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1 Introduction

This note presents in some detail the formulae for the test statistics used
by the kanova() function from the kanova package. These statistics are
based on, and generalise, the ideas discussed in Diggle et al. (2000) and in
Hahn (2012). They consist of sums of integrals (over the argument r of the
K-function) of the usual sort of analysis of variance “regression” sums of
squares, down-weighted over r by the estimated variance of the quantities
being squared. The limits of integration r0 and r1 could be specified in the
software (e.g. in the related spatstat function studpermu.test() they can
be specified in the argument rinterval). However there is currently no
provision for this in kanova(), and r0 and r1 are taken to be the min and
max of the r component of the "fv" object returned by Kest(). Usually r0
is 0 and r1 is 1/4 of the length of the shorter side of the bounding box of the
observation window in question.
There are test statistics for:

• one-way analysis of variance (one grouping factor),

• main effects in a two-way (two grouping factors) additive model, and

• a model with interaction versus an additive model in a two-way context.
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2 The data

. In the context of a single classification factor A, with a levels, the data
consist of K-functions Kij(r), i = 1, . . . , a, k = 1, . . . , ni. The function
Kij(r) is constructed (estimated) from an observed point pattern Xij.
In the context of two classification factors A and B, with a levels and b
levels respectively, the data consist of K-functions Kijk(r), i = 1, . . . , a,
j = 1, . . . , b, k = 1, . . . , nij. The function Kijk(r) is constructed (estimated)
from an observed point pattern Xijk.
The observations have associated weights. The weight associated withKij(r),
in the single classification context, is wij = mη

ij where mij is the number of
points in the pattern Xij The exponent η is a constant that may be specified
by the user of the kanova package. In the code η is denoted by expo, and
defaults to 2.
In the context of two classification factors, the weight associated with Kijk(r)
is wijk = mη

ijk where mijk is the number of points in the pattern Xijk.
The test statistics used are calculated in terms of various weighted means of
the observed K-functions. Explicitly we define
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1
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3 Variance functions

The variances of the K-functions are assumed to be proportional to functions
which are constant over indices within each cell of the model. In the context
of a single classification factor, the variance ofKij(r) is taken to be σ2

i (r)/wij.
It is assumed that under the null hypothesis of “no A effect”, the functions
σ2
i (r) are all equal to a single function, σ2(r). I.e. they do not vary with i.

In the context of two classification factors, the variance of Kijk(r) is taken
to be σ2

ij(r)/wijk.
It is assumed that under the null hypothesis of “no A effect”, the functions
σ2
ij(r) do not vary with i, and for each j are all equal to a single function

σ2
j (r).

4 Estimating the variance functions

In the setting of a single classification factor, the variance function (unique
under the null hypothesis), σ2(r) is estimated by

s2(r) =
1

n• − a

a∑
i=1

ni∑
j=1

wij(Kij(r)− K̃i•(r))
2 .
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Under the null hypothesis this is an unbiased estimate of σ2(r).
In the setting of two classification factors, where we are testing for an A
effect, allowing for a B effect, the variance functions (depending only on the
B effect under the null hypothesis), σ2

j (r)) are estimated by

s2j(r) =
1

n•j

a∑
i=1

nij∑
k=1

wijk(Kijk(r)− K̃ij•(r))
2 .

Under the null hypothesis these are a unbiased estimates of the σ2
j (r).

In the setting of two classification factors, where we are testing for interaction
against an additive model (unlikely to arise as these circumstances may be)
we need estimates of σ2

ij(r). These are given by

s2ij(r) =
1

nij − 1

nij∑
k=1

wijk(Kijk(r)− K̃ij•)
2 .

These are a unbiased estimates of the σ2
ij(r).

5 The test statistics

In the setting of a single classification factor A, the statistic for testing for
an A effect is

T =
a∑

i=1

ni

∫ r1

r0

(K̃i(r)− K̃(r))2/Vi(r) dr

where Vi(r) is the estimated variance of K̃i(r)− K̃(r). This is given by

Vi(r) = s2(r)

(
1

wℓ•
− 1

w••

)
.

In the setting of two classification factors A and B, the statistic for testing
for an A effect allowing for a B effect is

TA =
a∑

i=1

ni•

∫ r1

r0

(K̃i•(r)− K̃(r))2/VAi(r) dr

where VAi(r) is the estimated variance of K̃i•(r)− K̃(r). This is given by

VAi(r) = s̃2i (r)

(
1

wi••
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)
+

1
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w•••
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The foregoing expression may be re-written, more compactly, and in a form
which makes it more obvious that the quantity is positive, as:

VAi(r) =
1

w•••

[
a∑

ℓ=1

ζiℓ × s̃2ℓ(r)

]
where

s̃2ℓ(r) =
b∑

j=1

wℓj•

wℓ••

s2j(r), ℓ = 1, . . . , a,

ζiℓ =

{
νℓ ℓ ̸= i

(νi−1)2

νi
ℓ = i

νℓ =
wℓ••

w•••

, ℓ = 1, . . . , a.

In the setting in which there are two classification factors and we are testing
for interaction, against an additive models, the test statistic is

TAB =
a∑

i=1

b∑
j=1

nij

∫ r1

r0

(K̃ij•(r)− K̃i••(r)− K̃•j•(r) + K̃(r))2/V AB
ij (r) dr

where V AB
ij (r) is the (sample) variance of K̃ij(r) − K̃i•(r) − K̃•j(r) + K̃(r).

The function V AB
ij (r) is even messier than V A

i (r). It is given by

V AB
ij (r) = s2ij(r)
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(1)

where
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w•••

s2ij(r) .

(2)
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Note that (1) is just (4), and (2) is just (3) (see below) with population
quantities replaced by sample (estimated) quantities.
Here are some (terse) details about the variance of K̃ij•(r)− K̃i••(r)− K̃•j•(r) + K̃(r)
as given by (4).

Var(K̃ij•(r)) =
σ2
ij(r)

wij•

Var(K̃i••(r)) =
σ̃2
i•(r)

wi••

Var(K̃•j•(r) =
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w•j•

Var(K̃•••(r)) =
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w•••
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wi••
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w•j•
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w•••
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wij•σ
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w•••
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w•••

where
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wi••
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(3)
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Sample calculation: to see that Cov(K̃ij•(r), K̃i••) = σ2
ij/wi••, note that K̃i••(r)

is a weighted sum over ℓ, of terms K̃iℓ•(r).The K-functions involved corre-
spond to independent patterns, and so are likewise independent. Conse-
quently K̃ij•(r) is independent of K̃iℓ•(r), and the corresponding covariances
are 0, except when ℓ = j. We thus get only a single non-zero term from the
sum of the covariances, explicitly

Cov(K̃ij•(r),
wij•

wi••

K̃ij•) =
wij•

wi••

Var(K̃ij•) =
wij•

wi••

σ2
ij

wij•

=
σ2
ij

wi••

.

Finally we can obtain the variance term of interest, which is Var(K̃ij•(r) −
K̃i••(r)− K̃j••(r) + K̃•••(r)). This expression is equal to

Var(K̃ij•(r)) + Var(K̃i••(r)) + Var(K̃•j•(r)) + Var(K̃•••(r))

− 2Cov(K̃ij•(r), K̃i••(r))− 2Cov(K̃ij•(r), K̃•j•(r)) + 2Cov(K̃ij•(r), K̃•••(r))

+ 2Cov(K̃i••(r), K̃•j•)− 2Cov(K̃i••(r), K̃•••(r))

− 2Cov(K̃•j•(r), K̃•••(r)) .

Collecting terms in the foregoing expression, and using the previously stated
symbolic representations of these terms, we obtain

σ2
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(
1

wij•

− 2
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− 2

w•j•

+
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+
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)
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1
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+
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w•••

.

(4)

Replacing the population variances by their corresponding estimates (sample
quantities) we obtain (1).
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