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bigfloat_friendly Translate a bigfloat to a cardinal character vector

Description

Convert a <bignum_bigfloat> to a cardinal numeral (e.g. one tenth, one, two).

A bignum::bigfloat() can store numbers with up to 50 decimal digits of precision, which is
useful for manipulating numbers which can’t be accurately represented in a <numeric> vector.
bigfloat_friendly_safe() checks that all arguments are of the correct type and raises an infor-
mative error otherwise. bigfloat_friendly() does not perform input validation to maximize its
speed.

Usage

bigfloat_friendly(

)

numbers,

zero = "zero",

na = "missing”,

nan = "not a number”,
inf = "infinity",
negative = "negative ",
decimal = " and ",

and = FALSE,

hyphenate = TRUE,

and_fractional = and,
hyphenate_fractional = hyphenate,
english_fractions = NULL

bigfloat_friendly_safe(

numbers,

zero = "zero",

na = "missing”,

nan = "not a number”,
inf = "infinity",
negative = "negative ",
decimal = " and ",

and = FALSE,

hyphenate = TRUE,
and_fractional = and,
hyphenate_fractional = hyphenate,
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english_fractions = NULL

)
Arguments
numbers [bignum_bigfloat]
A bignum: :bigfloat() vector to translate.
zero [character(1)]

What to call values of @ in numbers (e.g. zero = "zero").
na [character(1)]
What to call values of NA in numbers (e.g. na = "missing"”).

nan [character(1)]

What to call values of NaN in numbers (e.g. nan = "undefined").
inf [character(1)]

What to call values of Inf in numbers (e.g. inf = "infinity").
negative [character(1)]

A prefix added to the translation of negative elements of numbers. negative is
the string "negative " by default.

decimal [character(1)]
A word inserted between the whole and fractional part of translated numbers.
decimal is the string " and " by default.

and [TRUE / FALSE]
Whether to insert an " and " before the tens place of translated numbers. and is
FALSE by default.

hyphenate [TRUE / FALSE]

Whether to hyphenate numbers 21 through 99 (e.g. "twenty-one” vs. "twenty
one"). hyphenate is TRUE by default.
and_fractional [TRUE / FALSE]
Whether to insert an " and " before the smallest fractional tens place of trans-
lated numbers (e.g. "one hundred one thousandths"” vs. "one hundred and
one thousandths").
and_fractional is equal to and by default.
hyphenate_fractional
[TRUE / FALSE]
Whether to hyphenate numbers 21 through 99 in the fractional part of translated
numbers (e.g. "twenty-one hundredths"” or "twenty one hundredths”). This
also determines the hyphenation of the fractional units (e.g. "one ten-millionth”
vs. "one tenmillionth”).
hyphenate_fractional is equal to hyphenate by default.
english_fractions
[character]
A named character vector used as a dictionary for the translation of the fractional
part of numbers. The names (i.e. keys) are the decimal digits of a fractional
number and the values are the corresponding translations.
For example english_fractions = c("5" = "a half") matches the number 0.5
(translated as "a half") and 2.5 (translated as "two and a half").
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By default english_fractions is a named character vector with translations
for fractions x / yforx =1, 2, ..., 8andy = 1, 2, ..., 9. Forexample,
2 / 3is translated as "two thirds"” and 1 / 2 is translated as "one half”.

Provide an empty character to english_fractions to opt out of any such trans-
lations. In this case 1 / 2 is translated as "five tenths” instead of "one half".

Value

A non-NA character vector of the same length as numbers.

Examples

bigfloat_friendly(bignum::bigfloat(c(@0.5, @, ©0.123, NA, NaN, Inf)))

# Specify the translations of "special” numbers
bigfloat_friendly(bignum::bigfloat(NaN), nan = "NAN")

# Modify the output formatting

big <- bignum::bigfloat(1234.5678)

bigfloat_friendly(big)

bigfloat_friendly(big, decimal = " point ")

bigfloat_friendly(big, hyphenate_fractional = FALSE)
bigfloat_friendly(big, and = TRUE, and_fractional = TRUE, decimal = " . ")

n

# The ~friendlynumber.bigfloat.digits™ option specifies the number of
# “<bignum_bigfloat>" digits mentioned by “bigfloat_friendly()"

opts <- options()
options(friendlynumber.bigfloat.digits
bigfloat_friendly(bignum::bigpi)

5)

options(friendlynumber.bigfloat.digits = 10)
bigfloat_friendly(bignum::bigpi)
options(opts)

# Set “english_fractions™ to specify the translation of certain
# fractions. The names (keys) of “english_fractions™ should match
# the decimal part of a fraction (e.g. ~"04"" matches ~0.047).
bigfloat_friendly(

bignum::bigfloat(c(1/2, 0.04, 1.5, 10)),

english_fractions = c(°5~ = "1/2", ~04~ = "4/100")
)

# Input validation
try(bigfloat_friendly_safe(bignum::bigpi, and = NA))

biginteger_friendly Translate a biginteger to a cardinal character vector
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Description

Convert a <bignum_biginteger> to a cardinal numeral (e.g. one, two, three).

A bignum::biginteger () can store any integer (i.e. arbitrary precision), which is useful for ma-
nipulating numbers too large to be represented (accurately) in an <integer> or <numeric> vector.

biginteger_friendly_safe() checks that all arguments are of the correct type and raises an in-
formative error otherwise. biginteger_friendly () does not perform input validation to maximize

its speed.
Usage
biginteger_friendly(
numbers,
zero = "zero",
na = "missing”,
nan = "not a number”,
inf = "infinity",
negative = "negative ",
and = FALSE,
hyphenate = TRUE
)
biginteger_friendly_safe(
numbers,
zero = "zero",
na = "missing”,
nan = "not a number”,
inf = "infinity",
negative = "negative ",
and = FALSE,
hyphenate = TRUE
)
Arguments
numbers [bignum_biginteger]
A bignum: :biginteger () vector to translate.
zero [character(1)]
What to call values of @ in numbers (e.g. zero = "zero").
na [character(1)]
What to call values of NA in numbers (e.g. na = "missing”).
nan [character(1)]
What to call values of NaN in numbers (e.g. nan = "undefined").
inf [character(1)]
What to call values of Inf in numbers (e.g. inf = "infinity").
negative [character(1)]

A prefix added to the translation of negative elements of numbers. negative is
the string "negative " by default.
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and [TRUE / FALSE]
Whether to insert an " and " before the tens place of translated numbers. and is
FALSE by default.

hyphenate [TRUE / FALSE]

Whether to hyphenate numbers 21 through 99 (e.g. "twenty-one” vs. "twenty
one"). hyphenate is TRUE by default.

Value

A non-NA character vector of the same length as numbers.

Examples

biginteger_friendly(bignum: :biginteger(c(@, 1, 2, NA, 10001)))

# Specify the translations of "special” numbers
biginteger_friendly(bignum: :biginteger(-10), negative = "minus ")
biginteger_friendly(bignum::biginteger(NA), na = "unknown")

# Modify the output formatting
biginteger_friendly(bignum::biginteger(9999))
biginteger_friendly(bignum::biginteger(9999), and = TRUE)
biginteger_friendly(bignum: :biginteger(9999), hyphenate = FALSE)

# Translate large numbers
large <- bignum::biginteger(10L)*1001L
biginteger_friendly(large)

# Input validation
try(biginteger_friendly_safe(1L))

format_number Format a vector of numbers

Description

Format a vector of numbers using format().
Usage
format_number(x, ...)

## S3 method for class 'integer'
format_number(x, bigmark = TRUE, ...)

## S3 method for class 'bignum_biginteger'
format_number(x, bigmark = TRUE, ...)
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## S3 method for class 'numeric'
format_number(x, bigmark = TRUE, ...)

## S3 method for class 'bignum_bigfloat'
format_number(x, bigmark = TRUE, ...)

## Default S3 method:

format_number(x, ...)
Arguments
X A vector of numbers to format. The friendlynumber package defines methods
for integer, numeric, bignum: :biginteger(), and bignum: :bigfloat () num-
bers.

e Additional arguments passed to or from other methods.
bigmark [TRUE / FALSE]

Whether the thousands places of formatted numbers should be separated with a
comma (e.g. "10,000,000" vs. "10000000"). bigmark is TRUE by default.

Details

The number of decimal digits shown in the output of format_number () is controlled the friendlynumber.numeric.digits
option for numeric vectors and friendlynumber.bigfloat.digits for bignum::bigfloat()
vectors.

These options also control the number of decimal digits translated by numeric_friendly() and
bigfloat_friendly() respectively. Because of this, format_number() is useful for verifying
that the output of these *_friendly() functions is correct.

Value

A non-NA character vector of the same length as x.

Examples

format_number(c(1/3, @, 0.999, NA, NaN, Inf, -Inf))
format_number(c(1L, 2L, 1001L))
format_number (1001L, bigmark = FALSE)

# Set ~friendlynumber.numeric.digits™ to control the decimal output
opts <- options()

options(friendlynumber.numeric.digits = 2)

format_number (1234.1234)

options(opts)

if (requireNamespace("bignum”, quietly = TRUE)) {
format_number (bignum: :bigfloat(1234.1234))
format_number(bignum: :biginteger(2000000))

# Set ~friendlynumber.bigfloat.digits™ to control the decimal output
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opts <- options()
options(friendlynumber.bigfloat.digits = 3)
format_number (bignum: :bigfloat(1234.1234))
options(opts)

friendlynumber_default_options
Get the default options set by the friendlynumber package

Description

Returns a list of options provided to options() when the friendlynumber package is loaded. Op-
tions set prior to loading the friendlynumber package are not overwritten on load.

Usage

friendlynumber_default_options()

Value

A named list of options.

Examples

friendlynumber_default_options()

integerish_friendly Translate integer-ish numbers to a cardinal character vector

Description

Convert an integer vector, or numeric vector which is coercible to an integer without loss of preci-
sion, to a cardinal numeral (e.g. one, two, three).

integerish_friendly_safe() checks that all arguments are of the correct type and raises an in-
formative error otherwise. integerish_friendly() does not perform input validation to maximize
its speed.
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Usage
integerish_friendly(
numbers,
zero = "zero",
na = "missing”,
nan = "not a number”,
inf = "infinity",
negative = "negative ",
and = FALSE,
hyphenate = TRUE
)
integerish_friendly_safe(
numbers,
zero = "zero",
na = "missing”,
nan = "not a number”,
inf = "infinity",
negative = "negative ",
and = FALSE,
hyphenate = TRUE
)
Arguments
numbers [integer / numeric]
An integer or integer-ish numeric vector to translate.
zero [character(1)]
What to call values of @ in numbers (e.g. zero = "zero").
na [character(1)]
What to call values of NA in numbers (e.g. na = "missing").
nan [character(1)]
What to call values of NaN in numbers (e.g. nan = "undefined").
inf [character(1)]
What to call values of Inf in numbers (e.g. inf = "infinity").
negative [character(1)]
A prefix added to the translation of negative elements of numbers. negative is
the string "negative " by default.
and [TRUE / FALSE]
Whether to insert an " and " before the tens place of translated numbers. and is
FALSE by default.
hyphenate [TRUE / FALSE]

Whether to hyphenate numbers 21 through 99 (e.g. "twenty-one” vs. "twenty
one"). hyphenate is TRUE by default.
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Value

A non-NA character vector of the same length as numbers.

Examples

integerish_friendly(c(@, 1, 2, NA, NaN, Inf, -Inf))
integerish_friendly(10%10)

# Specify the translations of "special” numbers
integerish_friendly(-10, negative = "minus ")
integerish_friendly(NaN, nan = "undefined")

# Modify the output formatting
integerish_friendly(1234)
integerish_friendly (1234, and = TRUE)
integerish_friendly (1234, hyphenate = FALSE)

# Input validation
try(integerish_friendly_safe(0.5))
try(integerish_friendly_safe(1L, na = TRUE))

nth_friendly Translate integer-ish numbers to a character vector of nths (1st, 2nd,
3rd)

Description

Convert an integer vector, or numeric vector which is coercible to an integer without loss of preci-
sion, to an "nth" (e.g. 1st, 2nd, 3rd, 22nd, 1,000th).

nth_friendly_safe() checks that all arguments are of the correct type and raises an informative
error otherwise. nth_friendly() does not perform input validation to maximize its speed.

Usage

nth_friendly(
numbers,
zero = "Qth",
na = "missingth”,
nan = "not a numberth”,
inf = "infinitieth",
negative = "negative ",
bigmark = TRUE

nth_friendly_safe(
numbers,
zero = "zeroth”,
na = "missingth”,
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nan =
inf =

"negative ",
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"not a numberth”,
"infinitieth",
negative

n

bigmark = TRUE

Arguments

numbers

zero

na

nan

inf

negative

bigmark

Value

[integer / numeric]

An integer or integer-ish numeric vector to translate.
[character(1)]

What to call values of @ in numbers (e.g. zero = "zero").
[character(1)]

What to call values of NA in numbers (e.g. na = "missing"”).
[character(1)]

What to call values of NaN in numbers (e.g. nan = "undefined"”).
[character(1)]

What to call values of Inf in numbers (e.g. inf = "infinity").
[character(1)]

A prefix added to the translation of negative elements of numbers. negative is
the string "negative " by default.

[TRUE / FALSE]

Whether the thousands places of formatted numbers should be separated with a
comma (e.g. "10,000,000" vs. "10000000"). bigmark is TRUE by default.

A non-NA character vector of the same length as numbers.

Examples

nth_friendly(c(@, 1, 2, 3, 22, 1001, NA, NaN, Inf, -Inf))

# Specify the translations of "special” numbers
nth_friendly(c(1, @, NA), zero = "noneth”, na = "?")

# Use “bigmark™ to add or remove commas
nth_friendly (1234, bigmark = TRUE)
nth_friendly (1234, bigmark = FALSE)

# Input validation
try(nth_friendly_safe(1234, bigmark = ","))
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ntimes_friendly Translate integer-ish numbers to a character vector of counts (once,
twice, three times)

Description

Convert an integer vector, or numeric vector which is coercible to an integer without loss of preci-
sion, to a count (e.g. no times, once, twice, four times).

ntimes_friendly_safe() checks that all arguments are of the correct type and raises an infor-
mative error otherwise. ntimes_friendly() does not perform input validation to maximize its
speed.

Usage

ntimes_friendly(
numbers,
one = "once",
two = "twice",
three = "three times”,
zero = "no times”,
na = "an unknown number of times”,
nan = "an undefined number of times”,
inf = "infinite times”,
negative = "negative ",
and = FALSE,
hyphenate = TRUE

)

ntimes_friendly_safe(
numbers,
one = "once"”,
two = "twice”,
three = "three times”,
zero = "no times”,
na = "an unknown number of times”,
nan = "an undefined number of times"”,
inf = "infinite times”,
negative = "negative ",
and = FALSE,
hyphenate = TRUE

)

Arguments
numbers [integer / numeric]

An integer or integer-ish numeric vector to translate.
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one

two

three

zZero

na

nan

inf

negative

and

hyphenate

Value
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[character(1)]
What to call values of 1 in numbers (e.g. one = "the").
[character(1)]
What to call values of 2 in numbers (e.g. two = "both").
[character(1)]

What to call values of 3 in numbers (e.g. three = "thrice").
[character(1)]

What to call values of @ in numbers (e.g. zero = "zero").
[character(1)]

What to call values of NA in numbers (e.g. na = "missing”).
[character(1)]

What to call values of NaN in numbers (e.g. nan = "undefined").
[character(1)]

What to call values of Inf in numbers (e.g. inf = "infinity").
[character(1)]

A prefix added to the translation of negative elements of numbers. negative is
the string "negative " by default.

[TRUE / FALSE]

Whether to insert an " and " before the tens place of translated numbers. and is
FALSE by default.

[TRUE / FALSE]

Whether to hyphenate numbers 21 through 99 (e.g. "twenty-one” vs. "twenty
one"). hyphenate is TRUE by default.

A non-NA character vector of the same length as numbers.

Examples

ntimes_friendly(c(@, 1, 2, 3, 22, 1001, NA, NaN, Inf, -Inf))

# Specify the translations of "special” numbers
ntimes_friendly(c(3, NA), three = "thrice”, na = "some times")

# Modify the output formatting
ntimes_friendly(5678)

ntimes_friendly (5678, and = TRUE)
ntimes_friendly (5678, hyphenate = FALSE)

# Input validation
try(ntimes_friendly_safe(1234, and = " - "))



14
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number_friendly

Translate a vector of numbers to a cardinal character vector

Description

Convert a vector of numbers to a cardinal numeral (e.g. one tenth, one, two).

number_friendly_safe() checks that all arguments are of the correct type and raises an infor-

mative error otherwise. number_friendly() does not perform

speed.

Usage

number_friendly(numbers, ...)

## S3 method for class 'numeric'
number_friendly(

)

numbers,

zero = "zero",

na = "missing”,

nan = "not a number”,
inf = "infinity",
negative = "negative ",
decimal = " and ",

and = FALSE,

hyphenate = TRUE,

and_fractional = and,
hyphenate_fractional = hyphenate,
english_fractions = NULL,

## S3 method for class 'integer'
number_friendly(

numbers,

zero = "zero",

na = "missing”,

nan = "not a number”,
inf = "infinity",
negative = "negative ",
and = FALSE,

hyphenate = TRUE,

## S3 method for class 'bignum_biginteger'
number_friendly(

input validation to maximize its
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numbers,

zero = "zero",

na = "missing”,

nan = "not a number”,
inf = "infinity",
negative = "negative ",
and = FALSE,

hyphenate = TRUE,

)

## S3 method for class 'bignum_bigfloat'
number_friendly(

numbers,

zero = "zero",

na = "missing”,

nan = "not a number”,
inf = "infinity",
negative = "negative ",
decimal = " and ",

and = FALSE,

hyphenate = TRUE,

and_fractional = and,
hyphenate_fractional = hyphenate,
english_fractions = NULL,

## Default S3 method:
number_friendly(numbers, ...)

number_friendly_safe(numbers, ...)

## S3 method for class 'numeric'
number_friendly_safe(

numbers,

zero = "zero",

na = "missing”,

nan = "not a number”,
inf = "infinity",
negative = "negative ",
decimal = " and ",

and = FALSE,

hyphenate = TRUE,

and_fractional = and,
hyphenate_fractional = hyphenate,
english_fractions = NULL,

15
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)

## S3 method for class 'integer'
number_friendly_safe(

numbers,

zero = "zero",

na = "missing”,

nan = "not a number”,
inf = "infinity",
negative = "negative ",
and = FALSE,

hyphenate = TRUE,

)

## S3 method for class 'bignum_biginteger'

number_friendly_safe(

numbers,

zero = "zero",

na = "missing”,

nan = "not a number”,
inf = "infinity",
negative = "negative ",
and = FALSE,

hyphenate = TRUE,

)

## S3 method for class 'bignum_bigfloat'

number_friendly_safe(

numbers,

zero = "zero",

na = "missing”,

nan = "not a number”,
inf = "infinity",
negative = "negative ",
decimal = " and ",

and = FALSE,

hyphenate = TRUE,
and_fractional = and,

hyphenate_fractional = hyphenate,

english_fractions = NULL,

)

## Default S3 method:
number_friendly_safe(numbers,

)

number_friendly
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Arguments

numbers A vector of numbers to translate. The friendlynumber package defines meth-
ods for integer, numeric, bignum: :biginteger(), and bignum: :bigfloat()
numbers.
* Integers are passed to integerish_friendly()
* Numeric vectors are passed to numeric_friendly()
* bignum::biginteger() vectors are passed to biginteger_friendly()
* bignum: :bigfloat() vectors are passed to bigfloat_friendly()

Additional arguments passed to or from other methods.
zero [character(1)]
What to call values of @ in numbers (e.g. zero = "zero").
na [character(1)]
What to call values of NA in numbers (e.g. na = "missing”).
nan [character(1)]
What to call values of NaN in numbers (e.g. nan = "undefined").
inf [character(1)]
What to call values of Inf in numbers (e.g. inf = "infinity").
negative [character(1)]
A prefix added to the translation of negative elements of numbers. negative is
the string "negative " by default.
decimal [character(1)]
A word inserted between the whole and fractional part of translated numbers.
decimal is the string " and " by default.
and [TRUE / FALSE]
Whether to insert an " and " before the tens place of translated numbers. and is
FALSE by default.
hyphenate [TRUE / FALSE]
Whether to hyphenate numbers 21 through 99 (e.g. "twenty-one” vs. "twenty
one"). hyphenate is TRUE by default.
and_fractional [TRUE / FALSE]
Whether to insert an " and " before the smallest fractional tens place of trans-
lated numbers (e.g. "one hundred one thousandths” vs. "one hundred and
one thousandths”).
and_fractional is equal to and by default.
hyphenate_fractional
[TRUE / FALSE]
Whether to hyphenate numbers 21 through 99 in the fractional part of translated
numbers (e.g. "twenty-one hundredths"” or "twenty one hundredths”). This
also determines the hyphenation of the fractional units (e.g. "one ten-millionth”
vs. "one tenmillionth”).
hyphenate_fractional is equal to hyphenate by default.
english_fractions
[character]
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A named character vector used as a dictionary for the translation of the fractional
part of numbers. The names (i.e. keys) are the decimal digits of a fractional
number and the values are the corresponding translations.

For example english_fractions = c("5" = "a half") matches the number 0.5
(translated as "a half") and 2.5 (translated as "two and a half").

By default english_fractions is a named character vector with translations
for fractions x / yforx =1, 2, ..., 8andy =1, 2, ..., 9. Forexample,
2 / 3is translated as "two thirds"” and 1 / 2 is translated as "one half".

Provide an empty character to english_fractions to opt out of any such trans-
lations. In this case 1 / 2 is translated as "five tenths” instead of "one half".

Value

A non-NA character vector of the same length as numbers.

See Also
integerish_friendly(), numeric_friendly(),biginteger_friendly(),bigfloat_friendly()

Examples

number_friendly(c(1/3, @, 0.999, NA, NaN, Inf, -Inf))
number_friendly(c(1L, 2L, 1001L))

# Input validation

try(number_friendly_safe(1L, zero = c("a", "zero")))
numeric_friendly Translate a numeric vector to a cardinal character vector
Description

Convert a numeric vector to a cardinal numeral (e.g. one tenth, one, two).

numeric_friendly_safe() checks that all arguments are of the correct type and raises an infor-
mative error otherwise. numeric_friendly() does not perform input validation to maximize its
speed.

Usage

numeric_friendly(
numbers,
zero = "zero",
na = "missing”,
nan = "not a number”,
inf = "infinity",
negative = "negative ",

n

decimal = " and ",
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and = FALSE,

hyphenate = TRUE,

and_fractional = and,
hyphenate_fractional = hyphenate,
english_fractions = NULL

)

numeric_friendly_safe(
numbers,
zero = "zero",
na = "missing”,
nan = "not a number”,
inf = "infinity",
negative = "negative ",
decimal = " and ",
and = FALSE,

hyphenate = TRUE,

and_fractional = and,
hyphenate_fractional = hyphenate,
english_fractions = NULL

)
Arguments

numbers [numeric]
A numeric vector to translate.

zero [character(1)]
What to call values of @ in numbers (e.g. zero = "zero").

na [character(1)]
What to call values of NA in numbers (e.g. na = "missing").

nan [character(1)]
What to call values of NaN in numbers (e.g. nan = "undefined").

inf [character(1)]
What to call values of Inf in numbers (e.g. inf = "infinity").

negative [character(1)]
A prefix added to the translation of negative elements of numbers. negative is
the string "negative " by default.

decimal [character(1)]
A word inserted between the whole and fractional part of translated numbers.
decimal is the string " and " by default.

and [TRUE / FALSE]
Whether to insert an " and " before the tens place of translated numbers. and is
FALSE by default.

hyphenate [TRUE / FALSE]

19

Whether to hyphenate numbers 21 through 99 (e.g. "twenty-one” vs. "twenty

one"). hyphenate is TRUE by default.
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and_fractional [TRUE / FALSE]
Whether to insert an " and " before the smallest fractional tens place of trans-
lated numbers (e.g. "one hundred one thousandths” vs. "one hundred and
one thousandths”).
and_fractional is equal to and by default.
hyphenate_fractional
[TRUE / FALSE]
Whether to hyphenate numbers 21 through 99 in the fractional part of translated
numbers (e.g. "twenty-one hundredths” or "twenty one hundredths”). This
also determines the hyphenation of the fractional units (e.g. "one ten-millionth”
vs. "one tenmillionth”).
hyphenate_fractional is equal to hyphenate by default.
english_fractions
[character]
A named character vector used as a dictionary for the translation of the fractional
part of numbers. The names (i.e. keys) are the decimal digits of a fractional
number and the values are the corresponding translations.
For example english_fractions = c("5" = "a half") matches the number 0.5
(translated as "a half") and 2.5 (translated as "two and a half").
By default english_fractions is a named character vector with translations
for fractions x / yforx =1, 2, ..., 8andy =1, 2, ..., 9. Forexample,
2 / 3is translated as "two thirds” and 1 / 2 is translated as "one half".
Provide an empty character to english_fractions to opt out of any such trans-
lations. In this case 1 / 2 is translated as "five tenths” instead of "one half".
Value
A non-NA character vector of the same length as numbers.
Examples

numeric_friendly(c(1/3, @, ©.999, NA, NaN, Inf, -Inf))

# Specify the translations of "special” numbers
numeric_friendly(c(1, @, Inf), zero = "none"”, inf = "all")

# Modify the output formatting
frac <- 8765.4321
numeric_friendly(frac)

numeric_friendly(frac, decimal = " dot ")
numeric_friendly(frac, hyphenate = TRUE, hyphenate_fractional = FALSE)
numeric_friendly(frac, and = TRUE, and_fractional = TRUE, decimal =" . ")

# The ~friendlynumber.numeric.digits™ option specifies the number of
# numeric digits mentioned by “numeric_friendly()"

opts <- options()

options(friendlynumber.numeric.digits = 5)
numeric_friendly(@.0987654321)
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options(friendlynumber.numeric.digits = 10)
numeric_friendly(@.0987654321)
options(opts)

# Set “english_fractions™ to specify the translation of certain
# fractions. The names (keys) of “english_fractions™ should match
# the decimal part of a fraction (e.g. ~"5"" matches "0.57).
numeric_friendly(

c(1/2, 6/5, 12),

english_fractions = c(°5~ = "1/2", ~2° = "1/5")
)

# Input validation
try(numeric_friendly_safe("A"))

ordinal_friendly Translate integer-ish numbers to an ordinal character vector

Description

Convert an integer vector, or numeric vector which is coercible to an integer without loss of preci-
sion, to an ordinal numeral (e.g. first, second, third).

ordinal_friendly_safe() checks that all arguments are of the correct type and raises an infor-
mative error otherwise. ordinal_friendly() does not perform input validation to maximize its
speed.

Usage

ordinal_friendly(
numbers,
zero = "zeroth",
na = "missingth”,
nan = "not a numberth”,
inf = "infinitieth"”,
negative = "negative ",
and = FALSE,
hyphenate = TRUE

)

ordinal_friendly_safe(
numbers,
zero = "zeroth",
na = "missingth”,
nan = "not a numberth”,
inf = "infinitieth",
negative = "negative ",
and = FALSE,

hyphenate = TRUE
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Arguments

numbers

zZero

na

nan

inf

negative

and

hyphenate

Value

ordinal_friendly

[integer / numeric]

An integer or integer-ish numeric vector to translate.
[character(1)]

What to call values of @ in numbers (e.g. zero = "zero").
[character(1)]

What to call values of NA in numbers (e.g. na = "missing").
[character(1)]

What to call values of NaN in numbers (e.g. nan = "undefined").
[character(1)]

What to call values of Inf in numbers (e.g. inf = "infinity").
[character(1)]

A prefix added to the translation of negative elements of numbers. negative is
the string "negative " by default.

[TRUE / FALSE]

Whether to insert an " and " before the tens place of translated numbers. and is
FALSE by default.

[TRUE / FALSE]

Whether to hyphenate numbers 21 through 99 (e.g. "twenty-one” vs. "twenty
one"). hyphenate is TRUE by default.

A non-NA character vector of the same length as numbers.

Examples

ordinal_friendly(c(@, 1, 2, 3, NA, NaN, Inf, -Inf))
ordinal_friendly(1010)

# Specify the translations of "special” numbers
ordinal_friendly(@, zero = "noneth")

# Modify the output formatting
ordinal_friendly(1234)
ordinal_friendly(1234, and = TRUE)
ordinal_friendly (1234, hyphenate = FALSE)

# Input validation
try(ordinal_friendly_safe(0.5))
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quantifier_friendly Translate integer-ish numbers to a character vector of quantifiers (the,
both, all three)

Description

Convert an integer vector, or numeric vector which is coercible to an integer without loss of preci-
sion, to a quantifier (e.g. no, the, every, all five).

quantifier_friendly_safe() checks that all arguments are of the correct type and raises an in-
formative error otherwise. quantifier_friendly() does not perform input validation to maximize

its speed.
Usage

quantifier_friendly(
numbers,
one = "the",
two = "both”,
zero = "no",
na = "a missing”,
nan = "an undefined”,
inf = "every”,
negative = "negative ",
and = FALSE,

hyphenate = TRUE,
bigmark = TRUE,
max_friendly = 100

)
quantifier_friendly_safe(
numbers,
one = "the",
two = "both”,
zero = "no",
na = "a missing”,
nan = "an undefined”,
inf = "every”,
negative = "negative ",
and = FALSE,

hyphenate = TRUE,
bigmark = TRUE,
max_friendly = 100

Arguments

numbers [integer / numeric]
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one

two

zero

na

nan

inf

negative

and

hyphenate

bigmark

max_friendly

Value

quantifier_friendly

An integer or integer-ish numeric vector to translate.
[character(1)]

What to call values of 1 in numbers (e.g. one = "the").
[character(1)]

What to call values of 2 in numbers (e.g. two = "both").
[character(1)]

What to call values of @ in numbers (e.g. zero = "zero").
[character(1)]

What to call values of NA in numbers (e.g. na = "missing”).
[character(1)]

What to call values of NaN in numbers (e.g. nan = "undefined").
[character(1)]

What to call values of Inf in numbers (e.g. inf = "infinity").
[character(1)]

A prefix added to the translation of negative elements of numbers. negative is
the string "negative " by default.

[TRUE / FALSE]

Whether to insert an " and " before the tens place of translated numbers. and is
FALSE by default.

[TRUE / FALSE]

Whether to hyphenate numbers 21 through 99 (e.g. "twenty-one” vs. "twenty
one"). hyphenate is TRUE by default.

[TRUE / FALSE]

Whether the thousands places of formatted numbers should be separated with a
comma (e.g. "10,000,000" vs. "10000000"). bigmark is TRUE by default.
[numeric]

The maximum number to convert to a numeral. Elements of numbers above
max_friendly are converted to formatted numbers (e.g. "all 1,000" instead
of "all one thousand”). max_friendly is 100 by default.

Use the bigmark argument to determine whether these formatted numbers are
comma separated (e.g. "all 1,000" vs. "all 1000").

A non-NA character vector of the same length as numbers.

Examples

quantifier_friendly(c(@, 1, 2, 3, NA, NaN, Inf))

# The “negative™ prefix appears after the ~"all"" prefix
quantifier_friendly(-4)

# -1

and ~-2

are not translated using “one™ and ~two"

quantifier_friendly(c(1, 2, -1, -2), one = "the", two = "both")
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# Suppress the translation of large numbers

quantifier_friendly(c(99, 1234), max_friendly = -Inf)
quantifier_friendly(c(99, 1234), max_friendly = 100)
quantifier_friendly(c(99, 1234), max_friendly = 1500)

# Specify the translations of "special” numbers

non

quantifier_friendly(c(1, Inf), one = "a", inf = "all")

# Arguments “one™, “two, “inf", etc. take precedence over “max_friendly"
quantifier_friendly(1:3, one = "one", two = "two"”, max_friendly = -1)

# Modify the output formatting

quantifier_friendly (1021, max_friendly = Inf)
quantifier_friendly (1021, and = TRUE, max_friendly = Inf)
quantifier_friendly (1021, hyphenate = FALSE, max_friendly = Inf)
quantifier_friendly (1021, bigmark = FALSE, max_friendly = 10)
quantifier_friendly (1021, bigmark = TRUE, max_friendly = 10)

# Input validation
try(quantifier_friendly_safe(1234, max_friendly = NA))
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