Package ‘friendlynumber’

April 3, 2025
Title Translate Numbers into Number Words
Version 1.0.0

Description Converts vectors of numbers into character vectors of numerals,
including cardinals (one, two, three) and ordinals (first, second, third).
Supports negative numbers, fractions, and arbitrary-precision integer and
high-precision floating-point vectors provided by the 'bignum' package.

License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.2.1

URL https://github.com/EthanSansom/friendlynumber,
https://ethansansom.github.io/friendlynumber/

BugReports https://github.com/EthanSansom/friendlynumber/issues
Suggests bignum, testthat (>= 3.0.0), withr

Config/testthat/edition 3

NeedsCompilation no

Author Ethan Sansom [aut, cre, cph]

Maintainer Ethan Sansom <ethan.sansom29@gmail.com>

Repository CRAN

Date/Publication 2025-04-03 15:10:05 UTC

Contents
bigfloat_friendly 2
biginteger friendly L L 4
format_number e 6
friendlynumber_default_options L L 8
integerish_friendly 8
nth_friendly 10
ntimes_friendly oL 12
number_friendly 14

https://github.com/EthanSansom/friendlynumber
https://ethansansom.github.io/friendlynumber/
https://github.com/EthanSansom/friendlynumber/issues

2 bigfloat_friendly
numeric_friendly L 18
ordinal_friendly 21
quantifier_friendly L. 23

Index 26

bigfloat_friendly Translate a bigfloat to a cardinal character vector

Description

Convert a <bignum_bigfloat> to a cardinal numeral (e.g. one tenth, one, two).

A bignum::bigfloat() can store numbers with up to 50 decimal digits of precision, which is
useful for manipulating numbers which can’t be accurately represented in a <numeric> vector.
bigfloat_friendly_safe() checks that all arguments are of the correct type and raises an infor-
mative error otherwise. bigfloat_friendly() does not perform input validation to maximize its
speed.

Usage

bigfloat_friendly(

)

numbers,

zero = "zero",

na = "missing”,

nan = "not a number”,
inf = "infinity",
negative = "negative ",
decimal = " and ",

and = FALSE,

hyphenate = TRUE,

and_fractional = and,
hyphenate_fractional = hyphenate,
english_fractions = NULL

bigfloat_friendly_safe(

numbers,

zero = "zero",

na = "missing”,

nan = "not a number”,
inf = "infinity",
negative = "negative ",
decimal = " and ",

and = FALSE,

hyphenate = TRUE,
and_fractional = and,
hyphenate_fractional = hyphenate,

bigfloat_friendly 3

english_fractions = NULL

)
Arguments
numbers [bignum_bigfloat]
A bignum: :bigfloat() vector to translate.
zero [character(1)]

What to call values of @ in numbers (e.g. zero = "zero").
na [character(1)]
What to call values of NA in numbers (e.g. na = "missing"”).

nan [character(1)]

What to call values of NaN in numbers (e.g. nan = "undefined").
inf [character(1)]

What to call values of Inf in numbers (e.g. inf = "infinity").
negative [character(1)]

A prefix added to the translation of negative elements of numbers. negative is
the string "negative " by default.

decimal [character(1)]
A word inserted between the whole and fractional part of translated numbers.
decimal is the string " and " by default.

and [TRUE / FALSE]
Whether to insert an " and " before the tens place of translated numbers. and is
FALSE by default.

hyphenate [TRUE / FALSE]

Whether to hyphenate numbers 21 through 99 (e.g. "twenty-one” vs. "twenty
one"). hyphenate is TRUE by default.
and_fractional [TRUE / FALSE]
Whether to insert an " and " before the smallest fractional tens place of trans-
lated numbers (e.g. "one hundred one thousandths"” vs. "one hundred and
one thousandths").
and_fractional is equal to and by default.
hyphenate_fractional
[TRUE / FALSE]
Whether to hyphenate numbers 21 through 99 in the fractional part of translated
numbers (e.g. "twenty-one hundredths"” or "twenty one hundredths”). This
also determines the hyphenation of the fractional units (e.g. "one ten-millionth”
vs. "one tenmillionth”).
hyphenate_fractional is equal to hyphenate by default.
english_fractions
[character]
A named character vector used as a dictionary for the translation of the fractional
part of numbers. The names (i.e. keys) are the decimal digits of a fractional
number and the values are the corresponding translations.
For example english_fractions = c("5" = "a half") matches the number 0.5
(translated as "a half") and 2.5 (translated as "two and a half").

4 biginteger_friendly

By default english_fractions is a named character vector with translations
for fractions x / yforx =1, 2, ..., 8andy = 1, 2, ..., 9. Forexample,
2 / 3is translated as "two thirds"” and 1 / 2 is translated as "one half”.

Provide an empty character to english_fractions to opt out of any such trans-
lations. In this case 1 / 2 is translated as "five tenths” instead of "one half".

Value

A non-NA character vector of the same length as numbers.

Examples

bigfloat_friendly(bignum::bigfloat(c(@0.5, @, ©0.123, NA, NaN, Inf)))

Specify the translations of "special” numbers
bigfloat_friendly(bignum::bigfloat(NaN), nan = "NAN")

Modify the output formatting

big <- bignum::bigfloat(1234.5678)

bigfloat_friendly(big)

bigfloat_friendly(big, decimal = " point ")

bigfloat_friendly(big, hyphenate_fractional = FALSE)
bigfloat_friendly(big, and = TRUE, and_fractional = TRUE, decimal = " . ")

n

The ~friendlynumber.bigfloat.digits™ option specifies the number of
“<bignum_bigfloat>" digits mentioned by “bigfloat_friendly()"

opts <- options()
options(friendlynumber.bigfloat.digits
bigfloat_friendly(bignum::bigpi)

5)

options(friendlynumber.bigfloat.digits = 10)
bigfloat_friendly(bignum::bigpi)
options(opts)

Set “english_fractions™ to specify the translation of certain
fractions. The names (keys) of “english_fractions™ should match
the decimal part of a fraction (e.g. ~"04"" matches ~0.047).
bigfloat_friendly(

bignum::bigfloat(c(1/2, 0.04, 1.5, 10)),

english_fractions = c(°5~ = "1/2", ~04~ = "4/100")
)

Input validation
try(bigfloat_friendly_safe(bignum::bigpi, and = NA))

biginteger_friendly Translate a biginteger to a cardinal character vector

biginteger_friendly 5

Description

Convert a <bignum_biginteger> to a cardinal numeral (e.g. one, two, three).

A bignum::biginteger () can store any integer (i.e. arbitrary precision), which is useful for ma-
nipulating numbers too large to be represented (accurately) in an <integer> or <numeric> vector.

biginteger_friendly_safe() checks that all arguments are of the correct type and raises an in-
formative error otherwise. biginteger_friendly () does not perform input validation to maximize

its speed.
Usage
biginteger_friendly(
numbers,
zero = "zero",
na = "missing”,
nan = "not a number”,
inf = "infinity",
negative = "negative ",
and = FALSE,
hyphenate = TRUE
)
biginteger_friendly_safe(
numbers,
zero = "zero",
na = "missing”,
nan = "not a number”,
inf = "infinity",
negative = "negative ",
and = FALSE,
hyphenate = TRUE
)
Arguments
numbers [bignum_biginteger]
A bignum: :biginteger () vector to translate.
zero [character(1)]
What to call values of @ in numbers (e.g. zero = "zero").
na [character(1)]
What to call values of NA in numbers (e.g. na = "missing”).
nan [character(1)]
What to call values of NaN in numbers (e.g. nan = "undefined").
inf [character(1)]
What to call values of Inf in numbers (e.g. inf = "infinity").
negative [character(1)]

A prefix added to the translation of negative elements of numbers. negative is
the string "negative " by default.

6 format_number

and [TRUE / FALSE]
Whether to insert an " and " before the tens place of translated numbers. and is
FALSE by default.

hyphenate [TRUE / FALSE]

Whether to hyphenate numbers 21 through 99 (e.g. "twenty-one” vs. "twenty
one"). hyphenate is TRUE by default.

Value

A non-NA character vector of the same length as numbers.

Examples

biginteger_friendly(bignum: :biginteger(c(@, 1, 2, NA, 10001)))

Specify the translations of "special” numbers
biginteger_friendly(bignum: :biginteger(-10), negative = "minus ")
biginteger_friendly(bignum::biginteger(NA), na = "unknown")

Modify the output formatting
biginteger_friendly(bignum::biginteger(9999))
biginteger_friendly(bignum::biginteger(9999), and = TRUE)
biginteger_friendly(bignum: :biginteger(9999), hyphenate = FALSE)

Translate large numbers
large <- bignum::biginteger(10L)*1001L
biginteger_friendly(large)

Input validation
try(biginteger_friendly_safe(1L))

format_number Format a vector of numbers

Description

Format a vector of numbers using format().
Usage
format_number(x, ...)

S3 method for class 'integer'
format_number(x, bigmark = TRUE, ...)

S3 method for class 'bignum_biginteger'
format_number(x, bigmark = TRUE, ...)

format_number 7

S3 method for class 'numeric'
format_number(x, bigmark = TRUE, ...)

S3 method for class 'bignum_bigfloat'
format_number(x, bigmark = TRUE, ...)

Default S3 method:

format_number(x, ...)
Arguments
X A vector of numbers to format. The friendlynumber package defines methods
for integer, numeric, bignum: :biginteger(), and bignum: :bigfloat () num-
bers.

e Additional arguments passed to or from other methods.
bigmark [TRUE / FALSE]

Whether the thousands places of formatted numbers should be separated with a
comma (e.g. "10,000,000" vs. "10000000"). bigmark is TRUE by default.

Details

The number of decimal digits shown in the output of format_number () is controlled the friendlynumber.numeric.digits
option for numeric vectors and friendlynumber.bigfloat.digits for bignum::bigfloat()
vectors.

These options also control the number of decimal digits translated by numeric_friendly() and
bigfloat_friendly() respectively. Because of this, format_number() is useful for verifying
that the output of these *_friendly() functions is correct.

Value

A non-NA character vector of the same length as x.

Examples

format_number(c(1/3, @, 0.999, NA, NaN, Inf, -Inf))
format_number(c(1L, 2L, 1001L))
format_number (1001L, bigmark = FALSE)

Set ~friendlynumber.numeric.digits™ to control the decimal output
opts <- options()

options(friendlynumber.numeric.digits = 2)

format_number (1234.1234)

options(opts)

if (requireNamespace("bignum”, quietly = TRUE)) {
format_number (bignum: :bigfloat(1234.1234))
format_number(bignum: :biginteger(2000000))

Set ~friendlynumber.bigfloat.digits™ to control the decimal output

8 integerish_friendly

opts <- options()
options(friendlynumber.bigfloat.digits = 3)
format_number (bignum: :bigfloat(1234.1234))
options(opts)

friendlynumber_default_options
Get the default options set by the friendlynumber package

Description

Returns a list of options provided to options() when the friendlynumber package is loaded. Op-
tions set prior to loading the friendlynumber package are not overwritten on load.

Usage

friendlynumber_default_options()

Value

A named list of options.

Examples

friendlynumber_default_options()

integerish_friendly Translate integer-ish numbers to a cardinal character vector

Description

Convert an integer vector, or numeric vector which is coercible to an integer without loss of preci-
sion, to a cardinal numeral (e.g. one, two, three).

integerish_friendly_safe() checks that all arguments are of the correct type and raises an in-
formative error otherwise. integerish_friendly() does not perform input validation to maximize
its speed.

integerish_friendly

Usage
integerish_friendly(
numbers,
zero = "zero",
na = "missing”,
nan = "not a number”,
inf = "infinity",
negative = "negative ",
and = FALSE,
hyphenate = TRUE
)
integerish_friendly_safe(
numbers,
zero = "zero",
na = "missing”,
nan = "not a number”,
inf = "infinity",
negative = "negative ",
and = FALSE,
hyphenate = TRUE
)
Arguments
numbers [integer / numeric]
An integer or integer-ish numeric vector to translate.
zero [character(1)]
What to call values of @ in numbers (e.g. zero = "zero").
na [character(1)]
What to call values of NA in numbers (e.g. na = "missing").
nan [character(1)]
What to call values of NaN in numbers (e.g. nan = "undefined").
inf [character(1)]
What to call values of Inf in numbers (e.g. inf = "infinity").
negative [character(1)]
A prefix added to the translation of negative elements of numbers. negative is
the string "negative " by default.
and [TRUE / FALSE]
Whether to insert an " and " before the tens place of translated numbers. and is
FALSE by default.
hyphenate [TRUE / FALSE]

Whether to hyphenate numbers 21 through 99 (e.g. "twenty-one” vs. "twenty
one"). hyphenate is TRUE by default.

10 nth_friendly

Value

A non-NA character vector of the same length as numbers.

Examples

integerish_friendly(c(@, 1, 2, NA, NaN, Inf, -Inf))
integerish_friendly(10%10)

Specify the translations of "special” numbers
integerish_friendly(-10, negative = "minus ")
integerish_friendly(NaN, nan = "undefined")

Modify the output formatting
integerish_friendly(1234)
integerish_friendly (1234, and = TRUE)
integerish_friendly (1234, hyphenate = FALSE)

Input validation
try(integerish_friendly_safe(0.5))
try(integerish_friendly_safe(1L, na = TRUE))

nth_friendly Translate integer-ish numbers to a character vector of nths (1st, 2nd,
3rd)

Description

Convert an integer vector, or numeric vector which is coercible to an integer without loss of preci-
sion, to an "nth" (e.g. 1st, 2nd, 3rd, 22nd, 1,000th).

nth_friendly_safe() checks that all arguments are of the correct type and raises an informative
error otherwise. nth_friendly() does not perform input validation to maximize its speed.

Usage

nth_friendly(
numbers,
zero = "Qth",
na = "missingth”,
nan = "not a numberth”,
inf = "infinitieth",
negative = "negative ",
bigmark = TRUE

nth_friendly_safe(
numbers,
zero = "zeroth”,
na = "missingth”,

nth_friendly

nan =
inf =

"negative ",

11

"not a numberth”,
"infinitieth",
negative

n

bigmark = TRUE

Arguments

numbers

zero

na

nan

inf

negative

bigmark

Value

[integer / numeric]

An integer or integer-ish numeric vector to translate.
[character(1)]

What to call values of @ in numbers (e.g. zero = "zero").
[character(1)]

What to call values of NA in numbers (e.g. na = "missing"”).
[character(1)]

What to call values of NaN in numbers (e.g. nan = "undefined"”).
[character(1)]

What to call values of Inf in numbers (e.g. inf = "infinity").
[character(1)]

A prefix added to the translation of negative elements of numbers. negative is
the string "negative " by default.

[TRUE / FALSE]

Whether the thousands places of formatted numbers should be separated with a
comma (e.g. "10,000,000" vs. "10000000"). bigmark is TRUE by default.

A non-NA character vector of the same length as numbers.

Examples

nth_friendly(c(@, 1, 2, 3, 22, 1001, NA, NaN, Inf, -Inf))

Specify the translations of "special” numbers
nth_friendly(c(1, @, NA), zero = "noneth”, na = "?")

Use “bigmark™ to add or remove commas
nth_friendly (1234, bigmark = TRUE)
nth_friendly (1234, bigmark = FALSE)

Input validation
try(nth_friendly_safe(1234, bigmark = ","))

12 ntimes_friendly

ntimes_friendly Translate integer-ish numbers to a character vector of counts (once,
twice, three times)

Description

Convert an integer vector, or numeric vector which is coercible to an integer without loss of preci-
sion, to a count (e.g. no times, once, twice, four times).

ntimes_friendly_safe() checks that all arguments are of the correct type and raises an infor-
mative error otherwise. ntimes_friendly() does not perform input validation to maximize its
speed.

Usage

ntimes_friendly(
numbers,
one = "once",
two = "twice",
three = "three times”,
zero = "no times”,
na = "an unknown number of times”,
nan = "an undefined number of times”,
inf = "infinite times”,
negative = "negative ",
and = FALSE,
hyphenate = TRUE

)

ntimes_friendly_safe(
numbers,
one = "once"”,
two = "twice”,
three = "three times”,
zero = "no times”,
na = "an unknown number of times”,
nan = "an undefined number of times"”,
inf = "infinite times”,
negative = "negative ",
and = FALSE,
hyphenate = TRUE

)

Arguments
numbers [integer / numeric]

An integer or integer-ish numeric vector to translate.

ntimes_friendly

one

two

three

zZero

na

nan

inf

negative

and

hyphenate

Value

13
[character(1)]
What to call values of 1 in numbers (e.g. one = "the").
[character(1)]
What to call values of 2 in numbers (e.g. two = "both").
[character(1)]

What to call values of 3 in numbers (e.g. three = "thrice").
[character(1)]

What to call values of @ in numbers (e.g. zero = "zero").
[character(1)]

What to call values of NA in numbers (e.g. na = "missing”).
[character(1)]

What to call values of NaN in numbers (e.g. nan = "undefined").
[character(1)]

What to call values of Inf in numbers (e.g. inf = "infinity").
[character(1)]

A prefix added to the translation of negative elements of numbers. negative is
the string "negative " by default.

[TRUE / FALSE]

Whether to insert an " and " before the tens place of translated numbers. and is
FALSE by default.

[TRUE / FALSE]

Whether to hyphenate numbers 21 through 99 (e.g. "twenty-one” vs. "twenty
one"). hyphenate is TRUE by default.

A non-NA character vector of the same length as numbers.

Examples

ntimes_friendly(c(@, 1, 2, 3, 22, 1001, NA, NaN, Inf, -Inf))

Specify the translations of "special” numbers
ntimes_friendly(c(3, NA), three = "thrice”, na = "some times")

Modify the output formatting
ntimes_friendly(5678)

ntimes_friendly (5678, and = TRUE)
ntimes_friendly (5678, hyphenate = FALSE)

Input validation
try(ntimes_friendly_safe(1234, and = " - "))

14

number_friendly

number_friendly

Translate a vector of numbers to a cardinal character vector

Description

Convert a vector of numbers to a cardinal numeral (e.g. one tenth, one, two).

number_friendly_safe() checks that all arguments are of the correct type and raises an infor-

mative error otherwise. number_friendly() does not perform

speed.

Usage

number_friendly(numbers, ...)

S3 method for class 'numeric'
number_friendly(

)

numbers,

zero = "zero",

na = "missing”,

nan = "not a number”,
inf = "infinity",
negative = "negative ",
decimal = " and ",

and = FALSE,

hyphenate = TRUE,

and_fractional = and,
hyphenate_fractional = hyphenate,
english_fractions = NULL,

S3 method for class 'integer'
number_friendly(

numbers,

zero = "zero",

na = "missing”,

nan = "not a number”,
inf = "infinity",
negative = "negative ",
and = FALSE,

hyphenate = TRUE,

S3 method for class 'bignum_biginteger'
number_friendly(

input validation to maximize its

number_friendly

numbers,

zero = "zero",

na = "missing”,

nan = "not a number”,
inf = "infinity",
negative = "negative ",
and = FALSE,

hyphenate = TRUE,

)

S3 method for class 'bignum_bigfloat'
number_friendly(

numbers,

zero = "zero",

na = "missing”,

nan = "not a number”,
inf = "infinity",
negative = "negative ",
decimal = " and ",

and = FALSE,

hyphenate = TRUE,

and_fractional = and,
hyphenate_fractional = hyphenate,
english_fractions = NULL,

Default S3 method:
number_friendly(numbers, ...)

number_friendly_safe(numbers, ...)

S3 method for class 'numeric'
number_friendly_safe(

numbers,

zero = "zero",

na = "missing”,

nan = "not a number”,
inf = "infinity",
negative = "negative ",
decimal = " and ",

and = FALSE,

hyphenate = TRUE,

and_fractional = and,
hyphenate_fractional = hyphenate,
english_fractions = NULL,

15

16

)

S3 method for class 'integer'
number_friendly_safe(

numbers,

zero = "zero",

na = "missing”,

nan = "not a number”,
inf = "infinity",
negative = "negative ",
and = FALSE,

hyphenate = TRUE,

)

S3 method for class 'bignum_biginteger'

number_friendly_safe(

numbers,

zero = "zero",

na = "missing”,

nan = "not a number”,
inf = "infinity",
negative = "negative ",
and = FALSE,

hyphenate = TRUE,

)

S3 method for class 'bignum_bigfloat'

number_friendly_safe(

numbers,

zero = "zero",

na = "missing”,

nan = "not a number”,
inf = "infinity",
negative = "negative ",
decimal = " and ",

and = FALSE,

hyphenate = TRUE,
and_fractional = and,

hyphenate_fractional = hyphenate,

english_fractions = NULL,

)

Default S3 method:
number_friendly_safe(numbers,

)

number_friendly

number_friendly 17

Arguments

numbers A vector of numbers to translate. The friendlynumber package defines meth-
ods for integer, numeric, bignum: :biginteger(), and bignum: :bigfloat()
numbers.
* Integers are passed to integerish_friendly()
* Numeric vectors are passed to numeric_friendly()
* bignum::biginteger() vectors are passed to biginteger_friendly()
* bignum: :bigfloat() vectors are passed to bigfloat_friendly()

Additional arguments passed to or from other methods.
zero [character(1)]
What to call values of @ in numbers (e.g. zero = "zero").
na [character(1)]
What to call values of NA in numbers (e.g. na = "missing”).
nan [character(1)]
What to call values of NaN in numbers (e.g. nan = "undefined").
inf [character(1)]
What to call values of Inf in numbers (e.g. inf = "infinity").
negative [character(1)]
A prefix added to the translation of negative elements of numbers. negative is
the string "negative " by default.
decimal [character(1)]
A word inserted between the whole and fractional part of translated numbers.
decimal is the string " and " by default.
and [TRUE / FALSE]
Whether to insert an " and " before the tens place of translated numbers. and is
FALSE by default.
hyphenate [TRUE / FALSE]
Whether to hyphenate numbers 21 through 99 (e.g. "twenty-one” vs. "twenty
one"). hyphenate is TRUE by default.
and_fractional [TRUE / FALSE]
Whether to insert an " and " before the smallest fractional tens place of trans-
lated numbers (e.g. "one hundred one thousandths” vs. "one hundred and
one thousandths”).
and_fractional is equal to and by default.
hyphenate_fractional
[TRUE / FALSE]
Whether to hyphenate numbers 21 through 99 in the fractional part of translated
numbers (e.g. "twenty-one hundredths"” or "twenty one hundredths”). This
also determines the hyphenation of the fractional units (e.g. "one ten-millionth”
vs. "one tenmillionth”).
hyphenate_fractional is equal to hyphenate by default.
english_fractions
[character]

18 numeric_friendly

A named character vector used as a dictionary for the translation of the fractional
part of numbers. The names (i.e. keys) are the decimal digits of a fractional
number and the values are the corresponding translations.

For example english_fractions = c("5" = "a half") matches the number 0.5
(translated as "a half") and 2.5 (translated as "two and a half").

By default english_fractions is a named character vector with translations
for fractions x / yforx =1, 2, ..., 8andy =1, 2, ..., 9. Forexample,
2 / 3is translated as "two thirds"” and 1 / 2 is translated as "one half".

Provide an empty character to english_fractions to opt out of any such trans-
lations. In this case 1 / 2 is translated as "five tenths” instead of "one half".

Value

A non-NA character vector of the same length as numbers.

See Also
integerish_friendly(), numeric_friendly(),biginteger_friendly(),bigfloat_friendly()

Examples

number_friendly(c(1/3, @, 0.999, NA, NaN, Inf, -Inf))
number_friendly(c(1L, 2L, 1001L))

Input validation

try(number_friendly_safe(1L, zero = c("a", "zero")))
numeric_friendly Translate a numeric vector to a cardinal character vector
Description

Convert a numeric vector to a cardinal numeral (e.g. one tenth, one, two).

numeric_friendly_safe() checks that all arguments are of the correct type and raises an infor-
mative error otherwise. numeric_friendly() does not perform input validation to maximize its
speed.

Usage

numeric_friendly(
numbers,
zero = "zero",
na = "missing”,
nan = "not a number”,
inf = "infinity",
negative = "negative ",

n

decimal = " and ",

numeric_friendly

and = FALSE,

hyphenate = TRUE,

and_fractional = and,
hyphenate_fractional = hyphenate,
english_fractions = NULL

)

numeric_friendly_safe(
numbers,
zero = "zero",
na = "missing”,
nan = "not a number”,
inf = "infinity",
negative = "negative ",
decimal = " and ",
and = FALSE,

hyphenate = TRUE,

and_fractional = and,
hyphenate_fractional = hyphenate,
english_fractions = NULL

)
Arguments

numbers [numeric]
A numeric vector to translate.

zero [character(1)]
What to call values of @ in numbers (e.g. zero = "zero").

na [character(1)]
What to call values of NA in numbers (e.g. na = "missing").

nan [character(1)]
What to call values of NaN in numbers (e.g. nan = "undefined").

inf [character(1)]
What to call values of Inf in numbers (e.g. inf = "infinity").

negative [character(1)]
A prefix added to the translation of negative elements of numbers. negative is
the string "negative " by default.

decimal [character(1)]
A word inserted between the whole and fractional part of translated numbers.
decimal is the string " and " by default.

and [TRUE / FALSE]
Whether to insert an " and " before the tens place of translated numbers. and is
FALSE by default.

hyphenate [TRUE / FALSE]

19

Whether to hyphenate numbers 21 through 99 (e.g. "twenty-one” vs. "twenty

one"). hyphenate is TRUE by default.

20 numeric_friendly
and_fractional [TRUE / FALSE]
Whether to insert an " and " before the smallest fractional tens place of trans-
lated numbers (e.g. "one hundred one thousandths” vs. "one hundred and
one thousandths”).
and_fractional is equal to and by default.
hyphenate_fractional
[TRUE / FALSE]
Whether to hyphenate numbers 21 through 99 in the fractional part of translated
numbers (e.g. "twenty-one hundredths” or "twenty one hundredths”). This
also determines the hyphenation of the fractional units (e.g. "one ten-millionth”
vs. "one tenmillionth”).
hyphenate_fractional is equal to hyphenate by default.
english_fractions
[character]
A named character vector used as a dictionary for the translation of the fractional
part of numbers. The names (i.e. keys) are the decimal digits of a fractional
number and the values are the corresponding translations.
For example english_fractions = c("5" = "a half") matches the number 0.5
(translated as "a half") and 2.5 (translated as "two and a half").
By default english_fractions is a named character vector with translations
for fractions x / yforx =1, 2, ..., 8andy =1, 2, ..., 9. Forexample,
2 / 3is translated as "two thirds” and 1 / 2 is translated as "one half".
Provide an empty character to english_fractions to opt out of any such trans-
lations. In this case 1 / 2 is translated as "five tenths” instead of "one half".
Value
A non-NA character vector of the same length as numbers.
Examples

numeric_friendly(c(1/3, @, ©.999, NA, NaN, Inf, -Inf))

Specify the translations of "special” numbers
numeric_friendly(c(1, @, Inf), zero = "none"”, inf = "all")

Modify the output formatting
frac <- 8765.4321
numeric_friendly(frac)

numeric_friendly(frac, decimal = " dot ")
numeric_friendly(frac, hyphenate = TRUE, hyphenate_fractional = FALSE)
numeric_friendly(frac, and = TRUE, and_fractional = TRUE, decimal =" . ")

The ~friendlynumber.numeric.digits™ option specifies the number of
numeric digits mentioned by “numeric_friendly()"

opts <- options()

options(friendlynumber.numeric.digits = 5)
numeric_friendly(@.0987654321)

ordinal_friendly 21

options(friendlynumber.numeric.digits = 10)
numeric_friendly(@.0987654321)
options(opts)

Set “english_fractions™ to specify the translation of certain
fractions. The names (keys) of “english_fractions™ should match
the decimal part of a fraction (e.g. ~"5"" matches "0.57).
numeric_friendly(

c(1/2, 6/5, 12),

english_fractions = c(°5~ = "1/2", ~2° = "1/5")
)

Input validation
try(numeric_friendly_safe("A"))

ordinal_friendly Translate integer-ish numbers to an ordinal character vector

Description

Convert an integer vector, or numeric vector which is coercible to an integer without loss of preci-
sion, to an ordinal numeral (e.g. first, second, third).

ordinal_friendly_safe() checks that all arguments are of the correct type and raises an infor-
mative error otherwise. ordinal_friendly() does not perform input validation to maximize its
speed.

Usage

ordinal_friendly(
numbers,
zero = "zeroth",
na = "missingth”,
nan = "not a numberth”,
inf = "infinitieth"”,
negative = "negative ",
and = FALSE,
hyphenate = TRUE

)

ordinal_friendly_safe(
numbers,
zero = "zeroth",
na = "missingth”,
nan = "not a numberth”,
inf = "infinitieth",
negative = "negative ",
and = FALSE,

hyphenate = TRUE

22

Arguments

numbers

zZero

na

nan

inf

negative

and

hyphenate

Value

ordinal_friendly

[integer / numeric]

An integer or integer-ish numeric vector to translate.
[character(1)]

What to call values of @ in numbers (e.g. zero = "zero").
[character(1)]

What to call values of NA in numbers (e.g. na = "missing").
[character(1)]

What to call values of NaN in numbers (e.g. nan = "undefined").
[character(1)]

What to call values of Inf in numbers (e.g. inf = "infinity").
[character(1)]

A prefix added to the translation of negative elements of numbers. negative is
the string "negative " by default.

[TRUE / FALSE]

Whether to insert an " and " before the tens place of translated numbers. and is
FALSE by default.

[TRUE / FALSE]

Whether to hyphenate numbers 21 through 99 (e.g. "twenty-one” vs. "twenty
one"). hyphenate is TRUE by default.

A non-NA character vector of the same length as numbers.

Examples

ordinal_friendly(c(@, 1, 2, 3, NA, NaN, Inf, -Inf))
ordinal_friendly(1010)

Specify the translations of "special” numbers
ordinal_friendly(@, zero = "noneth")

Modify the output formatting
ordinal_friendly(1234)
ordinal_friendly(1234, and = TRUE)
ordinal_friendly (1234, hyphenate = FALSE)

Input validation
try(ordinal_friendly_safe(0.5))

quantifier_friendly 23

quantifier_friendly Translate integer-ish numbers to a character vector of quantifiers (the,
both, all three)

Description

Convert an integer vector, or numeric vector which is coercible to an integer without loss of preci-
sion, to a quantifier (e.g. no, the, every, all five).

quantifier_friendly_safe() checks that all arguments are of the correct type and raises an in-
formative error otherwise. quantifier_friendly() does not perform input validation to maximize

its speed.
Usage

quantifier_friendly(
numbers,
one = "the",
two = "both”,
zero = "no",
na = "a missing”,
nan = "an undefined”,
inf = "every”,
negative = "negative ",
and = FALSE,

hyphenate = TRUE,
bigmark = TRUE,
max_friendly = 100

)
quantifier_friendly_safe(
numbers,
one = "the",
two = "both”,
zero = "no",
na = "a missing”,
nan = "an undefined”,
inf = "every”,
negative = "negative ",
and = FALSE,

hyphenate = TRUE,
bigmark = TRUE,
max_friendly = 100

Arguments

numbers [integer / numeric]

24

one

two

zero

na

nan

inf

negative

and

hyphenate

bigmark

max_friendly

Value

quantifier_friendly

An integer or integer-ish numeric vector to translate.
[character(1)]

What to call values of 1 in numbers (e.g. one = "the").
[character(1)]

What to call values of 2 in numbers (e.g. two = "both").
[character(1)]

What to call values of @ in numbers (e.g. zero = "zero").
[character(1)]

What to call values of NA in numbers (e.g. na = "missing”).
[character(1)]

What to call values of NaN in numbers (e.g. nan = "undefined").
[character(1)]

What to call values of Inf in numbers (e.g. inf = "infinity").
[character(1)]

A prefix added to the translation of negative elements of numbers. negative is
the string "negative " by default.

[TRUE / FALSE]

Whether to insert an " and " before the tens place of translated numbers. and is
FALSE by default.

[TRUE / FALSE]

Whether to hyphenate numbers 21 through 99 (e.g. "twenty-one” vs. "twenty
one"). hyphenate is TRUE by default.

[TRUE / FALSE]

Whether the thousands places of formatted numbers should be separated with a
comma (e.g. "10,000,000" vs. "10000000"). bigmark is TRUE by default.
[numeric]

The maximum number to convert to a numeral. Elements of numbers above
max_friendly are converted to formatted numbers (e.g. "all 1,000" instead
of "all one thousand”). max_friendly is 100 by default.

Use the bigmark argument to determine whether these formatted numbers are
comma separated (e.g. "all 1,000" vs. "all 1000").

A non-NA character vector of the same length as numbers.

Examples

quantifier_friendly(c(@, 1, 2, 3, NA, NaN, Inf))

The “negative™ prefix appears after the ~"all"" prefix
quantifier_friendly(-4)

-1

and ~-2

are not translated using “one™ and ~two"

quantifier_friendly(c(1, 2, -1, -2), one = "the", two = "both")

quantifier_friendly 25

Suppress the translation of large numbers

quantifier_friendly(c(99, 1234), max_friendly = -Inf)
quantifier_friendly(c(99, 1234), max_friendly = 100)
quantifier_friendly(c(99, 1234), max_friendly = 1500)

Specify the translations of "special” numbers

non

quantifier_friendly(c(1, Inf), one = "a", inf = "all")

Arguments “one™, “two, “inf", etc. take precedence over “max_friendly"
quantifier_friendly(1:3, one = "one", two = "two"”, max_friendly = -1)

Modify the output formatting

quantifier_friendly (1021, max_friendly = Inf)
quantifier_friendly (1021, and = TRUE, max_friendly = Inf)
quantifier_friendly (1021, hyphenate = FALSE, max_friendly = Inf)
quantifier_friendly (1021, bigmark = FALSE, max_friendly = 10)
quantifier_friendly (1021, bigmark = TRUE, max_friendly = 10)

Input validation
try(quantifier_friendly_safe(1234, max_friendly = NA))

Index

bigfloat_friendly, 2
bigfloat_friendly(), 7,17, 18
bigfloat_friendly_safe
(bigfloat_friendly), 2
biginteger_friendly, 4
biginteger_friendly(), 17, I8
biginteger_friendly_safe
(biginteger_friendly), 4
bignum::bigfloat(), 2, 3,7,17
bignum::biginteger(),5,7,17

format_number, 6
friendlynumber_default_options, 8

integerish_friendly, 8

integerish_friendly(), 17, 18

integerish_friendly_safe
(integerish_friendly), 8

nth_friendly, 10

nth_friendly_safe (nth_friendly), 10

ntimes_friendly, 12

ntimes_friendly_safe (ntimes_friendly),
12

number_friendly, 14

number_friendly_safe (number_friendly),
14

numeric_friendly, 18

numeric_friendly(), 7,17, 18

numeric_friendly_safe
(numeric_friendly), 18

ordinal_friendly, 21
ordinal_friendly_safe
(ordinal_friendly), 21

quantifier_friendly, 23
quantifier_friendly_safe
(quantifier_friendly), 23

26

	bigfloat_friendly
	biginteger_friendly
	format_number
	friendlynumber_default_options
	integerish_friendly
	nth_friendly
	ntimes_friendly
	number_friendly
	numeric_friendly
	ordinal_friendly
	quantifier_friendly
	Index

