
Package ‘coconots’
March 22, 2025

Type Package

Title Convolution-Closed Models for Count Time Series

Version 2.0.0

Date 2025-03-21

Description Useful tools for fitting, validating, and forecasting of practical convolution-
closed time series models for low counts are provided. Marginal distribu-
tions of the data can be modelled via Poisson and Generalized Poisson innovations. Regres-
sion effects can be incorporated through time varying innovation rates. The models are de-
scribed in Jung and Tremayne (2011) <doi:10.1111/j.1467-9892.2010.00697.x> and the model as-
sessment tools are presented in Czado et al. (2009) <doi:10.1111/j.1541-
0420.2009.01191.x> and, Tsay (1992) <doi:10.2307/2347612>.

LazyData true

LinkingTo Rcpp

RoxygenNote 7.3.2

Depends R (>= 4.0.2), Rcpp

Imports forecast, numDeriv, HMMpa, ggplot2, matrixStats,
JuliaConnectoR

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

License MIT + file LICENSE

NeedsCompilation yes

Author Manuel Huth [aut, cre],
Robert C. Jung [aut],
Andy Tremayne [aut]

Maintainer Manuel Huth <manuel.huth@yahoo.com>

Repository CRAN

Date/Publication 2025-03-22 07:50:02 UTC

1

https://doi.org/10.1111/j.1467-9892.2010.00697.x
https://doi.org/10.1111/j.1541-0420.2009.01191.x
https://doi.org/10.1111/j.1541-0420.2009.01191.x
https://doi.org/10.2307/2347612

2 cocoBoot

Contents
cocoBoot . 2
cocoPit . 3
cocoReg . 4
cocoResid . 8
cocoScore . 9
cocoSim . 10
cocoSoc . 12
cuts . 13
downloads . 13
goldparticle . 14
installJuliaPackages . 14
predict.coco . 15
setJuliaSeed . 16

Index 18

cocoBoot Bootstrap Based Model Assessment Procedure

Description

Model checking procedure emphasising reproducibility in fitted models, as proposed by Tsay (1992).

Usage

cocoBoot(
coco,
numb.lags = 21,
rep.Bootstrap = 1000,
conf.alpha = 0.05,
julia = FALSE,
julia_seed = NULL

)

Arguments

coco An object of class coco

numb.lags Number of lags for which to compute sample autocorrelations (default: 21).

rep.Bootstrap Number of bootstrap replicates to use (default: 1000)

conf.alpha 100(1 − conf.alpha)% probability interval for the acceptance envelopes (de-
fault: 0.05)

julia if TRUE, the bootstrap is run with julia (default: FALSE)

julia_seed Seed for the julia implementation. Only used if julia equals TRUE

cocoPit 3

Details

Bootstrap-generated acceptance envelopes for the autocorrelation function provides an overall eval-
uation by comparing it with the sample autocorrelation function in a joint plot.

Value

an object of class cocoBoot. It contains the bootstrapped confidence intervals of the autocorrelations
and information on the model specifications.

References

Tsay, R. S. (1992) Model checking via parametric bootstraps in time series analysis. Applied Statis-
tics 41, 1–15.

Examples

lambda <- 1
alpha <- 0.4
set.seed(12345)
data <- cocoSim(order = 1, type = "Poisson", par = c(lambda, alpha), length = 100)
fit <- cocoReg(order = 1, type = "Poisson", data = data)

bootstrap model assessment - R implementation
boot_r <- cocoBoot(fit, rep.Bootstrap=400)
plot(boot_r)

cocoPit Probability Integral Transform Based Model Assessment Procedure

Description

Computes the probability integral transform (PIT) and provides the non-randomized PIT histogram
for assessing absolute performance of a fitted model as proposed by Czado et al. (2009).

Usage

cocoPit(coco, J = 10, conf.alpha = 0.05, julia = FALSE)

Arguments

coco An object of class coco

J Number of bins for the histogram (default: 10)

conf.alpha Significance level for the confidence intervals (default: 0.05)

julia if TRUE, the PIT is computed with julia (default: FALSE)

4 cocoReg

Details

The adequacy of a distributional assumption for a model is assessed by checking the cumulative
non-randomized PIT distribution for uniformity. A useful graphical device is the PIT histogram,
which displays this distribution to J equally spaced bins. We supplement the graph by incorporating
approximately 100(1−α)% confidence intervals obtained from a standard chi-square goodness-of-
fit test of the null hypothesis that the J bins of the histogram are drawn from a uniform distribution.
For details, see Jung, McCabe and Tremayne (2016).

Value

an object of class cocoPit. It contains the probability integral transform values, p-value of the chi-
square goodness of fit test and information on the model specifications.

Author(s)

Manuel Huth

References

Czado, C., Gneiting, T. and Held, L. (2009) Predictive model assessment for count data. Biometrics
65, 1254–61.

Jung, R. C., McCabe, B.P.M. and Tremayne, A.R. (2016). Model validation and diagnostics. In
Handbook of Discrete Valued Time Series. Edited by Davis, R.A., Holan, S.H., Lund, R. and
Ravishanker, N.. Boca Raton: Chapman and Hall, pp. 189–218.

Jung, R. C. and Tremayne, A. R. (2011) Convolution-closed models for count time series with
applications. Journal of Time Series Analysis, 32, 3, 268–280.

Examples

lambda <- 1
alpha <- 0.4
set.seed(12345)
data <- cocoSim(order = 1, type = "Poisson", par = c(lambda, alpha), length = 100)
fit <- cocoReg(order = 1, type = "Poisson", data = data)

#PIT R implementation
pit_r <- cocoPit(fit)
plot(pit_r)

cocoReg cocoReg

cocoReg 5

Description

The function fits first- and second-order (Generalized) Poisson integer autoregressive [(G)PAR]
time series models for count data as discussed in Jung and Tremayne (2011). Autoregressive de-
pendence on past counts is modeled using a special random operator that preserves integer values
and, through closure under convolution, ensures that the marginal distribution remains within the
same family as the innovations.

These models can be viewed as stationary finite-order Markov chains, where the innovation distri-
bution can be either Poisson or Generalized Poisson, the latter accounting for overdispersion. Esti-
mation is performed via maximum likelihood, with an option to impose linear constraints. Without
constraints, parameters may fall outside the theoretically feasible space, but optimization may be
faster.

Method of moments estimators are used to initialize numerical optimization, though custom start-
ing values can be provided. If julia is installed, users can opt to run the optimization in julia for
potentially faster computation and improved numerical stability via automatic differentiation. See
below for details on the julia implementation.

Usage

cocoReg(
type,
order,
data,
xreg = NULL,
constrained.optim = TRUE,
b.beta = -10,
start = NULL,
start.val.adjust = TRUE,
method_optim = "Nelder-Mead",
replace.start.val = 1e-05,
iteration.start.val = 0.6,
method.hessian = "Richardson",
cores = 2,
julia = FALSE,
julia_installed = FALSE,
link_function = "log"

)

Arguments

type character, either "Poisson" or "GP" indicating the type of the innovation distri-
bution

order integer, either 1 or 2 indicating the order of the model

data time series data to be used in the analysis

xreg optional matrix of explanatory variables (without constant term) for use in a
regression model

6 cocoReg

constrained.optim

logical indicating whether optimization should be constrained, currently only
available in the R version

b.beta numeric value indicating the lower bound for the parameters of the explanatory
variables for the optimization, currently only available in the R version

start optional numeric vector of starting values for the optimization
start.val.adjust

logical indicating whether starting values should be adjusted, currently only
available in the R version

method_optim character string indicating the optimization method to be used, currently only
available in the R version. In the julia implementation this is by default the
LBFGS algorithm

replace.start.val

numeric value indicating the value to replace any invalid starting values, cur-
rently only available in the R version

iteration.start.val

numeric value indicating the proportion of the interval to use as the new starting
value, currently only available in the R version

method.hessian character string indicating the method to be used to approximate the Hessian
matrix, currently only available in the R version

cores numeric indicating the number of cores to use, currently only available in the R
version (default: 2)

julia if TRUE, the model is estimated with julia. This can improve computational
speed significantly since julia makes use of derivatives using autodiff. In this
case, only type, order, data, xreg, and start are used as other inputs (default:
FALSE).

julia_installed

if TRUE, the model R output will contain a julia compatible output element.

link_function Specifies the link function for the conditional mean of the innovation (λ). The
default is ‘log‘, but other available options include ‘identity‘ and ‘relu‘. This pa-
rameter is applicable only when covariates are used. Note that using the ‘iden-
tity‘ link function may result in λ becoming negative. To prevent this, ensure all
covariates are positive and restrict the parameter β to positive values by setting
‘b.beta‘ to a small positive value.

Details

Let a time series of counts be {Xt} and be R(·) a random operator that differs between model
specifications. For more details on the random operator, see Jung and Tremayne (2011) and Joe
(1996). The general first-order model is of the form

Xt = R(Xt−1) +Wt,

and the general second-order model of the form

Xt = R(Xt−1, Xt−2) +Wt,

cocoReg 7

where Wt are i.i.d Poisson (Wt ∼ Po(λt)) or Generalized Poisson (Wt ∼ GP (λt, η)) innovations.
Through closure under convolution the marginal distributions of {Xt} are therefore Poisson or
Generalized Poisson distributions, respectively.

If no covariates are used λt = λ and if covariates are used

g(λt) =

β0 +

k∑
j=1

βj · zt,j

 ,

whereby zt,j is the j-th covariate at time t and g is a link function. Current supported link functions
are the identity g(x) = x and a logarithmic link function g(x) = lnx. To ensure positivity of λ
if the identity function is used, βj , zt,j > 0 must be enforced. Alternatively, computational values
of λ ≤ 0 can be set to a small positive value. This option is named ’relu’, due to its similarity to a
ReLu function commonly used in machine learning.

Standard errors are computed by the square root of the diagonal elements of the inverse Hessian.

This function is implemented in two versions. The default runs on RCPP. An alternative version
uses a julia implementation which can be chosen by setting the argument julia to TRUE. In order
to use this feature, a running julia installation is required on the system. The RCPP implementation
uses the derivative-free Nelder-Mead optimizer to obtain parameter estimates. The julia implemen-
tation makes use of julia’s automatic differentiation in order to obtain gradients such that it can use
the LBFGS algorithm for optimization. This enhances the numeric stability of the optimization and
yields an internal validation if both methods yield qualitatively same parameter estimates. Further-
more, the julia implementation can increase the computational speed significantly, especially for
large models.

The model assessment tools cocoBoot, cocoPit, and cocoScore will use a julia implementation as
well, if the cocoReg was run with julia. Additionally, one can make the RCPP output of cocoReg
compatible with the julia model assessments by setting julia_installed to true. In this case, the
user can choose between the RCPP and the julia implementation for model assessment.

Value

an object of class coco. It contains the parameter estimates, standard errors, the log-likelihood,
and information on the model specifications. If julia is used for parameter estimation or the julia
installation parameter is set to TRUE, the results contain an additional Julia element that is called
from the model julia assessment tools if they are run with the julia implementation.

Author(s)

Manuel Huth

References

Jung, R. C. and Tremayne, A. R. (2011) Convolution-closed models for count time series with
applications. Journal of Time Series Analysis, 32, 268–280.

Joe, H. (1996) Time series models with univariate margins in the convolution-closed infinitely di-
visible class. Journal of Applied Probability, 33, 664–677.

8 cocoResid

Examples

GP2 model without covariates
length <- 1000
par <- c(0.5,0.2,0.05,0.3,0.3)
data <- cocoSim(order = 2, type = "GP", par = par, length = length)
fit <- cocoReg(order = 2, type = "GP", data = data)

##Poisson1 model with covariates
length <- 1000
period <- 12
sin <- sin(2*pi/period*(1:length))
cos <- cos(2*pi/period*(1:length))
cov <- cbind(sin, cos)
par <- c(0.2, 0.2, -0.2)
data <- cocoSim(order = 1, type = "Poisson", par = par, xreg = cov, length = length)
fit <- cocoReg(order = 1, type = "Poisson", data = data, xreg = cov)

cocoResid Residual Based Model Assessment Procedure

Description

Calculates the (Pearson) residuals of a fitted model for model evaluation purposes.

Usage

cocoResid(coco, val.num = 1e-10)

Arguments

coco An object of class "coco
val.num A non-negative real number that halts the calculation once the cumulative prob-

ability reaches 1-val.num

Details

The Pearson residuals are computed as the scaled deviation of the observed count from its con-
ditional expectation given the relevant past history, including covariates, if applicable. If a fitted
model is correctly specified, the Pearson residuals should exhibit mean zero, variance one, and no
significant serial correlation.

Value

a list that includes the (Pearson) residuals, conditional expectations, conditional variances, and
information on the model specifications.

Author(s)

Manuel Huth

cocoScore 9

cocoScore Scoring Rule Based Model Assessment Procedure

Description

The function computes log, quadratic and ranked probability scores for assessing relative perfor-
mance of a fitted model.

Usage

cocoScore(coco, max_x = 50, julia = FALSE)

Arguments

coco An object of class coco

max_x An integer which is used as the maximum count for the computation of the score
(default: ‘50‘)

julia if TRUE, the scores are computed with julia (default: FALSE).

Details

Scoring rules assign a numerical score based on the predictive distribution and the observed data to
measure the quality of probabilistic predictions. They are provided here as a model selection tool
and are computed as averages over the relevant set of (in-sample) predictions. Scoring rules are,
generally, negatively oriented penalties that one seeks to minimize. The literature has developed a
large number of scoring rules and, unless there is a unique and clearly defined underlying decision
problem, there is no automatic choice of a (proper) scoring rule to be used in any given situation.
Therefore, the use of a variety of scoring rules may be appropriate to take advantage of specific
emphases and strengths. Three proper scoring rules (for a definition of the concept of propriety see
Gneiting and Raftery, 2007), which Jung, McCabe and Tremayne (2016) found to be particularly
useful, are implemented. For more information see the references listed below.

Value

a list containing the log score, quadratic score and ranked probability score.

Author(s)

Manuel Huth

References

Czado, C. and Gneitling, T. and Held, L. (2009) Predictive Model Assessment for Count Data.
Biometrics, 65, 1254–1261.

Gneiting, T. and Raftery, A. E. (2007) Strictly proper scoring rules, prediction, and estimation.
Journal of the American Statistical Association, 102:359-378.

10 cocoSim

Jung, R. C., McCabe, B.P.M. and Tremayne, A.R. (2016). Model validation and diagnostics. In
Handbook of Discrete Valued Time Series. Edited by Davis, R.A., Holan, S.H., Lund, R. and
Ravishanker, N.. Boca Raton: Chapman and Hall, pp. 189–218.

Jung, R. C. and Tremayne, A. R. (2011) Convolution-closed models for count time series with
applications. Journal of Time Series Analysis, 32, 268–280.

Examples

lambda <- 1
alpha <- 0.4
set.seed(12345)
data <- cocoSim(order = 1, type = "Poisson", par = c(lambda, alpha), length = 100)
fit <- cocoReg(order = 1, type = "Poisson", data = data)

scoring rules - R implementation
score_r <- cocoScore(fit)

cocoSim Simulation of Count Time Series

Description

The function generates a time series of low counts from the (G)PAR model class for a specified
innovation distribution, sample size, lag order, and parameter values.

Usage

cocoSim(
type,
order,
par,
length,
xreg = NULL,
init = NULL,
julia = FALSE,
julia_seed = NULL,
link_function = "log"

)

Arguments

type character, either "Poisson" or "GP" indicating the type of the innovation distri-
bution

order integer, either 1 or 2 indicating the order of the model

par numeric vector, the parameters of the model, the number of elements in the
vector depends on the type and order specified.

length integer, the number of observations in the generated time series

cocoSim 11

xreg data frame of control variables (defaul: NULL)

init numeric vector, initial data to use (default: NULL). See details for more infor-
mation on the usage.

julia If TRUE, the julia implementation is used. In this case, init is ignored but it
might be faster (default: FALSE).

julia_seed Seed for the julia implementation. Only used if julia equals TRUE.

link_function Specifies the link function for the conditional mean of the innovation (λ). The
default is ‘log‘, but other available options include ‘identity‘ and ‘relu‘. This pa-
rameter is applicable only when covariates are used. Note that using the ‘iden-
tity‘ link function may result in λ becoming negative. To prevent this, ensure all
covariates are positive and restrict the parameter β to positive values.

Details

The function checks for valid input of the type, order, parameters, and initial data before generating
the time series.

The init parameter allows users to set a custom burn-in period for the simulation. By default,
when simulating with covariates, no burn-in period is specified since there is no clear choice on the
covariates. However, the init argument gives users the flexibility to select an appropriate burn-in
period for the covariate case. One way to do this is to simulate a time series using cocoSim with
appropriate covariates and pass the resulting time series to the init argument of a new cocoSim run
so that the first time series is used as the burn-in period. If init is not specified for the covariate case,
a warning will be returned to prompt the user to specify a custom burn-in period. This helps ensure
that the simulation accurately captures the dynamics of the system being modeled.

Value

a vector of the simulated time series

Author(s)

Manuel Huth

Examples

lambda <- 1
alpha <- 0.4
set.seed(12345)

Simulate using the RCPP implementation
data_rcpp <- cocoSim(order = 1, type = "Poisson", par = c(lambda, alpha), length = 100)

12 cocoSoc

cocoSoc Computes Scores for Various Models Maintaining a Common Sample

Description

This function computes log, quadrtic and ranked probability scores for Poisson and Generalized
Poisson models.

Usage

cocoSoc(
data,
models = "all",
print.progress = TRUE,
max_x_score = 50,
julia = FALSE,
...

)

Arguments

data A numeric vector containing the data to be used for modeling
models A character string specifying which models to use. Default is ‘"all"‘, which uses

both Poisson and GP models.
print.progress A logical value indicating whether to print progress messages (Default: ‘TRUE‘).
max_x_score An integer which is used as the maximum count for the computation of the score

(defaul: ‘50‘)
julia if TRUE, cocoSoc is run with julia (default: FALSE)
... Additional arguments to be passed to the ‘cocoReg‘ function.

Details

Supports model selection by computing score over a range of models while maintaining a common
sample and a common specification.

Value

A list of class ‘"cocoSoc"‘ containing:

fits A list of fitted model objects.
scores_list A list of score objects for each model.
scores_df A data frame containing the logarithmic, quadratic, and ranked probability scores for

each model.

Author(s)

Manuel Huth

cuts 13

cuts Time Series of Monthly Counts of Claimants Collecting Wage Loss
Benefit

Description

Monthly counts of claimants collecting wage loss benefit for injuries in the workplace at one specific
service delivery location of the Workers Compensation Board of British Columbia, Canada in the
period January 1985 to December 1994. Only injuries due to cuts and lacerations are considered.
The data have been provided by Brendan McCabe.

Usage

cuts

Format

A time series (‘ts‘) object containing monthly data from January 1985 to December 1994.

Source

Freeland, R. K.; McCabe, B.P.M. (2004) Analysis of count data by means of the Poisson autore-
gressive model. Journal of Time Series Analysis, 25, 701–722.

downloads Time Series of Daily Downloads of a TeX-Editor

Description

The data represent the number of daily downloads of a TeX-editor between June 2006 and February
2007. The dataset contains 267 observations. The data have been provided by Christian Weiss.

Usage

downloads

Format

A time series (‘ts‘) object containing daily data from June 2006 to February 2007.

Source

Weiss, C.H. (2008) Thinning operations for modelling time series of counts – a survey. Advances
in Statistical Analysis, 92, 319–341.

14 installJuliaPackages

goldparticle Time Series of Gold Particle Counts in a Well-Defined Colloidal Solu-
tion

Description

A sample of 370 counts of gold particles in a well-defined colloidal solution at equidistant points in
time. The data were originally published in Westgren (1916) and later used in Jung and Tremayne
(2006).

Usage

goldparticle

Format

A time series (‘ts‘) object containing 370 observations at equidistant time points.

Source

Jung, R.C.; Tremayne, A.R. (2006) Coherent forecasting in integer time series models. Interna-
tional Journal of Forecasting, 22, 223–238.

Westgren, A. (1916) Die Veraenderungsgeschwindigkeit der lokalen Teilchenkonzentration in kol-
loidalen Systemen (Erste Mitteilung). Arkiv foer Matematik, Astronomi och Fysik, 11, 1–24.

Examples

plot(goldparticle)

installJuliaPackages installJuliaPackages

Description

checks for needed julia packages and installs them if not installed.

Usage

installJuliaPackages()

Value

no return value, called to install julia packages in julia.

predict.coco 15

predict.coco K-Step Ahead Forecast Distributions

Description

Computes the k-step ahead forecast (distributions) using the models in the coconots package.

Usage

S3 method for class 'coco'
predict(
object,
k = 1,
number_simulations = 1000,
alpha = 0.05,
simulate_one_step_ahead = FALSE,
max = NULL,
epsilon = 1e-08,
xcast = NULL,
decimals = 4,
julia = FALSE,
...

)

Arguments

object An object that has been fitted previously, of class coco.

k The number of steps ahead for which the forecast should be computed (Default:
1).

number_simulations

The number of simulation runs to compute (Default: 1000).

alpha Significance level used to construct the prediction intervals (Default: 0.05).
simulate_one_step_ahead

If FALSE, the one-step ahead prediction is obtained using the analytical predic-
tive distribution. If TRUE, bootstrapping is used.

max The maximum number of the forecast support for the plot. If NULL all values
for which the cumulative distribution function is below 1- epsilon are used for
the plot.

epsilon If max is NULL, epsilon determines the range of the support that is used by
subsequent automatic plotting using R’s plot() function.

xcast An optional matrix of covariate values for the forecasting. If ‘NULL‘, the func-
tion assumes no covariates.

decimals Number of decimal places for the forecast probabilities

julia if TRUE, the estimate is predicted with julia (Default: FALSE).

... Optional arguments.

16 setJuliaSeed

Details

Returns forecasts for each mass point of the k-step ahead distribution for the fitted model. The exact
predictive distributions for one-step ahead predictions for the models included here are provided in
Jung and Tremayne (2011), maximum likelihood estimates replace the true model parameters. For
k>1 forecast distributions are estimated using a parametric bootstrap. See Jung and Tremanye
(2006). Out-of-sample values for covariates can be provided, if necessary.

for k > 1

Value

A list of frequency tables. Each table represents a k-step ahead forecast frequency distribution based
on the simulation runs.

References

Jung, R.C. and Tremayne, A. R. (2011) Convolution-closed models for count time series with ap-
plications. Journal of Time Series Analysis, 32, 3, 268–280.

Jung, R.C. and Tremayne, A.R. (2006) Coherent forecasting in integer time series models. Interna-
tional Journal of Forecasting 22, 223–238

Examples

length <- 500
pars <- c(1, 0.4)
set.seed(12345)
data <- cocoSim(order = 1, type = "Poisson", par = pars, length = length)
fit <- cocoReg(order = 1, type = "Poisson", data = data)
forecast <- predict(fit, k=1, simulate_one_step_ahead = FALSE)
plot(forecast[[1]]) #plot one-step ahead forecast distribution

setJuliaSeed Set Seed for julia’s Random Number Generator

Description

Sets the seed for julia’s random number generator to ensure reproducibility.

Usage

setJuliaSeed(julia_seed)

Arguments

julia_seed An integer seed value to be passed to julia’s random number generator.

setJuliaSeed 17

Details

This function initializes the necessary julia functions and sets the random seed for julia. If the
provided seed is NULL, the function does nothing.

Author(s)

Manuel Huth

Index

∗ datasets
cuts, 13
downloads, 13
goldparticle, 14

cocoBoot, 2, 7
cocoPit, 3, 7
cocoReg, 4, 7
cocoResid, 8
cocoScore, 7, 9
cocoSim, 10, 11
cocoSoc, 12
cuts, 13

downloads, 13

goldparticle, 14

installJuliaPackages, 14

predict.coco, 15

setJuliaSeed, 16

18

	cocoBoot
	cocoPit
	cocoReg
	cocoResid
	cocoScore
	cocoSim
	cocoSoc
	cuts
	downloads
	goldparticle
	installJuliaPackages
	predict.coco
	setJuliaSeed
	Index

