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estimateMetaI Estimate Measures of Metacognition from Information Theory

Description

estimateMetaI estimates meta-I , an information-theoretic measure of metacognitive sensitivity
proposed by Dayan (2023), as well as similar derived measures, including meta-Ir1 and Meta-Ir2 .
These are different normalizations of meta-I:

• Meta-Ir1 normalizes by the meta-I that would be expected from an underlying normal distri-
bution with the same sensitivity.

• Meta-Ir′1 is a variant of meta-Ir1 not discussed by Dayan (2023) which normalizes by the meta-
I that would be expected from an underlying normal distribution with the same accuracy (this
is similar to the sensitivity approach but without considering variable thresholds).

• Meta-Ir2 normalizes by the maximum amount of meta-I which would be reached if all uncer-
tainty about the stimulus was removed.

• RMI normalizes meta-I by the range of its possible values and therefore scales between 0
and 1. RMI is a novel measure not discussed by Dayan (2023).

All measures can be calculated with a bias-reduced variant for which the observed frequencies are
taken as underlying probability distribution to estimate the sampling bias. The estimated bias is then
subtracted from the initial measures. This approach uses Monte-Carlo simulations and is therefore
not deterministic (values can vary from one evaluation of the function to the next). However, this is
a simple way to reduce the bias inherent in these measures.

Usage

estimateMetaI(data, bias_reduction = TRUE)

Arguments

data a data.frame where each row is one trial, containing following variables:

• participant (some group ID, most often a participant identifier; the meta-
I measures are estimated for each subset of data determined by the different
values of this column),

• stimulus (stimulus category in a binary choice task, should be a factor with
two levels, otherwise it will be transformed to a factor with a warning),

• rating (discrete confidence judgments, should be a factor with levels or-
dered from lowest confidence to highest confidence; otherwise will be trans-
formed to factor with a warning),
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• correct (encoding whether the response was correct; should be 0 for in-
correct responses and 1 for correct responses)

bias_reduction logical. Whether to apply the bias reduction or not. If runtime is too long,
consider setting this to FALSE (default: TRUE).

Details

It is assumed that a classifier (possibly a human being performing a discrimination task) or an
algorithmic classifier in a classification application, makes a binary prediction R about a true state
of the world S and gives a confidence rating C. Meta-I is defined as the mutual information
between the confidence and accuracy and is calculated as the transmitted information minus the
minimal information given the accuracy,

meta− I = I(S;R,C)− I(S;R).

This is equivalent to Dayan’s formulation where meta-I is the information that confidence transmits
about the correctness of a response,

meta− I = I(S = R;C).

Meta-I is expressed in bits, i.e. the log base is 2). The other measures are different normalizations
of meta-I and are unitless. It should be noted that Dayan (2023) pointed out that a liberal or
conservative use of the confidence levels will affected the mutual information and thus influence
meta-I.

Value

a data.frame with one row for each subject and the following columns:

• participant is the participant ID,

• meta_I is the estimated meta-I value (expressed in bits, i.e. log base is 2),

• meta_Ir1 is meta-Ir1 ,

• meta_Ir1_acc is meta-Ir′1 ,

• meta_Ir2 is meta-Ir2 , and

• RMI is RMI.

Author(s)

Sascha Meyen, <saschameyen@gmail.com>

References

Dayan, P. (2023). Metacognitive Information Theory. Open Mind, 7, 392–411. doi:10.1162/opmi_a_00091
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Examples

# 1. Select two subjects from the masked orientation discrimination experiment
data <- subset(MaskOri, participant %in% c(1:2))
head(data)

# 2. Calculate meta-I measures with bias reduction (this may take 10 s per subject)

metaIMeasures <- estimateMetaI(data)

# 3. Calculate meta-I measures for all participants without bias reduction (much faster)
metaIMeasures <- estimateMetaI(MaskOri, bias_reduction = FALSE)
metaIMeasures

fitConf Fit a static confidence model to data

Description

The fitConf function fits the parameters of one static model of decision confidence, provided by
the model argument, to binary choices and confidence judgments. See Details for the mathematical
specification of the implemented models and their parameters. Parameters are fitted using a max-
imum likelihood estimation method with a initial grid search to find promising starting values for
the optimization. In addition, several measures of model fit (negative log-likelihood, BIC, AIC, and
AICc) are computed, which can be used for a quantitative model evaluation.

Usage

fitConf(data, model = "SDT", nInits = 5, nRestart = 4)

Arguments

data a data.frame where each row is one trial, containing following variables:

• diffCond (optional; different levels of discriminability, should be a factor
with levels ordered from hardest to easiest),

• rating (discrete confidence judgments, should be a factor with levels or-
dered from lowest confidence to highest confidence; otherwise will be trans-
formed to factor with a warning),

• stimulus (stimulus category in a binary choice task, should be a factor with
two levels, otherwise it will be transformed to a factor with a warning),

• correct (encoding whether the response was correct; should be 0 for in-
correct responses and 1 for correct responses)

model character of length 1. The generative model that should be fitted. Models im-
plemented so far: ’WEV’, ’SDT’, ’GN’, ’PDA’, ’IG’, ’ITGc’, ’ITGcm’, ’logN’,
and ’logWEV’.

nInits integer. Number of starting values used for maximum likelihood optimization.
Defaults to 5.
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nRestart integer. Number of times the optimization algorithm is restarted. Defaults to
4.

Details

The fitting routine first performs a coarse grid search to find promising starting values for the max-
imum likelihood optimization procedure. Then the best nInits parameter sets found by the grid
search are used as the initial values for separate runs of the Nelder-Mead algorithm implemented in
optim. Each run is restarted nRestart times.

Mathematical description of models:
The computational models are all based on signal detection theory (Green & Swets, 1966). It is
assumed that participants select a binary discrimination response R about a stimulus S. Both S
and R can be either -1 or 1. R is considered correct if S = R. In addition, we assume that there
are K different levels of stimulus discriminability in the experiment, i.e. a physical variable that
makes the discrimination task easier or harder. For each level of discriminability, the function fits
a different discrimination sensitivity parameter dk. If there is more than one sensitivity parameter,
we assume that the sensitivity parameters are ordered such as 0 < d1 < ... < dK . The models
assume that the stimulus generates normally distributed sensory evidence x with mean S × dk/2
and variance of 1. The sensory evidence x is compared to a decision criterion c to generate a
discrimination response R, which is 1, if x exceeds c and -1 else. To generate confidence, it is
assumed that the confidence variable y is compared to another set of criteria θR,i, i = 1, ..., L−1,
depending on the discrimination response R to produce a L-step discrete confidence response.
The number of thresholds will be inferred from the number of steps in the rating column of
data. Thus, the parameters shared between all models are:

• sensitivity parameters d1,...,dK (K: number of difficulty levels)
• decision criterion c

• confidence criterion θ−1,1,θ−1,2, ..., θ−1,L−1, θ1,1, θ1,2,..., θ1,L−1 (L: number of confidence
categories available for confidence ratings)

How the confidence variable y is computed varies across the different models. The following
models have been implemented so far:

Signal detection rating model (SDT):
According to SDT, the same sample of sensory evidence is used to generate response and con-
fidence, i.e., y = x and the confidence criteria span from the left and right side of the decision
criterion c (Green & Swets, 1966).

Gaussian noise model (GN):
According to the model, y is subject to additive noise and assumed to be normally distributed
around the decision evidence value x with a standard deviation σ (Maniscalco & Lau, 2016).
The parameter σ is a free parameter.

Weighted evidence and visibility model (WEV):
WEV assumes that the observer combines evidence about decision-relevant features of the
stimulus with the strength of evidence about choice-irrelevant features to generate confidence
(Rausch et al., 2018). Here, we use the version of the WEV model used by Rausch et al. (2023),
which assumes that y is normally distributed with a mean of (1 − w) × x + w × dk × R and
standard deviation σ. The parameter σ quantifies the amount of unsystematic variability con-
tributing to confidence judgments but not to the discrimination judgments. The parameter w
represents the weight that is put on the choice-irrelevant features in the confidence judgment. w
and σ are fitted in addition to the set of shared parameters.
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Post-decisional accumulation model (PDA):
PDA represents the idea of on-going information accumulation after the discrimination choice
(Rausch et al., 2018). The parameter b indicates the amount of additional accumulation. The
confidence variable is normally distributed with mean x + S × dk × b and variance b. For this
model the parameter b is fitted in addition to the set of shared parameters.

Independent Gaussian model (IG):
According to IG, y is sampled independently from x (Rausch & Zehetleitner, 2017). y is nor-
mally distributed with a mean of a × dk and variance of 1 (again as it would scale with m).
The free parameter m represents the amount of information available for confidence judgment
relative to amount of evidence available for the discrimination decision and can be smaller as
well as greater than 1.

Independent truncated Gaussian model: HMetad-Version (ITGc):
According to the version of ITG consistent with the HMetad-method (Fleming, 2017; see
Rausch et al., 2023), y is sampled independently from x from a truncated Gaussian distribu-
tion with a location parameter of S × dk × m/2 and a scale parameter of 1. The Gaussian
distribution of y is truncated in a way that it is impossible to sample evidence that contradicts
the original decision: If R = −1, the distribution is truncated to the right of c. If R = 1, the
distribution is truncated to the left of c. The additional parameter m represents metacognitive
efficiency, i.e., the amount of information available for confidence judgments relative to amount
of evidence available for discrimination decisions and can be smaller as well as greater than 1.

Independent truncated Gaussian model: Meta-d’-Version (ITGcm):
According to the version of the ITG consistent with the original meta-d’ method (Maniscalco &
Lau, 2012, 2014; see Rausch et al., 2023), y is sampled independently from x from a truncated
Gaussian distribution with a location parameter of S × dk × m/2 and a scale parameter of 1.
If R = −1, the distribution is truncated to the right of m × c. If R = 1, the distribution is
truncated to the left of m× c. The additional parameter m represents metacognitive efficiency,
i.e., the amount of information available for confidence judgments relative to amount of evidence
available for the discrimination decision and can be smaller as well as greater than 1.

Logistic noise model (logN):
According to logN, the same sample of sensory evidence is used to generate response and
confidence, i.e., y = x just as in SDT (Shekhar & Rahnev, 2021). However, according to
logN, the confidence criteria are not assumed to be constant, but instead they are affected by
noise drawn from a lognormal distribution. In each trial, θ−1,i is given by c − ϵi. Like-
wise, θ1,i is given by c + ϵi. ϵi is drawn from a lognormal distribution with the location
parameter µR,i = log(|θR,i − c|) − 0.5 × σ2 and scale parameter σ. σ is a free parameter
designed to quantify metacognitive ability. It is assumed that the criterion noise is perfectly
correlated across confidence criteria, ensuring that the confidence criteria are always perfectly
ordered. Because θ−1,1, ..., θ−1,L−1, θ1,1, ..., θ1,L−1 change from trial to trial, they are not
estimated as free parameters. Instead, we estimate the means of the confidence criteria, i.e.,
θ−1,1, ..., θ−1,L−1, θ1,1, ...θ1,L−1, as free parameters.

Logistic weighted evidence and visibility model (logWEV):
logWEV is a combination of logN and WEV proposed by Shekhar and Rahnev (2023). Concep-
tually, logWEV assumes that the observer combines evidence about decision-relevant features
of the stimulus with the strength of evidence about choice-irrelevant features (Rausch et al.,
2018). The model also assumes that noise affecting the confidence decision variable is lognor-
mal in accordance with Shekhar and Rahnev (2021). According to logWEV, the confidence
decision variable y is equal to y∗ × R. y∗ is sampled from a lognormal distribution with a
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location parameter of (1 − w) × x × R + w × dk and a scale parameter of σ. The parameter
σ quantifies the amount of unsystematic variability contributing to confidence judgments but
not to the discrimination judgments. The parameter w represents the weight that is put on the
choice-irrelevant features in the confidence judgment. w and σ are fitted in addition to the set
of shared parameters.

Value

Gives data frame with one row and one column for each of the fitted parameters of the selected
model as well as additional information about the fit (negLogLik (negative log-likelihood of the
final set of parameters), k (number of parameters), N (number of data rows), AIC (Akaike Informa-
tion Criterion; Akaike, 1974), BIC (Bayes information criterion; Schwarz, 1978), and AICc (AIC
corrected for small samples; Burnham & Anderson, 2002))

Author(s)

Sebastian Hellmann, <sebastian.hellmann@tum.de>
Manuel Rausch, <manuel.rausch@hochschule-rhein-waal.de>

References
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Fleming, S. M. (2017). HMeta-d: Hierarchical Bayesian estimation of metacognitive efficiency
from confidence ratings. Neuroscience of Consciousness, 1, 1–14. doi: 10.1093/nc/nix007

Green, D. M., & Swets, J. A. (1966). Signal detection theory and psychophysics. Wiley.
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Examples

# 1. Select one subject from the masked orientation discrimination experiment
data <- subset(MaskOri, participant == 1)
head(data)

# 2. Use fitting function

# Fitting takes some time (about 10 minutes on an 2.8GHz processor) to run:
FitFirstSbjWEV <- fitConf(data, model="WEV")

fitConfModels Fit several static confidence models to multiple participants

Description

The fitConfModels function fits the parameters of several computational models of decision con-
fidence, in binary choice tasks, specified in the model argument, to different subsets of one data
frame, indicated by different values in the column participant of the data argument. fitConfModels
is a wrapper of the function fitConf and calls fitConf for every possible combination of model
in the models argument and sub-data frame of data for each value in the participant column.
See Details for more information about the parameters. Parameters are fitted using a maximum
likelihood estimation method with a initial grid search to find promising starting values for the opti-
mization. In addition, several measures of model fit (negative log-likelihood, BIC, AIC, and AICc)
are computed, which can be used for a quantitative model evaluation.

Usage

fitConfModels(data, models = "all", nInits = 5, nRestart = 4,
.parallel = FALSE, n.cores = NULL)
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Arguments

data a data.frame where each row is one trial, containing following variables:

• diffCond (optional; different levels of discriminability, should be a factor
with levels ordered from hardest to easiest),

• rating (discrete confidence judgments, should be a factor with levels or-
dered from lowest confidence to highest confidence; otherwise will be trans-
formed to factor with a warning),

• stimulus (stimulus category in a binary choice task, should be a factor with
two levels, otherwise it will be transformed to a factor with a warning),

• correct (encoding whether the response was correct; should be 0 for in-
correct responses and 1 for correct responses)

• participant (some group ID, most often a participant identifier; the mod-
els given in the second argument are fitted to each subset of data deter-
mined by the different values of this column)

models character. The different computational models that should be fitted. Mod-
els implemented so far: ’WEV’, ’SDT’, ’GN’, ’PDA’, ’IG’, ’ITGc’, ’ITGcm’,
’logN’, and ’logWEV’. Alternatively, if model="all" (default), all implemented
models will be fit.

nInits integer. Number of initial values used for maximum likelihood optimization.
Defaults to 5.

nRestart integer. Number of times the optimization is restarted. Defaults to 4.

.parallel logical. Whether to parallelize the fitting over models and participant (default:
FALSE)

n.cores integer. Number of cores used for parallelization. If NULL (default), the
available number of cores -1 will be used.

Details

The provided data argument is split into subsets according to the values of the participant col-
umn. Then for each subset and each model in the models argument, the parameters of the respective
model are fitted to the data subset.

The fitting routine first performs a coarse grid search to find promising starting values for the max-
imum likelihood optimization procedure. Then the best nInits parameter sets found by the grid
search are used as the initial values for separate runs of the Nelder-Mead algorithm implemented in
optim. Each run is restarted nRestart times.

Mathematical description of models:
The computational models are all based on signal detection theory (Green & Swets, 1966). It
is assumed that participants select a binary discrimination response R about a stimulus S. Both
S and R can be either -1 or 1. R is considered correct if S = R. In addition, we assume
that there are K different levels of stimulus discriminability in the experiment, i.e. a physical
variable that makes the discrimination task easier or harder. For each level of discriminability,
the function fits a different discrimination sensitivity parameter dk. If there is more than one
sensitivity parameter, we assume that the sensitivity parameters are ordered such as 0 < d1 <
d2 < ... < dK . The models assume that the stimulus generates normally distributed sensory
evidence x with mean S × dk/2 and variance of 1. The sensory evidence x is compared to a
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decision criterion c to generate a discrimination response R, which is 1, if x exceeds c and -1 else.
To generate confidence, it is assumed that the confidence variable y is compared to another set of
criteria θR,i, i = 1, 2, ..., L− 1, depending on the discrimination response R to produce a L-step
discrete confidence response. The number of thresholds will be inferred from the number of steps
in the rating column of data. Thus, the parameters shared between all models are:

• sensitivity parameters d1,...,dK (K: number of difficulty levels)
• decision criterion c

• confidence criterion θ−1,1,θ−1,2, ..., θ−1,L−1, θ1,1, θ1,2,..., θ1,L−1 (L: number of confidence
categories available for confidence ratings)

How the confidence variable y is computed varies across the different models. The following
models have been implemented so far:

Signal detection rating model (SDT):
According to SDT, the same sample of sensory evidence is used to generate response and con-
fidence, i.e., y = x and the confidence criteria span from the left and right side of the decision
criterion c(Green & Swets, 1966).

Gaussian noise model (GN):
According to the model, y is subject to additive noise and assumed to be normally distributed
around the decision evidence value x with a standard deviation σ(Maniscalco & Lau, 2016). σ
is an additional free parameter.

Weighted evidence and visibility model (WEV):
WEV assumes that the observer combines evidence about decision-relevant features of the
stimulus with the strength of evidence about choice-irrelevant features to generate confidence
(Rausch et al., 2018). Thus, the WEV model assumes that y is normally distributed with a mean
of (1 − w) × x + w × dk × R and standard deviation σ. The standard deviation quantifies the
amount of unsystematic variability contributing to confidence judgments but not to the discrim-
ination judgments. The parameter w represents the weight that is put on the choice-irrelevant
features in the confidence judgment. w and σ are fitted in addition to the set of shared parame-
ters.

Post-decisional accumulation model (PDA):
PDA represents the idea of on-going information accumulation after the discrimination choice
(Rausch et al., 2018). The parameter a indicates the amount of additional accumulation. The
confidence variable is normally distributed with mean x+ S × dk × a and variance a. For this
model the parameter a is fitted in addition to the shared parameters.

Independent Gaussian model (IG):
According to IG, y is sampled independently from x (Rausch & Zehetleitner, 2017). y is nor-
mally distributed with a mean of a× dk and variance of 1 (again as it would scale with m). The
additional parameter m represents the amount of information available for confidence judgment
relative to amount of evidence available for the discrimination decision and can be smaller as
well as greater than 1.

Independent truncated Gaussian model: HMetad-Version (ITGc):
According to the version of ITG consistent with the HMetad-method (Fleming, 2017; see
Rausch et al., 2023), y is sampled independently from x from a truncated Gaussian distribu-
tion with a location parameter of S × dk × m/2 and a scale parameter of 1. The Gaussian
distribution of y is truncated in a way that it is impossible to sample evidence that contradicts
the original decision: If R = −1, the distribution is truncated to the right of c. If R = 1, the
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distribution is truncated to the left of c. The additional parameter m represents metacognitive
efficiency, i.e., the amount of information available for confidence judgments relative to amount
of evidence available for discrimination decisions and can be smaller as well as greater than 1.

Independent truncated Gaussian model: Meta-d’-Version (ITGcm):
According to the version of the ITG consistent with the original meta-d’ method (Maniscalco &
Lau, 2012, 2014; see Rausch et al., 2023), y is sampled independently from x from a truncated
Gaussian distribution with a location parameter of S × dk × m/2 and a scale parameter of 1.
If R = −1, the distribution is truncated to the right of m × c. If R = 1, the distribution is
truncated to the left of m× c. The additional parameter m represents metacognitive efficiency,
i.e., the amount of information available for confidence judgments relative to amount of evidence
available for the discrimination decision and can be smaller as well as greater than 1.

Logistic noise model (logN):
According to logN, the same sample of sensory evidence is used to generate response and
confidence, i.e., y = x just as in SDT (Shekhar & Rahnev, 2021). However, according to
logN, the confidence criteria are not assumed to be constant, but instead they are affected by
noise drawn from a lognormal distribution. In each trial, θ−1,i is given by c − ϵi. Like-
wise, θ1,i is given by c + ϵi. ϵi is drawn from a lognormal distribution with the location
parameter µR,i = log(|θR,i − c|) − 0.5 × σ2 and scale parameter σ. σ is a free parameter
designed to quantify metacognitive ability. It is assumed that the criterion noise is perfectly
correlated across confidence criteria, ensuring that the confidence criteria are always perfectly
ordered. Because θ−1,1, ..., θ−1,L−1, θ1,1, ..., θ1,L−1 change from trial to trial, they are not
estimated as free parameters. Instead, we estimate the means of the confidence criteria, i.e.,
θ−1,1, ..., θ−1,L−1, θ1,1, ...θ1,L−1, as free parameters.

Logistic weighted evidence and visibility model (logWEV):
logWEV is a combination of logN and WEV proposed by Shekhar and Rahnev (2023). Concep-
tually, logWEV assumes that the observer combines evidence about decision-relevant features
of the stimulus with the strength of evidence about choice-irrelevant features (Rausch et al.,
2018). The model also assumes that noise affecting the confidence decision variable is lognor-
mal in accordance with Shekhar and Rahnev (2021). According to logWEV, the confidence
decision variable is y is equal to y∗ × R. y∗ is sampled from a lognormal distribution with a
location parameter of (1 − w) × x × R + w × dk and a scale parameter of σ. The parameter
σ quantifies the amount of unsystematic variability contributing to confidence judgments but
not to the discrimination judgments. The parameter w represents the weight that is put on the
choice-irrelevant features in the confidence judgment. w and σ are fitted in addition to the set
of shared parameters.

Value

Gives data.frame with one row for each combination of model and participant. There are different
columns for the model, the participant ID, and one one column for each estimated model parameter
(parameters not present in a specific model are filled with NAs). Additional information about the
fit is provided in additional columns:

• negLogLik (negative log-likelihood of the best-fitting set of parameters),

• k (number of parameters),

• N (number of trials),

• AIC (Akaike Information Criterion; Akaike, 1974),



12 fitConfModels

• BIC (Bayes information criterion; Schwarz, 1978),

• AICc (AIC corrected for small samples; Burnham & Anderson, 2002) If length(models) > 1
or models == "all", there will be three additional columns:

Author(s)

Sebastian Hellmann, <sebastian.hellmann@tum.de>
Manuel Rausch, <manuel.rausch@hochschule-rhein-waal.de>
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Examples

# 1. Select two subjects from the masked orientation discrimination experiment
data <- subset(MaskOri, participant %in% c(1:2))
head(data)

# 2. Fit some models to each subject of the masked orientation discrimination experiment

# Fitting several models to several subjects takes quite some time
# (about 10 minutes per model fit per participant on a 2.8GHz processor
# with the default values of nInits and nRestart).
# If you want to fit more than just two subjects,
# we strongly recommend setting .parallel=TRUE
Fits <- fitConfModels(data, models = c("SDT", "ITGc"), .parallel = FALSE)

fitMetaDprime title Compute measures of metacognitive sensitivity (meta-d’) and
metacognitive efficiency(meta-d’/d’) for data from one or several sub-
jects

Description

This function computes the measures for metacognitive sensitivity, meta-d’, and metacognitive ef-
ficiency, meta-d’/d’ (Maniscalco and Lau, 2012, 2014; Fleming, 2017) to data from binary choice
tasks with discrete confidence judgments. Meta-d’ and meta-d’/d’ are computed using a maximum
likelihood method for each subset of the data argument indicated by different values in the column
participant, which can represent different subjects as well as experimental conditions.

Usage

fitMetaDprime(data, model = "ML", nInits = 5, nRestart = 3,
.parallel = FALSE, n.cores = NULL)

Arguments

data a data.frame where each row is one trial, containing following variables:

• rating (discrete confidence judgments, should be given as factor; other-
wise will be transformed to factor with a warning),
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• stimulus (stimulus category in a binary choice task, should be a factor with
two levels, otherwise it will be transformed to a factor with a warning),

• correct (encoding whether the response was correct; should be 0 for in-
correct responses and 1 for correct responses)

• participant (giving the subject ID; the models given in the second argu-
ment are fitted for each subject individually.

model character of length 1. Either "ML" to use the original model specification
by Maniscalco and Lau (2012, 2014) or "F" to use the model specification by
Fleming (2017)’s HmetaD method. Defaults to "ML"

nInits integer. Number of initial values used for maximum likelihood optimization.
Defaults to 5.

nRestart integer. Number of times the optimization is restarted. Defaults to 3.

.parallel logical. Whether to parallelize the fitting over models and participant (default:
FALSE)

n.cores integer. Number of cores used for parallelization. If NULL (default), the
available number of cores -1 will be used.

Details

The function computes meta-d’ and meta-d’/d’ either using the hypothetical signal detection model
assumed by Maniscalco and Lau (2012, 2014) or the one assumed by Fleming (2014).

The conceptual idea of meta-d’ is to quantify metacognition in terms of sensitivity in a hypothetical
signal detection rating model describing the primary task, under the assumption that participants
had perfect access to the sensory evidence and were perfectly consistent in placing their confidence
criteria (Maniscalco & Lau, 2012, 2014). Using a signal detection model describing the primary
task to quantify metacognition allows a direct comparison between metacognitive accuracy and
discrimination performance because both are measured on the same scale. Meta-d’ can be com-
pared against the estimate of the distance between the two stimulus distributions estimated from
discrimination responses, which is referred to as d’: If meta-d’ equals d’, it means that metacogni-
tive accuracy is exactly as good as expected from discrimination performance. Ifmeta-d’ is lower
than d’, it means that metacognitive accuracy is suboptimal. It can be shown that the implicit model
of confidence underlying the meta-d’/d’ method is identical to the independent truncated Gaussian
model.

The provided data argument is split into subsets according to the values of the participant col-
umn. Then for each subset, the parameters of the hypothetical signal detection model determined
by the model argument are fitted to the data subset.

The fitting routine first performs a coarse grid search to find promising starting values for the max-
imum likelihood optimization procedure. Then the best nInits parameter sets found by the grid
search are used as the initial values for separate runs of the Nelder-Mead algorithm implemented
in optim. Each run is restarted nRestart times. Warning: meta-d’/d’ is only guaranteed to be
unbiased from discrimination sensitivity, discrimination bias, and confidence criteria if the data is
generated according to the independent truncated Gaussian model (see Rausch et al., 2023).

Value

Gives data frame with one row for each participant and following columns:
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• model gives the model used for the computation of meta-d’ (see model argument)

• participant is the participant ID for the respecitve row

• dprime is the discrimination sensitivity index d, calculated using a standard SDT formula

• c is the discrimination bias c, calculated using a standard SDT formula

• metaD is meta-d’, discrimination sensitivity estimated from confidence judgments conditioned
on the response

• Ratio is meta-d’/d’, a quantity usually referred to as metacognitive efficiency.

Author(s)

Manuel Rausch, <manuel.rausch@hochschule-rhein-waal.de>
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Examples

# 1. Select two subject from the masked orientation discrimination experiment
data <- subset(MaskOri, participant %in% c(1:2))
head(data)

# 2. Fit meta-d/d for each subject in data
MetaDs <- fitMetaDprime(data, model="F", .parallel = FALSE)

MaskOri Data of 16 participants in a masked orientation discrimination exper-
iment (Hellmann et al., 2023, Exp. 1)

Description

In each trial, participants were shown a sinusoidal grating oriented either horizontally or vertically,
followed by a mask after varying stimulus-onset-asynchronies. Participants were instructed to re-
port the orientation and their degree of confidence as accurately as possible
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Usage

data(MaskOri)

Format

A data.frame with 25920 rows representing different trials and 5 variables:

participant integer values as unique participant identifier

stimulus orientation of the grating (90: vertical, 0: horizontal)

response participants’ orientation judgment about the grating (90: vertical, 0: horizontal)

correct 0-1 column indicating whether the discrimination response was correct (1) or not (0)

rating 0-4 confidence rating on a continous scale binned into five categories

diffCond stimulus-onset-asynchrony in ms (i.e. time between stimulus and mask onset)

trialNo Enumeration of trials per participant

References

Hellmann, S., Zehetleitner, M., & Rausch, M. (2023). Simultaneous modeling of choice, confi-
dence, and response time in visual perception. Psychological Review. 130(6), 1521–1543. doi:10.1037/rev0000411

Examples

data(MaskOri)
summary(MaskOri)

plotConfModelFit Plot the prediction of fitted parameters of one model of confidence over
the corresponding data

Description

The plotConfModelFit function plots the predicted distribution of discrimination responses and
confidence ratings created from a data.frame of parameters obtaind from fitConfModels and
overlays the predicted distribution over the data to which the model parameters were fitted.

Usage

plotConfModelFit(data, fitted_pars, model = NULL)
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Arguments

data a data.frame where each row is one trial, containing following variables:

• diffCond (optional; different levels of discriminability, should be a factor
with levels ordered from hardest to easiest),

• rating (discrete confidence judgments, should be a factor with levels or-
dered from lowest confidence to highest confidence; otherwise will be trans-
formed to factor with a warning),

• stimulus (stimulus category in a binary choice task, should be a factor with
two levels, otherwise it will be transformed to a factor with a warning),

• correct (encoding whether the response was correct; should be 0 for in-
correct responses and 1 for correct responses)

• participant (some group ID, most often a participant identifier; the mod-
els given in the second argument are fitted to each subset of data deter-
mined by the different values of this column)

fitted_pars a data.frame with one row for each participant and model parameters in dif-
ferent columns. fitted_pars also may contain a column called model specifying
the model to be visualized. If there is no model column in data or if there are
multiple models in fitted_pars, it is necessary to specify the model argument.

model character. See fitConfModels for all available models

Value

a ggplot object with empirically observed distribution of responses and confidence ratings as bars
on the x-axis as a function of discriminability (in the rows) and stimulus (in the columns). Super-
imposed on the empirical data, the plot also shows the prediction of one selected model as dots.

Author(s)

Manuel Rausch, <manuel.rausch@hochschule-rhein-waal.de>

Examples

# 1. Fit some models to each subject of the masked orientation discrimination experiment
# Normally, the fits should be created using the function fitConfModels
# Fits <- fitConfModels(data, models = "WEV", .parallel = TRUE)
# Here, we create the dataframe manually because fitting models takes about
# 10 minutes per model fit per participant on a 2.8GHz processor.
pars <- data.frame(participant = 1:16,
d_1 = c(0.20, 0.05, 0.41, 0.03, 0.00, 0.01, 0.11, 0.03, 0.19, 0.08, 0.00,
0.24, 0.00, 0.00, 0.25, 0.01),
d_2 = c(0.61, 0.19, 0.86, 0.18, 0.17, 0.39, 0.69, 0.14, 0.45, 0.30, 0.00,
0.27, 0.00, 0.05, 0.57, 0.23),
d_3 = c(1.08, 1.04, 2.71, 2.27, 1.50, 1.21, 1.83, 0.80, 1.06, 0.68, 0.29,
0.83, 0.77, 2.19, 1.93, 0.54),
d_4 = c(3.47, 4.14, 6.92, 4.79, 3.72, 3.24, 4.55, 2.51, 3.78, 2.40, 1.95,
2.55, 4.59, 4.27, 4.08, 1.80),
d_5 = c(4.08, 5.29, 7.99, 5.31, 4.53, 4.66, 6.21, 4.67, 5.85, 3.39, 3.39,
4.42, 6.48, 5.35, 5.28, 2.87),
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c = c(-0.30, -0.15, -1.37, 0.17, -0.12, -0.19, -0.12, 0.41, -0.27, 0.00,
-0.19, -0.21, -0.91, -0.26, -0.20, 0.10),
theta_minus.4 = c(-2.07, -2.04, -2.76, -2.32, -2.21, -2.33, -2.27, -2.29,
-2.69, -3.80, -2.83, -1.74, -2.58, -3.09, -2.20, -1.57),
theta_minus.3 = c(-1.25, -1.95, -1.92, -2.07, -1.62, -1.68, -2.04, -2.02,
-1.84, -3.37, -1.89, -1.44, -2.31, -2.08, -1.53, -1.46),
theta_minus.2 = c(-0.42, -1.40, -0.37, -1.96, -1.45, -1.27, -1.98, -1.66,
-1.11, -2.69, -1.60, -1.25, -2.21, -1.68, -1.08, -1.17),
theta_minus.1 = c(0.13, -0.90, 0.93, -1.71, -1.25, -0.59, -1.40, -1.00,
-0.34, -1.65, -1.21, -0.76, -1.99, -0.92, -0.28, -0.99),
theta_plus.1 = c(-0.62, 0.82, -2.77, 2.01, 1.39, 0.60, 1.51, 0.90, 0.18,
1.62, 0.99,0.88, 1.67, 0.92, 0.18, 0.88),
theta_plus.2 = c(0.15, 1.45, -1.13,2.17, 1.61, 1.24, 1.99, 1.55, 0.96, 2.44,
1.53, 1.66, 2.00, 1.51, 1.08, 1.05),
theta_plus.3 = c(1.40, 2.24, 0.77, 2.32, 1.80, 1.58, 2.19, 2.19, 1.54, 3.17,
1.86, 1.85, 2.16, 2.09, 1.47, 1.70),
theta_plus.4 = c(2.19, 2.40, 1.75, 2.58, 2.53, 2.24, 2.59, 2.55, 2.58, 3.85,
2.87, 2.15, 2.51, 3.31, 2.27, 1.79),
sigma = c(1.01, 0.64, 1.33, 0.39, 0.30, 0.75, 0.75, 1.07, 0.65, 0.29, 0.31,
0.78, 0.39, 0.42, 0.69, 0.52),
w = c(0.54, 0.50, 0.38, 0.38, 0.36, 0.44, 0.48, 0.48, 0.52, 0.46, 0.53, 0.48,
0.29, 0.45, 0.51, 0.63))

# 2. Plot the predicted probabilities based on model and fitted parameters
# against the observed relative frequencies.

PlotFitWEV <- plotConfModelFit(MaskOri, pars, model="WEV")
PlotFitWEV

simConf Simulate data according to a static model of confidence

Description

This function generates a data frame with random trials generated according to the computational
model of decision confidence specified in the model argument with given parameters. Simulations
can be used to visualize and test qualitative model predictions (e.g. using previously fitted parame-
ters returned by fitConf). See fitConf for a full mathematical description of all models and their
parameters.

Usage

simConf(model = "SDT", paramDf)

Arguments

model character of length 1. The generative model that should be used for simula-
tion. Models implemented so far: ’WEV’, ’SDT’, ’GN’, ’PDA’, ’IG’, ’ITGc’,
’ITGcm’, ’logN’, and ’logWEV’.
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paramDf a data.frameproviding the number of generared trials and the parameters of the
chosen model. paramDf should contain following columns (which parameters
are needed depends on the specific model):

• N (the number of trials be simulated),
• participant (optional, the participant ID of each parameter set. Should

be unique to each row),
• d_1, d_2, ... (sensitivity parameters. The number of sensitivity parameters

determines the number of levels of discriminability),
• c (discrimination bias),
• theta_minus.1, theta_minus.2, ... (confidence criteria associated with

the response R = -1. The function simulates one more confidence category
than there are confidence criteria),

• theta_plus.1, theta_plus.2, ... (confidence criteria associated with the
response R = 1. The function simulates one more confidence category than
there are confidence criteria),

• w (only for models WEV and logWEV: the visibility weighting parameter,
bounded between 0 and 1),

• sigma (only for models WEV, GN, logN, and logWEV: confidence noise,
bounded between 0 and Inf),

• m (only for IG, ITGm, and ITGcm: metacognitive efficiency parameter,
bounded between 0 and Inf),

• b (only for PDA: postdecisional accumulation parameter, bounded between
0 and Inf),

• M_theta_minus.1, M_theta_minus.2, ... (only for logN: Mean confidence
criteria associated with the response R = -1),

• M_theta_plus.1, M_theta_plus.2,... (only for logN: Mean confidence
criteria associated with the response R = 1).

Details

The function generates about N trials per row with the provided parameters in the data frame. The
output includes a column participant indicating the row ID of the simulated data. The values of
the participant column may be controlled by the user, by including a participant column in the
input paramDf. Note that the values of this column have to be unique! If no participant column
is present in the input, the row numbers will be used as row IDs.

The number of simulated trials for each row of parameters may slightly deviate from the provided
N. Precisely, if there are K levels of sensitivity (i.e. there are columns d1, d2, ..., dK), the function
simulates round(N/2/K) trials per stimulus identity (2 levels) and level of sensitivity (K levels).

Simulation is performed following the generative process structure of the models. See fitConf for
a detailed description of the different models.

Value

a dataframe with about nrow(paramDf)*N rows (see Details), and the following columns:

• participant giving the row ID of the simulation (see Details)
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• stimulus giving the category of the stimulus (-1 or 1)

• only, if more than 1 sensitivity parameter (d1,d2,...) is provided: diffCond representing the
difficulty condition (values correspond to the levels of the sensitivity parameters, i.e. diff-
Cond=1 represents simulated trials with sensitivity d1)

• response giving the response category (-1 or 1, corresponding to the stimulus categories)

• rating giving the discrete confidence rating (integer, number of categories depends on the
number of confidence criteria provided in the parameters)

• correct giving the accuracy of the response (0 incorrect, 1 correct)

• ratings same as rating but as a factor

Author(s)

Manuel Rausch, <manuel.rausch@hochschule-rhein-waal.de>

Examples

# 1. define some parameters
paramDf <- data.frame(d_1 = 0, d_2 = 2, d_3 = 4,c = .0,
theta_minus.2 = -2, theta_minus.1 = -1, theta_plus.1 = 1, theta_plus.2 = 2,
sigma = 1/2, w = 0.5, N = 500)
# 2. Simulate dataset
SimulatedData <- simConf(model = "WEV", paramDf)
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