hdqr: Fast Algorithm for Penalized Quantile Regression

Implements an efficient algorithm to fit and tune penalized quantile regression models using the generalized coordinate descent algorithm. Designed to handle high-dimensional datasets effectively, with emphasis on precision and computational efficiency. This package implements the algorithms proposed in Tang, Q., Zhang, Y., & Wang, B. (2022) <https://openreview.net/pdf?id=RvwMTDYTOb>.

Version: 1.0.1
Depends: R (≥ 3.5.0)
Imports: stats, Matrix, methods
Suggests: knitr, rmarkdown
Published: 2025-02-12
DOI: 10.32614/CRAN.package.hdqr
Author: Qian Tang [aut, cre], Yikai Zhang [aut], Boxiang Wang [aut]
Maintainer: Qian Tang <qian-tang at uiowa.edu>
License: GPL-2
NeedsCompilation: yes
CRAN checks: hdqr results

Documentation:

Reference manual: hdqr.pdf
Vignettes: Getting started with hdqr (source, R code)

Downloads:

Package source: hdqr_1.0.1.tar.gz
Windows binaries: r-devel: hdqr_1.0.1.zip, r-release: hdqr_1.0.1.zip, r-oldrel: hdqr_1.0.1.zip
macOS binaries: r-devel (arm64): hdqr_1.0.1.tgz, r-release (arm64): hdqr_1.0.1.tgz, r-oldrel (arm64): hdqr_1.0.1.tgz, r-devel (x86_64): hdqr_1.0.1.tgz, r-release (x86_64): hdqr_1.0.1.tgz, r-oldrel (x86_64): hdqr_1.0.1.tgz
Old sources: hdqr archive

Linking:

Please use the canonical form https://CRAN.R-project.org/package=hdqr to link to this page.