Package 'ExactCIone'

January 20, 2025

January 20, 2025
Title Admissible Exact Intervals for One-Dimensional Discrete Distributions
Version 1.0.5
Maintainer Chongxiu Yu <yuchongxiu@163.com></yuchongxiu@163.com>
Description Construct the admissible exact intervals for the binomial proportion, the Poisson mean and the total number of subjects with a certain attribute or the total number of the subjects for the hypergeometric distribution. Both one-sided and two-sided intervals are of interest. This package can be used to calculate the intervals constructed methods developed by Wang (2014) <doi:10.5705 ss.2012.257=""> and Wang (2015) <doi:10.1111 biom.12360="">.</doi:10.1111></doi:10.5705>
License AGPL (>= 3)
Encoding UTF-8
RoxygenNote 7.2.3
Imports stats
Suggests knitr, rmarkdown
VignetteBuilder knitr
NeedsCompilation no
Author Chongxiu Yu [aut, cre], Weizhen Wang [aut], Zhongzhan Zhang [aut]
Repository CRAN
Date/Publication 2024-03-28 18:20:02 UTC
Contents
WbinoCI 2 WbinoCI_lower 3 WbinoCI_upper 4 WhyperCI_M 4 WhyperCI_M_lower 5 WhyperCI_M_upper 6 WhyperCI_N 7

WbinoCI

Index		13
	WpoisCI_upper	11
	WpoisCI_lower	11
	WpoisCI	10
	WhyperCI_N_upper	9
	WhyperCI_N_lower	8

WbinoCI

An Admissible Exact Confidence Interval for the Bnomial Proportion

Description

An admissible exact confidence interval of level 1-alpha is constructed for the binomial proportion p. This function can be used to calculate the interval constructed method proposed by Wang (2014).

Usage

```
WbinoCI(x, n, conf.level = 0.95, details = FALSE)
```

Arguments

x the number of success or the observed data.

n the sample size.

conf. level Confidence level. The default is 0.95.

details TRUE/FALSE, can be abbreviated. To choose whether to compute the confi-

dence interval for the whole sample points and output the infimum coverage

probability. The default is FALSE.

Details

Suppose $X\sim bino(n,p)$, the sample space of X is $\{0,1,...,n\}$. Wang (2014) proposed an admissible interval which is obtained by uniformly shrinking the initial 1-alpha Clopper-Pearson interval from the middle to both sides of the sample space iteratively. This interval is admissible so that any proper sub-interval of it cannot assure the confidence coefficient. This means the interval cannot be shortened anymore.

Value

A list which contains the confidence interval (CI) of the sample point and the confidence intervals (CIM) for all the points and the icp.

References

Clopper, C. J. and Pearson, E. S. (1934). The use of confidence or fiducial limits in the case of the binomial. "Biometrika" 26: 404-413.

Wang, W. (2014). An iterative construction of confidence intervals for a proportion. "Statistica Sinica" 24: 1389-1410.

WbinoCI_lower 3

Examples

```
WbinoCI(x=2,n=5,conf.level=0.95,details=TRUE)
WbinoCI(x=2,n=5,conf.level=0.95)
```

WbinoCI_lower

An Admissible Exact Lower Interval for the Binomial Proportion

Description

The 1-alpha Clopper-Pearson lower interval for the binomial proportion p.

Usage

```
WbinoCI_lower(x, n, conf.level = 0.95, details = FALSE)
```

Arguments

x the number of success or the observed data.

n the sample size.

conf.level Confidence level. The default is 0.95.

details TRUE/FALSE, can be abbreviated. To choose whether to compute the confi-

dence interval for the whole sample points. The default is FALSE.

Value

A list which contains the confidence interval (CI) of the sample point and the confidence intervals (CIM) for all the points.

References

Clopper, C. J. and Pearson, E. S. (1934). The use of confidence or fiducial limits in the case of the binomial. "Biometrika" 26: 404-413.

```
WbinoCI_lower(x=2,n=5,conf.level=0.95,details=TRUE)
WbinoCI_lower(x=2,n=5,conf.level=0.95)
```

WhyperCI_M

WbinoCI_upper	An Admissible Exact Upper Interval for the Binomial Proportion	

Description

The 1-alpha Clopper-Pearson upper interval for the binomial proportion p.

Usage

```
WbinoCI_upper(x, n, conf.level = 0.95, details = FALSE)
```

Arguments

x the number of success or the observed data.

n the sample size.

conf. level Confidence level. The default is 0.95.

details TRUE/FALSE, can be abbreviated. To choose whether to compute the confi-

dence interval for the whole sample points. The default is FALSE.

Value

A list which contains the confidence interval (CI) of the sample point and the confidence intervals (CIM) for all the points.

References

Clopper, C. J. and Pearson, E. S. (1934). The use of confidence or fiducial limits in the case of the binomial. "Biometrika" 26: 404-413.

Examples

```
WbinoCI_upper(x=2,n=5,conf.level=0.95,details=TRUE)
WbinoCI_upper(x=2,n=5,conf.level=0.95)
```

WhyperCI_M An Admissible Exact Confidence Interval for M, the Number of White Balls in an Urn

Description

The confidence interval for the number of white balls in an urn that contains M white balls and N-M black balls when sampling without replacement. This function can be used to calculate the interval constructed method proposed by Wang (2015).

WhyperCI_M_lower 5

Usage

```
WhyperCI_M(x, n, N, conf.level, details = FALSE)
```

Arguments

x integer representing the number of white balls in the drawn balls.

n integer representing the number of balls we draw in the urn without replacement,

i.e., the sample size.

N integer representing the number of all balls in an urn, i.e., the population size.

conf.level the confidence level of confidence interval.

details TRUE/FALSE, can be abbreviate. If choose FALSE, the confidence interval at

the observed X will be returned. If choose TRUE, the confidence intervals for all sample points and the infimum coverage probability will be returned. Default

is FALSE.

Details

Suppose X~Hyper(M,N,n). When N and n are known, Wang (2015) construct an admissible confidence interval for N by uniformly shrinking the initial 1-alpha Clopper-Pearson type interval from the mid-point of the sample space to 0. This interval is admissible so that any proper sub-interval of it cannot assure the confidence coefficient. This means the interval cannot be shortened anymore.

Value

a list which contains i) the confidence interval for M, ii)the confidence interval for p=M/N (this interval is equal to the previous interval divided by N) and iii) the infimum coverage probability of the two intervals.

References

Wang, W. (2015). Exact Optimal Confidence Intervals for Hypergeometric Parameters. "Journal of the American Statistical Association" 110 (512): 1491-1499.

Examples

```
WhyperCI_M(0,50,2000,0.95,details = TRUE)
WhyperCI_M(0,50,2000,0.95)
```

WhyperCI_M_lower

An Admissible Exact One-sided Lower Interval for the Number of White Balls in Hypergeometric Distribution

Description

The 1-alpha Clopper-Pearson type lower interval for the number of white balls in an urn.

Usage

```
WhyperCI_M_lower(X, n, N, conf.level, details = FALSE)
```

Arguments

X integer representing the number of white balls we observed when drawn without

replacement from an urn which contains both black and white balls.

n the number we drawn.

N integer representing the number of the whole balls in an urn.

conf.level the confidence level of confidence interval.

details TRUE/FALSE, can be abbreviate. Default is FALSE. If choose TRUE, the con-

fidence intervals for the whole sample space and the icp will be returned.

Value

a list which contains the confidence interval.

References

Konijn, H. S. (1973). Statistical Theory of Sample Survey Design and Analysis, Amsterdam: North-Holland.

Examples

```
WhyperCI_M_lower(0,50,2000,0.95,details = TRUE)
WhyperCI_M_lower(0,50,2000,0.95)
```

WhyperCI_M_upper

An Admissible Exact One-sided Upper Interval for the Number of White Balls in Hypergeometric Distribution

Description

The 1-alpha Clopper-Pearson type upper interval for the number of white balls in an urn.

Usage

```
WhyperCI_M_upper(X, n, N, conf.level, details = FALSE)
```

Arguments

X	integer represe	nting the number	er of white balls we c	bserved when drawn without	

replacement from an urn which contains both black and white balls.

n the number we drawn.

N integer representing the number of the whole balls in an urn.

conf. level the confidence level of confidence interval.

details TRUE/FALSE, can be abbreviate. Default is FALSE. If choose TRUE, the con-

fidence intervals for the whole sample space and the icp will be returned.

WhyperCI_N 7

Value

a list which contains the confidence interval.

References

Konijn, H. S. (1973). Statistical Theory of Sample Survey Design and Analysis, Amsterdam: North-Holland.

Examples

```
WhyperCI_M_upper(0,50,2000,0.95,details = TRUE)
WhyperCI_M_upper(0,50,2000,0.95)
```

WhyperCI_N

An Admissible Exact Confidence Interval for N, the Number of Balls in an Urn.

Description

An admissible exact confidence interval for the number of balls in an urn, which is the population number of a hypergeometric distribution. This function can be used to calculate the interval constructed method proposed by Wang (2015).

Usage

```
WhyperCI_N(x, n, M, conf.level, details = FALSE)
```

Arguments

x integer representing the number of white balls in the drawn balls.

n integer representing the number of balls we draw in the urn without replacement,

i.e., the sample size.

M the number of white balls in the urn.

conf.level the confidence level of confidence interval.

details TRUE/FALSE, can be abbreviate. If choose FALSE, the confidence interval at

the observed X will be returned. If choose TRUE, the confidence intervals for all sample points and the infimum coverage probability will be returned. Default

is FALSE.

Details

Suppose X~Hyper(M,N,n). When M and n are known, Wang (2015) construct an admissible confidence interval for N by uniformly shrinking the initial 1-alpha Clopper-Pearson type interval from 0 to min(M,n). This interval is admissible so that any proper sub-interval of it cannot assure the confidence coefficient. This means the interval cannot be shortened anymore.

Value

a list which contains i) the confidence interval for N and ii) the infimum coverage probability of the intervals.

References

Wang, W. (2015). Exact Optimal Confidence Intervals for Hypergeometric Parameters. "Journal of the American Statistical Association" 110 (512): 1491-1499.

Examples

```
WhyperCI_N(10,50,800,0.95,details=TRUE)
WhyperCI_N(50,50,800,0.95)
```

WhyperCI_N_lower

An Admissible Exact One-sided Lower Interval for the Population Number of Hypergeometric Distribution

Description

The 1-alpha Clopper-Pearson type lower interval for the population number of hypergeometric distribution.

Usage

```
WhyperCI_N_lower(x, n, M, conf.level, details = FALSE)
```

Arguments

Χ	integer representing the number of white balls we observed when drawn without

replacement from an urn which contains both black and white balls.

n the number we drawn.

M the number of the white balls.

conf.level the confidence level of confidence interval.

details TRUE/FALSE, can be abbreviate. Default is FALSE. If choose TRUE, the con-

fidence intervals for the whole sample space will be returned.

Value

a list which contains the confidence interval.

References

Konijn, H. S. (1973). Statistical Theory of Sample Survey Design and Analysis, Amsterdam: North-Holland.

WhyperCI_N_upper 9

Examples

```
WhyperCI_N_lower(0,50,800,0.95,details=TRUE)
WhyperCI_N_lower(0,50,800,0.95)
```

WhyperCI_N_upper

An Admissible Exact One-sided Upper Interval for the Population Number of Hypergeometric Distribution

Description

The 1-alpha Clopper-Pearson type upper interval for the population number of hypergeometric distribution.

Usage

```
WhyperCI_N_upper(x, n, M, conf.level, details = FALSE)
```

Arguments

X	integer representing the number of white balls we observed when drawn without
	replacement from an urn which contains both black and white balls.

n the number we drawn.

M the number of the white balls.

conf. level the confidence level of confidence interval.

details TRUE/FALSE, can be abbreviate. Default is FALSE. If choose TRUE, the con-

fidence intervals for the whole sample space will be returned.

Value

a list which contains the confidence interval.

References

Konijn, H. S. (1973). Statistical Theory of Sample Survey Design and Analysis, Amsterdam: North-Holland.

```
WhyperCI_N_upper(0,50,800,0.95,details=TRUE)
WhyperCI_N_upper(0,50,800,0.95)
```

10 WpoisCI

WpoisCI

An Admissible Exact Confidence Interval for the Poisson Mean

Description

An admissible exact confidence interval for the Poisson mean. This function can be used to calculate the interval constructed method proposed by Wang (2014).

Usage

```
WpoisCI(x, conf.level = 0.95, details = FALSE)
```

Arguments

x the sample or the observed point.

conf. level confidence level. The default is 0.95.

details TRUE/FALSE, can be abbreviated. To choose whether to compute the confi-

dence intervals for all the sample points. Default is FALSE.

Details

Suppose $X\sim poi(lambda)$, the sample space of X is $\{0,1,...\}$. Wang (2014) proposed an admissible interval which is obtained by uniformly shrinking the initial 1-alpha Clopper-Pearson interval from 0 to the sample point of interest. This interval is admissible so that any proper sub-interval of it cannot assure the confidence coefficient. This means the interval cannot be shortened anymore.

Value

a list which contain the confidence interval and the ICP.

References

Wang, W. (2014). An iterative construction of confidence intervals for a proportion. "Statistica Sinica" 24: 1389-1410.

```
WpoisCI(1)
WpoisCI(3,details = TRUE)
```

WpoisCI_lower 11

WpoisCI_lower	An Admissible Exact One-sided Lower Confidence Interval for Poisson Mean
---------------	---

Description

The 1-alpha Clopper-Pearson type lower interval for the Poisson mean.

Usage

```
WpoisCI_lower(x, conf.level = 0.95, details = FALSE)
```

Arguments

the sample or the observed point.
 conf.level confidence level. The default is 0.95.
 details TRUE/FALSE, can be abbreviated. To choose whether to compute the confidence intervals for all the sample points. Default is FALSE.

Value

a list which contain the one-sided lower confidence interval.

References

Garwood, F. (1936). Fiducial Limits for the Poisson Distribution. "Biometrika" 28: 437-442.

Examples

```
WpoisCI_lower(1)
WpoisCI_lower(3,details = TRUE)
```

WpoisCI_upper	An Admissible Exact One-sided Upper Confidence Interval for Poisson Mean

Description

The 1-alpha Clopper-Pearson type upper interval for the Poisson mean.

Usage

```
WpoisCI_upper(x, conf.level = 0.95, details = FALSE)
```

12 WpoisCI_upper

Arguments

x the sample or the observed point.conf.level confidence level. The default is 0.95.

details TRUE/FALSE, can be abbreviated. To choose whether to compute the confi-

dence intervals for all the sample points. Default is FALSE.

Value

a list which contain the one-sided upper confidence interval.

References

Garwood, F. (1936). Fiducial Limits for the Poisson Distribution. "Biometrika" 28: 437-442.

```
WpoisCI_upper(1)
WpoisCI_upper(3,details = TRUE)
```

Index

```
WbinoCI, 2
WbinoCI_lower, 3
WbinoCI_upper, 4
WhyperCI_M, 4
WhyperCI_M_lower, 5
WhyperCI_N_upper, 6
WhyperCI_N_lower, 8
WhyperCI_N_upper, 9
WpoisCI, 10
WpoisCI_lower, 11
WpoisCI_upper, 11
```