use their own gene annotation data files. File should has four required columns that include "gene" which is the ensembl ID of annotated genes to which the lesion data will be overlapped, "chrom" which is the chromosome on which the gene is located, "loc.start" which is the gene start position, and "loc.end" the gene end position. hg19.gene annotation will be used as an example gene annotation data file:
data(hg19.gene.annotation)
head(hg19.gene.annotation)
#> gene chrom loc.start loc.end
#> 1 ENSG00000177076 9 19408925 19452018
#> 2 ENSG00000122729 9 32384618 32454767
#> 3 ENSG00000167107 17 48503519 48552206
#> 4 ENSG00000130402 19 39138289 39222223
#> 5 ENSG00000173137 8 145596790 145618457
#> 6 ENSG00000035687 1 244571796 244615436
#> description gene.name
#> 1 alkaline ceramidase 2 [Source:HGNC Symbol;Acc:23675] ACER2
#> 2 aconitase 1, soluble [Source:HGNC Symbol;Acc:117] ACO1
#> 3 acyl-CoA synthetase family member 2 [Source:HGNC Symbol;Acc:26101] ACSF2
#> 4 actinin, alpha 4 [Source:HGNC Symbol;Acc:166] ACTN4
#> 5 aarF domain containing kinase 5 [Source:HGNC Symbol;Acc:21738] ADCK5
#> 6 adenylosuccinate synthase [Source:HGNC Symbol;Acc:292] ADSS
#> biotype chrom.strand chrom.band
#> 1 protein_coding 1 p22.1
#> 2 protein_coding 1 p21.1
#> 3 protein_coding 1 q21.33
#> 4 protein_coding 1 q13.2
#> 5 protein_coding 1 q24.3
#> 6 protein_coding -1 q44
# To retrieve chromosome size data for GRCh37 (hg19) genome build from chr.info txt file available on UCSC genome browser
hg19.chrom.size=get.chrom.length("Human_GRCh37")
# "Human_GRCh38" can be used to retrieve chrom size data for hg38
# Instead of retrieving chromosome size data from UCSC genome browser, users can use their own files that should has two required columns that include "chrom" with the chromosome number and "size" for the size of the chromosome in base pairs:
# data(hg19.chrom.size)
head(hg19.chrom.size)
#> chrom size
#> 1 1 249250621
#> 2 2 243199373
#> 3 3 198022430
#> 4 4 191154276
#> 5 5 180915260
#> 6 6 171115067
# Users can run GRIN analysis by just specifying the genome.version in grin.stats function.
# A) Gene annotation data will be directly retrieved from Ensembl BioMart for the specified genome assembly using get.ensembl.annotation function and chromosome size data will be also retrieved from UCSC genome browser:
# grin.results=grin.stats(lesion.data,
# genome.version="Human_GRCh37")
# "Human_GRCh38" can be used instead of "Human_GRCh37" for hg38 genome assembly
# Users can also use their own annotation and chromosome size data files to run GRIN analysis:
grin.results=grin.stats(lesion.data,
hg19.gene.annotation,
hg19.chrom.size)
# it takes around 2 minutes to map 6,887 lesions to around 57,000 annotated genes and return the GRIN results.
# B) To run GRIN for computationally predicted regulatory features from Ensembl regulatory build:
# First get a group of 500 regulatory features for an example run:
hg19.reg.example=hg19.reg.annotation[396500:397000,]
# whole file with around 500,000 feature takes around 25 minutes to return the results:
# Run GRIN analysis:
grin.results.reg=grin.stats(lesion.data,
hg19.reg.example,
hg19.chrom.size)
# C) To run GRIN analysis for experimentally verified regulatory features from FANTOM5 project:
# First get a group of 500 FANTOM5 regulatory features for an example run:
hg19.fantom.example=hg19.reg.FANTOM[232500:233000,]
grin.results.fantom=grin.stats(lesion.data,
hg19.fantom.example,
hg19.chrom.size)
# Extract GRIN results table:
grin.table=grin.results$gene.hits
sorted.results <- grin.table[order(as.numeric(as.character(grin.table$p2.nsubj))),]
First section of GRIN results table will include gene annotation in addition to the number of subjects affected by each type of lesions:
head(sorted.results[,c(7,11:14)])
#> gene.name nsubj.fusion nsubj.gain nsubj.loss nsubj.mutation
#> 273 PTEN 0 8 23 37
#> 219 MYB 4 26 2 13
#> 64 CDKN1B 0 1 26 4
#> 105 ETV6 2 2 21 7
#> 395 WT1 0 1 9 24
#> 86 DDX3X 2 1 3 4
Results will also include the probability (p) and FDR adjusted q-value for each gene to be affected by each type of lesion:
head(sorted.results[,c(7,19:22)])
#> gene.name q.nsubj.fusion q.nsubj.gain q.nsubj.loss q.nsubj.mutation
#> 273 PTEN 1.000000e+00 1.000000e+00 4.797673e-35 8.227521e-77
#> 219 MYB 2.515949e-09 3.203506e-50 8.633060e-01 7.315274e-27
#> 64 CDKN1B 1.000000e+00 1.000000e+00 1.095989e-25 8.487617e-09
#> 105 ETV6 5.295505e-03 1.000000e+00 2.363783e-16 1.401030e-06
#> 395 WT1 1.000000e+00 1.000000e+00 1.439453e-06 6.683362e-50
#> 86 DDX3X 4.803643e-05 1.000000e+00 8.633060e-01 1.536521e-06
Another important part of the output is the constellation results testing if the gene is affected by one type of lesions (p1.nusubj) or a constellation of two types of lesions (p2.nsubj), three types of lesions (p3.nsubj), etc.. with FDR adjusted q-values added to the table as well:
head(sorted.results[,c(7,27:30)])
#> gene.name q1.nsubj q2.nsubj q3.nsubj q4.nsubj
#> 273 PTEN 6.483477e-77 1.102996e-69 1.000000e+00 1
#> 219 MYB 4.733319e-51 5.504218e-53 4.514161e-29 1
#> 64 CDKN1B 7.503116e-26 2.500805e-16 1.000000e+00 1
#> 105 ETV6 3.034201e-16 6.736903e-12 1.227281e-09 1
#> 395 WT1 6.380742e-50 9.437348e-11 1.000000e+00 1
#> 86 DDX3X 6.227043e-07 2.692079e-10 1.000000e+00 1
The second part of the results table report the same set of results but for the number of hits affecting each gene for each lesion type instead of the number of unique affected subjects. For example, if NOTCH1 gene is affected by 4 mutations in the same subject, this event will be counted as 4 hits in the n.hits stats but 1 subject in the n.subj stats:
head(sorted.results[,c(7,31:34)])
#> gene.name nhit.fusion nhit.gain nhit.loss nhit.mutation
#> 273 PTEN 0 8 38 45
#> 219 MYB 4 27 2 14
#> 64 CDKN1B 0 1 26 4
#> 105 ETV6 2 2 22 7
#> 395 WT1 0 1 9 27
#> 86 DDX3X 2 1 3 5
# write.grin.xlsx function return an excel file with multiple sheets that include GRIN results table, interpretation of each column in the results, and methods paragraph
# write.grin.xlsx(grin.results, "T-ALL_GRIN_result_annotated_genes.xlsx")
# To return the results table without other information (will be helpful in case of large lesion data files where the gene.lsn.data sheet will be > 1 million rows that halt the write.grin.xlsx function).
grin.res.table=grin.results$gene.hits
genomewide.plot=genomewide.lsn.plot(grin.results,
max.log10q=150)
# This function use the list of grin.results
# This barplot shows the number of patients affected by different types of lesions in a list of genes of interest:
count.genes=as.vector(c("CDKN2A", "NOTCH1", "CDKN2B", "TAL1", "FBXW7", "PTEN", "IRF8",
"NRAS", "BCL11B", "MYB", "LEF1","RB1", "MLLT3", "EZH2", "ETV6",
"CTCF", "JAK1", "KRAS", "RUNX1", "IKZF1", "KMT2A", "RPL11", "TCF7",
"WT1", "JAK2", "JAK3", "FLT3"))
# return the stacked barplot
grin.barplt(grin.results,
count.genes)
# First identify the list of genes to be included in the oncoprint:
oncoprint.genes=as.vector(c("ENSG00000101307", "ENSG00000171862", "ENSG00000138795",
"ENSG00000139083", "ENSG00000162434", "ENSG00000134371",
"ENSG00000118058", "ENSG00000171843", "ENSG00000139687",
"ENSG00000184674", "ENSG00000118513", "ENSG00000197888",
"ENSG00000111276", "ENSG00000258223", "ENSG00000187266",
"ENSG00000174473", "ENSG00000133433", "ENSG00000159216",
"ENSG00000107104", "ENSG00000099984", "ENSG00000078403",
"ENSG00000183150", "ENSG00000081059", "ENSG00000175354",
"ENSG00000164438"))
# Prepare a lesion matrix for the selected list of genes with each row as a gene and each column is a patient (this matrix is compatible with oncoPrint function in ComplexHeatmap package):
oncoprint.mtx=grin.oncoprint.mtx(grin.results,
oncoprint.genes)
head(oncoprint.mtx[,1:6])
#> PASGFH PASKSY PASTDU PASYWF PATDRC PATFWF
#> TCF7 loss; loss; mutation; loss; loss; loss;
#> KANK1 gain;
#> CDKN1B loss; loss; loss; loss;
#> MYB mutation;
#> LEF1
#> ETV6 loss; loss; loss; loss;
# Use onco.print.props function to specify a hgt for each lesion category to show all lesions that might affect a certain patient. For example, if the same patient is affected by gain and mutation, only 25% of the oncoprint rectangle will be filled with the mutations green color and the rest will appear as the gain red color.
onco.props<-onco.print.props(lesion.data,
hgt = c("gain"=5, "loss"=4, "mutation"=2, "fusion"=1))
column_title = "" # optional
# use oncoprint function from ComplexHeatmap library to plot the oncoprint:
oncoPrint(oncoprint.mtx,
alter_fun = onco.props$alter_func,
col = onco.props$col,
column_title = column_title,
heatmap_legend_param = onco.props$heatmap_legend_param)
# First we should call the pathways data file:
data(pathways)
head(pathways)
#> # A tibble: 6 Ă— 3
#> gene.name ensembl.id pathway
#> <chr> <chr> <chr>
#> 1 EBF1 ENSG00000164330 Bcell_Pathway
#> 2 IKZF1 ENSG00000185811 Bcell_Pathway
#> 3 RAG1 ENSG00000166349 Bcell_Pathway
#> 4 RAG2 ENSG00000175097 Bcell_Pathway
#> 5 CCND3 ENSG00000112576 CellCycle_Pathway
#> 6 CDKN1B ENSG00000111276 CellCycle_Pathway
# define a list of pathways of interest:
PI3K_Pathway=pathways[pathways$pathway=="PI3K_Pathway",]
PI3K_ensembl=as.vector(PI3K_Pathway$ensembl.id)
Bcell_Pathway=pathways[pathways$pathway=="Bcell_Pathway",]
Bcell_ensembl=as.vector(Bcell_Pathway$ensembl.id)
Jak_Pathway=pathways[pathways$pathway=="Jak_Pathway",]
Jak_ensembl=as.vector(Jak_Pathway$ensembl.id)
Ras_Pathway=pathways[pathways$pathway=="Ras_Pathway",]
Ras_ensembl=as.vector(Ras_Pathway$ensembl.id)
oncoprint.genes=c(PI3K_ensembl, Bcell_ensembl, Jak_ensembl, Ras_ensembl)
# prepare the oncoprint matrix:
oncoprint.mtx.path=grin.oncoprint.mtx(grin.results,
oncoprint.genes)
Gene=as.data.frame(rownames(oncoprint.mtx.path))
colnames(Gene)="gene.name"
Gene$index=1:nrow(Gene)
merged.df=merge(Gene,pathways, by="gene.name", all.x=TRUE)
merged.df=merged.df[order(merged.df$index), ]
sel.pathways=factor(merged.df$pathway,
levels=c("PI3K_Pathway", "Jak_Pathway", "Ras_Pathway", "Bcell_Pathway"))
# Use onco.print.props function to specify a hgt for each lesion category to show all lesions that might affect a certain patient:
onco.props.path<-onco.print.props(lesion.data,
hgt = c("gain"=5, "loss"=4, "mutation"=2, "fusion"=1))
column_title = "" # optional
# use oncoprint function from complexheatmap library to plot the oncoprint
oncoPrint(oncoprint.mtx.path,
alter_fun = onco.props.path$alter_func,
col = onco.props.path$col,
column_title = column_title,
heatmap_legend_param = onco.props.path$heatmap_legend_param,
row_split=sel.pathways)
# First we need to call "hg19_cytoband" and "hg38_cytoband" before calling the plot function:
data(hg19_cytoband)
data(hg38_cytoband)
# lsn.transcripts.plot function can be used to generate a plot that shows all different types of lesions that affect a gene of interest with a transcripts track directly retrieved from Ensembl genome browser:
lsn.transcripts.plot(grin.results,
genome="hg19",
gene="WT1",
hg19.cytoband=hg19_cytoband)
# for hg38 genome assembly:
# library(AnnotationHub)
# ah <- AnnotationHub()
# retrieve gene transcripts for human GRCh38 genome assembly from Ensembl (version 110):
# gtf.V110 <- ah[["AH113665"]]
#lsn.transcripts.plot(grin.results,
# genome="hg38",
# gene="WT1",
# hg38.transcripts=gtf.V110,
# hg38.cytoband=hg38_cytoband)
# lsn.transcripts.plot function can be also used to generate a plot for lesions of a specific lesion group that span a certain locus of interest with transcripts track added:
lsn.transcripts.plot(grin.results,
genome="hg19",
hg19.cytoband=hg19_cytoband,
chrom=9,
plot.start=21800000,
plot.end=22200000,
lesion.grp = "loss",
spec.lsn.clr = "blue")
# for hg38 genome assembly:
# ah <- AnnotationHub()
# retrieve gene transcripts for human GRCh38 genome assembly from Ensembl (version 110):
# gtf.V110 <- ah[["AH113665"]]
#lsn.transcripts.plot(grin.results,
# genome="hg38",
# hg38.transcripts="gtf.v110",
# hg38.cytoband=hg38_cytoband,
# chrom=9,
# plot.start=21800000,
# plot.end=22200000,
# lesion.grp = "loss",
# spec.lsn.clr = "blue")
# lsn.transcripts.plot function can be used to generate a plot for all lesions of a specific lesion type that affect a locus or region of interest without adding transcripts track. This will allow plotting a larger locus of the chromosome such as a chromosome band.transTrack argument should be set as FALSE.
lsn.transcripts.plot(grin.results,
genome="hg19",
transTrack = FALSE,
hg19.cytoband=hg19_cytoband,
chrom=9,
plot.start=19900000,
plot.end=25600000,
lesion.grp = "loss",
spec.lsn.clr = "blue")
# for hg38 genome assembly:
# ah <- AnnotationHub()
# retrieve gene transcripts for human GRCh38 genome assembly from Ensembl (version 110):
# gtf.V110 <- ah[["AH113665"]]
#lsn.transcripts.plot(grin.results,
# genome="hg38",
# transTrack = FALSE,
# hg38.transcripts="gtf.v110",
# hg38.cytoband=hg38_cytoband,
# chrom=9,
# plot.start=19900000,
# plot.end=25600000,
# lesion.grp = "loss",
# spec.lsn.clr = "blue")
# lsn.transcripts.plot function can be also used to generate a plot for all types of lesions that affect a chromosome of interest with plot.start=1 and plot.end is the chr size:
lsn.transcripts.plot(grin.results,
genome="hg19",
transTrack = FALSE,
hg19.cytoband=hg19_cytoband,
chrom=9,
plot.start=1,
plot.end=141000000)
# for hg38 genome assembly:
#ah <- AnnotationHub()
#gtf.V110 <- ah[["AH113665"]]
#lsn.transcripts.plot(grin.results,
# genome="hg38",
# transTrack = FALSE,
# hg38.transcripts="gtf.v110",
# hg38.cytoband=hg38_cytoband,
# chrom=9,
# plot.start=1,
# plot.end=141000000)
# grin.stats.lsn.plot function can be used to generate plots that show all different types of lesions that affect a regulatory feature of interest in addition to the GRIN statistics. Plot does not include transcripts track that's typically not available for those features.
# grin.stats.lsn.plot(grin.results.reg,
# feature="ENSR00000105619")
# Same plot can be also prepared for regulatory features from the FANTOM5 project (for example: the NRAS promoter site affected by 18 mutations)
grin.stats.lsn.plot(grin.results.fantom,
feature="p6@NRAS,0.2452")
# Prepare gene and lesion data for later computations
# This lesion matrix has all lesion types that affect a single gene in one row. It can be used to run association analysis with expression data (part of alex.prep.lsn.expr function)
# First step is to prepare gene and lesion data for later computations
gene.lsn=prep.gene.lsn.data(lesion.data,
hg19.gene.annotation)
# Then determine lesions that overlap each gene (locus)
gene.lsn.overlap= find.gene.lsn.overlaps(gene.lsn)
# Finally, build the lesion matrix using prep.lsn.type.matrix function:
gene.lsn.type.mtx=prep.lsn.type.matrix(gene.lsn.overlap,
min.ngrp=5)
# prep.lsn.type.matrix function return each gene in a row, if the gene is affected by multiple types of lesions (for example gain AND mutations), entry will be denoted as "multiple" for this specific patient.
# min.ngrp can be used to specify the minimum number of patients with a lesion to be included in the final lesion matrix.
head(gene.lsn.type.mtx[,1:5])
#> PARASZ PARAYM PARCVM PAREGZ PARFDL
#> ENSG00000005700 "loss" "none" "loss" "none" "none"
#> ENSG00000010810 "loss" "none" "loss" "none" "none"
#> ENSG00000014123 "loss" "none" "loss" "none" "none"
#> ENSG00000056972 "loss" "none" "loss" "none" "none"
#> ENSG00000057663 "loss" "none" "loss" "none" "none"
#> ENSG00000065615 "loss" "none" "loss" "none" "none"
# alex.prep.lsn.expr function prepare expression, lesion data and return the set of genes with both types of data available ordered by gene IDs in rows and patient IDs in columns:
alex.data=alex.prep.lsn.expr(expr.data,
lesion.data,
hg19.gene.annotation,
min.expr=1,
min.pts.lsn=5)
# ALEX ordered lesion data:
alex.lsn=alex.data$alex.lsn
head(alex.lsn[,1:5])
#> PARASZ PARAYM PARCVM PAREGZ PARFDL
#> ENSG00000005339 none none none none none
#> ENSG00000005700 loss none loss none none
#> ENSG00000006283 none none none none none
#> ENSG00000007047 none none none none none
#> ENSG00000010438 none loss none none none
#> ENSG00000010810 loss none loss none none
# ALEX ordered expression data:
alex.expr=alex.data$alex.expr
head(alex.expr[,1:5])
#> PARASZ PARAYM PARCVM PAREGZ PARFDL
#> ENSG00000005339 4.012 3.718 3.253 2.294 3.568
#> ENSG00000005700 2.503 3.738 3.011 3.524 3.437
#> ENSG00000006283 0.035 0.000 0.016 0.005 0.043
#> ENSG00000007047 2.479 2.495 2.447 2.381 2.255
#> ENSG00000010438 0.155 0.000 0.454 0.000 0.153
#> ENSG00000010810 3.992 4.402 3.985 3.934 4.443
# KW.hit.express function runs Kruskal-Wallis test for association between lesion groups and expression level of the same corresponding gene:
alex.kw.results=KW.hit.express(alex.data,
hg19.gene.annotation,
min.grp.size=5)
# order the genes by the ones with most significant KW q-value:
sorted.kw <- alex.kw.results[order(as.numeric(as.character(alex.kw.results$q.KW))),]
First section of the results table will include gene annotation in addition to the kruskal-wallis test p and q values evaluating if there’s a statistically significant differences in the gene expression level between different lesion groups:
head(sorted.kw[,c(6,7,11,12)])
#> gene.name biotype p.KW q.KW
#> ENSG00000198642 KLHL9 protein_coding 7.141766e-21 2.599603e-18
#> ENSG00000120159 CAAP1 protein_coding 9.495557e-20 1.728191e-17
#> ENSG00000162367 TAL1 protein_coding 1.152926e-18 1.398884e-16
#> ENSG00000137073 UBAP2 protein_coding 4.544402e-18 4.135406e-16
#> ENSG00000165282 PIGO protein_coding 3.879283e-17 2.824118e-15
#> ENSG00000107185 RGP1 protein_coding 1.874862e-16 8.530620e-15
For each gene, results table will include the number of patients affected by each type of lesion in addition to number of patients affected by multiple types of lesions in the same gene and patients without any lesion:
head(sorted.kw[,c(13:18)])
#> fusion_n.subjects gain_n.subjects loss_n.subjects
#> ENSG00000198642 0 0 99
#> ENSG00000120159 0 1 50
#> ENSG00000162367 54 0 0
#> ENSG00000137073 0 1 42
#> ENSG00000165282 0 1 42
#> ENSG00000107185 0 1 42
#> multiple_n.subjects mutation_n.subjects none_n.subjects
#> ENSG00000198642 0 0 164
#> ENSG00000120159 0 0 212
#> ENSG00000162367 0 0 209
#> ENSG00000137073 0 0 220
#> ENSG00000165282 0 0 220
#> ENSG00000107185 0 0 220
Results table will also include the mean expression of the gene by different lesion groups in addition to the median expression and standard deviation.
head(sorted.kw[,c(19:24)])
#> fusion_mean gain_mean loss_mean multiple_mean mutation_mean
#> ENSG00000198642 NA NA 1.890424 NA NA
#> ENSG00000120159 NA 3.779 2.648320 NA NA
#> ENSG00000162367 3.494315 NA NA NA NA
#> ENSG00000137073 NA 3.695 2.741476 NA NA
#> ENSG00000165282 NA 2.825 1.447643 NA NA
#> ENSG00000107185 NA 3.068 1.791786 NA NA
#> none_mean
#> ENSG00000198642 3.063372
#> ENSG00000120159 3.318877
#> ENSG00000162367 1.584507
#> ENSG00000137073 3.449786
#> ENSG00000165282 2.008345
#> ENSG00000107185 2.542523
# return boxplots for a list of top significant genes to the pre-specified results folder:
# alex.boxplots(out.dir=resultsPath,
# alex.data, alex.kw.results,
# 1e-15, hg19.gene.annotation)
# waterfall plots allow a side-by-side representation of expression and lesion data of the gene of interest.
# First prepare expression and lesion data for waterfall plots:
WT1.waterfall.prep=alex.waterfall.prep(alex.data,
alex.kw.results,
"WT1",
lesion.data)
# alex.waterfall.plot can be used to return the plot
WT1.waterfall.plot=alex.waterfall.plot(WT1.waterfall.prep,
lesion.data)
# To prepare Waterfall plots for top significant genes in the KW Results Table, users can use top.alex.waterfall.plots function by specifying a directory to store the plots, and minimum KW.q, for example:
# top.alex.waterfall.plots(out.dir=resultsPath,
# alex.data,
# alex.kw.results,
# 1e-15,
# lesion.data)
# alex.pathway function will run association analysis between lesion and expression data for all genes in a specified pathway (example: JAK/STAT pathway).
# Function will return two panels figure of lesion and expression data of ordered subjects based on the computed lesions distance in all genes assigned to the pathway of interest:
alex.path=alex.pathway(alex.data,
lesion.data,
pathways,
"Jak_Pathway")
# To return ordered lesion and expression data of the genes assigned to the pathway of interest (same patients order in the plot):
alex.path[1:10,1:5]
#> PARSET PATZWA PATITB PATYJK PASHDV
#> JAK2 _lsn none none none none none
#> JAK3 _lsn none multiple multiple multiple mutation
#> JAK1 _lsn mutation mutation mutation mutation mutation
#> IL7R _lsn none none none none none
#> STAT5B _lsn none none none none mutation
#> PTPN2 _lsn none none none none none
#> JAK2 _expr 2.772 2.949 2.698 4.288 2.715
#> JAK3 _expr 4.566 5.828 4.186 4.96 4.722
#> JAK1 _expr 5.106 5.817 4.57 6.296 4.633
#> IL7R _expr 1.241 7.267 4.613 4.368 5.775
# This type of lesion matrices with each gene affected by a certain type of lesion in a separate row is very helpful to run multiple levels of association analysis that include association between lesions and treatment outcomes.
# Users should first Prepare gene and lesion data and determine lesions that overlap each gene (locus):
gene.lsn=prep.gene.lsn.data(lesion.data,
hg19.gene.annotation)
gene.lsn.overlap= find.gene.lsn.overlaps(gene.lsn)
# use prep.binary.lsn.mtx function to prepare the lesion binary matrix:
lsn.binary.mtx.atleast5=prep.binary.lsn.mtx(gene.lsn.overlap,
min.ngrp=5)
# Each row is a lesion type that affect a certain gene for example NOTCH1_mutation (entry will be labelled as 1 if the patient is affected by by this type of lesion and 0 otherwise).
# min.ngrp can be used to specify the minimum number of patients with a lesion to be included in the final lesion matrix.
head(lsn.binary.mtx.atleast5[,1:5])
#> PATXKW PASHNK PARMUC PATKWU PARXMV
#> ENSG00000005339_mutation 0 1 1 1 1
#> ENSG00000005700_loss 0 0 0 0 0
#> ENSG00000006283_gain 0 0 0 0 0
#> ENSG00000007047_gain 0 0 0 0 0
#> ENSG00000010438_loss 0 0 0 0 0
#> ENSG00000010810_loss 0 0 0 0 0
# Prepare Event-free Survival (EFS) and Overall Survival (OS) as survival objects:
clin.data$EFS <- Surv(clin.data$efs.time, clin.data$efs.censor)
clin.data$OS <- Surv(clin.data$os.time, clin.data$os.censor)
# List all clinical variables of interest to be included in the association analysis:
clinvars=c("MRD.binary", "EFS", "OS")
# Run association analysis between lesions and clinical variables:
assc.outcomes=grin.assoc.lsn.outcome(lsn.binary.mtx.atleast5,
clin.data,
hg19.gene.annotation,
clinvars)
# Run models adjusted for one or a group of covariates:
# assc.outcomes.adj=grin.assoc.lsn.outcome(lsn.binary.mtx.atleast5,
# clin.data,
# hg19.gene.annotation,
# clinvars,
# covariate="Sex")
# order the genes by the ones with most significant KW q-value:
sorted.outcomes <- assc.outcomes[order(as.numeric(as.character(assc.outcomes$`MRD.binary.p-value`))),]
First section of the results table will include gene annotation in addition to the odds ratio, lower95, upper95 confidence intervals in addition to p and FDR adjusted q-values for the logistic regression models testing for the association between lesions and binary outcome variables such as Minimal Residual Disease (MRD). COX proportional hazard models will be used in case of survival objects such as Event-free survival (EFS) and Overall Survival (OS) with hazard ratios reported instead of odds ratio:
head(sorted.outcomes[1:7,c(6,11,14,15)])
#> gene.name MRD.binary.odds.ratio MRD.binary.p-value
#> ENSG00000147889_loss CDKN2A 0.2132367 5.889274e-07
#> ENSG00000184937_mutation WT1 6.8888889 2.698869e-05
#> ENSG00000099810_loss MTAP 0.3105882 7.074119e-05
#> ENSG00000198642_loss KLHL9 0.3205882 6.114398e-04
#> ENSG00000171843_loss MLLT3 0.2253290 1.057842e-03
#> ENSG00000188352_loss FOCAD 0.3019324 1.326181e-03
#> MRD.binary.q-value
#> ENSG00000147889_loss 0.000120485
#> ENSG00000184937_mutation 0.002760724
#> ENSG00000099810_loss 0.004824167
#> ENSG00000198642_loss 0.024976879
#> ENSG00000171843_loss 0.024976879
#> ENSG00000188352_loss 0.024976879
Results table will also include the number of patients with/without lesion who experienced or did not experience the event:
head(sorted.outcomes[1:7,c(6, 16:19)])
#> gene.name MRD.binary.event.with.lsn
#> ENSG00000147889_loss CDKN2A 37
#> ENSG00000184937_mutation WT1 16
#> ENSG00000099810_loss MTAP 36
#> ENSG00000198642_loss KLHL9 14
#> ENSG00000171843_loss MLLT3 6
#> ENSG00000188352_loss FOCAD 10
#> MRD.binary.event.without.lsn
#> ENSG00000147889_loss 33
#> ENSG00000184937_mutation 54
#> ENSG00000099810_loss 34
#> ENSG00000198642_loss 56
#> ENSG00000171843_loss 64
#> ENSG00000188352_loss 60
#> MRD.binary.no.event.with.lsn
#> ENSG00000147889_loss 163
#> ENSG00000184937_mutation 8
#> ENSG00000099810_loss 150
#> ENSG00000198642_loss 85
#> ENSG00000171843_loss 57
#> ENSG00000188352_loss 69
#> MRD.binary.no.event.without.lsn
#> ENSG00000147889_loss 31
#> ENSG00000184937_mutation 186
#> ENSG00000099810_loss 44
#> ENSG00000198642_loss 109
#> ENSG00000171843_loss 137
#> ENSG00000188352_loss 125
# This analysis is lesion type specific and covers the entire genome.It's meant to cover and asses the regions without any annotated genes or regulatory features. The first boundary for each chromosome will start from the first nucleotide base on the chromosome till the start position of the first lesion that affect the chromosome. Similarly, the last boundary will start from the end position of the last lesion that affect the chromosome till the last base on the chromosome.
# First extract data for gains and deletions from the lesion data file:
gain=lesion.data[lesion.data$lsn.type=="gain",]
loss=lesion.data[lesion.data$lsn.type=="loss",]
# Then use grin.lsn.boundaries function to return the lesion boundaries:
lsn.bound.gain=grin.lsn.boundaries(gain, hg19.chrom.size)
lsn.bound.loss=grin.lsn.boundaries(loss, hg19.chrom.size)
# It return a table of ordered boundaries based on the unique start and end positions of different lesions in a specific category on each chromosome.
head(lsn.bound.loss[,1:5])
#> gene chrom loc.start loc.end diff
#> 1 chr1_1_51585 1 1 51585 51584
#> 2 chr1_51586_593440 1 51586 593440 541854
#> 3 chr1_593441_711152 1 593441 711152 117711
#> 4 chr1_711153_713167 1 711153 713167 2014
#> 5 chr1_713168_751594 1 713168 751594 38426
#> 6 chr1_751595_2247723 1 751595 2247723 1496128
grin.results.gain.bound=grin.stats(gain,
lsn.bound.gain,
hg19.chrom.size)
grin.results.loss.bound=grin.stats(loss,
lsn.bound.loss,
hg19.chrom.size)
# genomewide.log10q.plot function will return a genome-wide plot based on -log(10) q-value testing if each of the evaluated lesion boundaries is significantly affect by a deletions in our example:
genomewide.log10q.plot(grin.results.loss.bound,
lsn.grps=c("loss"),
lsn.colors=c("loss" = "blue"),
max.log10q = 50)
# genomewide.log10q.plot function can be also used to return genome-wide significance plot for annotated genes to be affected by a certain type of lesions.
# Here we should use GRIN results for annotated genes affected by loss instead of lesion boundaries. Users can notice that some regions mostly without annotated markers were only captured in the lesion boundaries analysis that cover the entire genome:
genomewide.log10q.plot(grin.results,
lsn.grps=c("loss"),
lsn.colors=c("loss" = "blue"),
max.log10q = 50)
library(GRIN2)