## ----setup, include = FALSE--------------------------------------------------- knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ## ----------------------------------------------------------------------------- # Loading in BranchGLM library(BranchGLM) # Fitting gaussian regression models for mtcars dataset cars <- mtcars ## Identity link BranchGLM(mpg ~ ., data = cars, family = "gaussian", link = "identity") ## ----------------------------------------------------------------------------- # Fitting gamma regression models for mtcars dataset ## Inverse link GammaFit <- BranchGLM(mpg ~ ., data = cars, family = "gamma", link = "inverse") GammaFit ## Log link GammaFit <- BranchGLM(mpg ~ ., data = cars, family = "gamma", link = "log") GammaFit ## ----------------------------------------------------------------------------- # Fitting poisson regression models for warpbreaks dataset warp <- warpbreaks ## Log link BranchGLM(breaks ~ ., data = warp, family = "poisson", link = "log") ## ----------------------------------------------------------------------------- # Fitting binomial regression models for toothgrowth dataset Data <- ToothGrowth ## Logit link BranchGLM(supp ~ ., data = Data, family = "binomial", link = "logit") ## Probit link BranchGLM(supp ~ ., data = Data, family = "binomial", link = "probit") ## ----------------------------------------------------------------------------- # Fitting logistic regression model for toothgrowth dataset catFit <- BranchGLM(supp ~ ., data = Data, family = "binomial", link = "logit") Table(catFit) ## ----------------------------------------------------------------------------- # Creating ROC curve catROC <- ROC(catFit) plot(catROC, main = "ROC Curve", col = "indianred") ## ----------------------------------------------------------------------------- # Getting Cindex/AUC Cindex(catFit) AUC(catFit) ## ----fig.width = 4, fig.height = 4-------------------------------------------- # Showing ROC plots for logit, probit, and cloglog probitFit <- BranchGLM(supp ~ . ,data = Data, family = "binomial", link = "probit") cloglogFit <- BranchGLM(supp ~ . ,data = Data, family = "binomial", link = "cloglog") MultipleROCCurves(catROC, ROC(probitFit), ROC(cloglogFit), names = c("Logistic ROC", "Probit ROC", "Cloglog ROC")) ## ----------------------------------------------------------------------------- preds <- predict(catFit) Table(preds, Data$supp) AUC(preds, Data$supp) ROC(preds, Data$supp) |> plot(main = "ROC Curve", col = "deepskyblue") ## ----------------------------------------------------------------------------- # Predict method predict(GammaFit) # Accessing coefficients matrix GammaFit$coefficients