Package 'fluxible'

February 13, 2025

Title Ecosystem Gas Fluxes Calculations for Closed Loop Chamber Setup **Version** 1.0.0

Date 2025-02-07

NeedsCompilation no

Description Processes the raw data from closed loop flux chamber (or tent) setups into ecosystem gas fluxes usable for analysis. It goes from a data frame of gas concentration over time (which can contain several measurements) and a meta data file indicating which measurement was done when, to a data frame of ecosystem gas fluxes including quality diagnostics. Functions provided include different models (exponential as described in Zhao et al (2018) <doi:10.1016/j.agrformet.2018.08.022>, quadratic and linear) to estimate the fluxes from the raw data, quality assessment, plotting for visual check and calculation of fluxes based on the setup specific parameters (chamber size, plot area, ...).

2 Contents

Author Joseph Gaudard [aut, cre] (https://orcid.org/0000-0002-6989-7624),
Paul Efren Santos-Andrade [aut],
Richard James Telford [aut] (https://orcid.org/0000-0001-9826-3076)

Maintainer Joseph Gaudard < joseph.gaudard@pm.me>

Repository CRAN

Date/Publication 2025-02-13 16:40:02 UTC

Contents

co2_conc	 . 3
co2_conc_missing	 . 4
co2_df_missing	
co2_df_short	 . 5
co2_fluxes	 . 6
co2_liahovden	 . 7
conc_poster	 . 7
flux_calc	 . 8
flux_check_item	 . 10
flux_cut	 . 10
flux_fitting	 . 11
flux_fitting_exp	 . 12
flux_fitting_lin	 . 13
flux_fitting_quadratic	 . 14
flux_fit_type	 . 15
flux_flag_count	 . 16
flux_fun_check	 . 17
flux_gep	 . 17
flux_match	 . 18
flux_param_exp	 . 19
flux_param_lm	 . 20
flux_plot	 . 20
flux_plot_exp	 . 22
flux_plot_flag	 . 22
flux_plot_lin	 . 23
flux_plot_quadratic	 . 23
flux_quality	 . 24
flux_quality_exp	
flux_quality_lm	
raw_twogases	
record_liahovden	 . 28
record_short	
slopes0	
slopes0lin	
slopes0lin_flag	
slopes0_flag	
slopes0_temp	
slopes0 vol	

co2 conc	2
coll conc	4

co2_0	conc	CC)2 c	con	cei	ntr	ati	on																	
Index																									45
	twogases_record			•			•		•	•	 •	•	•		•	•		•	•		•		•	•	44
	slopes60lin																								
	slopes60																								42
	slopes30_flag																								41
	slopes30qua_flag																								40
	slopes30qua																								39
	slopes30lin_flag .																								38
	slopes30lin																								37
	slopes30																								36

Description

CO2 concentration with measurements meta data

Usage

co2_conc

Format

A tibble with 1251 rows and 13 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

f_start Datetime at which the measurement was started.

f_end Datetime at which the measurement ended.

f_fluxid Unique ID for each flux.

f_n_conc Number of data point per flux.

f_ratio Ratio of n_conc over length of the measurement (in seconds).

f_flag_match Data quality flags.

Examples

co2_conc

4 co2_conc_missing

co2_conc_missing

CO2 concentration

Description

CO2 concentration with measurements meta data, with missing data.

Usage

```
co2_conc_missing
```

Format

A tibble with 668 rows and 13 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

f_start Datetime at which the measurement was started.

f_end Datetime at which the measurement ended.

f_fluxid Unique ID for each flux.

f_n_conc Number of data point per flux.

f_ratio Ratio of n_conc over length of the measurement (in seconds).

f_flag_match Data quality flags.

Examples

```
co2_conc_missing
```

co2_df_missing 5

co2_df_missing

CO2 concentration with missing data

Description

Continuous CO2 concentration as measured on the field, with missing data.

Usage

co2_df_missing

Format

A tibble with 1148 rows and 5 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

Examples

co2_df_missing

co2_df_short

CO2 concentration

Description

Continuous CO2 concentration as measured on the field

Usage

co2_df_short

Format

A tibble with 1801 rows and 5 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

6 co2_fluxes

Examples

co2_df_short

co2_fluxes

CO2 fluxes

Description

Calculated CO2 fluxes

Usage

co2_fluxes

Format

A tibble with 6 rows and 11 variables

f_fluxid Unique ID for each flux.

f_slope_tz Slope of C(t) at t zero.

f_temp_air_ave Air temperature inside the flux chamber in Celsius averaged over the flux measurement.

f_flux CO2 flux in mmol/sqm/hour.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm averaged over the flux measurement.

temp_soil Ground temperature inside the flux chamber in Celsius averaged over the flux measurement.

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

f start Datetime at which the measurement started.

temp_fahr Air temperature inside the flux chamber in Fahrenheit averaged over the flux measurement.

temp_kelvin Air temperature inside the flux chamber in Kelvin averaged over the flux measurement.

Examples

co2_fluxes

co2_liahovden 7

co2_liahovden

CO2 concentration at Liahovden

Description

CO2 concentration at Liahovden site, used in example in readme file

Usage

co2_liahovden

Format

A tibble with 89692 rows and 5 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

Examples

co2_liahovden

conc_poster

CO2 concentration

Description

CO2 concentration used to make the plot in the poster

Usage

conc_poster

Format

A tibble with 530 rows and 11 variables

datetime Datetime at which CO2 concentration was recorded.

conc CO2 concentration in ppm.

f_fluxid Unique ID for each flux.

f_quality_flag quality flag advising if the slope has to be replaced by 0 or NA

8 flux_calc

f_start Datetime at which the measurement was started.

f_RMSE RMSE of the exponential fit and the measured data

f_cor_coef coefficient of correlation between gas concentration and time

f_b b parameter of the C(t) function, calculated by optim() with b_est as starting point.

f_cut Indicating if the measurement should be kept (keep) or discarded (cut).

f_fit C(t), modeled CO2 concentration as a function of time.

fit_slope Output of linear model of CO2 concentration passing by C(tz) and a slope of slope_tz.

Examples

conc_poster

flux_calc

calculates ecosystem gas fluxes

Description

calculates a flux based on the rate of change of gas concentration over time

```
flux_calc(
  slopes_df,
  slope_col,
  datetime_col,
  temp_air_col,
  chamber_volume,
  atm_pressure,
  plot_area,
  f_fluxid = f_fluxid,
  conc_unit,
  flux_unit,
  cols_keep = c(),
  cols_ave = c(),
  tube_volume,
  temp_air_unit = "celsius",
  f_{cut} = f_{cut}
  keep_arg = "keep",
  cut = TRUE,
  fit_type = c()
)
```

flux_calc 9

Arguments

slopes_df	dataframe of flux slopes
slope_col	column containing the slope to calculate the flux (in ppms^(-1) or ppbs^(-1))
datetime_col	column containing the datetime of each gas concentration measurements in slopes_df. The first one after cutting will be kept as datetime of each flux in the output.
temp_air_col	column containing the air temperature used to calculate fluxes. Will be averaged with NA removed.
chamber_volume	volume of the flux chamber in L, can also be a column in case it is a variable
atm_pressure	atmospheric pressure, can be a constant (numerical) or a variable (column name)
plot_area	area of the plot in m^2, can also be a column in case it is a variable
f_fluxid	column containing the flux IDs
conc_unit	unit in which the concentration of gas was measured ppm or ppb
flux_unit	unit in which the calculated flux will be mmol outputs fluxes in mmol * m^{-2} * h^{-1} ; micromol outputs fluxes in micromol * m^{-2} * h^{-1}
cols_keep	columns to keep from the input to the output. Those columns need to have unique values for each flux, as distinct() is applied.
cols_ave	columns with values that should be averaged for each flux in the output. Note that NA are removed in mean calculation.
tube_volume	volume of the tubing in L, can also be a column in case it is a variable
temp_air_unit	units in which air temperature was measured. Has to be either celsius (default), fahrenheit or kelvin.
f_cut	column containing cutting information
keep_arg	name in f_cut of data to keep
cut	if 'TRUE' (default), the measurements will be cut according to 'f_cut' before calculating fluxes. This has no influence on the flux itself since the slope is provided from flux_fitting, but it will influence the values of the columns in cols_ave.
fit_type	(optional) model used in flux_fitting, exponential, quadratic or linear. Will be automatically filled if slopes_df was produced using flux_quality.

Value

a dataframe containing flux IDs, datetime of measurements' starts, fluxes in mmol*m $^{-2}h^{-1}$ or $micromolm^{-2}h^{-1}$ (f_flux) according to flux_unit, temperature average for each flux in Kelvin (f_temp_ave), the total volume of the setup for each measurement (f_volume_setup), the model used in flux_fitting, any column specified in cols_keep, any column specified in cols_ave with their value averaged over the measurement after cuts and discarding NA.

Examples

```
data(slopes0)
flux_calc(slopes0,
f_slope,
```

10 flux_cut

```
datetime,
temp_air,
conc_unit = "ppm",
flux_unit = "mmo1",
chamber_volume = 24.5,
tube_volume = 0.075,
atm_pressure = 1,
plot_area = 0.0625)
```

flux_check_item

check the items inside flux_fun_check

Description

check the items inside flux_fun_check

Usage

```
flux_check_item(arg, fn, msg, narg, df_name = NA)
```

Arguments

argument to be checked by fn

fn function to check arg

msg message to display in case arg is the wrong class

narg name of arg

df_name name of arg in case it is a data frame

Author(s)

Adam Klimes

flux_cut

filter cut data before calculating fluxes

Description

filter cut data before calculating fluxes

Usage

```
flux_cut(slopes_df, cut_col, keep_arg)
```

Arguments

slopes_df dataset containing slopes and cut column cut_col column containing cutting information keep_arg name in cut_col of data to keep

flux_fitting 11

flux_fitting

Fitting a model to concentration data and estimating the slope

Description

fits gas concentration over time data with a model (exponential, quadratic or linear) and provides the slope later used to calculate gas fluxes with flux_calc

Usage

```
flux_fitting(
 conc_df,
  conc_col,
 datetime_col,
  f_start = f_start,
 f_{end} = f_{end}
 f_fluxid = f_fluxid,
  start_cut = 0,
  end_cut = 0,
  t_window = 20,
  cz\_window = 15,
  b_{window} = 10,
  a_{window} = 10,
  roll_width = 15,
  t_zero = 0,
  fit\_type
)
```

Arguments

conc_df	dataframe of gas concentration over time
conc_col	column with gas concentration data
datetime_col	column with datetime of each concentration measurement Note that if there are duplicated datetime in the same $f_{\text{-}}$ fluxid only the first row will be kept
f_start	column with datetime when the measurement started
f_end	column with datetime when the measurement ended
f_fluxid	column with ID of each flux
start_cut	time to discard at the start of the measurements (in seconds)
end_cut	time to discard at the end of the measurements (in seconds)
t_window	enlarge focus window before and after tmin and tmax (exponential fit)
cz_window	window used to calculate Cz, at the beginning of cut window (exponential fit)
b_window	window to estimate b. It is an interval after tz where it is assumed that the model fits the data perfectly (exponential fit)
a_window	window at the end of the flux to estimate a (exponential fit)

12 flux_fitting_exp

roll_width	width of the rolling mean for CO2 when looking for tz, ideally same as cz_window (exponential fit)
t_zero	time at which the slope should be calculated (for quadratic fit)
fit_type	exponential, quadratic or linear. Exponential is using the exponential model from Zhao et al (2018)

Value

a dataframe with the slope at t zero (f_slope), a datetime column of t zero (f_start_z), a factor column indicating the cuts (f_cut), the time in seconds since the start of the measurement (f_time), the modeled fit (f_fit), the modeled slope (f_fit_slope), the parameters of the fit depending on the model used, and any columns present in the input. The type of fit is added as an attribute for use by the other functions.

References

Zhao, P., Hammerle, A., Zeeman, M., Wohlfahrt, G., 2018. On the calculation of daytime CO2 fluxes measured by automated closed transparent chambers. Agricultural and Forest Meteorology 263, 267–275. https://doi.org/10.1016/j.agrformet.2018.08.022

Fitting a model to the gas concentration curve and estimating the slope over time, using the exponential model from Zhao et al (2018)

Examples

```
data(co2_conc)
flux_fitting(co2_conc, conc, datetime, fit_type = "exp")
flux_fitting(co2_conc, conc, datetime, fit_type = "quadratic",
t_zero = 10, end_cut = 30)
```

Description

flux_fitting_exp

Fits an exponential expression to the concentration evolution

```
flux_fitting_exp(
  conc_df,
  conc_col,
  datetime_col,
  f_start,
  f_end,
  f_fluxid,
  t_window,
  cz_window,
  b_window,
```

flux_fitting_lin 13

```
a_window,
roll_width,
start_cut,
end_cut
)
```

Arguments

conc_df	dataframe of gas concentration over time
conc_col	column with gas concentration
datetime_col	column with datetime of each concentration measurement Note that if there are duplicated datetime in the same f_fluxid only the first row will be kept
f_start	column with datetime when the measurement started
f_end	column with datetime when the measurement ended
f_fluxid	column with ID of each flux
t_window	enlarge focus window before and after tmin and tmax
cz_window	window used to calculate Cz, at the beginning of cut window
b_window	window to estimate b. It is an interval after tz where it is assumed that C fits the data perfectly
a_window	window at the end of the flux to estimate a
roll_width	width of the rolling mean for CO2 when looking for tz, ideally same as cz_window
start_cut	time to discard at the start of the measurements (in seconds)
end_cut	time to discard at the end of the measurements (in seconds)

Value

a dataframe with the slope at t zero, modeled concentration over time and exponential expression parameters

References

Zhao, P., Hammerle, A., Zeeman, M., Wohlfahrt, G., 2018. On the calculation of daytime CO2 fluxes measured by automated closed transparent chambers. Agricultural and Forest Meteorology 263, 267–275. https://doi.org/10.1016/j.agrformet.2018.08.022

flux_fitting_lin	linear fit to gas concentration over time	

Description

fits a linear model to the gas concentration over time

Usage

```
flux_fitting_lin(
  conc_df,
  conc_col,
  datetime_col,
  f_start,
  f_end,
  f_fluxid,
  start_cut,
  end_cut
)
```

Arguments

conc_df	dataframe of gas concentration over time
conc_col	column with gas concentration
datetime_col	column with datetime of each concentration measurement Note that if there are duplicated datetime in the same f_{eff} duvid only the first row will be kept
f_start	column with datetime when the measurement started
f_end	column with datetime when the measurement ended
f_fluxid	column with ID of each flux
start_cut	time to discard at the start of the measurements (in seconds)
end_cut	time to discard at the end of the measurements (in seconds)

Value

a df with the modeled gas concentration, slope, intercept, std error, r square and p value of the linear model

```
flux\_fitting\_quadratic
```

quadratic fit to gas concentration over time

Description

fits a quadratic model to the gas concentration over time

```
flux_fitting_quadratic(
  conc_df,
  conc_col,
  datetime_col,
  f_start,
  f_end,
```

flux_fit_type 15

```
f_fluxid,
  start_cut,
  end_cut,
  t_zero
)
```

Arguments

conc_df dataframe of gas concentration over time

conc_col column with gas concentration

datetime_col column with datetime of each concentration measurement Note that if there are

duplicated datetime in the same f_fluxid only the first row will be kept

f_start column with datetime when the measurement started f_end column with datetime when the measurement ended

f_fluxid column with ID of each flux

start_cut time to discard at the start of the measurements (in seconds) end_cut time to discard at the end of the measurements (in seconds)

t_zero time at which the slope should be calculated

Value

a df with the modeled gas concentration, slope, intercept, std error, r square and p value of the quadratic model

flux_fit_type to check the type of fit

Description

extracts the type of fit that was applied in flux_fitting or checks that the fit_type provided by the user is compatible with Fluxible

Usage

```
flux_fit_type(
   df,
   fit_type = c(),
   fit_type_list = c("exponential", "linear", "quadratic")
)
```

Arguments

df any dataframe

fit_type type of fit that was applied in flux_fitting. Needs to be filled only if the df was

produced outside of the Fluxible workflow.

fit_type_list list of fit types in use with Fluxible.

16 flux_flag_count

flux_flag_count

counts quality flags

Description

provides a table of how many fluxes were attributed which quality flag. This function is incorporated in flux_quality (output as a message) but can be used alone to extract a dataframe with the flag count.

Usage

```
flux_flag_count(
    slopes_df,
    f_fluxid = f_fluxid,
    f_quality_flag = f_quality_flag,
    f_cut = f_cut,
    f_flags = c("ok", "discard", "zero", "force_discard", "start_error", "no_data",
        "force_ok"),
    cut_arg = "cut"
)
```

Arguments

```
slopes_df dataframe of flux slopes

f_fluxid column containing fluxes unique ID

f_quality_flag column containing the quality flags

f_cut column indicating which part of the flux is being cut

f_flags list of flags used in the dataset (if different from default from flux_quality). If not provided, it will list only the flags that are present in the dataset (no showing 0).

cut_arg argument defining that the data point should be cut out
```

Value

a dataframe with the number of fluxes for each quality flags and their proportion to the total

Author(s)

Vincent Belde

Examples

```
data(slopes30qua_flag)
flux_flag_count(slopes30qua_flag)
```

flux_fun_check 17

flux_fun_check checking that arguments and columns are in the correct class	
---	--

Description

checking that arguments and columns are in the correct class

Usage

```
flux_fun_check(args, fn, msg, name_df = NA)
```

Arguments

args list of arguments or dataframe to check

fn list of functions used to check (is.numeric, is.character, ...)

msg list of messages to return in case of failed check

name_df in case args is a df with selected columns to check original df to

take the name from for a more obvious error message

Author(s)

Adam Klimes

flux_gep Calculates GEP

Description

to calculate gross ecosystem production (GEP) from net ecosystem (NEE) exchange and ecosystem respiration (ER) as GEP = NEE - ER. Datetime and other variables to keep will be taken from the NEE measurement.

```
flux_gep(
  fluxes_df,
  type_col,
  datetime_col,
  f_flux = f_flux,
  id_cols,
  nee_arg = "NEE",
  er_arg = "ER",
  cols_keep = "none"
)
```

18 flux_match

Arguments

fluxes_df a dataframe containing NEE and ER column containing type of flux (NEE or ER) type_col datetime_col column containing start of measurement as datetime column containing flux values f_flux id_cols columns used to identify each pair of ER and NEE argument designating NEE fluxes in type column nee_arg argument designating ER fluxes in type column er_arg columns to keep from fluxes_df. Values from NEE row will be filled in GEP cols_keep row. none (default) keeps only the columns in id_cols, flux, type and datetime columns; all keeps all the columns; can also be a vector of column names.

Value

a dataframe with GEP as NEE - ER in long format with GEP, NEE, and ER as flux type, datetime, and any column specified in cols_keep. Values of datetime and columns in cols_keep for GEP row are taken from NEE measurements.

Examples

```
data(co2_fluxes)
flux_gep(co2_fluxes, type, f_start, id_cols = "turfID",
cols_keep = c("temp_soil"))
```

flux_match

Matching continuously measured fluxes with measurement IDs and meta data

Description

Matching a dataframe of continuously measured gas concentration data with measurement metadata from another dataframe. Measurements are paired with their metadata based on datetime. Extra variables in both dataframes are kept in the output.

```
flux_match(
  raw_conc,
  field_record,
  datetime_col,
  start_col,
  conc_col,
  startcrop,
  measurement_length,
  ratio_threshold = 0.5,
  time_diff = 0
)
```

flux_param_exp 19

Arguments

raw_conc dataframe of CO2 concentration measured continuously. Has to contain at least

a datetime column in ymd_hms format and a gas concentration column as dou-

ble.

field_record dataframe recording which measurement happened when. Has to contain at

least a column containing the start of each measurement, and any other column

identifying the measurements.

datetime_col datetime column in raw_conc (dmy_hms format)
start_col start column in field_record (dmy_hms format)

conc_col concentration column in raw_conc

startcrop how many seconds should be discarded at the beginning of the measurement

measurement_length

length of the measurement (in seconds) from the start specified in the field_record

ratio_threshold

ratio (number of concentration measurement compared to length of measure-

ment in seconds) below which the data should be flagged as too little

time_diff time difference (in seconds) between the two datasets. Will be added to the

datetime column of the raw conc dataset. For situations where the time was not

synchronized correctly.

Value

a dataframe with concentration measurements, corresponding datetime, flux ID (f_fluxid), measurements start (f_start) and end (f_end), flags in case of no data or low number of data (f_flag_match), the number of datapoints per measurement (f_n_conc), the ratio of number of datapoints over the length of each measurement in seconds (f_ratio), and any variables present in one of the inputs.

Examples

```
data(co2_df_short, record_short)
flux_match(co2_df_short, record_short, datetime, start, conc, startcrop = 10,
measurement_length = 180)
```

flux_param_exp

prepares text to print for flux_plot function

Description

creates a df with quality flags and quality diagnostics to print on the plots produced by flux_plot. flux_param_lm is for fit in the lm family (linear and quadratic) flux_param_exp is for the exponential fit

```
flux_param_exp(slopes_df, conc_col)
```

20 flux_plot

Arguments

slopes_df that is being provided to flux_plot

conc_col column with gas concentration

Description

creates a df with quality flags and quality diagnostics to print on the plots produced by flux_plot. flux_param_lm is for fit in the lm family (linear and quadratic) flux_param_exp is for the exponential fit

Usage

```
flux_param_lm(slopes_df, conc_col)
```

Arguments

slopes_df that is being provided to flux_plot

conc_col column with gas concentration

flux_plot plotting fluxes for visual evaluation

Description

plots the fluxes, fit and slope in facets with color code indicating quality flags This function takes time to run and is optional in the workflow, but it is still highly recommended to use it to visually check the measurements. Note that 'flux_plot' is specific to the 'fluxible' package and will work best with datasets produced following a fluxible workflow.

flux_plot 21

```
f_ylim_upper = 800,
f_ylim_lower = 400,
f_plotname = "",
facet_wrap_args = list(ncol = 4, nrow = 3, scales = "free"),
y_text_position = 500,
print_plot = "FALSE",
output = "print_only",
ggsave_args = list()
)
```

Arguments

```
slopes_df
                   dataset containing slopes, with flags produced by flux_quality
conc_col
                  column with gas concentration
datetime_col
                  column with datetime of each data point
color_discard
                  color for fits with a discard quality flag
                  color for the part of the flux that is cut
color_cut
color_ok
                  color for fits with an ok quality flag
color_zero
                  color for fits with a zero quality flag
scale_x_datetime_args
                  list of arguments for scale_x_datetime
f_ylim_upper
                  y axis upper limit
f_ylim_lower
                  y axis lower limit
f_plotname
                   filename for the extracted pdf file; if empty, the name of slopes_df will be used
facet_wrap_args
                  list of arguments for facet_wrap_paginate
y_text_position
                  position of the text box
print_plot
                  logical, if TRUE it prints the plot as a ggplot object but will take time depending
                   on the size of the dataset
output
                   pdfpages, the plots are saved as A4 landscape pdf pages; ggsave, the plots can
                  be saved with the ggsave function; print_only (default) prints the plot without
                  creating a file (independently from 'print_plot' being TRUE or FALSE)
                  list of arguments for ggsave (in case output = "ggsave")
ggsave_args
```

Value

plots of fluxes, with raw concentration data points, fit, slope, and color code indicating quality flags and cuts. The plots are organized in facets according to flux ID, and a text box display the quality flag and diagnostics of each measurement. The plots are returned as a ggplot object if print_plot = TRUE; if print_plot = FALSE it will not return anything but will produce a file according to the output argument.

22 flux_plot_flag

Examples

```
data(slopes0_flag)
flux_plot(slopes0_flag, conc, datetime)
data(slopes30lin_flag)
flux_plot(slopes30lin_flag, conc, datetime)
data(slopes30qua_flag)
flux_plot(slopes30qua_flag, conc, datetime)
```

flux_plot_exp

plotting fluxes with exponential fit

Description

plots the fluxes that were fitted with an exponential model

Usage

```
flux_plot_exp(slopes_df, conc_col, datetime_col, y_text_position)
```

Arguments

```
slopes_df dataset containing slopes
conc_col column with gas concentration
```

datetime_col column with datetime of each data point

y_text_position

position of the text box

flux_plot_flag

creates the flag column to be used by flux_plot

Description

creates a column with quality flags (from flux_quality) for the part of the rows to be kept, and cut flag for rows to be discarded

Usage

```
flux_plot_flag(slopes_df, param_df)
```

Arguments

```
slopes_df as provided in flux_plot
param_df as provided by flux_param
```

flux_plot_lin 23

flux_plot_lin

plotting fluxes with linear fit

Description

plots the fluxes that were fitted with a linear model

Usage

```
flux_plot_lin(slopes_df, conc_col, datetime_col, y_text_position)
```

Arguments

slopes_df dataset containing slopes

conc_col column with gas concentration

datetime_col column with datetime of each data point

y_text_position

position of the text box

flux_plot_quadratic plotting fluxes with a quadratic fit

Description

specific part of flux_plot for quadratic fit

Usage

```
flux_plot_quadratic(slopes_df, conc_col, datetime_col, y_text_position)
```

Arguments

slopes_df dataset containing slopes

conc_col column with gas concentration

datetime_col column with datetime of each data point

y_text_position

position of the text box

24 flux_quality

flux_quality

assessing quality of slopes calculated with flux_fitting

Description

indicates if slopes should be discarded or replaced by 0 according to quality thresholds set by user

Usage

```
flux_quality(
  slopes_df,
  conc_col,
  f_fluxid = f_fluxid,
  f_slope = f_slope,
  f_time = f_time,
  f_start = f_start,
  f_{end} = f_{end}
  f_fit = f_fit,
  f_{cut} = f_{cut}
  f_pvalue = f_pvalue,
  f_rsquared = f_rsquared,
  f_b = f_b
  force_discard = c(),
  force_ok = c(),
  ratio_threshold = 0,
  fit_type = c(),
  ambient_conc = 421,
  error = 100,
  pvalue_threshold = 0.3,
  rsquared_threshold = 0.7,
  rmse_threshold = 25,
  cor_threshold = 0.5,
  b_threshold = 1,
  cut_arg = "cut"
```

Arguments

slopes_df	dataset containing slopes
conc_col	column containing the measured gas concentration (exponential fit)
f_fluxid	column containing unique IDs for each flux
f_slope	column containing the slope of each flux (as calculated by the flux_fitting function)
f_time	column containing the time of each measurement in seconds (exponential fit)
f_start	column with datetime of the start of the measurement (after cuts)

flux_quality 25

f_end	column with datetime of the end of the measurement (after cuts)
f_fit	column containing the modeled data (exponential fit)
f_cut	column containing the cutting information
f_pvalue	column containing the p-value of each flux (linear and quadratic fit)
f_rsquared	column containing the r squared of each flux (linear and quadratic fit)
f_b	column containing the b parameter of the exponential expression (exponential fit)
force_discard	vector of fluxIDs that should be discarded by the user's decision
force_ok	vector of fluxIDs for which the user wants to keep the calculated slope despite a bad quality flag
ratio_threshold	· · · ·
	ratio of gas concentration data points over length of measurement (in seconds) below which the measurement will be considered as not having enough data points to be considered for calculations
fit_type	model fitted to the data, linear, quadratic or exponential. Will be automatically filled if slopes_df was produced using $flux_fitting()$
ambient_conc	ambient gas concentration in ppm at the site of measurement (used to detect measurement that started with a polluted setup)
error	error of the setup, defines a window outside of which the starting values indicate a polluted setup
<pre>pvalue_threshol</pre>	d
	threshold of p-value below which the change of gas concentration over time is considered not significant (linear and quadratic fit)
rsquared_thresh	
	threshold of r squared value below which the linear model is considered an unsatisfactory fit (linear and quadratic fit)
rmse_threshold	threshold for the RMSE of each flux above which the fit is considered unsatisfactory (exponential fit)
cor_threshold	threshold for the correlation coefficient of gas concentration with time below which the correlation is considered not significant (exponential fit)
b_threshold	threshold for the b parameter. Defines a window with its opposite inside which the fit is considered good enough (exponential fit)
out one	argument defining that the data point should be cut out
cut_arg	argument defining that the data point should be cut out

Value

a dataframe with added columns of quality flags (f_quality_flag), the slope corrected according to the quality flags (f_slope_corr), some diagnostics depending on the fit, and any columns present in the input.

Examples

```
data(slopes0lin)
flux_quality(slopes0lin, conc, fit_type = "li")
data(slopes30)
flux_quality(slopes30, conc, fit_type = "expo")
```

26 flux_quality_exp

flux_quality_exp

quality assessment for the slopes estimated by flux_fitting

Description

indicates if fluxes should be discarded or replaced by 0 according to parameters set by user. flux_quality_lm is for the model of the lm family. flux_quality_exp is for the exponential model.

Usage

```
flux_quality_exp(
    slopes_df,
    conc_col,
    f_fluxid,
    f_slope,
    f_time,
    f_fit,
    f_cut,
    f_b,
    force_discard,
    force_ok,
    rmse_threshold,
    cor_threshold
)
```

Arguments

slopes_df	dataset containing slopes, fluxID, and parameters of the exponential expression	
conc_col	column with gas concentration	
f_fluxid	column of ID for each measurement	
f_slope	column containing the slope of each flux (as calculated by the flux_fitting function)	
f_time	column containing the time of each measurement in seconds	
f_fit	column containing the modeled data	
f_cut	column containing the cutting information	
f_b	column containing the b parameter of the exponential expression	
force_discard	vector of fluxIDs that should be discarded by the user's decision	
force_ok	vector of fluxIDs for which the user wants to keep the calculated slope despite a bad quality flag	
rmse_threshold	threshold for the RMSE of each flux above which the fit is considered unsatisfactory	
cor_threshold	threshold for the correlation coefficient of gas concentration with time below which the correlation is considered non significant	
b_threshold	threshold for the b parameter. Defines a window with its opposite inside which the fit is considered good enough.	

flux_quality_lm 27

Value

same dataframe with added flag and corrected slopes columns

flux_quality_lm quality assessment for the slopes estimated by flux_fitting

Description

indicates if fluxes should be discarded or replaced by 0 according to parameters set by user. flux_quality_lm is for the model of the lm family. flux_quality_exp is for the exponential model.

Usage

```
flux_quality_lm(
    slopes_df,
    conc_col,
    f_fluxid,
    f_slope,
    f_cut,
    f_pvalue,
    f_rsquared,
    force_discard,
    force_ok,
    pvalue_threshold,
    rsquared_threshold,
    name_df
)
```

Arguments

slopes_df	dataset containing slopes, fluxID, p.value and r.squared	
conc_col	column with gas concentration	
f_fluxid	column of ID for each measurement	
f_slope	column containing the slope of each flux (as calculated by the flux_fitting function)	
f_cut	column containing the cutting information	
f_pvalue	column containing the p-value of each flux	
f_rsquared	column containing the r squared to be used for the quality assessment	
force_discard	vector of fluxIDs that should be discarded by the user's decision	
force_ok	vector of fluxIDs for which the user wants to keep the calculated slope despite a bad quality flag	
pvalue_threshold		
	threshold of p-value below which the change of gas concentration over time is considered not significant (user decided)	

28 record_liahovden

rsquared_threshold

threshold of r squared value below which the linear model is considered an un-

satisfactory fit

name_df name of slopes_df (used for error message)

Value

same dataframe with added flag and corrected slopes columns

raw_twogases

CO2 and CH4 concentration

Description

CO2 and CH4 measured simultaneously

Usage

raw_twogases

Format

A tibble with 21681 rows and 4 variables

co2_concCO2 concentration in ppmch4_concCH4 concentration in ppbdatetimeDatetime on the datapoint

temp_air Air temperature inside the chamber in Celsius

Examples

raw_twogases

record_liahovden

Measurements meta data at Liahovden

Description

Measurements meta data as recorded on the field at site Liahovden

Usage

record_liahovden

record_short 29

Format

A tibble with 138 rows and 3 variables

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

round Round of measurement.

start Datetime at which the measurement was started.

Examples

record_liahovden

record_short

Measurements meta data

Description

Measurements meta data as recorded on the field

Usage

record_short

Format

A tibble with 6 rows and 3 variables

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

start Datetime at which the measurement was started.

Examples

record_short

30 slopes0

slopes0

Slopes for each flux

Description

Slopes of C(t) for each flux without cut.

Usage

slopes0

Format

A tibble with 1251 rows and 22 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

f start Datetime at which the measurement was started.

f_end Datetime at which the measurement ended.

f_fluxid Unique ID for each flux.

f flag match Flags from flux match.

f_time Time variable of the flux in seconds.

f_cut Indicating if the measurement should be kept (keep) or discarded (cut).

 $\mathbf{f}_{\mathbf{C}}\mathbf{z}$ Cz parameter of the C(t) function.

f_Cm Cm parameter of the C(t) function, calculated by optim() with Cm_est as starting point.

f a a parameter of the C(t) function, calculated by optim() with a set as starting point.

f_b b parameter of the C(t) function, calculated by optim() with b_est as starting point.

f_tz tz parameter of the C(t) function, calculated by optim() with tz_est as starting point.

f_slope Slope of C(t) at tz

f_fit C(t), modeled CO2 concentration as a function of time.

f_fit_slope Output of linear model of CO2 concentration passing by C(tz) and a slope of slope_tz.

f_start_z Datetime format of tz

Examples

slopes0

slopes0lin 31

slopes0lin

Slopes for each flux

Description

Slopes of linear fit for each flux without cut.

Usage

slopes0lin

Format

A tibble with 1251 rows and 19 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

f_start Datetime at which the measurement was started.

f_end Datetime at which the measurement ended.

f_fluxid Unique ID for each flux.

f_flag_match Flags from flux_match.

f time Time variable of the flux in seconds.

f_cut Indicating if the measurement should be kept (keep) or discarded (cut).

f_pvalue P-value of the linear model of CO2 concentration over time.

f_rsquared R squared of the linear model of CO2 concentration over time.

f_adj_rsquared Adjusted R squared of the linear model of CO2 concentration over time.

f_intercept Intercept of the linear model of CO2 concentration over time.

f_slope Slope of the linear model of CO2 concentration over time.

f_fit Output of the linear model of CO2 concentration over time.

Examples

slopes0lin

32 slopes0lin_flag

slopes0lin_flag

Slopes for each flux

Description

Slopes of linear fit for each flux without cut, with quality flags.

Usage

slopes0lin_flag

Format

A tibble with 1251 rows and 22 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

f start Datetime at which the measurement was started.

f_end Datetime at which the measurement ended.

f_fluxid Unique ID for each flux.

f flag match Flags from flux match.

f_time Time variable of the flux in seconds.

f_cut Indicating if the measurement should be kept (keep) or discarded (cut).

f_pvalue P-value of the linear model of CO2 concentration over time.

f_rsquared R squared of the linear model of CO2 concentration over time.

f adj rsquared Adjusted R squared of the linear model of CO2 concentration over time.

f_intercept Intercept of the linear model of CO2 concentration over time.

f_slope Slope of the linear model of CO2 concentration over time.

f_fit Output of the linear model of CO2 concentration over time.

f_ratio Ratio of number of data points compared to length of measurement in seconds.

f_quality_flag quality flag advising if the slope has to be replaced by 0 or NA

f_slope_corr slope corrected according to quality flag

Examples

slopes0lin_flag

slopes0_flag 33

slopes0_flag

Slopes for each flux

Description

Slopes of C(t) for each flux with 0 second cut, with quality flags.

Usage

slopes0_flag

Format

A tibble with 1251 rows and 27 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

f_start Datetime at which the measurement was started.

f end Datetime at which the measurement ended.

f_fluxid Unique ID for each flux.

f_flag_match Flags from flux_match.

f_time Time variable of the flux in seconds.

f_cut Indicating if the measurement should be kept (keep) or discarded (cut).

 $\mathbf{f}_{\mathbf{C}}\mathbf{z}$ Cz parameter of the C(t) function.

f_Cm Cm parameter of the C(t) function, calculated by optim() with Cm_est as starting point.

f_a a parameter of the C(t) function, calculated by optim() with a_est as starting point.

f_b b parameter of the C(t) function, calculated by optim() with b_est as starting point.

f_tz tz parameter of the C(t) function, calculated by optim() with tz_est as starting point.

f_slope Slope of C(t) at tz

f_fit C(t), modeled CO2 concentration as a function of time.

f_fit_slope Output of linear model of CO2 concentration passing by C(tz) and a slope of slope_tz.

f_start_z Datetime format of tz

f_ratio Ratio of number of data points compared to length of measurement in seconds.

f_cor_coef coefficient of correlation between gas concentration and time

f_RMSE RMSE of the exponential fit and the measured data

f_quality_flag quality flag advising if the slope has to be replaced by 0 or NA

f_slope_corr slope corrected according to quality flag

34 slopes0_temp

Examples

slopes0_flag

slopes0_temp

Slopes for each flux

Description

Slopes of C(t) for each flux with air temperature in various units.

Usage

slopes0_temp

Format

A tibble with 1251 rows and 24 variables

datetime Datetime at which CO2 concentration was recorded.

temp air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

f_start Datetime at which the measurement was started.

f end Datetime at which the measurement ended.

f fluxid Unique ID for each flux.

f_flag_match Flags from flux_match.

f_time Time variable of the flux in seconds.

f_cut Indicating if the measurement should be kept (keep) or discarded (cut).

 $\mathbf{f}_{\mathbf{C}}\mathbf{z}$ Cz parameter of the C(t) function.

f Cm Cm parameter of the C(t) function, calculated by optim() with Cm est as starting point.

f_a a parameter of the C(t) function, calculated by optim() with a_est as starting point.

f_b b parameter of the C(t) function, calculated by optim() with b_est as starting point.

f_tz tz parameter of the C(t) function, calculated by optim() with tz_est as starting point.

f_slope Slope of C(t) at tz

f_fit C(t), modeled CO2 concentration as a function of time.

f_fit_slope Output of linear model of CO2 concentration passing by C(tz) and a slope of slope_tz.

f_start_z Datetime format of tz

temp_fahr Air temperature inside the flux chamber in Fahrenheit averaged over the flux measurement.

temp_kelvin Air temperature inside the flux chamber in Kelvin averaged over the flux measurement.

slopes0_vol 35

Examples

 $slopes0_temp$

slopes0_vol

Slopes for each flux

Description

Slopes of C(t) for each flux without cut.

Usage

slopes0_vol

Format

A tibble with 1251 rows and 23 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

f_start Datetime at which the measurement was started.

f end Datetime at which the measurement ended.

f_fluxid Unique ID for each flux.

f_flag_match Flags from flux_match.

f_time Time variable of the flux in seconds.

f_cut Indicating if the measurement should be kept (keep) or discarded (cut).

 $\mathbf{f}_{\mathbf{C}}\mathbf{z}$ Cz parameter of the C(t) function.

f_Cm Cm parameter of the C(t) function, calculated by optim() with Cm_est as starting point.

f a a parameter of the C(t) function, calculated by optim() with a est as starting point.

f_b b parameter of the C(t) function, calculated by optim() with b_est as starting point.

f tz tz parameter of the C(t) function, calculated by optim() with tz est as starting point.

f_slope Slope of C(t) at tz

f_fit C(t), modeled CO2 concentration as a function of time.

f_fit_slope Output of linear model of CO2 concentration passing by C(tz) and a slope of slope_tz.

f_start_z Datetime format of tz

volume volume of chamber in L

Examples

slopes0_vol

36 slopes30

slopes30

Slopes for each flux

Description

Slopes of C(t) for each flux with a 30 seconds cut at the end of each flux.

Usage

slopes30

Format

A tibble with 1251 rows and 22 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

f start Datetime at which the measurement was started.

f_end Datetime at which the measurement ended.

f_fluxid Unique ID for each flux.

f flag match Flags from flux match.

f_time Time variable of the flux in seconds.

f_cut Indicating if the measurement should be kept (keep) or discarded (cut).

 $\mathbf{f}_{\mathbf{C}}\mathbf{z}$ Cz parameter of the C(t) function.

f_Cm Cm parameter of the C(t) function, calculated by optim() with Cm_est as starting point.

f a a parameter of the C(t) function, calculated by optim() with a set as starting point.

f_b b parameter of the C(t) function, calculated by optim() with b_est as starting point.

f_tz tz parameter of the C(t) function, calculated by optim() with tz_est as starting point.

f_slope Slope of C(t) at tz

f_fit C(t), modeled CO2 concentration as a function of time.

f_fit_slope Output of linear model of CO2 concentration passing by C(tz) and a slope of slope_tz.

f_start_z Datetime format of tz

Examples

slopes30

slopes30lin 37

slopes30lin

Slopes for each flux

Description

Slopes of linear fit for each flux with a 30 seconds cut at the end of each flux.

Usage

slopes30lin

Format

A tibble with 1251 rows and 19 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

f_start Datetime at which the measurement was started.

f_end Datetime at which the measurement ended.

f_fluxid Unique ID for each flux.

f_flag_match Flags from flux_match.

f time Time variable of the flux in seconds.

f_cut Indicating if the measurement should be kept (keep) or discarded (cut).

f_pvalue P-value of the linear model of CO2 concentration over time.

f_rsquared R squared of the linear model of CO2 concentration over time.

f_adj_rsquared Adjusted R squared of the linear model of CO2 concentration over time.

f_intercept Intercept of the linear model of CO2 concentration over time.

f_slope Slope of the linear model of CO2 concentration over time.

f_fit Output of the linear model of CO2 concentration over time.

Examples

slopes30lin

38 slopes30lin_flag

slopes30lin_flag

Slopes for each flux

Description

Slopes of linear fit for each flux with 30 seconds end cut, with quality flags.

Usage

slopes30lin_flag

Format

A tibble with 1251 rows and 22 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

f start Datetime at which the measurement was started.

f_end Datetime at which the measurement ended.

f_fluxid Unique ID for each flux.

f flag match Flags from flux match.

f_time Time variable of the flux in seconds.

f_cut Indicating if the measurement should be kept (keep) or discarded (cut).

f_pvalue P-value of the linear model of CO2 concentration over time.

 $f_rsquared$ R squared of the linear model of CO2 concentration over time.

f adj rsquared Adjusted R squared of the linear model of CO2 concentration over time.

f_intercept Intercept of the linear model of CO2 concentration over time.

f_slope Slope of the linear model of CO2 concentration over time.

f_fit Output of the linear model of CO2 concentration over time.

f_ratio Ratio of number of data points compared to length of measurement in seconds.

f_quality_flag quality flag advising if the slope has to be replaced by 0 or NA

f_slope_corr slope corrected according to quality flag

Examples

slopes30lin_flag

slopes30qua 39

slopes30qua

Slopes for each flux

Description

Slopes of quadratic fit for each flux with 30 seconds end cut and t_zero of 10 seconds, without quality flags. $C(t) = a + bt + ct^2$

Usage

slopes30qua

Format

A tibble with 1251 rows and 24 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

f start Datetime at which the measurement was started.

f_end Datetime at which the measurement ended.

f_fluxid Unique ID for each flux.

f ratio Ratio of n conc over length of the measurement (in seconds).

f_flag_match Flags from flux_match.

f_time Time variable of the flux in seconds.

f_cut Indicating if the measurement should be kept (keep) or discarded (cut).

f_param1 b parameter of C(t)

f param2 c parameter of C(t)

f_rsquared R squared of the linear model of CO2 concentration over time.

f_adj_rsquared Adjusted R squared of the linear model of CO2 concentration over time.

f_intercept Intercept of the linear model of CO2 concentration over time.

f_pvalue p-value of the linear model of CO2 concentration over time.

f_slope Slope of the linear model of CO2 concentration over time.

f_fit Output of the linear model of CO2 concentration over time.

f fit slope output of linear expression describing the slope at t zero

f_start_z Datetime format of tz

Examples

slopes30qua

40 slopes30qua_flag

slopes30qua_flag

Slopes for each flux

Description

Slopes of quadratic fit for each flux with 30 seconds end cut and t_zero of 10 seconds, with quality flags. $C(t) = a + bt + ct^2$

Usage

slopes30qua_flag

Format

A tibble with 1251 rows and 26 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

f start Datetime at which the measurement was started.

f_end Datetime at which the measurement ended.

f_fluxid Unique ID for each flux.

f_ratio Ratio of n_conc over length of the measurement (in seconds).

f flag match Flags from flux match.

f time Time variable of the flux in seconds.

f_cut Indicating if the measurement should be kept (keep) or discarded (cut).

 f_param1 b parameter of C(t)

 f_param2 c parameter of C(t)

f_rsquared R squared of the linear model of CO2 concentration over time.

f adj rsquared Adjusted R squared of the linear model of CO2 concentration over time.

f_intercept Intercept of the linear model of CO2 concentration over time.

f_pvalue p-value of the linear model of CO2 concentration over time.

f_slope Slope of the linear model of CO2 concentration over time.

f_fit Output of the linear model of CO2 concentration over time.

f_fit_slope output of linear expression describing the slope at t_zero

f_start_z Datetime format of tz

f_quality_flag quality flag advising if the slope has to be replaced by 0 or NA

f_slope_corr slope corrected according to quality flag

slopes30_flag 41

Examples

slopes30qua_flag

slopes30_flag

Slopes for each flux

Description

Slopes of C(t) for each flux with 30 seconds end cut, with quality flags.

Usage

slopes30_flag

Format

A tibble with 1251 rows and 27 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

f start Datetime at which the measurement was started.

f_end Datetime at which the measurement ended.

f_fluxid Unique ID for each flux.

f flag match Flags from flux match.

f_time Time variable of the flux in seconds.

f_cut Indicating if the measurement should be kept (keep) or discarded (cut).

 $\mathbf{f}_{\mathbf{C}}\mathbf{z}$ Cz parameter of the C(t) function.

f_Cm Cm parameter of the C(t) function, calculated by optim() with Cm_est as starting point.

f_a a parameter of the C(t) function, calculated by optim() with a_est as starting point.

f_b b parameter of the C(t) function, calculated by optim() with b_est as starting point.

f_tz tz parameter of the C(t) function, calculated by optim() with tz_est as starting point.

f_slope Slope of C(t) at tz

f_fit C(t), modeled CO2 concentration as a function of time.

f_fit_slope Output of linear model of CO2 concentration passing by C(tz) and a slope of slope_tz.

f_start_z Datetime format of tz

42 slopes60

f_ratio Ratio of number of data points compared to length of measurement in seconds.

f_cor_coef coefficient of correlation between gas concentration and time

f_RMSE RMSE of the exponential fit and the measured data

f_quality_flag quality flag advising if the slope has to be replaced by 0 or NA

f_slope_corr slope corrected according to quality flag

Examples

slopes30_flag

slopes60

Slopes for each flux

Description

Slopes of C(t) for each flux with a cut of 60 seconds at the end of each flux.

Usage

slopes60

Format

A tibble with 1251 rows and 22 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

f start Datetime at which the measurement was started.

f end Datetime at which the measurement ended.

f_fluxid Unique ID for each flux.

f_flag_match Flags from flux_match.

f_time Time variable of the flux in seconds.

f_cut Indicating if the measurement should be kept (keep) or discarded (cut).

 $\mathbf{f}_{\mathbf{C}}\mathbf{z}$ Cz parameter of the C(t) function.

f_Cm Cm parameter of the C(t) function, calculated by optim() with Cm_est as starting point.

f_a a parameter of the C(t) function, calculated by optim() with a_est as starting point.

f_b b parameter of the C(t) function, calculated by optim() with b_est as starting point.

slopes60lin 43

f_tz tz parameter of the C(t) function, calculated by optim() with tz_est as starting point.

f_slope Slope of C(t) at tz

f_fit C(t), modeled CO2 concentration as a function of time.

f_fit_slope Output of linear model of CO2 concentration passing by C(tz) and a slope of slope_tz.

f_start_z Datetime format of tz

Examples

slopes60

slopes60lin

Slopes for each flux

Description

Slopes of linear fit for each flux with a 60 seconds cut at the end of each flux.

Usage

slopes60lin

Format

A tibble with 1251 rows and 19 variables

datetime Datetime at which CO2 concentration was recorded.

temp_air Air temperature inside the flux chamber in Celsius.

temp_soil Ground temperature inside the flux chamber in Celsius.

conc CO2 concentration in ppm.

PAR Photosynthetically active radiation inside the chamber in micromol/s/sqm.

turfID Unique ID of the turf in which the measurement took place.

type Type of measurement: ecosystems respiration (ER) or net ecosystem exchange (NEE).

f_start Datetime at which the measurement was started.

f end Datetime at which the measurement ended.

f_fluxid Unique ID for each flux.

f_flag_match Flags from flux_match.

f time Time variable of the flux in seconds.

f_cut Indicating if the measurement should be kept (keep) or discarded (cut).

f_pvalue P-value of the linear model of CO2 concentration over time.

f_rsquared R squared of the linear model of CO2 concentration over time.

f_adj_rsquared Adjusted R squared of the linear model of CO2 concentration over time.

f_intercept Intercept of the linear model of CO2 concentration over time.

f_slope Slope of the linear model of CO2 concentration over time.

f_fit Output of the linear model of CO2 concentration over time.

twogases_record

Examples

slopes60lin

 ${\tt twogases_record}$

Field record

Description

Field record

Usage

twogases_record

Format

A tibble with 12 rows and 1 variable

start Start datetime of each flux measurement

Examples

twogases_record

Index

* datasets	flux_fitting, 9, 11
co2_conc, 3	flux_fitting_exp, 12
co2_conc_missing, 4	flux_fitting_lin, 13
co2_df_missing, 5	flux_fitting_quadratic, 14
co2_df_short, 5	flux_flag_count, 16
co2_fluxes, 6	flux_fun_check, 17
co2_liahovden, 7	flux_gep, 17
conc_poster, 7	flux_match, 18
raw_twogases, 28	flux_param_exp, 19
record_liahovden, 28	flux_param_lm, 20
record_short, 29	flux_plot, 20
slopes0,30	flux_plot_exp, 22
slopes0_flag, 33	flux_plot_flag, 22
slopes0_temp, 34	flux_plot_lin, 23
slopes0_vol, 35	flux_plot_quadratic, 23
slopes0lin, 31	flux_quality, 9, 24
slopes0lin_flag, 32	flux_quality_exp, 26
slopes30, 36	flux_quality_lm, 27
slopes30_flag, 41	•
slopes30lin, 37	ggsave, <i>21</i>
slopes30lin_flag,38	
slopes30qua, 39	raw_twogases, 28
slopes30qua_flag,40	record_liahovden, 28
slopes60,42	record_short, 29
slopes60lin,43	
twogases_record, 44	scale_x_datetime, 21
	slopes0, 30
co2_conc, 3	slopes0_flag, 33
co2_conc_missing, 4	slopes0_temp, 34
co2_df_missing, 5	slopes0_vol, 35
co2_df_short, 5	slopes0lin, 31
co2_fluxes, 6	slopes0lin_flag, 32
co2_liahovden, 7	slopes30,36
conc_poster, 7	slopes30_flag,41
	slopes30lin, 37
facet_wrap_paginate, 21	slopes30lin_flag, 38
flux_calc, 8	slopes30qua, 39
flux_check_item, 10	slopes30qua_flag, 40
flux_cut, 10	slopes60, 42
flux_fit_type, 15	slopes60lin,43

46 INDEX

twogases_record, 44