
Package ‘iglu’
January 14, 2025

Type Package

Title Interpreting Glucose Data from Continuous Glucose Monitors

Version 4.2.2

Description Implements a wide range of metrics for measuring glucose control and glucose variabil-
ity based on continuous glucose monitoring data. The list of implemented metrics is summa-
rized in Rodbard (2009) <doi:10.1089/dia.2009.0015>. Additional visualization tools in-
clude time-series plots, lasagna plots and ambulatory glucose profile report.

License GPL-2

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Depends R (>= 3.5.0)

Imports caTools, dplyr, DT, ggplot2, ggpubr, gridExtra, hms,
lubridate, magrittr, patchwork, pheatmap, scales, shiny, stats,
tibble, tidyr, utils, zoo, gtable, grid, plotly

Suggests knitr, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr

URL https://irinagain.github.io/iglu/

BugReports https://github.com/irinagain/iglu/issues

Config/testthat/edition 3

NeedsCompilation no

Author Elizabeth Chun [aut],
Steve Broll [aut],
David Buchanan [aut],
John Muschelli [aut] (<https://orcid.org/0000-0001-6469-1750>),
Nathaniel Fernandes [aut] (<https://orcid.org/0000-0003-0485-0726>),
Jung Hoon Seo [ctb],
Johnathan Shih [ctb],
Jacek Urbanek [ctb],
John Schwenck [ctb],

1

https://doi.org/10.1089/dia.2009.0015
https://irinagain.github.io/iglu/
https://github.com/irinagain/iglu/issues
https://orcid.org/0000-0001-6469-1750
https://orcid.org/0000-0003-0485-0726

2 Contents

Marielle Hicban [ctb],
Mary Martin [ctb],
Pratik Patel [ctb],
Meyappan Ashok [ctb],
Nhan Nguyen [ctb],
Irina Gaynanova [aut, cre] (<https://orcid.org/0000-0002-4116-0268>)

Maintainer Irina Gaynanova <irinagn@umich.edu>

Repository CRAN

Date/Publication 2025-01-14 22:30:05 UTC

Contents
above_percent . 3
active_percent . 4
adrr . 6
agp . 7
agp_metrics . 8
all_metrics . 9
auc . 10
below_percent . 11
calculate_sleep_wake . 13
CGMS2DayByDay . 14
cogi . 15
conga . 16
cv_glu . 17
cv_measures . 18
ea1c . 19
epicalc_profile . 20
episode_calculation . 22
example_data_1_subject . 24
example_data_5_subject . 25
example_data_hall . 25
example_meals_hall . 26
gmi . 27
grade . 28
grade_eugly . 29
grade_hyper . 30
grade_hypo . 31
gri . 32
gvp . 33
hbgi . 34
hist_roc . 35
hyper_index . 36
hypo_index . 37
igc . 39
iglu_shiny . 40
in_range_percent . 40

https://orcid.org/0000-0002-4116-0268

above_percent 3

iqr_glu . 41
j_index . 42
lbgi . 43
mad_glu . 44
mag . 45
mage . 46
mage_ma_single . 49
meal_metrics . 51
mean_glu . 53
median_glu . 54
metrics_heatmap . 55
modd . 56
m_value . 57
optimized_iglu_functions . 58
pgs . 59
plot_agp . 60
plot_daily . 62
plot_glu . 63
plot_lasagna . 65
plot_lasagna_1subject . 66
plot_meals . 68
plot_ranges . 69
plot_roc . 70
process_data . 72
quantile_glu . 73
range_glu . 74
read_raw_data . 75
roc . 76
sd_glu . 77
sd_measures . 78
sd_roc . 80
summary_glu . 81

Index 83

above_percent Calculate percentage of values above target thresholds

Description

The function above_percent produces a tibble object with values equal to the percentage of glucose
measurements above target values. The output columns correspond to the subject id followed by
the target values, and the output rows correspond to the subjects. The values will be between 0 (no
measurements) and 100 (all measurements).

Usage

above_percent(data, targets_above = c(140, 180, 250))

4 active_percent

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

targets_above Default: (140, 180, 250). Numeric vector of glucose thresholds. Glucose values
from data argument will be compared to each value in the targets_above vector.

Details

A tibble object with 1 row for each subject, a column for subject id and column for each target value
is returned. NA’s will be omitted from the glucose values in calculation of percent.

Value

If a DataFrame object is passed, then a tibble object with a column for subject id and then a column
for each target value is returned. If a vector of glucose values is passed, then a tibble object without
the subject id is returned. Wrap ‘as.numeric()‘ around the latter to output a numeric vector.

References

Rodbard (2009) Interpretation of continuous glucose monitoring data: glycemic variability and
quality of glycemic control, Diabetes Technology and Therapeutics 11 .55-67, doi:10.1089/dia.2008.0132.

See Also

plot_ranges()

Examples

data(example_data_1_subject)

above_percent(example_data_1_subject)
above_percent(example_data_1_subject, targets_above = c(100, 150, 180))

data(example_data_5_subject)

above_percent(example_data_5_subject)
above_percent(example_data_5_subject, targets_above = c(70, 170))

active_percent Calculate percentage of time CGM was active

Description

The function ‘active_percent‘ produces the

https://doi.org/10.1089/dia.2008.0132

active_percent 5

Usage

active_percent(data, dt0 = NULL, tz = "",
range_type = "automatic", ndays = 14, consistent_end_date = NULL)

Arguments

data DataFrame object with column names "id", "time", and "gl".

dt0 The time frequency for interpolated aligned grid in minutes, the default will
match the CGM meter’s frequency (e.g. 5 min for Dexcom).

tz tz = "". A character string specifying the time zone to be used. System-specific
(see as.POSIXct), but " " is the current time zone, and "GMT" is UTC (Univer-
sal Time, Coordinated). Invalid values are most commonly treated as UTC, on
some platforms with a warning.

range_type range_type = "automatic". A character string indicating the type of range
(’automatic’ or ’manual’).

ndays ndays = 14. An integer specifying the number of days to consider in the calcu-
lation.

consistent_end_date

consistent_end_date = NULL. A Date object or NULL indicating a period end
date to be used for every subject. Leaving this value NULL will result in the end
date being unique to each subject.

Details

The function ‘active_percent‘ produces a tibble object with values equal to the percentage of time
the CGM was active, the total number of observed days, the start date, and the end date. For exam-
ple, if a CGM’s (5 min frequency) times were 0, 5, 10, 15 and glucose values were missing at time
5, then percentage of time the CGM was active is 75 The output columns correspond to the subject
id, the percentage of time for which the CGM was active, the number of days of measurements,
the start date and the end date of measurements. The output rows correspond to the subjects. The
values of ‘active_percent‘ are always between 0

Value

A tibble object with five columns: subject id, corresponding active_percent value, duration of mea-
surement period in days, start date, and end date.

Author(s)

Pratik Patel, Irina Gaynanova

References

Danne et al. (2017) International Consensus on Use of Continuous Glucose Monitoring Diabetes
Care 40 .1631-1640, doi:10.2337/dc171600.

https://doi.org/10.2337/dc17-1600

6 adrr

Examples

data(example_data_1_subject)

active_percent(example_data_1_subject)

data(example_data_5_subject)

active_percent(example_data_5_subject)
active_percent(example_data_5_subject, dt0 = 5, tz = 'GMT')

adrr Calculate average daily risk range (ADRR)

Description

The function ‘adrr‘ produces ADRR values in a tibble object.

Usage

adrr(data)

Arguments

data DataFrame object with column names "id", "time", and "gl".

Details

A tibble object with 1 row for each subject, a column for subject id and a column for ADRR values
is returned. ‘NA‘ glucose values are omitted from the calculation of the ADRR values.

ADRR is the average sum of HBGI corresponding to the highest glucose value and LBGI corre-
sponding to the lowest glucose value for each day, with the average taken over the daily sums. If
there are no high glucose or no low glucose values, then 0 will be substituted for the HBGI value or
the LBGI value, respectively, for that day.

Value

A tibble object with two columns: subject id and corresponding ADRR value.

References

Kovatchev et al. (2006) Evaluation of a New Measure of Blood Glucose Variability in, Diabetes
Diabetes care 29 .2433-2438, doi:10.2337/dc061085.

https://doi.org/10.2337/dc06-1085

agp 7

Examples

data(example_data_1_subject)
adrr(example_data_1_subject)

data(example_data_5_subject)
adrr(example_data_5_subject)

agp Display Ambulatory Glucose Profile (AGP) statistics for selected sub-
ject

Description

Display Ambulatory Glucose Profile (AGP) statistics for selected subject

Usage

agp(data, maxd = 14, inter_gap = 45, dt0 = NULL, tz = "", daily = TRUE)

Arguments

data DataFrame object with column names "id", "time", and "gl". Should only be
data for 1 subject. In case multiple subject ids are detected, a warning is pro-
duced and only 1st subject is used.

maxd Default: 14. Number of days to plot. If less than ‘maxd‘ days of data are
available, all days are plotted.

inter_gap The maximum allowable gap (in minutes) for interpolation. The values will not
be interpolated between the glucose measurements that are more than inter_gap
minutes apart. The default value is 45 min.

dt0 The time frequency for interpolation in minutes, the default will match the CGM
meter’s frequency (e.g. 5 min for Dexcom).

tz A character string specifying the time zone to be used. System-specific (see
as.POSIXct), but " " is the current time zone, and "GMT" is UTC (Universal
Time, Coordinated). Invalid values are most commonly treated as UTC, on some
platforms with a warning.

daily Default: TRUE. Logical indicator whether AGP should include separate daily
plots.

Value

A plot displaying glucose measurements range, selected glucose statistics (average glucose, Glucose
Management Indicator,

8 agp_metrics

References

Johnson et al. (2019) Utilizing the Ambulatory Glucose Profile to Standardize and Implement
Continuous Glucose Monitoring in Clinical Practice, Diabetes Technology and Therapeutics 21:S2
S2-17-S2-25, doi:10.1089/dia.2019.0034.

Examples

data(example_data_1_subject)
agp(example_data_1_subject, daily = FALSE)

agp_metrics Calculate metrics for the Ambulatory Glucose Profile (AGP)

Description

The function ‘agp_metrics‘ runs the following functions and combines them into a tibble object:
‘active_percent‘, ‘mean_glu‘, ‘gmi‘, ‘cv_glu‘, ‘below_percent‘, ‘in_range_percent‘, ‘above_percent‘.

Usage

agp_metrics(data, shinyformat = FALSE, tz = '')

Arguments

data DataFrame object with column names "id", "time", and "gl".

shinyformat Default: FALSE. Boolean indicating whether the output should be formatted
for the single subject AGP page in shiny.

tz Default: "". A character string specifying the time zone to be used. System-
specific (see as.POSIXct), but " " is the current time zone, and "GMT" is UTC
(Universal Time, Coordinated). Invalid values are most commonly treated as
UTC, on some platforms with a warning.

Details

The function uses recommended cutoffs of 54, 70, 180, and 250 mg/dL for calculation.

If ‘shinyformat == FALSE‘ (default), returns a tibble object with 1 row for each subject, and 12
columns: a column for subject id (‘id‘), a column for start date (‘start_date‘), a column for end date
(‘end_date‘), a column for number of days (‘ndays‘), a column for active percent (‘active_percent‘),
a column for mean value (‘mean‘), a column for GMI value (‘GMI‘), a column for CV value (‘CV‘),
a column for a column for a column for a column for a column for

If ‘shinyformat == TRUE‘, a tibble with 2 columns: metric and value, is returned. This output is
used when generating the single subject AGP shiny page.

https://doi.org/10.1089/dia.2019.0034

all_metrics 9

Value

By default, a tibble object with 1 row for each subject, and 13 columns is returned: a column for
subject id, a column for start date, a column for end date, a column for number of days, a column for
active_percent, a column for Mean value, a column for gmi value, a column for cv value, a column
for below_54 value, a column for below_70 value, a column for in_range_70_180 value, a column
for above_180 value, a column for above_250 value,

References

Johnson et al. (2019) Utilizing the Ambulatory Glucose Profile to Standardize and Implement
Continuous Glucose Monitoring in Clinical Practice, Diabetes Technology and Therapeutics 21:S2
S2-17-S2-25, doi:10.1089/dia.2019.0034.

Examples

data(example_data_1_subject)
agp_metrics(example_data_1_subject)

all_metrics Calculate all metrics in iglu

Description

The function all_metrics runs all of the iglu metrics, and returns the results with one column per
metric.

Usage

all_metrics(
data,
dt0 = NULL,
inter_gap = 45,
tz = "",
timelag = 15,
lag = 1,
metrics_to_include = c("all", "consensus_only")

)

Arguments

data DataFrame object with column names "id", "time", and "gl".

dt0 The time frequency for interpolation in minutes, the default will match the CGM
meter’s frequency (e.g. 5 min for Dexcom).

inter_gap The maximum allowable gap (in minutes) for interpolation. The values will not
be interpolated between the glucose measurements that are more than inter_gap
minutes apart. The default value is 45 min.

https://doi.org/10.1089/dia.2019.0034

10 auc

tz A character string specifying the time zone to be used. System-specific (see
as.POSIXct), but " " is the current time zone, and "GMT" is UTC (Universal
Time, Coordinated). Invalid values are most commonly treated as UTC, on some
platforms with a warning.

timelag Integer indicating the time period (# minutes) over which rate of change is cal-
culated. Default is 15, e.g. rate of change is the change in glucose over the past
15 minutes divided by 15.

lag Integer indicating which lag (# days) to use. Default is 1.
metrics_to_include

Returns all metrics computed by iglu or all on the consensus list (Battelino 2023)

Details

All iglu functions are calculated within the all_metrics function, and the resulting tibble is returned
with one row per subject and a column for each metric. Time dependent functions are calculated
together using the function optimized_iglu_functions with two exceptions: PGS and episodes are
calculated within all_metrics because their structure does not align with optimized_iglu_functions.
Note that episodes related outputs included in all_metrics are only average episodes per day. To get
the average duration and glucose, please use the standalone episodes function

For metric specific information, please see the corresponding function documentation.

Value

A tibble object with 1 row per subject and one column per metric is returned.

References

Battelino T, Alexander CM, Amiel SA, et al. Continuous glucose monitoring and metrics for clin-
ical trials: an international consensus statement. Lancet Diabetes Endocrinol. 2023;11(1):42-57.
doi:10.1016/S22138587(22)003199.

Specify the meter frequency and change the interpolation gap to 30 min all_metrics(example_data_1_subject,
dt0 = 5, inter_gap = 30)

Examples

data(example_data_1_subject)
all_metrics(example_data_1_subject)

auc Calculate Area Under Curve AUC

Description

The function auc produces hourly average AUC for each subject.

https://doi.org/10.1016/S2213-8587%2822%2900319-9

below_percent 11

Usage

auc(data, tz="")

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

tz String value of time zone.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for hourly average
AUC values is returned. NA glucose values are omitted from the calculation of the AUC.

AUC is calculated using the formula: (dt0/60) * ((gl[2:length(gl)] + gl[1:(length(gl)-1)])/2), where
dt0/60 is the frequency of the cgm measurements in hours and gl are the glucose values.

This formula is based off the Trapezoidal Rule: (time[2]-time[1] * ((glucose[1]+glucose[2])/2)).

Value

If a data.frame object is passed, then a tibble object with two columns: subject id and corresponding
hourly average AUC value is returned.

AUC is calculated for every hour using the trapezoidal rule, then hourly average AUC is calculated
for each 24 hour period, then the mean of hourly average AUC across all 24 hour periods is returned
as overall hourly average AUC.

References

Danne et al. (2017) International Consensus on Use of Continuous Glucose Monitoring, Diabetes
Care 40 .1631-1640, doi:10.2337/dc171600.

Examples

data(example_data_1_subject)
auc(example_data_1_subject)

below_percent Calculate percentage below targeted values

Description

The function below_percent produces a tibble object with values equal to the percentage of glucose
measurements below target values. The output columns correspond to the subject id followed by
the target values and the output rows correspond to the subjects. The values will be between 0 (no
measurements) and 100 (all measurements).

https://doi.org/10.2337/dc17-1600

12 below_percent

Usage

below_percent(data, targets_below = c(54, 70))

Arguments

data DataFrame with column names ("id", "time", and "gl"), or numeric vector of
glucose values.

targets_below Numeric vector of glucose thresholds. Glucose values from data argument will
be compared to each value in the targets_below vector. Default list is (54, 70).

Details

A tibble object with 1 row for each subject, a column for subject id and column for each target value
is returned. NA’s will be omitted from the glucose values in calculation of percent.

Value

If a data.frame object is passed, then a tibble object with a column for subject id and then a column
for each target value is returned. If a vector of glucose values is passed, then a tibble object without
the subject id is returned. as.numeric() can be wrapped around the latter to output a numeric vector.

References

Rodbard (2009) Interpretation of continuous glucose monitoring data: glycemic variability and
quality of glycemic control, Diabetes Technology and Therapeutics 11 .55-67, doi:10.1089/dia.2008.0132.

See Also

plot_ranges()

Examples

data(example_data_1_subject)

below_percent(example_data_1_subject)
below_percent(example_data_1_subject, targets_below = c(50, 100, 180))

data(example_data_5_subject)

below_percent(example_data_5_subject)
below_percent(example_data_5_subject, targets_below = c(80, 180))

https://doi.org/10.1089/dia.2008.0132

calculate_sleep_wake 13

calculate_sleep_wake Calculate metrics for values inside and/or outside a specified time
range.

Description

This function applies a given function to a subset of data filtered by time of day.

Usage

calculate_sleep_wake(
data,
FUN,
sleep_start = 0,
sleep_end = 6,
calculate = c("sleep", "wake", "both"),
...

)

Arguments

data DataFrame object with column names "id", "time", and "gl".

FUN Function to be applied to the filtered data.

sleep_start Numeric between 0-24 signifying the hour at which the time range should start.

sleep_end Numeric between 0-24 signifying the hour at which the time range should end.

calculate String determining whether FUN should be applied to values inside or outside
the time range. Both separately is an option

... Optional arguments which will be passed to FUN

Details

An object of the same return type as FUN, with the same column names as FUN will be returned.
If calculate = "both", there will be columns for FUN applied to both inside and outside values, with
either "in range" or "out of range" append to signify whether the statistic was calculated on values
which were inside the time range or outside the range.

FUN is found by a call to match.fun and typically is either a function or a character string specifying
a function to be searched for from the environment of the call to apply. Arguments in ... cannot have
the same name as any of the other arguments, and care may be needed to avoid partial matching to
FUN. FUN is applied to the data after the data is filtered based on whether its hour falls within the
given range. If sleep_start is an integer, all times within that hour will be included in the range, but
if sleep_end is an integer only times up to that hour will be included in the range. If sleep_start is
after sleep_end, the data will be filtered to include all hours after sleep_start and all times before
sleep_end.

14 CGMS2DayByDay

Value

An object of the same return type as FUN, with columns corresponding to the values returned by
FUN. Separated for values inside or outside the time range, if calculate = both.

Examples

data(example_data_1_subject)
calculate_sleep_wake(example_data_1_subject, sd_glu, calculate = "sleep")

data(example_data_5_subject)
calculate_sleep_wake(example_data_5_subject, cogi, targets = c(80, 150),
weights = c(.3,.2,.5), calculate = "wake")
calculate_sleep_wake(example_data_5_subject, sd_measures, sleep_start = 2,
sleep_end = 8, calculate = "both")

CGMS2DayByDay Interpolate glucose value on an equally spaced grid from day to day

Description

Interpolate glucose value on an equally spaced grid from day to day

Usage

CGMS2DayByDay(data, dt0 = NULL, inter_gap = 45, tz = "")

Arguments

data DataFrame object with column names "id", "time", and "gl". Should only be
data for 1 subject. In case multiple subject ids are detected, a warning is pro-
duced and only 1st subject is used.

dt0 The time frequency for interpolation in minutes, the default will match the CGM
meter’s frequency (e.g. 5 min for Dexcom).

inter_gap The maximum allowable gap (in minutes) for interpolation. The values will not
be interpolated between the glucose measurements that are more than inter_gap
minutes apart. The default value is 45 min.

tz A character string specifying the time zone to be used. System-specific (see
as.POSIXct), but " " is the current time zone, and "GMT" is UTC (Universal
Time, Coordinated). Invalid values are most commonly treated as UTC, on some
platforms with a warning.

cogi 15

Value

A list with

gd2d A matrix of glucose values with each row corresponding to a new day, and each
column corresponding to time

actual_dates A vector of dates corresponding to the rows of gd2d

dt0 Time frequency of the resulting grid, in minutes

Examples

CGMS2DayByDay(example_data_1_subject)

cogi Calculate Continuous Glucose Monitoring Index (COGI) values

Description

The function COGI produces cogi values in a tibble object.

Usage

cogi(data, targets = c(70, 180), weights = c(.5,.35,.15))

Arguments

data DataFrame with column names ("id", "time", and "gl"), or numeric vector of
glucose values.

targets Numeric vector of two glucose values for threshold. Glucose values from data
argument will be compared to each value in the targets vector to determine the
time in range and time below range for COGI. The lower value will be used for
determining time below range. Default list is (70, 180).

weights Numeric vector of three weights to be applied to time in range, time below range
and glucose variability, respectively. The default list is (.5,.35,.15)

Details

A tibble object with 1 row for each subject, a column for subject id and column for each target value
is returned. NA’s will be omitted from the glucose values in calculation of cogi.

Value

If a data.frame object is passed, then a tibble object with a column for subject id and then a column
for each target value is returned. If a vector of glucose values is passed, then a tibble object without
the subject id is returned. as.numeric() can be wrapped around the latter to output a numeric vector.

16 conga

References

Leelarathna (2020) Evaluating Glucose Control With a Novel Composite Continuous Glucose Mon-
itoring Index, Diabetes Technology and Therapeutics 14(2) 277-284, doi:10.1177/1932296819838525.

Examples

data(example_data_1_subject)

cogi(example_data_1_subject)
cogi(example_data_1_subject, targets = c(50, 140), weights = c(.3,.6,.1))

data(example_data_5_subject)

cogi(example_data_5_subject)
cogi(example_data_5_subject, targets = c(80, 180), weights = c(.2,.4,.4))

conga Continuous Overall Net Glycemic Action (CONGA)

Description

The function conga produces CONGA values a tibble object for any n hours apart.

Usage

conga(data, n = 24, tz = "")

Arguments

data DataFrame object with column names "id", "time", and "gl".

n An integer specifying how many hours prior to an observation should be used in
the CONGA calculation. The default value is set to n = 24 hours

tz A character string specifying the time zone to be used. System-specific (see
as.POSIXct), but " " is the current time zone, and "GMT" is UTC (Universal
Time, Coordinated). Invalid values are most commonly treated as UTC, on some
platforms with a warning.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for the CONGA
values is returned.

Missing values will be linearly interpolated when close enough to non-missing values.

CONGA is the standard deviation of the difference between glucose values that are exactly n hours
apart. CONGA is computed by taking the standard deviation of differences in measurements sepa-
rated by n hours.

https://doi.org/10.1177/1932296819838525

cv_glu 17

Value

A tibble object with two columns: subject id and corresponding CONGA value.

References

McDonnell et al. (2005) : A novel approach to continuous glucose analysis utilizing glycemic
variation Diabetes Technology and Therapeutics 7 .253-263, doi:10.1089/dia.2005.7.253.

Examples

data(example_data_1_subject)
conga(example_data_1_subject)

data(example_data_5_subject)
conga(example_data_5_subject)

cv_glu Calculate Coefficient of Variation (CV) of glucose levels

Description

The function cv_glu produces CV values in a tibble object.

Usage

cv_glu(data)

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for CV values is
returned. NA glucose values are omitted from the calculation of the CV.

CV (Coefficient of Variation) is calculated by 100 ∗ sd(G)/mean(G) Where G is the list of all
Glucose measurements for a subject.

Value

If a data.frame object is passed, then a tibble object with two columns: subject id and corresponding
CV value is returned. If a vector of glucose values is passed, then a tibble object with just the CV
value is returned. as.numeric() can be wrapped around the latter to output just a numeric value.

https://doi.org/10.1089/dia.2005.7.253

18 cv_measures

References

Rodbard (2009) Interpretation of continuous glucose monitoring data: glycemic variability and
quality of glycemic control, Diabetes Technology and Therapeutics 11 .55-67, doi:10.1089/dia.2008.0132.

Examples

data(example_data_1_subject)
cv_glu(example_data_1_subject)

data(example_data_5_subject)
cv_glu(example_data_5_subject)

cv_measures Calculate Coefficient of Variation subtypes

Description

The function cv_measures produces CV subtype values in a tibble object.

Usage

cv_measures(data, dt0 = NULL, inter_gap = 45, tz = "")

Arguments

data DataFrame object with column names "id", "time", and "gl". Should only be
data for 1 subject. In case multiple subject ids are detected, a warning is pro-
duced and only 1st subject is used.

dt0 The time frequency for interpolation in minutes, the default will match the CGM
meter’s frequency (e.g. 5 min for Dexcom).

inter_gap The maximum allowable gap (in minutes) for interpolation. The values will not
be interpolated between the glucose measurements that are more than inter_gap
minutes apart. The default value is 45 min.

tz A character string specifying the time zone to be used. System-specific (see
as.POSIXct), but " " is the current time zone, and "GMT" is UTC (Universal
Time, Coordinated). Invalid values are most commonly treated as UTC, on some
platforms with a warning.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for each cv subtype
values is returned.

Missing values will be linearly interpolated when close enough to non-missing values.

https://doi.org/10.1089/dia.2008.0132

ea1c 19

1. CVmean:
Calculated by first taking the coefficient of variation of each day’s glucose measurements, then
taking the mean of all the coefficient of variation. That is, for x days we compute cv_1 ... cv_x
daily coefficient of variations and calculate 1/x ∗

∑
[(cvi)]

2. CVsd:
Calculated by first taking the coefficient of variation of each day’s glucose measurements,
then taking the standard deviation of all the coefficient of variations. That is, for d days we
compute cv_1 ... cv_d daily coefficient of variations and calculate SD([cv_1, cv_2, ... cv_d])

Value

When a data.frame object is passed, then a tibble object with three columns: subject id and corre-
sponding CV subtype values is returned.

References

Umpierrez, et.al. (2018) Glycemic Variability: How to Measure and Its Clinical Implication for
Type 2 Diabetes The American Journal of Medical Sciences 356 .518-527, doi:10.1016/j.amjms.2018.09.010.

Examples

data(example_data_1_subject)
cv_measures(example_data_1_subject)

data(example_data_5_subject)
cv_measures(example_data_5_subject)

ea1c Calculate eA1C

Description

The function ea1c produces eA1C values in a tibble object.

Usage

ea1c(data)

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

https://doi.org/10.1016/j.amjms.2018.09.010

20 epicalc_profile

Details

A tibble object with 1 row for each subject, a column for subject id and a column for eA1C values
is returned. NA glucose values are omitted from the calculation of the eA1C.

eA1C score is calculated by (46.7 + mean(G))/28.7 where G is the vector of Glucose Measure-
ments (mg/dL).

Value

If a data.frame object is passed, then a tibble object with two columns: subject id and corresponding
eA1C is returned. If a vector of glucose values is passed, then a tibble object with just the eA1C
value is returned. as.numeric() can be wrapped around the latter to output just a numeric value.

Author(s)

Marielle Hicban

References

Nathan (2008) Translating the A1C assay into estimated average glucose values Hormone and
Metabolic Research 31 .1473-1478, doi:10.2337/dc080545.

Examples

data(example_data_1_subject)
ea1c(example_data_1_subject)

data(example_data_5_subject)
ea1c(example_data_5_subject)

epicalc_profile Display Episode Calculation statistics for selected subject

Description

Display Episode Calculation statistics for selected subject

Usage

epicalc_profile(
data,
lv1_hypo = 70,
lv2_hypo = 54,
lv1_hyper = 180,
lv2_hyper = 250,
dur_length = 15,
end_length = 15,

https://doi.org/10.2337/dc08-0545

epicalc_profile 21

subject = NULL,
dt0 = NULL,
inter_gap = 45,
tz = ""

)

Arguments

data DataFrame object with column names "id", "time", and "gl". Should only be
data for 1 subject. In case multiple subject ids are detected, a warning is pro-
duced and only 1st subject is used.

lv1_hypo Numeric value specifying a hypoglycemia threshold for level 1
lv2_hypo Numeric value specifying a hypoglycemia threshold for level 2
lv1_hyper Numeric value specifying a hyperglycemia threshold for level 1
lv2_hyper Numeric value specifying a hyperglycemia threshold for level 2
dur_length Numeric value specifying the minimum duration in minutes to be considered an

episode. Note dur_length should be a multiple of the data recording interval oth-
erwise the function will round up to the nearest multiple. Default is 15 minutes
to match consensus.

end_length Numeric value specifying the minimum duration in minutes of improved glycemia
for an episode to end. Default is equal to dur_length to match consensus.

subject String corresponding to subject id
dt0 The time frequency for interpolation in minutes, the default will match the CGM

meter’s frequency (e.g. 5 min for Dexcom).
inter_gap The maximum allowable gap (in minutes) for interpolation. The values will not

be interpolated between the glucose measurements that are more than inter_gap
minutes apart. The default value is 45 min.

tz A character string specifying the time zone to be used. System-specific (see
as.POSIXct), but " " is the current time zone, and "GMT" is UTC (Universal
Time, Coordinated). Invalid values are most commonly treated as UTC, on some
platforms with a warning.

Value

A plot displaying (1) the statistics for the episodes and (2) the episodes colored by level.

Author(s)

Johnathan Shih, Jung Hoon Seo, Elizabeth Chun

See Also

episode_calculation()

Examples

epicalc_profile(example_data_1_subject)

22 episode_calculation

episode_calculation Calculates Hypo/Hyperglycemic episodes with summary statistics

Description

The function determines episodes or events, calculates summary statistics, and optionally returns
data with episode label columns added

Usage

episode_calculation(
data,
lv1_hypo = 70,
lv2_hypo = 54,
lv1_hyper = 180,
lv2_hyper = 250,
dur_length = 15,
end_length = 15,
return_data = FALSE,
dt0 = NULL,
inter_gap = 45,
tz = ""

)

Arguments

data DataFrame object with column names "id", "time", and "gl". Should only be
data for 1 subject. In case multiple subject ids are detected, a warning is pro-
duced and only 1st subject is used.

lv1_hypo Numeric value specifying a hypoglycemia threshold for level 1

lv2_hypo Numeric value specifying a hypoglycemia threshold for level 2

lv1_hyper Numeric value specifying a hyperglycemia threshold for level 1

lv2_hyper Numeric value specifying a hyperglycemia threshold for level 2

dur_length Numeric value specifying the minimum duration in minutes to be considered an
episode. Note dur_length should be a multiple of the data recording interval oth-
erwise the function will round up to the nearest multiple. Default is 15 minutes
to match consensus.

end_length Numeric value specifying the minimum duration in minutes of improved glycemia
for an episode to end. Default is equal to dur_length to match consensus.

return_data Boolean indicating whether to also return data with episode labels. Defaults to
FALSE which means only episode summary statistics will be returned

dt0 The time frequency for interpolation in minutes, the default will match the CGM
meter’s frequency (e.g. 5 min for Dexcom).

episode_calculation 23

inter_gap The maximum allowable gap (in minutes) for interpolation. The values will not
be interpolated between the glucose measurements that are more than inter_gap
minutes apart. The default value is 45 min.

tz A character string specifying the time zone to be used. System-specific (see
as.POSIXct), but " " is the current time zone, and "GMT" is UTC (Universal
Time, Coordinated). Invalid values are most commonly treated as UTC, on some
platforms with a warning.

Details

We follow the definition of episodes given in the 2023 consensus by Battelino et al. Note we have
classified lv2 as a subset of lv1 since we find the consensus to be slightly ambiguous. For lv1
exclusive of lv2, please see lv1_excl which summarises episodes that were exclusively lv1 and did
not cross the lv2 threshold. Also note, hypo extended refers to episodes that are >120 consecutive
minutes below lv1 hypo and ends with at least 15 minutes of normoglycemia. For more details on
each category please see the reference below (Battelino et al 2023).

Value

If return_data is FALSE, a single dataframe with columns:

id Subject id

type Type of episode - either hypoglycemia or hyperglycemia

level Level of episode - one of lv1, lv2, extended, lv1_excl

avg_ep_per_day Average number of episodes per day calculated as (total # episodes)/(recording
time in days (24hrs))

avg_ep_duration

Average duration of episodes in minutes

avg_ep_gl Average glucose in the episode in mg/dL

total_episodes Total number of episodes in the subject’s glucose trace

If return_data is TRUE, returns a list where the first entry is the episode summary dataframe (see
above) and the second entry is the input data with episode labels added. Note the data returned here
has been interpolated using the CGMS2DayByDay() function. Mostly for use with epicalc_profile
function. Format of the second list entry is:

id Subject id

time Interpolated timestamps

gl glucose in mg/dL
[episode_label]

One column per episode label - i.e. lv1_hypo, lv2_hypo, lv1_hyper, lv2_hyper,
ext_hypo. 0 means not this type of episode, a positive integer label is assigned
to each episode. Note the labels are *not* unique by subject only unique by
segment

Author(s)

Elizabeth Chun, Jung Hoon Seo, Johnathan Shih

24 example_data_1_subject

References

Battelino et al. (2023): Continuous glucose monitoring and metrics for clinical trials: an inter-
national consensus statement Lancet Diabetes & Endocrinology 11(1) .42-57, doi:10.1016/s2213-
8587(22)003199.

See Also

epicalc_profile()

Examples

episode_calculation(example_data_5_subject, lv1_hypo=100, lv1_hyper= 120)

example_data_1_subject

Example CGM data for one subject with Type II diabetes

Description

Dexcom G4 CGM measurements from 1 subject with Type II diabetes, this is a subset of exam-
ple_data_5_subject.

Usage

example_data_1_subject

Format

A data.frame with 2915 rows and 3 columns, which are:

id identifier of subject

time 5-10 minute time value

gl glucose level

https://doi.org/10.1016/s2213-8587%2822%2900319-9
https://doi.org/10.1016/s2213-8587%2822%2900319-9

example_data_5_subject 25

example_data_5_subject

Example CGM data for 5 subjects with Type II diabetes

Description

Dexcom G4 CGM measurements for 5 subjects with Type II diabetes. These data are part of a larger
study sample that consisted of patients with Type 2 diabetes recruited from the general community.
To be eligible, patients with Type 2 diabetes, not using insulin therapy and with a glycosylated
hemoglobin (HbA1c) value at least 6.5

Usage

example_data_5_subject

Format

A data.frame with 13866 rows and 3 columns, which are:

id identifier of subject

time date and time stamp

gl glucose level as measured by CGM (mg/dL)

example_data_hall Example data from Hall et al. (2018)

Description

Dexcom G4 CGM measurements for 19 subjects from the Hall publicly available dataset. Chosen
as a subset of all subjects to be only those with diabetes or pre-diabetes. Primarily intended for use
with example_meals_hall

Usage

example_data_hall

Format

a data.frame with 34890 rows and 4 columns, which are:

id identifier of subject

time date and time stamp

gl glucose level as measured by CGM (mg/dL)

diagnosis character indicating diabetes diagnosis: diabetic or pre-diabetic

26 example_meals_hall

Details

This dataset can be used along with the example_meals_hall dataset in this package to calculate
meal_metrics.

References

Hall et al. (2018) : Glucotypes reveal new patterns of glucose dysregulation Plos Biology 16 (7):
3:e2005143 doi:10.1371/journal.pbio.2005143.

example_meals_hall Example mealtimes data from Hall et al. (2018)

Description

Example of mealtimes data format for meal_metrics function, corresponds to example_data_hall
data.

Usage

example_meals_hall

Format

A data.frame with 9 rows and 3 columns, which are:

id identifier of subject

meal meal type identifier

mealtime time of meal

Details

There are 3 types of meals available: Cereal Flakes (CF), Peanut Butter Sandwich (PB), and Protein
Bar (Bar). The number after the abbreviation refers to the replication number for the original study.
For more details on nutritional differences, please see the original study reference.

This dataset should be used along with example_data_hall to calculate meal_metrics.

References

Hall et al. (2018) : Glucotypes reveal new patterns of glucose dysregulation Plos Biology 16 (7):
3:e2005143 doi:10.1371/journal.pbio.2005143.

https://doi.org/10.1371/journal.pbio.2005143
https://doi.org/10.1371/journal.pbio.2005143

gmi 27

gmi Calculate GMI

Description

The function gmi produces GMI values in a tibble object.

Usage

gmi(data)

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for GMI values is
returned. NA glucose values are omitted from the calculation of the GMI.

GMI score is calculated by 3.31+ (.02392 ∗mean(G)) where G is the vector of Glucose Measure-
ments (mg/dL).

Value

If a data.frame object is passed, then a tibble object with two columns: subject id and corresponding
GMI is returned. If a vector of glucose values is passed, then a tibble object with just the GMI value
is returned. as.numeric() can be wrapped around the latter to output just a numeric value.

References

Bergenstal (2018) Glucose Management Indicator (GMI): A New Term for Estimating A1C From
Continuous Glucose Monitoring Hormone and Metabolic Research 41 .2275-2280, doi:10.2337/
dc181581.

Examples

data(example_data_1_subject)
gmi(example_data_1_subject)

data(example_data_5_subject)
gmi(example_data_5_subject)

https://doi.org/10.2337/dc18-1581
https://doi.org/10.2337/dc18-1581

28 grade

grade Calculate mean GRADE score

Description

The function grade produces GRADE score values in a tibble object.

Usage

grade(data)

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for GRADE values
is returned. NA glucose values are omitted from the calculation of the GRADE.

GRADE score is calculated by 1/n∗
∑

[425∗(log(log(Gi/18))+.16)2] Where Gi is the ith Glucose
measurement and n is the total number of measurements.

Value

If a data.frame object is passed, then a tibble object with two columns: subject id and corresponding
GRADE value is returned. If a vector of glucose values is passed, then a tibble object with just the
GRADE value is returned. as.numeric() can be wrapped around the latter to output just a numeric
value.

References

Hill et al. (2007): A method for assessing quality of control from glucose profiles Diabetic Medicine
24 .753-758, doi:10.1111/j.14645491.2007.02119.x.

Examples

data(example_data_1_subject)
grade(example_data_1_subject)

data(example_data_5_subject)
grade(example_data_5_subject)

https://doi.org/10.1111/j.1464-5491.2007.02119.x

grade_eugly 29

grade_eugly Percentage of GRADE score attributable to target range

Description

The function grade_eugly produces %GRADE euglycemia values in a tibble object.

Usage

grade_eugly(data, lower = 70, upper = 140)

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

lower Lower bound used for hypoglycemia cutoff, in mg/dL. Default is 70

upper Upper bound used for hyperglycemia cutoff, in mg/dL. Default is 140.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for %GRADE
euglycemia values is returned. NA glucose values are omitted from the calculation of the %GRADE
euglycemia values.

%GRADE euglycemia is determined by calculating the percentage of GRADE score (see grade
function) attributed to values in the target range, i.e. values not below hypoglycemic or above
hyperglycemic cutoffs.

Value

If a data.frame object is passed, then a tibble object with two columns: subject id and corresponding
%GRADE euglycemia value is returned. If a vector of glucose values is passed, then a tibble object
with just the %GRADE euglycemia value is returned. as.numeric() can be wrapped around the
latter to output just a numeric value.

References

Hill et al. (2007): A method for assessing quality of control from glucose profiles Diabetic Medicine
24 .753-758, doi:10.1111/j.14645491.2007.02119.x.

Examples

data(example_data_1_subject)
grade_eugly(example_data_1_subject)
grade_eugly(example_data_1_subject, lower = 80, upper = 180)

data(example_data_5_subject)
grade_eugly(example_data_5_subject)

https://doi.org/10.1111/j.1464-5491.2007.02119.x

30 grade_hyper

grade_eugly(example_data_5_subject, lower = 80, upper = 160)

grade_hyper Percentage of GRADE score attributable to hyperglycemia

Description

The function grade_hyper produces %GRADE hyperglycemia values in a tibble object.

Usage

grade_hyper(data, upper = 140)

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

upper Upper bound used for hyperglycemia cutoff, in mg/dL. Default is 140.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for %GRADE
hyperglycemia values is returned. NA glucose values are omitted from the calculation of the
%GRADE hyperglycemia values.
%GRADE hyperglycemia is determined by calculating the percentage of GRADE score (see grade
function) attributed to hyperglycemic glucose values.

Value

If a data.frame object is passed, then a tibble object with two columns: subject id and corresponding
%GRADE hyperglycemia value is returned. If a vector of glucose values is passed, then a tibble ob-
ject with just the %GRADE hyperglycemia value is returned. as.numeric() can be wrapped around
the latter to output just a numeric value.

References

Hill et al. (2007): A method for assessing quality of control from glucose profiles Diabetic Medicine
24 .753-758, doi:10.1111/j.14645491.2007.02119.x.

Examples

data(example_data_1_subject)
grade_hyper(example_data_1_subject)
grade_hyper(example_data_1_subject, upper = 180)

data(example_data_5_subject)
grade_hyper(example_data_5_subject)
grade_hyper(example_data_5_subject, upper = 160)

https://doi.org/10.1111/j.1464-5491.2007.02119.x

grade_hypo 31

grade_hypo Percentage of GRADE score attributable to hypoglycemia

Description

The function grade_hypo produces %GRADE hypoglycemia values in a tibble object.

Usage

grade_hypo(data, lower = 80)

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

lower Lower bound used for hypoglycemia cutoff, in mg/dL. Default is 80

Details

A tibble object with 1 row for each subject, a column for subject id and a column for %GRADE hy-
poglycemia values is returned. NA glucose values are omitted from the calculation of the %GRADE
hypoglycemia values.

%GRADE hypoglycemia is determined by calculating the percentage of GRADE score (see grade
function) attributed to hypoglycemic glucose values.

Value

If a data.frame object is passed, then a tibble object with two columns: subject id and corresponding
%GRADE hypoglycemia value is returned. If a vector of glucose values is passed, then a tibble
object with just the %GRADE hypoglycemia value is returned. as.numeric() can be wrapped around
the latter to output just a numeric value.

References

Hill et al. (2007): A method for assessing quality of control from glucose profiles Diabetic Medicine
24 .753-758, doi:10.1111/j.14645491.2007.02119.x.

Examples

data(example_data_1_subject)
grade_hypo(example_data_1_subject)
grade_hypo(example_data_1_subject, lower = 70)

data(example_data_5_subject)
grade_hypo(example_data_5_subject)
grade_hypo(example_data_5_subject, lower = 65)

https://doi.org/10.1111/j.1464-5491.2007.02119.x

32 gri

gri Calculate Glycemia Risk Index (GRI)

Description

The function gri produces a tibble object with values equal to the glycemia risk index (GRI) metric.
The output columns are subject id and GRI value. ’ The output rows correspond to subjects.

Usage

gri(data, tz = "")

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

tz Default: "". A character string specifying the time zone to be used. System-
specific (see as.POSIXct), but " " is the current time zone, and "GMT" is UTC
(Universal Time, Coordinated). Invalid values are most commonly treated as
UTC, on some platforms with a warning.

Details

A tibble object with 1 row for each subject, a column for subject id and column for GRI is returned.
The formula for GRI is as follows:

(3.0V Low) + (2.4Low) + (1.6V High) + (0.8High)

where VLow, Low, VHigh, and High correspond to the percent of glucose values in the ranges <54
mg/dL, 54-70 mg/dL, >250 mg/dL, and 180-250 mg/dL respectively. The maximum allowed value
for GRI is 100%, any calculated values higher than 100 are capped.

Value

A tibble object with columns for subject id and GRI value. Rows correspond to individual subjects.

Author(s)

Elizabeth Chun

References

Klonoff et al. (2022) A Glycemia Risk Index (GRI) of Hypoglycemia and Hyperglycemia for Con-
tinuous Glucose Monitoring Validated by Clinician Ratings. J Diabetes Sci Technol doi:10.1177/
19322968221085273.

https://doi.org/10.1177/19322968221085273
https://doi.org/10.1177/19322968221085273

gvp 33

Examples

data(example_data_1_subject)
gri(example_data_1_subject)

data(example_data_5_subject)
gri(example_data_5_subject, tz = 'GMT')

gvp Calculate Glucose Variability Percentage (GVP)

Description

The function mad produces GVP values in a tibble object.

Usage

gvp(data)

Arguments

data DataFrame object with column names "id", "time", and "gl"

Details

A tibble object with 1 row for each subject, a column for subject id and a column for GVP values is
returned. NA glucose values are omitted from the calculation of the GVP.

GVP is calculated by dividing the total length of the line of the glucose trace by the length of a
perfectly flat trace. The formula for this is sqrt(diff2 + dt02)/(n ∗ dt0), where diff is the change
in Glucose measurements from one reading to the next, dt0 is the time gap between measurements
and n is the number of glucose readings

Value

A tibble object with two columns: subject id and corresponding GVP value.

Author(s)

David Buchanan, Mary Martin

References

Peyser et al. (2017) Glycemic Variability Percentage: A Novel Method for Assessing Glycemic
Variability from Continuous Glucose Monitor Data. Diabetes Technol Ther 20(1):6–16, doi:10.1089/
dia.2017.0187.

https://doi.org/10.1089/dia.2017.0187
https://doi.org/10.1089/dia.2017.0187

34 hbgi

Examples

data(example_data_1_subject)
gvp(example_data_1_subject)

data(example_data_5_subject)
gvp(example_data_5_subject)

hbgi Calculate High Blood Glucose Index (HBGI)

Description

The function hbgi produces HBGI values in a tibble object.

Usage

hbgi(data)

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for HBGI values
is returned. NA glucose values are omitted from the calculation of the HBGI.

HBGI is calculated by 1/n ∗
∑

(10 ∗ fg2i), where fgi = max(0, 1.509 ∗ (log(Gi)
1.084 − 5.381),

G_i is the ith Glucose measurement for a subject, and n is the total number of measurements for
that subject.

Value

If a data.frame object is passed, then a tibble object with two columns: subject id and corresponding
HBGI value is returned. If a vector of glucose values is passed, then a tibble object with just the
HBGI value is returned. as.numeric() can be wrapped around the latter to output just a numeric
value.

References

Kovatchev et al. (2006) Evaluation of a New Measure of Blood Glucose Variability in, Diabetes
Diabetes care 29 .2433-2438, doi:10.2337/dc061085.

https://doi.org/10.2337/dc06-1085

hist_roc 35

Examples

data(example_data_1_subject)
hbgi(example_data_1_subject)

data(example_data_5_subject)
hbgi(example_data_5_subject)

hist_roc Plot histogram of Rate of Change values (ROC)

Description

The function hist_roc produces a histogram plot of ROC values

Usage

hist_roc(data, subjects = NULL, timelag = 15, dt0 = NULL, inter_gap = 45, tz = "")

Arguments

data DataFrame object with column names "id", "time", and "gl".

subjects String or list of strings corresponding to subject names in ’id’ column of data.
Default is all subjects.

timelag Integer indicating the time period (# minutes) over which rate of change is cal-
culated. Default is 15, e.g. rate of change is the change in glucose over the past
15 minutes divided by 15.

dt0 The time frequency for interpolation in minutes, the default will match the CGM
meter’s frequency (e.g. 5 min for Dexcom).

inter_gap The maximum allowable gap (in minutes) for interpolation. The values will not
be interpolated between the glucose measurements that are more than inter_gap
minutes apart. The default value is 45 min.

tz A character string specifying the time zone to be used. System-specific (see
as.POSIXct), but " " is the current time zone, and "GMT" is UTC (Universal
Time, Coordinated). Invalid values are most commonly treated as UTC, on some
platforms with a warning.

Details

For the default, a histogram is produced for each subject displaying the ROC values colored by
ROC categories defined as follows. The breaks for the categories are: c(-Inf, -3, -2, -1, 1, 2, 3, Inf)
where the glucose is in mg/dl and the ROC values are in mg/dl/min. A ROC of -5 mg/dl/min will
thus be placed in the first category and colored accordingly.

Value

A histogram of ROC values per subject

36 hyper_index

Author(s)

Elizabeth Chun, David Buchanan

References

Clarke et al. (2009) Statistical Tools to Analyze Continuous Glucose Monitor Data, Diabetes Dia-
betes Technology and Therapeutics 11 S45-S54, doi:10.1089/dia.2008.0138.

See Also

plot_roc for reference paper on ROC categories.

Examples

data(example_data_1_subject)
hist_roc(example_data_1_subject)

data(example_data_5_subject)
hist_roc(example_data_5_subject)
hist_roc(example_data_5_subject, subjects = 'Subject 3')

hyper_index Calculate Hyperglycemia Index

Description

The function hyper_index produces Hyperglycemia Index values in a tibble object.

Usage

hyper_index(data, ULTR = 140, a = 1.1, c = 30)

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

ULTR Upper Limit of Target Range, default value is 140 mg/dL.

a Exponent, generally in the range from 1.0 to 2.0, default value is 1.1.

c Scaling factor, to display Hyperglycemia Index, Hypoglycemia Index, and IGC
on approximately the same numerical range as measurements of HBGI, LBGI
and GRADE, default value is 30.

https://doi.org/10.1089/dia.2008.0138

hypo_index 37

Details

A tibble object with 1 row for each subject, a column for subject id and a column for the Hy-
perglycemia Index values is returned. NA glucose values are omitted from the calculation of the
Hyperglycemia Index values.

Hyperglycemia Index is calculated by 1
n·c

∑
(hyperBGj − ULTR)

a. Here n is the total number
of Glucose measurements (excluding NA values), hyperBGj is the jth Glucose measurement above
the ULTR cutoff, a is an exponent, and c is a scaling factor.

Value

If a data.frame object is passed, then a tibble object with two columns: subject id and corresponding
Hyperglycemia Index value is returned. If a vector of glucose values is passed, then a tibble object
with just the Hyperglycemia Index value is returned. as.numeric() can be wrapped around the latter
to output just a numeric value.

References

Rodbard (2009) Interpretation of continuous glucose monitoring data: glycemic variability and
quality of glycemic control, Diabetes Technology and Therapeutics 11 .55-67, doi:10.1089/dia.2008.0132.

Examples

data(example_data_1_subject)
hyper_index(example_data_1_subject)
hyper_index(example_data_1_subject, ULTR = 160)

data(example_data_5_subject)
hyper_index(example_data_5_subject)
hyper_index(example_data_5_subject, ULTR = 150)

hypo_index Calculate Hypoglycemia Index

Description

The function hypo_index produces Hypoglycemia index values in a tibble object.

Usage

hypo_index(data, LLTR = 80, b = 2, d = 30)

https://doi.org/10.1089/dia.2008.0132

38 hypo_index

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

LLTR Lower Limit of Target Range, default value is 80 mg/dL.

b Exponent, generally in the range from 1.0 to 2.0, default value is 2.

d Scaling factor,to display Hyperglycemia Index, Hypoglycemia Index, and IGC
on approximately the same numerical range as measurements of HBGI, LBGI
and GRADE, default value is 30.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for the Hy-
poglycemia Index values is returned. NA glucose values are omitted from the calculation of the
Hypoglycemia Index values.

Hypoglycemia Index is calculated by 1
n·d

∑
(ULTR− hyperBGj)

b. Here n is the total number
of Glucose measurements (excluding NA values), and hypoBGj is the jth Glucose measurement
below the LLTR cutoff, b is an exponent, and d is a scaling factor.

Value

If a data.frame object is passed, then a tibble object with two columns: subject id and corresponding
Hypoglycemia Index value is returned. If a vector of glucose values is passed, then a tibble object
with just the Hypoglycemia Index value is returned. as.numeric() can be wrapped around the latter
to output just a numeric value.

References

Rodbard (2009) Interpretation of continuous glucose monitoring data: glycemic variability and
quality of glycemic control, Diabetes Technology and Therapeutics 11 .55-67, doi:10.1089/dia.2008.0132.

Examples

data(example_data_1_subject)
hypo_index(example_data_1_subject, LLTR = 60)

data(example_data_5_subject)
hypo_index(example_data_5_subject)
hypo_index(example_data_5_subject, LLTR = 70)

https://doi.org/10.1089/dia.2008.0132

igc 39

igc Calculate Index of Glycemic Control

Description

The function igc produces IGC values in a tibble object.

Usage

igc(data, LLTR = 80, ULTR = 140, a = 1.1, b = 2, c = 30, d = 30)

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

LLTR Lower Limit of Target Range, default value is 80 mg/dL.

ULTR Upper Limit of Target Range, default value is 140 mg/dL.

a Exponent, generally in the range from 1.0 to 2.0, default value is 1.1.

b Exponent, generally in the range from 1.0 to 2.0, default value is 2.

c Scaling factor, to display Hyperglycemia Index, Hypoglycemia Index, and IGC
on approximately the same numerical range as measurements of HBGI, LBGI
and GRADE, default value is 30.

d Scaling factor,to display Hyperglycemia Index, Hypoglycemia Index, and IGC
on approximately the same numerical range as measurements of HBGI, LBGI
and GRADE, default value is 30.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for the IGC values
is returned.

IGC is calculated by taking the sum of the Hyperglycemia Index and the Hypoglycemia index. See
hypo_index and hyper_index.

Value

A tibble object with two columns: subject id and corresponding IGC value.

References

Rodbard (2009) Interpretation of continuous glucose monitoring data: glycemic variability and
quality of glycemic control, Diabetes Technology and Therapeutics 11 .55-67, doi:10.1089/dia.2008.0132.

https://doi.org/10.1089/dia.2008.0132

40 in_range_percent

Examples

data(example_data_1_subject)
igc(example_data_1_subject)
igc(example_data_1_subject, ULTR = 160)

data(example_data_5_subject)
igc(example_data_5_subject)
igc(example_data_5_subject, LLTR = 75, ULTR = 150)

iglu_shiny Run IGLU Shiny App

Description

Run IGLU Shiny App

Usage

iglu_shiny()

in_range_percent Calculate percentage in targeted value ranges

Description

The function in_range_percent produces a tibble object with values equal to the percentage of glu-
cose measurements in ranges of target values. The output columns correspond to subject id followed
by the target value ranges, and the rows correspond to the subjects. The values will be between 0
(no measurements) and 100 (all measurements).

Usage

in_range_percent(data, target_ranges = list(c(70, 180), c(63, 140)))

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

target_ranges List of target value ranges wrapped in an r ’list’ structure. Default list of ranges
is ((70, 180), (63, 140)) mg/dL, where the range (70, 180) is recommended to
assess glycemic control for subjects with type 1 or type 2 diabetes, and (63,
140) is recommended for assessment of glycemic control during pregnancy; see
Battelino et al. (2019)

iqr_glu 41

Details

A tibble object with 1 row for each subject, a column for subject id and column for each range of
target values is returned. NA’s will be omitted from the glucose values in calculation of percent.

in_range_percent will only work properly if the target_ranges argument is a list of paired values in
the format list(c(a1,b1), c(a2,b2), ...). The paired values can be ordered (min, max) or (max, min).
See the Examples section for proper usage.

Value

If a data.frame object is passed, then a tibble object with a column for subject id and then a column
for each target value is returned. If a vector of glucose values is passed, then a tibble object without
the subject id is returned. as.numeric() can be wrapped around the latter to output a numeric vector.

References

Rodbard (2009) Interpretation of continuous glucose monitoring data: glycemic variability and
quality of glycemic control, Diabetes Technology and Therapeutics 11 .55-67, doi:10.1089/dia.2008.0132.

Battelino et al. (2019) Clinical targets for continuous glucose monitoring data interpretation: rec-
ommendations from the international consensus on time in range. Diabetes Care 42(8):1593-603,
doi:10.2337/dci190028

See Also

plot_ranges()

Examples

data(example_data_1_subject)

in_range_percent(example_data_1_subject)
in_range_percent(example_data_1_subject, target_ranges = list(c(50, 100), c(200,
300), c(80, 140)))

data(example_data_5_subject)

in_range_percent(example_data_5_subject)
in_range_percent(example_data_1_subject, target_ranges = list(c(60, 120), c(140,
250)))

iqr_glu Calculate glucose level iqr

Description

The function iqr_glu outputs the distance between the 25th percentile and the 25th percentile of the
glucose values in a tibble object.

https://doi.org/10.1089/dia.2008.0132
https://doi.org/10.2337/dci19-0028

42 j_index

Usage

iqr_glu(data)

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for the IQR values
is returned. NA glucose values are omitted from the calculation of the IQR.

Value

If a data.frame object is passed, then a tibble object with two columns: subject id and corresponding
IQR value is returned. If a vector of glucose values is passed, then a tibble object with just the IQR
value is returned. as.numeric() can be wrapped around the latter to output just a numeric value.

Examples

data(example_data_1_subject)
iqr_glu(example_data_1_subject)

data(example_data_5_subject)
iqr_glu(example_data_5_subject)

j_index Calculate J-index

Description

The function j_index produces J-Index values a tibble object.

Usage

j_index(data)

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

lbgi 43

Details

A tibble object with 1 row for each subject, a column for subject id and a column for J-Index values
is returned. NA glucose values are omitted from the calculation of the J-Index.

J-Index score is calculated by .001 ∗ [mean(G) + sd(G)]2 where G is the list of Glucose Measure-
ments.

Value

If a data.frame object is passed, then a tibble object with two columns: subject id and corresponding
J-Index value is returned. If a vector of glucose values is passed, then a tibble object with just the
J-Index value is returned. as.numeric() can be wrapped around the latter to output just a numeric
value.

References

Wojcicki (1995) "J"-index. A new proposition of the assessment of current glucose control in
diabetic patients Hormone and Metabolic Research 27 .41-42, doi:10.1055/s2007979906.

Examples

data(example_data_1_subject)
j_index(example_data_1_subject)

data(example_data_5_subject)
j_index(example_data_5_subject)

lbgi Calculate Low Blood Glucose Index (LBGI)

Description

The function lbgi produces LBGI values in a tibble object.

Usage

lbgi(data)

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

https://doi.org/10.1055/s-2007-979906

44 mad_glu

Details

A tibble object with 1 row for each subject, a column for subject id and a column for LBGI values
is returned. NA glucose values are omitted from the calculation of the LBGI.

LBGI is calculated by 1/n ∗
∑

(10 ∗ fbg2i), where fbgi = min(0, 1.509 ∗ (log(Gi)
1.084 − 5.381),

G_i is the ith Glucose measurement for a subject, and n is the total number of measurements for
that subject.

Value

If a data.frame object is passed, then a tibble object with two columns: subject id and corresponding
LBGI value is returned. If a vector of glucose values is passed, then a tibble object with just the
LBGI value is returned. as.numeric() can be wrapped around the latter to output just a numeric
value.

References

Kovatchev et al. (2006) Evaluation of a New Measure of Blood Glucose Variability in, Diabetes
Diabetes care 29 .2433-2438, doi:10.2337/dc061085.

Examples

data(example_data_1_subject)
lbgi(example_data_1_subject)

data(example_data_5_subject)
lbgi(example_data_5_subject)

mad_glu Calculate Median Absolute Deviation (MAD)

Description

The function mad produces MAD values in a tibble object.

Usage

mad_glu(data, constant = 1.4826)

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

constant Numeric object which will be multipled by the MAD value. Defaults to 1.4826.
Reasons for this default value can be seen in the details section of the documen-
tation of r’s base mad method

https://doi.org/10.2337/dc06-1085

mag 45

Details

A tibble object with 1 row for each subject, a column for subject id and a column for MAD values
is returned. NA glucose values are omitted from the calculation of the MAD.

MAD is calculated by taking the median of the difference of the glucose readings from their median
and multiplying it by a scaling factor 1.4826 ∗median(|gl −median(gl)|), where gl is the list of
Glucose measurements.

Value

If a data.frame object is passed, then a tibble object with two columns: subject id and corresponding
MAD value is returned. If a vector of glucose values is passed, then a tibble object with just the
MAD value is returned. as.numeric() can be wrapped around the latter to output just a numeric
value.

Author(s)

David Buchanan, Marielle Hicban

Examples

data(example_data_1_subject)
mad_glu(example_data_1_subject)

data(example_data_5_subject)
mad_glu(example_data_5_subject)

mag Calculate the Mean Absolute Glucose (MAG)

Description

The function mag calculates the mean absolute glucose or MAG.

Usage

mag(data, n = 60, dt0 = NULL, inter_gap = 45, tz = "")

Arguments

data DataFrame object with column names "id", "time", and "gl".

n Integer giving the desired interval in minutes over which to calculate the change
in glucose. Default is 60 to have hourly (60 minutes) intervals.

dt0 The time frequency for interpolation in minutes, the default will match the CGM
meter’s frequency (e.g. 5 min for Dexcom).

46 mage

inter_gap The maximum allowable gap (in minutes) for interpolation. The values will not
be interpolated between the glucose measurements that are more than inter_gap
minutes apart. The default value is 45 min.

tz A character string specifying the time zone to be used. System-specific (see
as.POSIXct), but " " is the current time zone, and "GMT" is UTC (Universal
Time, Coordinated). Invalid values are most commonly treated as UTC, on some
platforms with a warning.

Details

A tibble object with a column for subject id and a column for MAG values is returned.

The glucose values are linearly interpolated over a time grid starting at the beginning of the first day
of data and ending on the last day of data. Then, MAG is calculated as |∆G|

∆t where |∆G| is the sum
of the absolute change in glucose calculated for each interval as specified by n, default n = 60 for
hourly change in glucose. The sum is then divided by ∆t which is the total time in hours.

Value

A tibble object with two columns: subject id and MAG value

Author(s)

Elizabeth Chun

References

Hermanides et al. (2010) Glucose Variability is Associated with Intensive Care Unit Mortaility,
Critical Care Medicine 38(3) 838-842, doi:10.1097/CCM.0b013e3181cc4be9

Examples

data(example_data_1_subject)
mag(example_data_1_subject)

data(example_data_5_subject)
mag(example_data_5_subject)

mage Calculate Mean Amplitude of Glycemic Excursions

Description

The function calculates MAGE values and can optionally return a plot of the glucose trace.

https://doi.org/10.1097/CCM.0b013e3181cc4be9

mage 47

Usage

mage(
data,
version = c("ma", "naive"),
sd_multiplier = 1,
short_ma = 5,
long_ma = 32,
return_type = c("num", "df"),
direction = c("avg", "service", "max", "plus", "minus"),
tz = "",
inter_gap = 45,
max_gap = 180,
plot = FALSE,
title = NA,
xlab = NA,
ylab = NA,
show_ma = FALSE,
show_excursions = TRUE

)

Arguments

data DataFrame object with column names "id", "time", and "gl" OR numeric vector
of glucose values.

version Either 'ma' or 'naive'. Default: ’ma’. Chooses which version of the MAGE
algorithm to use. 'ma' algorithm is more accurate, and is the default. Earlier
versions of iglu package (<=2.0.0) used 'naive'.

sd_multiplier A numeric value that can change the sd value used to determine size of glycemic
excursions used in the calculation. This is the only parameter that can be speci-
fied for version = "naive", and it is ignored if version = "ma".

short_ma Default: 5. Integer for period length of the short moving average. Must be
positive and less than ‘long_ma‘. (Recommended <15)

long_ma Default: 32. Integer for period length for the long moving average. Must be
positive and greater than ‘short_ma‘. (Recommended >20)

return_type Default: "num". One of ("num", "df"). Will return either a single number for
the "MAGE over the entire trace" (weighted by segment length) or a DataFrame
with the MAGE value for each segment (see the MAGE vignette for discussion
of handling large gaps by splitting trace into multiple segments).

direction Default: "avg". One of ("avg", "service", "max", "plus", or "minus"). Al-
gorithm will calculate one of the following: MAGE+ (nadir to peak), MAGE-
(peak to nadir), MAGEavg = avg(MAGE+, MAGE-), MAGEmax = max(MAGE+,
MAGE-), or automatically choose MAGE+/MAGE- based on the first countable
excursion (i.e., "service"). NOTE: the selection of peak-to-nadir or nadir-to-
peak is chosen independently on each segment, thus MAGEservice may choose
peak-to-nadir on one segment and nadir-to-peak on another, for example.

48 mage

tz A character string specifying the time zone to be used. System-specific (see
as.POSIXct), but " " is the current time zone, and "GMT" is UTC (Universal
Time, Coordinated). Invalid values are most commonly treated as UTC, on some
platforms with a warning.

inter_gap The maximum allowable gap (in minutes) for interpolation. The values will not
be interpolated between the glucose measurements that are more than inter_gap
minutes apart. The default value is 45 min.

max_gap Default: 180. Integer for the maximum length of a gap in minutes before the
trace is split into segments and MAGE is calculated on each segment indepen-
dently.

plot Default: FALSE. Boolean. If ‘TRUE‘, returns a plot that visualizes all identi-
fied peaks and nadirs, excursions, and missing gaps. An interactive GUI can be
loaded with ‘static_or_gui = ’plotly’‘.

title Default: "Glucose Trace - Subject [ID]". Title for the ggplot.

xlab Default: "Time". Label for x-axis of ggplot.

ylab Default: "Glucose Level". Label for y-axis of ggplot.

show_ma Default: FALSE. Boolean. If TRUE, plots the moving average lines on the plot.

show_excursions

Default: TRUE. Boolean. If TRUE, shows identified excursions as arrows from
peak-to-nadir/nadir-to-peak on the plot.

Details

If version 'ma' is selected, the function computationally emulates the manual method for calcu-
lating the mean amplitude of glycemic excursions (MAGE) first suggested in "Mean Amplitude of
Glycemic Excursions, a Measure of Diabetic Instability", (Service, 1970). For this version, glucose
values will be interpolated over a uniform time grid prior to calculation.

'ma' is a more accurate algorithm that uses the crosses of a short and long moving average to
identify intervals where a peak/nadir might exist. Then, the height from one peak/nadir to the next
nadir/peak is calculated from the _original_ (not moving average) glucose values. (Note: this func-
tion internally uses CGMS2DayByDay with dt0 = 5. Thus, all CGM data is linearly interpolated to
5 minute intervals. See the MAGE vignette for more details.)

'naive' algorithm calculates MAGE by taking the mean of absolute glucose differences (between
each value and the mean) that are greater than the standard deviation. A multiplier can be added to
the standard deviation using the sd_multiplier argument.

Value

A tibble object with two columns: the subject id and corresponding MAGE value. If a vector of
glucose values is passed, then a tibble object with just the MAGE value is returned.

In version = "ma", if plot = TRUE, a list of ggplots will be returned with one plot per subject.
To return an interactive plot, use iglu::mage_ma_single with static_or_gui='plotly' on each
subject individually.

mage_ma_single 49

References

Service et al. (1970) Mean amplitude of glycemic excursions, a measure of diabetic instability
Diabetes 19 .644-655, doi:10.2337/diab.19.9.644.

Fernandes, Nathaniel J., et al. "Open-source algorithm to calculate mean amplitude of glycemic
excursions using short and long moving averages." Journal of diabetes science and technology 16.2
(2022): 576-577. doi:10.1177/19322968211061165

Examples

data(example_data_5_subject)
mage(example_data_5_subject, version = 'ma')
mage(example_data_5_subject, return_type='df')

mage_ma_single Calculates Mean Amplitude of Glycemic Excursions (see "mage")

Description

This function is an internal function used ‘mage‘. The function will calculate the Mean Amplitude
of Glycemic Excursions (MAGE) on all the values of the inputted data set regardless of subject. To
calculate separate MAGE values for a group of subjects, use the ‘mage‘ function.

Usage

mage_ma_single(
data,
short_ma = 5,
long_ma = 32,
return_type = c("num", "df"),
direction = c("avg", "service", "max", "plus", "minus"),
tz = "",
inter_gap = 45,
max_gap = 180,
plot = FALSE,
title = NA,
xlab = NA,
ylab = NA,
show_ma = FALSE,
show_excursions = TRUE,
static_or_gui = c("plotly", "ggplot")

)

Arguments

data DataFrame object with column names "id", "time", and "gl". Should only be
data for 1 subject. In case multiple subject ids are detected, a warning is pro-
duced and only 1st subject is used.

https://doi.org/10.2337/diab.19.9.644
https://doi.org/10.1177/19322968211061165

50 mage_ma_single

short_ma Default: 5. Integer for period length of the short moving average. Must be
positive and less than ‘long_ma‘. (Recommended <15)

long_ma Default: 32. Integer for period length for the long moving average. Must be
positive and greater than ‘short_ma‘. (Recommended >20)

return_type Default: "num". One of ("num", "df"). Will return either a single number for
the "MAGE over the entire trace" (weighted by segment length) or a DataFrame
with the MAGE value for each segment (see the MAGE vignette for discussion
of handling large gaps by splitting trace into multiple segments).

direction Default: "avg". One of ("avg", "service", "max", "plus", or "minus"). Al-
gorithm will calculate one of the following: MAGE+ (nadir to peak), MAGE-
(peak to nadir), MAGEavg = avg(MAGE+, MAGE-), MAGEmax = max(MAGE+,
MAGE-), or automatically choose MAGE+/MAGE- based on the first countable
excursion (i.e., "service"). NOTE: the selection of peak-to-nadir or nadir-to-
peak is chosen independently on each segment, thus MAGEservice may choose
peak-to-nadir on one segment and nadir-to-peak on another, for example.

tz A character string specifying the time zone to be used. System-specific (see
as.POSIXct), but " " is the current time zone, and "GMT" is UTC (Universal
Time, Coordinated). Invalid values are most commonly treated as UTC, on some
platforms with a warning.

inter_gap The maximum allowable gap (in minutes) for interpolation. The values will not
be interpolated between the glucose measurements that are more than inter_gap
minutes apart. The default value is 45 min.

max_gap Default: 180. Integer for the maximum length of a gap in minutes before the
trace is split into segments and MAGE is calculated on each segment indepen-
dently.

plot Default: FALSE. Boolean. If ‘TRUE‘, returns a plot that visualizes all identi-
fied peaks and nadirs, excursions, and missing gaps. An interactive GUI can be
loaded with ‘static_or_gui = ’plotly’‘.

title Default: "Glucose Trace - Subject [ID]". Title for the ggplot.
xlab Default: "Time". Label for x-axis of ggplot.
ylab Default: "Glucose Level". Label for y-axis of ggplot.
show_ma Default: FALSE. Boolean. If TRUE, plots the moving average lines on the plot.
show_excursions

Default: TRUE. Boolean. If TRUE, shows identified excursions as arrows from
peak-to-nadir/nadir-to-peak on the plot.

static_or_gui Default: "plotly". One of "ggplot" or "plotly". Returns either a ggplot (static
image) or Plotly chart (interactive GUI).

Details

See ‘mage‘.

Value

A ggplot or Plotly chart if plot = TRUE, depending on static_or_gui. Otherwise, a numeric
MAGE value for the inputted glucose trace or a DataFrame with the MAGE values on each segment,
depending on return_type.

meal_metrics 51

Author(s)

Nathaniel J. Fernandes

Examples

data(example_data_1_subject)
mage_ma_single(

example_data_1_subject,
short_ma = 4,
long_ma = 24,
direction = 'plus')

mage_ma_single(
example_data_1_subject,
inter_gap = 300)

mage_ma_single(
example_data_1_subject,
plot=TRUE,
static_or_gui='ggplot',
title="Patient X",
xlab="Time",
ylab="Glucose Level (mg/dL)",
show_ma=FALSE)

meal_metrics Calculate Meal Metrics

Description

The function meal_metrics calculates three simple glucose meal metrics

Usage

meal_metrics(data, mealtimes, before_win = 1, after_win = 3,
recovery_win = 1, interpolate = TRUE, adjust_mealtimes = TRUE, dt0 = NULL,
inter_gap = 45, tz = "", glucose_times = FALSE)

Arguments

data DataFrame object with column names "id", "time", and "gl". Should only be
data for 1 subject. In case multiple subject ids are detected, a warning is pro-
duced and only 1st subject is used.

mealtimes Either a vector of mealtimes, corresponding to data being from a single subject,
OR a dataframe with at least 2 columns labeled id and mealtime. Optionally the
mealtimes dataframe can include a column labeled meal, giving the meal type
(helps to compensate for overlapping meals)

before_win integer specifying number of hours to extend window before meal

52 meal_metrics

after_win integer specifying number of hours to extend window after meal

recovery_win interger specifying number of hours for recovery beyond after window

interpolate Boolean to indicate if CGM data should be interpolated or not. Default set to
FALSE due to time intensive nature of interpolation. Parameters dt0, inter_gap,
and tz will only be used if interpolate is set to TRUE.

adjust_mealtimes

Boolean to indicate if function should attempt to align mealtimes with CGM
data times. This is important if mealtimes and CGM data times are not exactly
aligned, because the function will return NA’s for mealtimes that don’t match
with a corresponding CGM time stamp.

dt0 The time frequency for interpolation in minutes, the default will match the CGM
meter’s frequency (e.g. 5 min for Dexcom).

inter_gap The maximum allowable gap (in minutes) for interpolation. The values will not
be interpolated between the glucose measurements that are more than inter_gap
minutes apart. The default value is 45 min.

tz A character string specifying the time zone to be used. System-specific (see
as.POSIXct), but " " is the current time zone, and "GMT" is UTC (Universal
Time, Coordinated). Invalid values are most commonly treated as UTC, on some
platforms with a warning.

glucose_times Boolean to indicate if underlying glucose and times should be returned - e.g.
baseline glucose value used to calculate DeltaG. Intended for use in plotting
function

Details

A tibble object is returned with three metrics calculated for each mealtime. The last three columns
of the output correspond to the three metrics: deltag refers to ∆G, deltat is ∆T , and basereco is
% Baseline recovery. If no meal column is given in the original data, one will be automatically
generated with a unique number for each meal.

Value

By default tibble object with 6 columns will be returned: id, time, meal, deltag, deltat, and basereco.
If glucose_times = TRUE then 5 more columns are returned for baseline glucose (basegl), peak
glucose (peakgl), recover glucose (recovergl), peak timestamp (peaktime), and recovery timestamp
(recovertime)

References

Service, F. John. (2013) Glucose Variability, Diabetes 62(5): 1398-1404, doi:10.2337/db121396

See Also

plot_meals()

https://doi.org/10.2337/db12-1396

mean_glu 53

Examples

data(example_data_hall)
data(example_meals_hall)
meal_metrics(example_data_hall, example_meals_hall)

mean_glu Calculate mean glucose level

Description

The function mean_glu is a wrapper for the base function mean(). Output is a tibble object with
subject id and mean values.

Usage

mean_glu(data)

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for the mean
values is returned. NA glucose values are omitted from the calculation of the mean.

Value

If a data.frame object is passed, then a tibble object with two columns: subject id and corresponding
mean value is returned. If a vector of glucose values is passed, then a tibble object with just the
mean value is returned. as.numeric() can be wrapped around the latter to output just a numeric
value.

Examples

data(example_data_1_subject)
mean_glu(example_data_1_subject)

data(example_data_5_subject)
mean_glu(example_data_5_subject)

54 median_glu

median_glu Calculate median glucose level

Description

The function median_glu is a wrapper for the base function median(). Output is a tibble object with
subject id and median values.

Usage

median_glu(data)

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for the median
values is returned. NA glucose values are omitted from the calculation of the median.

Value

If a data.frame object is passed, then a tibble object with two columns: subject id and corresponding
median value is returned. If a vector of glucose values is passed, then a tibble object with just the
median value is returned. as.numeric() can be wrapped around the latter to output just a numeric
value.

Examples

data(example_data_1_subject)
median_glu(example_data_1_subject)

data(example_data_5_subject)
median_glu(example_data_5_subject)

metrics_heatmap 55

metrics_heatmap Create a heatmap of metric values by subject based on hierarchical
clustering order

Description

Create a heatmap of metric values by subject based on hierarchical clustering order

Usage

metrics_heatmap(
data = NULL,
metrics = NULL,
metric_cluster = 6,
clustering_method = "complete",
clustering_distance_metrics = "correlation",
clustering_distance_subjects = "correlation",
tz = ""

)

Arguments

data DataFrame object with column names "id", "time", and "gl".

metrics precalculated metric values, with first column corresponding to subject id. If
’NULL’, the metrics are calculated from supplied ’data’ using all_metrics

metric_cluster number of visual metric clusters, default value is 6
clustering_method

the agglomeration method for hierarchical clustering, accepts same values as
hclust, default value is ’complete’

clustering_distance_metrics

the distance measure for metrics clustering, accepts same values as dist, default
value is ’correlation’ distance

clustering_distance_subjects

the distance measure for subjects clustering, accepts same values as dist, de-
fault value is ’correlation’ distance

tz Default: "". A character string specifying the time zone to be used. System-
specific (see as.POSIXct), but " " is the current time zone, and "GMT" is UTC
(Universal Time, Coordinated). Invalid values are most commonly treated as
UTC, on some platforms with a warning.

Value

A heatmap of metrics by subjects generated via pheatmap

56 modd

Examples

Using pre-calculated sd metrics only rather than default (all metrics)
mecs = sd_measures(example_data_5_subject)
metrics_heatmap(metrics = mecs)

modd Calculate mean difference between glucose values obtained at the
same time of day (MODD)

Description

The function modd produces MODD values in a tibble object.

Usage

modd(data, lag = 1, tz = "")

Arguments

data DataFrame object with column names "id", "time", and "gl".

lag Integer indicating which lag (# days) to use. Default is 1.

tz A character string specifying the time zone to be used. System-specific (see
as.POSIXct), but " " is the current time zone, and "GMT" is UTC (Universal
Time, Coordinated). Invalid values are most commonly treated as UTC, on some
platforms with a warning.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for the MODD
values is returned.

Missing values will be linearly interpolated when close enough to non-missing values.

MODD is calculated by taking the mean of absolute differences between measurements at the same
time 1 day away, or more if lag parameter is set to an integer > 1.

Value

A tibble object with two columns: subject id and corresponding MODD value.

References

Service, F. J. & Nelson, R. L. (1980) Characteristics of glycemic stability. Diabetes care 3 .58-62,
doi:10.2337/diacare.3.1.58.

https://doi.org/10.2337/diacare.3.1.58

m_value 57

Examples

data(example_data_1_subject)
modd(example_data_1_subject)
modd(example_data_1_subject, lag = 2)

data(example_data_5_subject)
modd(example_data_5_subject, lag = 2)

m_value Calculate the M-value

Description

Calculates the M-value of Schlichtkrull et al. (1965) for each subject in the data, where the M-value
is the mean of the logarithmic transformation of the deviation from a reference value. Produces a
tibble object with subject id and M-values.

Usage

m_value(data, r = 90)

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

r A reference value corresponding to basal glycemia in normal subjects; default
is 90 mg/dL.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for the M-values
is returned. NA glucose values are omitted from the calculation of the M-value.

M-value is computed by averaging the transformed glucose values, where each transformed value
is equal to |10 ∗ log10(glucose/r)|3, where r is the specified reference value.

Value

If a data.frame object is passed, then a tibble object with two columns: subject id and corresponding
M-value is returned. If a vector of glucose values is passed, then a tibble object with just the M-value
is returned. as.numeric() can be wrapped around the latter to output just a numeric value.

References

Schlichtkrull J, Munck O, Jersild M. (1965) The M-value, an index of blood-sugar control in dia-
betics. Acta Medica Scandinavica 177 .95-102. doi:10.1111/j.09546820.1965.tb01810.x.

https://doi.org/10.1111/j.0954-6820.1965.tb01810.x

58 optimized_iglu_functions

Examples

data(example_data_5_subject)

m_value(example_data_5_subject)
m_value(example_data_5_subject, r = 100)

optimized_iglu_functions

Optimized Calculations of Time Dependent iglu Metrics

Description

The function optimized_iglu_functions optimizes the calculation of all time dependent iglu metrics
by extracting the CGMS2DayByDay calculation and passing the result into each function.

Usage

optimized_iglu_functions(data, dt0 = NULL, inter_gap = 45, tz = "", timelag = 15, lag = 1)

Arguments

data DataFrame object with column names "id", "time", and "gl".

dt0 The time frequency for interpolation in minutes, the default will match the CGM
meter’s frequency (e.g. 5 min for Dexcom).

inter_gap The maximum allowable gap (in minutes) for interpolation. The values will not
be interpolated between the glucose measurements that are more than inter_gap
minutes apart. The default value is 45 min.

tz A character string specifying the time zone to be used. System-specific (see
as.POSIXct), but " " is the current time zone, and "GMT" is UTC (Universal
Time, Coordinated). Invalid values are most commonly treated as UTC, on some
platforms with a warning.

timelag Integer indicating the time period (# minutes) over which rate of change is cal-
culated. Default is 15, e.g. rate of change is the change in glucose over the past
15 minutes divided by 15.

lag Integer indicating which lag (# days) to use. Default is 1.

Details

Returns a tibble object with 1 row for each subject and a column for each metric. This function
includes time dependent iglu metrics only. For metric specific information, please see the corre-
sponding function documentation.

Value

If a data.frame object is passed, then a tibble object with 1 row for each subject and one column for
each metric is returned.

pgs 59

Examples

data(example_data_1_subject)
optimized_iglu_functions(example_data_1_subject)

Pass some arguments to possibly change the defaults
optimized_iglu_functions(example_data_1_subject, dt0 = 5, inter_gap = 30)

data(example_data_5_subject)
optimized_iglu_functions(example_data_5_subject)

pgs Calculate Personal Glycemic State (PGS)

Description

The function mad produces PGS values in a tibble object.

Usage

pgs(data, dur_length = 20, end_length = 30)

Arguments

data DataFrame object with column names "id", "time", and "gl". Should only be
data for 1 subject. In case multiple subject ids are detected, a warning is pro-
duced and only 1st subject is used.

dur_length Numeric value specifying the minimum duration in minutes to be considered an
episode. Note dur_length should be a multiple of the data recording interval oth-
erwise the function will round up to the nearest multiple. Default is 20 minutes
to match the original PGS definition.

end_length Numeric value specifying the minimum duration in minutes of improved glycemia
for an episode to end. Default is 30 minutes to match original PGS definition.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for PGS values is
returned. NA glucose values are omitted from the calculation. The formula for PGS is as follows,
where GVP = glucose variability percentage, MG = mean glucose, PTIR = percent time in range,
and N54, N70 are the number of hypoglycemic episodes per week in the ranges <54 mg/dL and 54
to <70 mg/dL level respectively.

PGS = f(GV P) + g(MG) + h(PTIR) + j(N54, N70)

The component functions are listed below.

60 plot_agp

f(GV P) = 1+
9

1 + exp(−0.049(GV P − 65.47))
g(MG) = 1+9(

1

1 + exp(0.1139(MG− 72.08))
+

1

1 + exp(−0.09195(MG− 157.57))
)h(PTIR) = 1+

9

1 + exp(0.0833(PTIR− 55.04))
j(N54, N70) = a(N54)+b(N70)a(N54) = 0.5+4.5(1−exp(−0.91093N54)

and b(N70) is defined such that b(N70) = 0.5714N70 + 0.625 if N70 <= 7.65, and b(N70) = 5
otherwise.

Note that the duration thresholds for episodes are NOT the same as the episode_calculation defaults.
The defaults chosen for PGS are those that match the original PGS paper definition, while the
episode_calculation defaults match the consensus.

Value

A tibble object with two columns: subject id and corresponding PGS value.

Author(s)

Elizabeth Chun

References

Hirsch et al. (2017): A Simple Composite Metric for the Assessment of Glycemic Status from
Continuous Glucose Monitoring Data: Implications for Clinical Practice and the Artificial Pancreas
Diabetes Technol Ther 19(S3) .S38-S48, doi:10.1089/dia.2017.0080.

See Also

episode_calculation()

Examples

data(example_data_1_subject)
pgs(example_data_1_subject)

plot_agp Plot Ambulatory Glucose Profile (AGP) modal day

Description

The function plot_agp produces an AGP plot that collapses all data into a single 24 hr "modal day".

Usage

plot_agp(data, LLTR = 70, ULTR = 180, smooth = TRUE, span = 0.3, dt0 = NULL,
inter_gap = 45, tz = "", title = FALSE)

https://doi.org/10.1089/dia.2017.0080

plot_agp 61

Arguments

data DataFrame object with column names "id", "time", and "gl". Should only be
data for 1 subject. In case multiple subject ids are detected, a warning is pro-
duced and only 1st subject is used.

LLTR Default: 70. Lower Limit of Target Range in mg/dL.

ULTR Default: 180. Upper Limit of Target Range in mg/dL.

smooth Boolean indicating whether quantiles should be smoothed before plotting, de-
fault is TRUE

span Optional parameter indicating span for loess smoothing. Default is 0.3, larger
values result in more smoothing, recommended to choose between 0.1 to 0.7.

dt0 The time frequency for interpolation in minutes, the default will match the CGM
meter’s frequency (e.g. 5 min for Dexcom).

inter_gap The maximum allowable gap (in minutes) for interpolation. The values will not
be interpolated between the glucose measurements that are more than inter_gap
minutes apart. The default value is 45 min.

tz A character string specifying the time zone to be used. System-specific (see
as.POSIXct), but " " is the current time zone, and "GMT" is UTC (Universal
Time, Coordinated). Invalid values are most commonly treated as UTC, on some
platforms with a warning.

title Indicator whether the title of the plot should display the subject ID. The default
is FALSE (no title).

Details

Only a single subject’s data may be plotted. If smooth = TRUE, then the quantiles are loess
smoothed with the specified span before plotting. The horizontal green lines represent the target
range, default is 70-180 mg/dL. The black line is the median glucose value for each time of day.
The dark blue shaded area represents 50% of glucose values - those between the 25th and 75 quan-
tiles. The light blue shaded area shows 90% of the glucose values - those between the 5th and 95th
quantiles. Additionally, the percents shown on the right hand side of the plot show which quantiles
each line refers to - e.g. the line ending at 95% is the line corresponding to the 95th quantiles of
glucose values.

Value

Plot of a 24 hr modal day collapsing all data to a single day.

Author(s)

Elizabeth Chun

References

Johnson et al. (2019) Utilizing the Ambulatory Glucose Profile to Standardize and Implement
Continuous Glucose Monitoring in Clinical Practice, Diabetes Technology and Therapeutics 21:S2
S2-17-S2-25, doi:10.1089/dia.2019.0034.

https://doi.org/10.1089/dia.2019.0034

62 plot_daily

Examples

data(example_data_1_subject)
plot_agp(example_data_1_subject)

plot_daily Plot daily glucose profiles

Description

The function ‘plot_daily‘ plots daily glucose time series profiles for a single subject.

Usage

plot_daily(data, maxd = 14, LLTR = 70, ULTR = 180, inter_gap = 45, tz = "")

Arguments

data DataFrame with column names ("id", "time", and "gl").

maxd Default: 14. Number of days to plot. If less than ‘maxd‘ days of data are
available, all days are plotted.

LLTR Default: 70. Lower Limit of Target Range in mg/dL.

ULTR Default: 180. Upper Limit of Target Range in mg/dL.

inter_gap Default: 45. The maximum allowable gap (in minutes). Gaps larger than this
will not be connected in the time series plot.

tz A character string specifying the time zone to be used. System-specific (see
as.POSIXct), but " " is the current time zone, and "GMT" is UTC (Universal
Time, Coordinated). Invalid values are most commonly treated as UTC, on some
platforms with a warning.

Details

Only a single subject’s data may be plotted. The black line shows the glucose values. The shaded
gray area shows the target range, default 70-180 mg/dL. Areas of the curve above the ULTR are
shaded yellow, while areas below the LLTR are shaded red.

Value

Daily glucose time series plots for a single subject

Author(s)

Elizabeth Chun

plot_glu 63

References

Johnson et al. (2019) Utilizing the Ambulatory Glucose Profile to Standardize and Implement
Continuous Glucose Monitoring in Clinical Practice, Diabetes Technology and Therapeutics 21:S2
S2-17-S2-25, doi:10.1089/dia.2019.0034.

Examples

data(example_data_1_subject)
plot_daily(example_data_1_subject)
plot_daily(example_data_1_subject, LLTR = 100, ULTR = 140)

plot_glu Plot time series and lasagna plots of glucose measurements

Description

The function ‘plot_glu‘ supports several plotting methods for both single and multiple subject data.

Usage

plot_glu(
data,
plottype = c("tsplot", "lasagna"),
datatype = c("all", "average", "single"),
lasagnatype = c("unsorted", "timesorted"),
LLTR = 70,
ULTR = 180,
subjects = NULL,
inter_gap = 45,
tz = "",
color_scheme = c("blue-red", "red-orange"),
log = F,
static_or_gui = c("ggplot", "plotly")

)

Arguments

data DataFrame with column names ("id", "time", and "gl").

plottype Default: "tsplot". One of (’tsplot’, ’lasagna’). String corresponding to the
desired plot type. Options are ’tsplot’ for a time series plot and ’lasagna’ for a
lasagna plot. See the ‘lasagnatype‘ parameter for further options corresponding
to the ’lasagna’ ‘plottype‘.

datatype String corresponding to data aggregation used for plotting, currently supported
options are ’all’ which plots all glucose measurements within the first maxd
days for each subject, and ’average’ which plots average 24 hour glucose values
across days for each subject

https://doi.org/10.1089/dia.2019.0034

64 plot_glu

lasagnatype String corresponding to plot type when using datatype = "average", currently
supported options are ’unsorted’ for an unsorted lasagna plot, ’timesorted’ for a
lasagna plot with glucose values sorted within each time point across subjects,
and ’‘subjectsorted‘’ for a lasagna plot with glucose values sorted within each
subject across time points.

LLTR Default: 70. Lower Limit of Target Range in mg/dL.
ULTR Default: 180. Upper Limit of Target Range in mg/dL.
subjects String or list of strings corresponding to subject names in ’id’ column of data.

Default is all subjects.
inter_gap Default: 45. The maximum allowable gap (in minutes). Gaps larger than this

will not be connected in the time series plot.
tz A character string specifying the time zone to be used. System-specific (see

as.POSIXct), but " " is the current time zone, and "GMT" is UTC (Universal
Time, Coordinated). Invalid values are most commonly treated as UTC, on some
platforms with a warning.

color_scheme Default: "blue-red". String corresponding to the chosen color scheme when
the ‘plottype‘ is ’lasagna’. By default, ’blue-red’ scheme is used, with the values
below ‘LLTR‘ colored in shades of blue, and values above ‘ULTR‘ colored in
shades of red. The alternative ’red-orange’ scheme mimics AGP output from
agp with low values colored in red, in-range values colored in green, and high
values colored in yellow and orange.

log Default: FALSE. Boolean indicating whether ‘log10‘ of glucose values should
be taken. When ‘log = TRUE‘, the glucose values, LLTR, and ULTR will all be
log transformed, and time series plots will be on a semilogarithmic scale.

static_or_gui Default: "ggplot". One of ("ggplot", "plotly"). Returns either a ggplot (static
image) or Plotly chart (interactive GUI).

Details

For the default option ‘plottype = tsplot‘, a time series graph for each subject is produced with
hypo- and hyperglycemia cutoffs shown as horizontal red lines. The time series plots for all subjects
chosen (all by default) are displayed on a grid.

The ’lasagna’ plot type works best when the datatype argument is set to average.

Value

Any output from the plot object

Examples

data(example_data_1_subject)
plot_glu(example_data_1_subject)

data(example_data_5_subject)
plot_glu(example_data_5_subject, subjects = 'Subject 2')
plot_glu(example_data_5_subject, plottype = 'tsplot', tz = 'EST', LLTR = 70, ULTR = 150)
plot_glu(example_data_5_subject, plottype = 'lasagna', lasagnatype = 'timesorted')

plot_lasagna 65

plot_lasagna Lasagna plot of glucose values for multiple subjects

Description

Lasagna plot of glucose values for multiple subjects

Usage

plot_lasagna(
data,
datatype = c("all", "average"),
lasagnatype = c("unsorted", "timesorted", "subjectsorted"),
maxd = 14,
limits = c(50, 500),
midpoint = 105,
LLTR = 70,
ULTR = 180,
dt0 = NULL,
inter_gap = 45,
tz = "",
color_scheme = c("blue-red", "red-orange"),
log = F,
static_or_gui = c("ggplot", "plotly")

)

Arguments

data DataFrame object with column names "id", "time", and "gl".

datatype String corresponding to data aggregation used for plotting, currently supported
options are ’all’ which plots all glucose measurements within the first maxd
days for each subject, and ’average’ which plots average 24 hour glucose values
across days for each subject

lasagnatype String corresponding to plot type when using datatype = "average", currently
supported options are ’unsorted’ for an unsorted lasagna plot, ’timesorted’ for a
lasagna plot with glucose values sorted within each time point across subjects,
and ’‘subjectsorted‘’ for a lasagna plot with glucose values sorted within each
subject across time points.

maxd For datatype "all", maximal number of days to be plotted from the study. The
default value is 14 days (2 weeks).

limits The minimal and maximal glucose values for coloring grid which is gradient
from blue (minimal) to red (maximal), see scale_fill_gradient2)

midpoint The glucose value serving as midpoint of the diverging gradient scale (see scale_fill_gradient2).
The default value is 105 mg/dL. The values above are colored in red, and below
in blue in the default color_scheme, which can be adjusted.

66 plot_lasagna_1subject

LLTR Lower Limit of Target Range, default value is 70 mg/dL.

ULTR Upper Limit of Target Range, default value is 180 mg/dL.

dt0 The time frequency for interpolated aligned grid in minutes, the default will
match the CGM meter’s frequency (e.g. 5 min for Dexcom).

inter_gap The maximum allowable gap (in minutes) for interpolation of NA glucose val-
ues. The values will not be interpolated between the glucose measurements that
are more than inter_gap minutes apart. The default value is 45 min.

tz A character string specifying the time zone to be used. System-specific (see
as.POSIXct), but " " is the current time zone, and "GMT" is UTC (Universal
Time, Coordinated). Invalid values are most commonly treated as UTC, on some
platforms with a warning.

color_scheme String corresponding to the chosen color scheme. By default, ’blue-red’ scheme
is used, with the values below ‘LLTR‘ colored in shades of blue, and values
above ‘ULTR‘ colored in shades of red. The alternative ’red-orange’ scheme
mimics AGP output from agp with low values colored in red, in-range values
colored in green, and high values colored in yellow and orange.

log Logical value indicating whether log10 of glucose values should be taken, de-
fault value is FALSE. When log = TRUE the glucose values, limits, midpoint,
LLTR, and ULTR will all be log transformed.

static_or_gui One of "ggplot" or "plotly". Default: "plotly". Returns either a ggplot (static
image) or Plotly chart (interactive GUI).

Value

A ggplot object corresponding to lasagna plot

References

Swihart et al. (2010) Lasagna Plots: A Saucy Alternative to Spaghetti Plots, Epidemiology 21(5),
621-625, doi:10.1097/EDE.0b013e3181e5b06a

Examples

plot_lasagna(example_data_5_subject, datatype = "average", lasagnatype = 'timesorted', tz = "EST")
plot_lasagna(example_data_5_subject, lasagnatype = "subjectsorted", LLTR = 100, tz = "EST")

plot_lasagna_1subject Lasagna plot of glucose values for 1 subject aligned across times of
day

Description

Lasagna plot of glucose values for 1 subject aligned across times of day

https://doi.org/10.1097/EDE.0b013e3181e5b06a

plot_lasagna_1subject 67

Usage

plot_lasagna_1subject(
data,
lasagnatype = c("unsorted", "timesorted", "daysorted"),
limits = c(50, 500),
midpoint = 105,
LLTR = 70,
ULTR = 180,
dt0 = NULL,
inter_gap = 45,
tz = "",
color_scheme = c("blue-red", "red-orange"),
log = F,
static_or_gui = c("ggplot", "plotly")

)

Arguments

data DataFrame object with column names "id", "time", and "gl".

lasagnatype Default: "unsorted". String corresponding to plot type, currently supported
options are ’unsorted’ for an unsorted single-subject lasagna plot, ’timesorted’
for a lasagna plot with glucose values sorted within each time point across days,
and ’daysorted’ for a lasagna plot with glucose values sorted within each day
across time points.

limits The minimal and maximal glucose values for coloring grid which is gradient
from blue (minimal) to red (maximal), see scale_fill_gradient2)

midpoint The glucose value serving as midpoint of the diverging gradient scale (see scale_fill_gradient2).
The default value is 105 mg/dL. The values above are colored in red, and below
in blue in the default color_scheme, which can be adjusted.

LLTR Lower Limit of Target Range, default value is 70 mg/dL.

ULTR Upper Limit of Target Range, default value is 180 mg/dL.

dt0 The time frequency for interpolated aligned grid in minutes, the default will
match the CGM meter’s frequency (e.g. 5 min for Dexcom).

inter_gap The maximum allowable gap (in minutes) for interpolation of NA glucose val-
ues. The values will not be interpolated between the glucose measurements that
are more than inter_gap minutes apart. The default value is 45 min.

tz A character string specifying the time zone to be used. System-specific (see
as.POSIXct), but " " is the current time zone, and "GMT" is UTC (Universal
Time, Coordinated). Invalid values are most commonly treated as UTC, on some
platforms with a warning.

color_scheme String corresponding to the chosen color scheme. By default, ’blue-red’ scheme
is used, with the values below ‘LLTR‘ colored in shades of blue, and values
above ‘ULTR‘ colored in shades of red. The alternative ’red-orange’ scheme
mimics AGP output from agp with low values colored in red, in-range values
colored in green, and high values colored in yellow and orange.

68 plot_meals

log Logical value indicating whether log of glucose values should be taken, default
values is FALSE. When log = TRUE the glucose values, limits, midpoint, LLTR,
and ULTR will all be log transformed.

static_or_gui One of "ggplot" or "plotly". Default: "plotly". Returns either a ggplot (static
image) or Plotly chart (interactive GUI).

Value

A ggplot object corresponding to lasagna plot

References

Swihart et al. (2010) Lasagna Plots: A Saucy Alternative to Spaghetti Plots, Epidemiology 21(5),
621-625, doi:10.1097/EDE.0b013e3181e5b06a

Examples

plot_lasagna_1subject(example_data_1_subject)
plot_lasagna_1subject(example_data_1_subject, color_scheme = 'red-orange')
plot_lasagna_1subject(example_data_1_subject, lasagnatype = 'timesorted')
plot_lasagna_1subject(example_data_1_subject, lasagnatype = 'daysorted')
plot_lasagna_1subject(example_data_1_subject, log = TRUE)

plot_meals Plot meal metrics visualization

Description

The function plot_meals produces a visual for meals data

Usage

plot_meals(data, mealtimes, plot_type=c('ggplot','plotly'), tz = "")

Arguments

data DataFrame object with column names "id", "time", and "gl". Should only be
data for 1 subject. In case multiple subject ids are detected, a warning is pro-
duced and only 1st subject is used.

mealtimes Either a vector of mealtimes, corresponding to data being from a single subject,
OR a dataframe with at least 2 columns labeled id and mealtime. Optionally the
mealtimes dataframe can include a column labeled meal, giving the meal type
(helps to compensate for overlapping meals)

plot_type Default: "ggplot". One of ’ggplot’, ’plotly’. Determines whether the function
returns a static publication-ready image or an interactive GUI.

https://doi.org/10.1097/EDE.0b013e3181e5b06a

plot_ranges 69

tz Default: "". A character string specifying the time zone to be used. System-
specific (see as.POSIXct), but " " is the current time zone, and "GMT" is UTC
(Universal Time, Coordinated). Invalid values are most commonly treated as
UTC, on some platforms with a warning.

Details

Only a single subject’s data may be plotted. The solid black line is the glucose trace. Vertical dashed
red lines show the mealtimes, and the horizontal blue lines show the baseline for each meal. Purple
triangles are plotted to illustrate the 3 meal_metrics Namely the three vertices show the baseline,
peak, and 1hr post-peak recovery. If plot_type = ’plotly’, plotly is used to display an interactive
visual that allows one to zoom into specific areas of the plot.

Value

Plot to visualize meals data.

Author(s)

Elizabeth Chun

References

Service, F. John. (2013) Glucose Variability, Diabetes 62(5): 1398-1404, doi:10.2337/db121396

See Also

meal_metrics()

Examples

select_subject = example_data_hall[example_data_hall$id == "2133-018",]
select_meals = example_meals_hall[example_meals_hall$id == "2133-018",]
plot_meals(select_subject, select_meals, tz = 'GMT')

plot_ranges Plot Time in Ranges as a bar plot

Description

The function plot_ranges produces a barplot showing the percent of time in glucose ranges.

Usage

plot_ranges(data)

https://doi.org/10.2337/db12-1396

70 plot_roc

Arguments

data DataFrame object with column names "id", "time", and "gl". Should only be
data for 1 subject. In case multiple subject ids are detected, a warning is pro-
duced and only 1st subject is used.

Details

Only a single subject’s data may be used. There are four ranges: very low (below 54 mg/dL),
low (54-69 mg/dL), target range (70-180 mg/dL), high (181-250 mg/dL), and very high (above 250
mg/dL). This plot is meant to be used as part of the Ambulatory Glucose Profile (AGP)

Value

Single subject bar chart showing percent in different glucose ranges.

Author(s)

Elizabeth Chun

References

Johnson et al. (2019) Utilizing the Ambulatory Glucose Profile to Standardize and Implement
Continuous Glucose Monitoring in Clinical Practice, Diabetes Technology and Therapeutics 21:S2
S2-17-S2-25, doi:10.1089/dia.2019.0034.

Examples

data(example_data_1_subject)
plot_ranges(example_data_1_subject)

plot_roc Plot time series of glucose colored by rate of change

Description

The function plot_roc produces a time series plot of glucose values colored by categorized rate of
change values

Usage

plot_roc(data, subjects = NULL, timelag = 15, dt0 = NULL, inter_gap = 45, tz = "")

https://doi.org/10.1089/dia.2019.0034

plot_roc 71

Arguments

data DataFrame object with column names "id", "time", and "gl".

subjects String or list of strings corresponding to subject names in ’id’ column of data.
Default is all subjects.

timelag Integer indicating the time period (# minutes) over which rate of change is cal-
culated. Default is 15, e.g. rate of change is the change in glucose over the past
15 minutes divided by 15.

dt0 The time frequency for interpolation in minutes, the default will match the CGM
meter’s frequency (e.g. 5 min for Dexcom).

inter_gap The maximum allowable gap (in minutes) for interpolation. The values will not
be interpolated between the glucose measurements that are more than inter_gap
minutes apart. The default value is 45 min.

tz A character string specifying the time zone to be used. System-specific (see
as.POSIXct), but " " is the current time zone, and "GMT" is UTC (Universal
Time, Coordinated). Invalid values are most commonly treated as UTC, on some
platforms with a warning.

Details

For the default, a time series is produced for each subject in which the glucose values are plotted
and colored by ROC categories defined as follows. The breaks for the categories are: c(-Inf, -3,
-2, -1, 1, 2, 3, Inf) where the glucose is in mg/dl and the ROC values are in mg/dl/min. A ROC of
-5 mg/dl/min will thus be placed in the first category and colored accordingly. The breaks for the
categories come from the reference paper below.

Value

A time series of glucose values colored by ROC categories per subject

Author(s)

Elizabeth Chun, David Buchanan

References

Klonoff, D. C., & Kerr, D. (2017) A Simplified Approach Using Rate of Change Arrows to Ad-
just Insulin With Real-Time Continuous Glucose Monitoring. Journal of Diabetes Science and
Technology 11(6) 1063-1069, doi:10.1177/1932296817723260.

Examples

data(example_data_1_subject)
plot_roc(example_data_1_subject)

data(example_data_5_subject)
plot_roc(example_data_5_subject, subjects = 'Subject 5')

https://doi.org/10.1177/1932296817723260

72 process_data

process_data Data Pre-Processor

Description

A helper function to assist in pre-processing the user-supplied input data for use with other func-
tions. Typically, this function will process the data and return another DataFrame. This function
ensures that the returned data will be compatible with every function within the iglu package. All
NAs will be removed. See Vignette for further details.

Usage

process_data(data, id, timestamp, glu, time_parser = as.POSIXct)

Arguments

data User-supplied dataset containing continuous glucose monitor data. Must con-
tain data for time and glucose readings at a minimum. Accepted formats are
dataframe and tibble.

id Optional column name (character string) corresponding to subject id column. If
no value is passed, an id of 1 will be assigned to the data.

timestamp Required column name (character string) corresponding to time values in data.
The dates can be in any format parsable by as.POSIXct, or any format accepted
by the parser passed to time_parser. See time_parser param for an explanation
on how to handle arbitrary formats.

glu Required column name (character string) corresponding to glucose values, mg/dL

time_parser Optional function used to convert datetime strings to time objects. Defaults to
as.POSIXct. If your times are in a format not parsable by as.POSIXct, you can
parse a custom format by passing function(time_string) {strptime(time_string,
format = <format string>)} as the time_parser parameter.

Details

A dataframe with the columns "id", "time", and "gl" will be returned. All NAs will be removed.

If "mmol/l" in the glucose column name, the glucose values will be multipled by 18 to convert to
mg/dL.

Based on John Schwenck’s data_process for his bp package "https://github.com/johnschwenck/bp".

Value

A processed DataFrame object that cooperates with every other function within the iglu package -
all column names and formats comply.

Author(s)

David Buchanan, John Schwenck

quantile_glu 73

Examples

data("example_data_1_subject")

Process example data
processed <- process_data(example_data_1_subject, id = "id", timestamp = "time", glu = "gl")

processed

data("example_data_5_subject")

Process example data
processed_5subj <- process_data(example_data_5_subject, id = "id", timestamp = "time", glu = "gl")

processed_5subj

quantile_glu Calculate glucose level quantiles

Description

The function quantile_glu is a wrapper for the base function quantile(). Output is a tibble
object with columns for subject id and each of the quantiles.

Usage

quantile_glu(data, quantiles = c(0, 25, 50, 75, 100))

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

quantiles List of quantile values between 0 and 100.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for each quantile
is returned. NA glucose values are omitted from the calculation of the quantiles.

The values are scaled from 0-1 to 0-100 to be consistent in output with above_percent, below_percent,
and in_range_percent.

The command quantile_glu(...) / 100 will scale each element down from 0-100 to 0-1.

Value

If a DataFrame object is passed, then a tibble object with a column for subject id and then a column
for each quantile value is returned. If a vector of glucose values is passed, then a tibble object
without the subject id is returned. as.numeric() can be wrapped around the latter to output a
numeric vector.

74 range_glu

Examples

data(example_data_1_subject)

quantile_glu(example_data_1_subject)
quantile_glu(example_data_1_subject, quantiles = c(0, 33, 66, 100))

data(example_data_5_subject)

quantile_glu(example_data_5_subject)
quantile_glu(example_data_5_subject, quantiles = c(0, 10, 90, 100))

range_glu Calculate glucose level range

Description

The function range_glu outputs the distance between minimum and maximum glucose values per
subject in a tibble object.

Usage

range_glu(data)

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for the range
values is returned. NA glucose values are omitted from the calculation of the range.

Value

If a DataFrame object is passed, then a tibble object with two columns: subject id and corresponding
range value is returned. If a vector of glucose values is passed, then a tibble object with just the
range value is returned. as.numeric() can be wrapped around the latter to output just a numeric
value.

Examples

data(example_data_1_subject)
range_glu(example_data_1_subject)

data(example_data_5_subject)
range_glu(example_data_5_subject)

read_raw_data 75

read_raw_data Read raw data from a variety of common sensors.

Description

Helper function to assist in reading data directly from sensor outputs. Should return a dataframe in
correct format for use with the rest of the iglu package. Assumes all data will be readable with
base R read.csv() function.

Usage

read_raw_data(
filename,
sensor = c("dexcom", "libre", "librepro", "asc", "ipro"),
id = "filename",
tz = ""

)

Arguments

filename String matching the name of the data to be read. Assumed to be .csv

sensor Default: "dexcom". String naming the type of sensor the data was exported
from. Must be one of "dexcom", "libre", "librepro", "asc", or "ipro".

id Default: "filename". String indicating subject id. A value of "read" will cause
the program to attempt to read the subject id from the file. A value of "filename"
will cause the program to use the basename of the filename (i.e. filename without
any directory information) with .csv removed, as subject id. A value of "default"
will cause the program to use whichever of "read" or "filename" that is default
for that specific sensor. Any other string will be treated as the unique id for the
entire file.
Note the asc reader currently does not support id="read"

tz A character string specifying the time zone to be used. System-specific (see
as.POSIXct), but " " is the current time zone, and "GMT" is UTC (Universal
Time, Coordinated). Invalid values are most commonly treated as UTC, on some
platforms with a warning.

Details

A DataFrame object with the columns "id", "time" and "gl" and one row per reading will be returned.
For the libre reader, if the phrase "mmol/l" is found in the column names, the glucose values will
be multiplied by 18.

Assumes .csv format for all data.

Sensor formats change with ongoing development, so these functions may become deprecated. If
any issues are encountered, contact the package maintainer: this is currently Irina Gaynanova, who
can be reached at <irinagn@umich.edu>.

76 roc

Note: this function is heavily derived from the readers avaiable in the cgmanalysis package’s
cleandata function.

Value

A dataframe containing the data read from the named file.

Author(s)

David Buchanan

References

Vigers et al. (2019) cgmanalysis: An R package for descriptive analysis of continuous glucose
monitor data PLoS ONE 14(10): e0216851, doi:10.1371/journal.pone.0216851

roc Calculate the Rate of Change at each time point (ROC)

Description

The function roc produces rate of change values in a tibble object.

Usage

roc(data, timelag = 15, dt0 = NULL, inter_gap = 45, tz = "")

Arguments

data DataFrame object with column names "id", "time", and "gl".

timelag Integer indicating the time period (# minutes) over which rate of change is cal-
culated. Default is 15, e.g. rate of change is the change in glucose over the past
15 minutes divided by 15.

dt0 The time frequency for interpolation in minutes, the default will match the CGM
meter’s frequency (e.g. 5 min for Dexcom).

inter_gap The maximum allowable gap (in minutes) for interpolation. The values will not
be interpolated between the glucose measurements that are more than inter_gap
minutes apart. The default value is 45 min.

tz A character string specifying the time zone to be used. System-specific (see
as.POSIXct), but " " is the current time zone, and "GMT" is UTC (Universal
Time, Coordinated). Invalid values are most commonly treated as UTC, on some
platforms with a warning.

https://doi.org/10.1371/journal.pone.0216851

sd_glu 77

Details

A tibble object with a column for subject id and a column for ROC values is returned. A ROC value
is returned for each time point for all the subjects. Thus multiple rows are returned for each subject.
If the rate of change cannot be calculated, the function will return NA for that point.

The glucose values are linearly interpolated over a time grid starting at the beginning of the first day
of data and ending on the last day of data. Because of this, there may be many NAs at the beginning
and the end of the roc values for each subject. These NAs are a result of interpolated time points that
do not have recorded glucose values near them because recording had either not yet begun for the
day or had already ended.

The ROC is calculated as G(ti)−G(ti−1)
ti−ti−1

where Gi is the Glucose measurement at time ti and Gi−1

is the Glucose measurement at time ti−1. The time difference between the points, ti − ti−1, is
selectable and set at a default of 15 minutes.

Value

A tibble object with two columns: subject id and rate of change values

Author(s)

Elizabeth Chun, David Buchanan

References

Clarke et al. (2009) Statistical Tools to Analyze Continuous Glucose Monitor Data, Diabetes Dia-
betes Technology and Therapeutics 11 S45-S54, doi:10.1089/dia.2008.0138.

Examples

data(example_data_1_subject)
roc(example_data_1_subject)
roc(example_data_1_subject, timelag = 10)

data(example_data_5_subject)
roc(example_data_5_subject)

sd_glu Calculate sd glucose level

Description

The function sd_glu is a wrapper for the base function sd(). Output is a tibble object with subject
id and sd values.

Usage

sd_glu(data)

https://doi.org/10.1089/dia.2008.0138

78 sd_measures

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for the sd values
is returned. NA glucose values are omitted from the calculation of the sd.

Value

If a data.frame object is passed, then a tibble object with two columns: subject id and corresponding
sd value is returned. If a vector of glucose values is passed, then a tibble object with just the sd value
is returned. as.numeric() can be wrapped around the latter to output just a numeric value.

Examples

data(example_data_1_subject)
sd_glu(example_data_1_subject)

data(example_data_5_subject)
sd_glu(example_data_5_subject)

sd_measures Calculate SD subtypes

Description

The function sd_measures produces SD subtype values in a tibble object with a row for each subject
and columns corresponding to id followed by each SD subtype.

Usage

sd_measures(data,dt0 = NULL, inter_gap = 45, tz = "")

Arguments

data DataFrame object with column names "id", "time", and "gl".

dt0 The time frequency for interpolation in minutes, the default will match the CGM
meter’s frequency (e.g. 5 min for Dexcom).

inter_gap The maximum allowable gap (in minutes) for interpolation. The values will not
be interpolated between the glucose measurements that are more than inter_gap
minutes apart. The default value is 45 min.

tz A character string specifying the time zone to be used. System-specific (see
as.POSIXct), but " " is the current time zone, and "GMT" is UTC (Universal
Time, Coordinated). Invalid values are most commonly treated as UTC, on some
platforms with a warning.

sd_measures 79

Details

A tibble object with 1 row for each subject, a column for subject id and a column for each SD
subtype values is returned.

Missing values will be linearly interpolated when close enough to non-missing values.

1. SDw - vertical within days:
Calculated by first taking the standard deviation of each day’s glucose measurements, then
taking the mean of all the standard deviations. That is, for d days we compute SD1...SDd

daily standard deviations and calculate 1/d ∗
∑

[(SDi)]

2. SDhhmm - between time points:
Also known as SDhh:mm. Calculated by taking the mean glucose values at each time point in
the grid across days, and taking the standard deviation of those mans. That is, for t time points
we compute Xt means for each time point and then compute SD([X1, X2, ...Xt]).

3. SDwsh - within series:
Also known as SDws h. Calculated by taking the hour-long intervals starting at every point in
the interpolated grid, computing the standard deviation of the points in each hour-long interval,
and then finding the mean of those standard deviations. That is, for n time points compute
SD1...SDn, where SDi is the standard deviation of the glucose values [Xi, Xi+1, ...Xi+k]
corresponding to hour-long window starting at observation Xi, the number of observations in
the window k depends on CGM meter frequency. Then, take 1/n ∗

∑
[(SDi)].

4. SDdm - horizontal sd:
Calculated by taking the daily mean glucose values, and then taking the standard deviation
of those daily means. That is, for d days we take X1...Xd daily means, and then compute
SD([X1, X2, ...Xd]).

5. SDb - between days, within timepoints:
Calculated by taking the standard deviation of the glucose values across days for each time
point, and then taking the mean of those standard deviations. That is, for t time points take
SD1...SDt standard deviations, and then compute 1/t ∗

∑
[(SDi)]

6. SDbdm - between days, within timepoints, corrected for changes in daily means:
Also known as SDb // dm. Calculated by subtracting the daily mean from each glucose value,
then taking the standard deviation of the corrected glucose values across days for each time
point, and then taking the mean of those standard deviations. That is, for t time points take
SD1...SDt standard deviations, and then compute 1/t∗

∑
[(SDi)]. where SDi is the standard

deviation of d daily values at the 1st time point, where each value is the dth measurement for
the ith time point subtracted by the mean of all glucose values for day d.

Value

A tibble object with a column for id and a column for each of the six SD subtypes.

References

Rodbard (2009) New and Improved Methods to Characterize Glycemic Variability Using Continu-
ous Glucose Monitoring Diabetes Technology and Therapeutics 11 .551-565, doi:10.1089/dia.2009.0015.

https://doi.org/10.1089/dia.2009.0015

80 sd_roc

Examples

data(example_data_1_subject)
sd_measures(example_data_1_subject)

sd_roc Calculate the standard deviation of the rate of change

Description

The function sd_roc produces the standard deviation of the rate of change values in a tibble object.

Usage

sd_roc(data, timelag = 15, dt0 = NULL, inter_gap = 45, tz = "")

Arguments

data DataFrame object with column names "id", "time", and "gl".

timelag Integer indicating the time period (# minutes) over which rate of change is cal-
culated. Default is 15, e.g. rate of change is the change in glucose over the past
15 minutes divided by 15.

dt0 The time frequency for interpolation in minutes, the default will match the CGM
meter’s frequency (e.g. 5 min for Dexcom).

inter_gap The maximum allowable gap (in minutes) for interpolation. The values will not
be interpolated between the glucose measurements that are more than inter_gap
minutes apart. The default value is 45 min.

tz A character string specifying the time zone to be used. System-specific (see
as.POSIXct), but " " is the current time zone, and "GMT" is UTC (Universal
Time, Coordinated). Invalid values are most commonly treated as UTC, on some
platforms with a warning.

Details

A tibble object with one row for each subject, a column for subject id and a column for the standard
deviation of the rate of change.

When calculating rate of change, missing values will be linearly interpolated when close enough to
non-missing values.

Calculated by taking the standard deviation of all the ROC values for each individual subject. NA
rate of change values are omitted from the standard deviation calculation.

Value

A tibble object with two columns: subject id and standard deviation of the rate of change values for
each subject.

summary_glu 81

Author(s)

Elizabeth Chun, David Buchanan

References

Clarke et al. (2009) Statistical Tools to Analyze Continuous Glucose Monitor Data, Diabetes Dia-
betes Technology and Therapeutics 11 S45-S54, doi:10.1089/dia.2008.0138.

Examples

data(example_data_1_subject)
sd_roc(example_data_1_subject)
sd_roc(example_data_1_subject, timelag = 10)

data(example_data_5_subject)
sd_roc(example_data_5_subject)
sd_roc(example_data_5_subject, timelag = 10)

summary_glu Calculate summary glucose level

Description

The function ‘summary_glu‘ is a wrapper for the base function ‘summary()‘. Output is a tibble
object with subject id and the summary value: Minimum, 1st Quantile, Median, Mean, 3rd Quantile
and Max.

Usage

summary_glu(data)

Arguments

data DataFrame object with column names "id", "time", and "gl", or numeric vector
of glucose values.

Details

A tibble object with 1 row for each subject, a column for subject id and a column for each of
summary values is returned. ‘NA‘ glucose values are omitted from the calculation of the summary
values.

Value

If a DataFrame object is passed, then a tibble object with a column for subject id and then a column
for each summary value is returned. If a vector of glucose values is passed, then a tibble object
without the subject id is returned. ‘as.numeric()‘ can be wrapped around the latter to output a
numeric vector with values in order of Min, 1st Quantile, Median, Mean, 3rd Quantile and Max.

https://doi.org/10.1089/dia.2008.0138

82 summary_glu

Examples

data(example_data_1_subject)
summary_glu(example_data_1_subject)

data(example_data_5_subject)
summary_glu(example_data_5_subject)

Index

∗ datasets
example_data_1_subject, 24
example_data_5_subject, 25
example_data_hall, 25
example_meals_hall, 26

above_percent, 3
active_percent, 4
adrr, 6
agp, 7, 64, 66, 67
agp_metrics, 8
all_metrics, 9, 55
as.POSIXct, 5, 7, 8, 10, 14, 16, 18, 21, 23, 32,

35, 46, 48, 50, 52, 55, 56, 58, 61, 62,
64, 66, 67, 69, 71, 75, 76, 78, 80

auc, 10

below_percent, 11

calculate_sleep_wake, 13
CGMS2DayByDay, 14
cogi, 15
conga, 16
cv_glu, 17
cv_measures, 18

dist, 55

ea1c, 19
epicalc_profile, 20
episode_calculation, 22
example_data_1_subject, 24
example_data_5_subject, 24, 25
example_data_hall, 25
example_meals_hall, 26

gmi, 27
grade, 28
grade_eugly, 29
grade_hyper, 30
grade_hypo, 31

gri, 32
gvp, 33

hbgi, 34
hclust, 55
hist_roc, 35
hyper_index, 36, 39
hypo_index, 37, 39

igc, 39
iglu_shiny, 40
in_range_percent, 40
iqr_glu, 41

j_index, 42

lbgi, 43

m_value, 57
mad_glu, 44
mag, 45
mage, 46
mage_ma_single, 49
meal_metrics, 51
mean_glu, 53
median_glu, 54
metrics_heatmap, 55
modd, 56

optimized_iglu_functions, 58

pgs, 59
pheatmap, 55
plot_agp, 60
plot_daily, 62
plot_glu, 63
plot_lasagna, 65
plot_lasagna_1subject, 66
plot_meals, 68
plot_ranges, 69
plot_roc, 36, 70

83

84 INDEX

process_data, 72

quantile_glu, 73

range_glu, 74
read_raw_data, 75
roc, 76

scale_fill_gradient2, 65, 67
sd_glu, 77
sd_measures, 78
sd_roc, 80
summary_glu, 81

	above_percent
	active_percent
	adrr
	agp
	agp_metrics
	all_metrics
	auc
	below_percent
	calculate_sleep_wake
	CGMS2DayByDay
	cogi
	conga
	cv_glu
	cv_measures
	ea1c
	epicalc_profile
	episode_calculation
	example_data_1_subject
	example_data_5_subject
	example_data_hall
	example_meals_hall
	gmi
	grade
	grade_eugly
	grade_hyper
	grade_hypo
	gri
	gvp
	hbgi
	hist_roc
	hyper_index
	hypo_index
	igc
	iglu_shiny
	in_range_percent
	iqr_glu
	j_index
	lbgi
	mad_glu
	mag
	mage
	mage_ma_single
	meal_metrics
	mean_glu
	median_glu
	metrics_heatmap
	modd
	m_value
	optimized_iglu_functions
	pgs
	plot_agp
	plot_daily
	plot_glu
	plot_lasagna
	plot_lasagna_1subject
	plot_meals
	plot_ranges
	plot_roc
	process_data
	quantile_glu
	range_glu
	read_raw_data
	roc
	sd_glu
	sd_measures
	sd_roc
	summary_glu
	Index

