Last updated on 2025-04-15 09:52:34 CEST.
Flavor | Version | Tinstall | Tcheck | Ttotal | Status | Flags |
---|---|---|---|---|---|---|
r-devel-linux-x86_64-debian-clang | 1.1.0 | 13.25 | 1300.88 | 1314.13 | OK | |
r-devel-linux-x86_64-debian-gcc | 1.1.0 | 10.16 | 1282.21 | 1292.37 | OK | |
r-devel-linux-x86_64-fedora-clang | 1.1.0 | 1168.92 | OK | |||
r-devel-linux-x86_64-fedora-gcc | 1.1.0 | 1076.06 | OK | |||
r-devel-windows-x86_64 | 1.1.0 | 14.00 | 273.00 | 287.00 | ERROR | |
r-patched-linux-x86_64 | 1.1.0 | 13.84 | 1218.94 | 1232.78 | OK | |
r-release-linux-x86_64 | 1.1.0 | 13.63 | 1170.85 | 1184.48 | OK | |
r-release-macos-arm64 | 1.1.0 | 280.00 | OK | |||
r-release-macos-x86_64 | 1.1.0 | 70.00 | OK | |||
r-release-windows-x86_64 | 1.1.0 | 16.00 | 348.00 | 364.00 | OK | |
r-oldrel-macos-arm64 | 1.1.0 | 44.00 | OK | |||
r-oldrel-macos-x86_64 | 1.1.0 | 73.00 | OK | |||
r-oldrel-windows-x86_64 | 1.1.0 | 21.00 | 478.00 | 499.00 | OK |
Version: 1.1.0
Check: tests
Result: ERROR
Running 'testthat.R' [167s]
Running the tests in 'tests/testthat.R' failed.
Complete output:
> # This file is part of the standard setup for testthat.
> # It is recommended that you do not modify it.
> #
> # Where should you do additional test configuration?
> # Learn more about the roles of various files in:
> # * https://r-pkgs.org/tests.html
> # * https://testthat.r-lib.org/reference/test_package.html#special-files
>
> library(testthat)
> library(spinner)
>
> test_check("spinner")
OMP: Warning #96: Cannot form a team with 48 threads, using 2 instead.
OMP: Hint Consider unsetting KMP_DEVICE_THREAD_LIMIT (KMP_ALL_THREADS), KMP_TEAMS_THREAD_LIMIT, and OMP_THREAD_LIMIT (if any are set).
epoch: 10 Train loss: 0.8061404 Val loss: 0.5482487
epoch: 20 Train loss: 0.7380227 Val loss: 0.6465623
epoch: 30 Train loss: 0.7724982 Val loss: 0.788485
epoch: 40 Train loss: 0.6623524 Val loss: 0.6620206
epoch: 50 Train loss: 0.7462353 Val loss: 0.6011
early stop at epoch: 51 Train loss: 0.835241 Val loss: 0.6738663
epoch: 10 Train loss: 0.6806947 Val loss: 0.6325717
epoch: 20 Train loss: 0.7542855 Val loss: 0.602317
epoch: 30 Train loss: 0.7352697 Val loss: 0.5348321
epoch: 40 Train loss: 0.7501861 Val loss: 0.5957316
epoch: 50 Train loss: 0.6314989 Val loss: 0.5180935
epoch: 60 Train loss: 0.7282295 Val loss: 0.5609654
epoch: 70 Train loss: 0.7171292 Val loss: 0.5193985
early stop at epoch: 75 Train loss: 0.7400748 Val loss: 0.5977196
epoch: 10 Train loss: 0.5092819 Val loss: 0.7355657
epoch: 20 Train loss: 0.6814578 Val loss: 0.6071072
epoch: 30 Train loss: 0.6571016 Val loss: 0.6171868
early stop at epoch: 35 Train loss: 0.6551835 Val loss: 0.8852804
epoch: 10 Train loss: 0.7168008 Val loss: 0.8740277
epoch: 20 Train loss: 0.6815715 Val loss: 0.7993171
epoch: 30 Train loss: 0.5723138 Val loss: 0.8041168
early stop at epoch: 32 Train loss: 0.6762758 Val loss: 0.8796535
time: 38.83 sec elapsed
epoch: 10 Train loss: 0.7695161 Val loss: 0.7693247
epoch: 20 Train loss: 0.7249582 Val loss: 0.7717
epoch: 30 Train loss: 0.7607822 Val loss: 0.7262363
early stop at epoch: 35 Train loss: 0.7250659 Val loss: 0.7797406
epoch: 10 Train loss: 0.7417306 Val loss: 0.6602627
epoch: 20 Train loss: 0.7570003 Val loss: 0.7115033
epoch: 30 Train loss: 0.7384138 Val loss: 0.7118347
early stop at epoch: 35 Train loss: 0.7163192 Val loss: 0.7481382
epoch: 10 Train loss: 0.7308993 Val loss: 0.7019094
epoch: 20 Train loss: 0.7430325 Val loss: 0.5989621
epoch: 30 Train loss: 0.7061505 Val loss: 0.636339
early stop at epoch: 36 Train loss: 0.6219019 Val loss: 0.7425168
epoch: 10 Train loss: 0.7531924 Val loss: 0.7621492
epoch: 20 Train loss: 0.7205262 Val loss: 0.6925997
epoch: 30 Train loss: 0.6789572 Val loss: 0.7350411
epoch: 40 Train loss: 0.6894916 Val loss: 0.712056
epoch: 50 Train loss: 0.6754813 Val loss: 0.5334786
epoch: 60 Train loss: 0.6726221 Val loss: 0.7878741
early stop at epoch: 60 Train loss: 0.6726221 Val loss: 0.7878741
time: 33.97 sec elapsed
epoch: 10 Train loss: 0.3133188 Val loss: 0.2302221
epoch: 20 Train loss: 0.3415328 Val loss: 0.2720648
epoch: 30 Train loss: 0.3720775 Val loss: 0.3055868
early stop at epoch: 31 Train loss: 0.2878031 Val loss: 0.369683
epoch: 10 Train loss: 0.3827278 Val loss: 0.4059166
epoch: 20 Train loss: 0.3040415 Val loss: 0.2691119
epoch: 30 Train loss: 0.3338324 Val loss: 0.227812
epoch: 40 Train loss: 0.28597 Val loss: 0.3459767
early stop at epoch: 48 Train loss: 0.2705259 Val loss: 0.3718761
epoch: 10 Train loss: 0.3141214 Val loss: 0.201799
epoch: 20 Train loss: 0.2393231 Val loss: 0.1009228
epoch: 30 Train loss: 0.2281825 Val loss: 0.224231
early stop at epoch: 39 Train loss: 0.245666 Val loss: 0.3921757
epoch: 10 Train loss: 0.3467214 Val loss: 0.4189227
epoch: 20 Train loss: 0.3316925 Val loss: 0.3388704
epoch: 30 Train loss: 0.3088655 Val loss: 0.1898563
epoch: 40 Train loss: 0.3151669 Val loss: 0.1364199
early stop at epoch: 46 Train loss: 0.3444043 Val loss: 0.5244277
time: 32.61 sec elapsed
epoch: 10 Train loss: 0.4536715 Val loss: 0.5207518
epoch: 20 Train loss: 0.4536715 Val loss: 0.518501
epoch: 30 Train loss: 0.4536715 Val loss: 0.518501
epoch: 40 Train loss: 0.4536715 Val loss: 0.518501
early stop at epoch: 42 Train loss: 0.4536715 Val loss: 0.5217085
epoch: 10 Train loss: 0.6923867 Val loss: 0.6368757
epoch: 20 Train loss: 0.6923867 Val loss: 0.6368757
epoch: 30 Train loss: 0.6923867 Val loss: 0.6368757
epoch: 40 Train loss: 0.6923867 Val loss: 0.6368757
epoch: 50 Train loss: 0.6923867 Val loss: 0.6368757
epoch: 60 Train loss: 0.6923867 Val loss: 0.6395952
epoch: 70 Train loss: 0.6923867 Val loss: 0.6809872
epoch: 80 Train loss: 0.6923867 Val loss: 0.6368757
epoch: 90 Train loss: 0.6923867 Val loss: 0.661891
epoch: 100 Train loss: 0.6923867 Val loss: 0.6368757
epoch: 10 Train loss: 0.4730558 Val loss: 0.4758229
epoch: 20 Train loss: 0.5874595 Val loss: 0.4761094
epoch: 30 Train loss: 0.4675779 Val loss: 0.4761094
early stop at epoch: 38 Train loss: 0.4706497 Val loss: 0.5288506
time: 15.33 sec elapsed
epoch: 10 Train loss: 0.2494065 Val loss: 0.5425652
epoch: 20 Train loss: 0.2494065 Val loss: 0.5568731
epoch: 30 Train loss: 0.2494065 Val loss: 0.5302667
early stop at epoch: 37 Train loss: 0.2494065 Val loss: 0.5602714
epoch: 10 Train loss: 0.7066783 Val loss: 0.5368235
epoch: 20 Train loss: 0.7066783 Val loss: 0.5380082
epoch: 30 Train loss: 0.7066783 Val loss: 0.5368235
epoch: 40 Train loss: 0.7252192 Val loss: 0.5368235
epoch: 50 Train loss: 0.7066783 Val loss: 0.5368235
epoch: 60 Train loss: 0.7066783 Val loss: 0.575885
epoch: 70 Train loss: 0.7210456 Val loss: 0.5360056
epoch: 80 Train loss: 0.7355306 Val loss: 0.5771982
epoch: 90 Train loss: 0.7066783 Val loss: 0.6939172
epoch: 100 Train loss: 0.7355306 Val loss: 0.5560763
epoch: 10 Train loss: 0.2198303 Val loss: 0.2083823
epoch: 20 Train loss: 0.2198303 Val loss: 0.6496652
epoch: 30 Train loss: 0.2198303 Val loss: 0.1604959
early stop at epoch: 33 Train loss: 0.2453717 Val loss: 0.6488711
time: 16.19 sec elapsed
epoch: 10 Train loss: 0.487081 Val loss: 0.5569782
epoch: 20 Train loss: 0.5526847 Val loss: 0.5392978
epoch: 30 Train loss: 0.5995318 Val loss: 0.5479288
epoch: 40 Train loss: 0.6042935 Val loss: 0.5140972
early stop at epoch: 41 Train loss: 0.473222 Val loss: 0.6157176
epoch: 10 Train loss: 0.5139912 Val loss: 0.2434046
epoch: 20 Train loss: 0.4673555 Val loss: 0.3429999
epoch: 30 Train loss: 0.5324169 Val loss: 0.5671535
epoch: 40 Train loss: 0.4656374 Val loss: 0.2181005
early stop at epoch: 45 Train loss: 0.1817597 Val loss: 0.5981514
epoch: 10 Train loss: 0.6495675 Val loss: 0.7903188
epoch: 20 Train loss: 0.7311969 Val loss: 0.7372216
epoch: 30 Train loss: 0.5976614 Val loss: 0.7434065
early stop at epoch: 32 Train loss: 0.6955 Val loss: 0.7626142
time: 22.9 sec elapsed
random search: 54.42 sec elapsed
[ FAIL 1 | WARN 66 | SKIP 0 | PASS 46 ]
══ Failed tests ════════════════════════════════════════════════════════════════
── Error ('test.R:89:13'): Correct outcome format and size for base outcome3 ───
<purrr_error_indexed/rlang_error/error/condition>
Error in `purrr::pmap(hyper_params, ~spinner(graph, target, node_labels,
edge_labels, context_labels, direction = ..1, sampling = NA,
threshold = 0.01, method = ..2, node_embedding_size = ..13,
edge_embedding_size = ..14, context_embedding_size = ..15,
update_order = ..3, n_layers = ..4, skip_shortcut = ..5,
forward_layer = ..6, forward_activation = ..7, forward_drop = ..8,
mode = ..9, optimization = ..10, epochs, lr = ..11, patience,
weight_decay = ..12, reps, folds, holdout, verbose, seed))`: i In index: 1.
Caused by error in `pmap()`:
i In index: 1.
Caused by error in `training_function()`:
! not enough data for training
[ FAIL 1 | WARN 66 | SKIP 0 | PASS 46 ]
Error: Test failures
Execution halted
Flavor: r-devel-windows-x86_64