
Package ‘bioregion’
January 31, 2025

Type Package

Title Comparison of Bioregionalisation Methods

Version 1.2.0

Description The main purpose of this package is to propose a transparent methodological frame-
work to compare bioregionalisation methods based on hierarchical and non-hierarchical cluster-
ing algorithms (Kreft & Jetz (2010) <doi:10.1111/j.1365-2699.2010.02375.x>) and network al-
gorithms (Lenor-
mand et al. (2019) <doi:10.1002/ece3.4718> and Leroy et al. (2019) <doi:10.1111/jbi.13674>).

Depends R (>= 4.0.0)

License GPL-3

Encoding UTF-8

LazyData true

Imports ape, apcluster, bipartite, cluster, data.table, dbscan,
dynamicTreeCut, fastcluster, fastkmedoids, ggplot2, grDevices,
httr, igraph, mathjaxr, Matrix, phangorn, Rdpack, rlang,
rmarkdown, segmented, sf, stats, tidyr, utils

RdMacros mathjaxr, Rdpack

LinkingTo Rcpp

Suggests ade4, dplyr, knitr, microbenchmark, rnaturalearth,
rnaturalearthdata, testthat (>= 3.0.0)

VignetteBuilder knitr

RoxygenNote 7.3.2

URL https://github.com/bioRgeo/bioregion,

https://bioRgeo.github.io/bioregion/

BugReports https://github.com/bioRgeo/bioregion/issues

Config/testthat/edition 3

NeedsCompilation yes

Author Maxime Lenormand [aut, cre] (<https://orcid.org/0000-0001-6362-3473>),
Boris Leroy [aut] (<https://orcid.org/0000-0002-7686-4302>),
Pierre Denelle [aut] (<https://orcid.org/0000-0001-5037-2281>)

1

https://doi.org/10.1111/j.1365-2699.2010.02375.x
https://doi.org/10.1002/ece3.4718
https://doi.org/10.1111/jbi.13674
https://github.com/bioRgeo/bioregion
https://bioRgeo.github.io/bioregion/
https://github.com/bioRgeo/bioregion/issues
https://orcid.org/0000-0001-6362-3473
https://orcid.org/0000-0002-7686-4302
https://orcid.org/0000-0001-5037-2281

2 Contents

Maintainer Maxime Lenormand <maxime.lenormand@inrae.fr>

Repository CRAN

Date/Publication 2025-01-31 16:40:02 UTC

Contents
betapart_to_bioregion . 3
bioregionalization_metrics . 4
bioregion_metrics . 6
compare_bioregionalizations . 8
cut_tree . 10
dissimilarity . 13
dissimilarity_to_similarity . 15
find_optimal_n . 16
fishdf . 19
fishmat . 20
fishsf . 20
hclu_diana . 21
hclu_hierarclust . 23
hclu_optics . 27
install_binaries . 29
map_bioregions . 30
mat_to_net . 31
netclu_beckett . 33
netclu_greedy . 35
netclu_infomap . 37
netclu_labelprop . 40
netclu_leadingeigen . 42
netclu_leiden . 44
netclu_louvain . 47
netclu_oslom . 50
netclu_walktrap . 54
net_to_mat . 56
nhclu_affprop . 57
nhclu_clara . 60
nhclu_clarans . 62
nhclu_dbscan . 64
nhclu_kmeans . 66
nhclu_pam . 68
similarity . 70
similarity_to_dissimilarity . 72
site_species_metrics . 73
site_species_subset . 76
vegedf . 77
vegemat . 77
vegesf . 78

betapart_to_bioregion 3

Index 79

betapart_to_bioregion Convert betapart dissimilarity to bioregion dissimilarity

Description

This function converts dissimilarity results produced by the betapart package (and packages using
betapart, such as phyloregion) into a dissimilarity object compatible with the bioregion package.
This function only converts object types to make them compatible with bioregion; it does not mod-
ify the beta-diversity values. This function allows the inclusion of phylogenetic beta diversity to
compute bioregions with bioregion.

Usage

betapart_to_bioregion(betapart_result)

Arguments

betapart_result

An object produced by the betapart package (e.g., using the beta.pair func-
tion).

Value

A dissimilarity object of class bioregion.pairwise.metric, compatible with the bioregion pack-
age.

Author(s)

Boris Leroy (<leroy.boris@gmail.com>)
Maxime Lenormand (<maxime.lenormand@inrae.fr>)
Pierre Denelle (<pierre.denelle@gmail.com>)

Examples

comat <- matrix(sample(0:1000, size = 50, replace = TRUE,
prob = 1 / 1:1001), 5, 10)
rownames(comat) <- paste0("Site", 1:5)
colnames(comat) <- paste0("Species", 1:10)

Not run:
beta_div <- betapart::beta.pair.abund(comat)
betapart_to_bioregion(beta_div)

End(Not run)

4 bioregionalization_metrics

bioregionalization_metrics

Calculate metrics for one or several bioregionalizations

Description

This function calculates metrics for one or several bioregionalizations, typically based on outputs
from netclu_, hclu_, or nhclu_ functions. Some metrics may require users to provide either a
similarity or dissimilarity matrix, or the initial species-site table.

Usage

bioregionalization_metrics(
bioregionalization,
dissimilarity = NULL,
dissimilarity_index = NULL,
net = NULL,
site_col = 1,
species_col = 2,
eval_metric = "all"

)

Arguments

bioregionalization

A bioregion.clusters object.

dissimilarity A dist object or a bioregion.pairwise.metric object (output from similarity_to_dissimilarity()).
Required if eval_metric includes "pc_distance" and tree is not a bioregion.hierar.tree
object.

dissimilarity_index

A character string indicating the dissimilarity (beta-diversity) index to use if
dissimilarity is a data.frame with multiple dissimilarity indices.

net The site-species network (i.e., bipartite network). Should be provided as a
data.frame if eval_metric includes "avg_endemism" or "tot_endemism".

site_col The name or index of the column representing site nodes (i.e., primary nodes).
Should be provided if eval_metric includes "avg_endemism" or "tot_endemism".

species_col The name or index of the column representing species nodes (i.e., feature nodes).
Should be provided if eval_metric includes "avg_endemism" or "tot_endemism".

eval_metric A character vector or a single character string indicating the metric(s) to
be calculated to assess the effect of different numbers of clusters. Available
options are "pc_distance", "anosim", "avg_endemism", or "tot_endemism".
If "all" is specified, all metrics will be calculated.

bioregionalization_metrics 5

Details

Evaluation metrics:

• pc_distance: This metric, as used by Holt et al. (2013), is the ratio of the between-cluster
sum of dissimilarities (beta-diversity) to the total sum of dissimilarities for the full dissimilar-
ity matrix. It is calculated in two steps:

– Compute the total sum of dissimilarities by summing all elements of the dissimilarity
matrix.

– Compute the between-cluster sum of dissimilarities by setting within-cluster dissimilari-
ties to zero and summing the matrix. The pc_distance ratio is obtained by dividing the
between-cluster sum of dissimilarities by the total sum of dissimilarities.

• anosim: This metric is the statistic used in the Analysis of Similarities, as described in Castro-
Insua et al. (2018). It compares between-cluster and within-cluster dissimilarities. The statis-
tic is computed as: R = (r_B - r_W) / (N (N-1) / 4), where r_B and r_W are the average ranks
of between-cluster and within-cluster dissimilarities, respectively, and N is the total number
of sites. Note: This function does not estimate significance; for significance testing, use ve-
gan::anosim().

• avg_endemism: This metric is the average percentage of endemism in clusters, as recom-
mended by Kreft & Jetz (2010). It is calculated as: End_mean = sum_i (E_i / S_i) / K, where
E_i is the number of endemic species in cluster i, S_i is the number of species in cluster i, and
K is the total number of clusters.

• tot_endemism: This metric is the total endemism across all clusters, as recommended by
Kreft & Jetz (2010). It is calculated as: End_tot = E / C, where E is the total number of
endemic species (i.e., species found in only one cluster) and C is the number of non-endemic
species.

Value

A list of class bioregion.bioregionalization.metrics with two to three elements:

• args: Input arguments.

• evaluation_df: A data.frame containing the eval_metric values for all explored numbers
of clusters.

• endemism_results: If endemism calculations are requested, a list with the endemism results
for each bioregionalization.

Author(s)

Boris Leroy (<leroy.boris@gmail.com>)
Maxime Lenormand (<maxime.lenormand@inrae.fr>)
Pierre Denelle (<pierre.denelle@gmail.com>)

References

Castro-Insua A, Gómez-Rodríguez C & Baselga A (2018) Dissimilarity measures affected by rich-
ness differences yield biased delimitations of biogeographic realms. Nature Communications 9,
9-11.

6 bioregion_metrics

Holt BG, Lessard J, Borregaard MK, Fritz SA, Araújo MB, Dimitrov D, Fabre P, Graham CH,
Graves GR, Jønsson Ka, Nogués-Bravo D, Wang Z, Whittaker RJ, Fjeldså J & Rahbek C (2013) An
update of Wallace’s zoogeographic regions of the world. Science 339, 74-78.

Kreft H & Jetz W (2010) A framework for delineating biogeographical regions based on species
distributions. Journal of Biogeography 37, 2029-2053.

See Also

For more details illustrated with a practical example, see the vignette: https://biorgeo.github.
io/bioregion/articles/a4_1_hierarchical_clustering.html#optimaln.

Associated functions: compare_bioregionalizations find_optimal_n

Examples

comat <- matrix(sample(0:1000, size = 500, replace = TRUE, prob = 1/1:1001),
20, 25)
rownames(comat) <- paste0("Site",1:20)
colnames(comat) <- paste0("Species",1:25)

comnet <- mat_to_net(comat)

dissim <- dissimilarity(comat, metric = "all")

User-defined number of clusters
tree1 <- hclu_hierarclust(dissim,

n_clust = 10:15,
index = "Simpson")

tree1

a <- bioregionalization_metrics(tree1,
dissimilarity = dissim,
net = comnet,
site_col = "Node1",
species_col = "Node2",
eval_metric = c("tot_endemism",

"avg_endemism",
"pc_distance",
"anosim"))

a

bioregion_metrics Calculate contribution metrics for bioregions

Description

This function calculates the number of sites per bioregion, as well as the number of species these
sites have, the number of endemic species, and the proportion of endemism.

https://biorgeo.github.io/bioregion/articles/a4_1_hierarchical_clustering.html#optimaln
https://biorgeo.github.io/bioregion/articles/a4_1_hierarchical_clustering.html#optimaln

bioregion_metrics 7

Usage

bioregion_metrics(bioregionalization, comat, map = NULL, col_bioregion = NULL)

Arguments

bioregionalization

A bioregion.clusters object.

comat A co-occurrence matrix with sites as rows and species as columns.

map A spatial sf data.frame with sites and bioregions. It is the output of the
function map_bioregions. NULL by default.

col_bioregion An integer specifying the column position of the bioregion.

Details

Endemic species are species found only in the sites belonging to one bioregion.

Value

A data.frame with 5 columns, or 6 if spatial coherence is computed.

Author(s)

Pierre Denelle (<pierre.denelle@gmail.com>)
Boris Leroy (<leroy.boris@gmail.com>)
Maxime Lenormand (<maxime.lenormand@inrae.fr>)

See Also

For more details illustrated with a practical example, see the vignette: https://biorgeo.github.
io/bioregion/articles/a5_3_summary_metrics.html.

Associated functions: site_species_metrics bioregionalization_metrics

Examples

comat <- matrix(sample(1000, 50), 5, 10)
rownames(comat) <- paste0("Site", 1:5)
colnames(comat) <- paste0("Species", 1:10)

net <- similarity(comat, metric = "Simpson")
clust <- netclu_louvain(net)

bioregion_metrics(bioregionalization = clust,
comat = comat)

https://biorgeo.github.io/bioregion/articles/a5_3_summary_metrics.html
https://biorgeo.github.io/bioregion/articles/a5_3_summary_metrics.html

8 compare_bioregionalizations

compare_bioregionalizations

Compare cluster memberships among multiple bioregionalizations

Description

This function computes pairwise comparisons for several bioregionalizations, usually outputs from
netclu_, hclu_, or nhclu_ functions. It also provides the confusion matrix from pairwise compar-
isons, enabling the user to compute additional comparison metrics.

Usage

compare_bioregionalizations(
bioregionalizations,
indices = c("rand", "jaccard"),
cor_frequency = FALSE,
store_pairwise_membership = TRUE,
store_confusion_matrix = TRUE

)

Arguments

bioregionalizations

A data.frame object where each row corresponds to a site, and each column to
a bioregionalization.

indices NULL or character. Indices to compute for the pairwise comparison of biore-
gionalizations. Currently available metrics are "rand" and "jaccard".

cor_frequency A boolean. If TRUE, computes the correlation between each bioregionalization
and the total frequency of co-membership of items across all bioregionaliza-
tions. This is useful for identifying which bioregionalization(s) is(are) most
representative of all computed bioregionalizations.

store_pairwise_membership

A boolean. If TRUE, stores the pairwise membership of items in the output
object.

store_confusion_matrix

A boolean. If TRUE, stores the confusion matrices of pairwise bioregionalization
comparisons in the output object.

Details

This function operates in two main steps:

1. Within each bioregionalization, the function compares all pairs of items and documents whether
they are clustered together (TRUE) or separately (FALSE). For example, if site 1 and site 2 are
clustered in the same cluster in bioregionalization 1, their pairwise membership site1_site2
will be TRUE. This output is stored in the pairwise_membership slot if store_pairwise_membership
= TRUE.

compare_bioregionalizations 9

2. Across all bioregionalizations, the function compares their pairwise memberships to deter-
mine similarity. For each pair of bioregionalizations, it computes a confusion matrix with the
following elements:

• a: Number of item pairs grouped in both bioregionalizations.

• b: Number of item pairs grouped in the first but not in the second bioregionalization.

• c: Number of item pairs grouped in the second but not in the first bioregionalization.

• d: Number of item pairs not grouped in either bioregionalization.

The confusion matrix is stored in confusion_matrix if store_confusion_matrix = TRUE.

Based on these confusion matrices, various indices can be computed to measure agreement among
bioregionalizations. The currently implemented indices are:

• Rand index: (a + d) / (a + b + c + d) Measures agreement by considering both grouped and
ungrouped item pairs.

• Jaccard index: a / (a + b + c) Measures agreement based only on grouped item pairs.

These indices are complementary: the Jaccard index evaluates clustering similarity, while the Rand
index considers both clustering and separation. For example, if two bioregionalizations never group
the same pairs, their Jaccard index will be 0, but their Rand index may be > 0 due to ungrouped
pairs.

Users can compute additional indices manually using the list of confusion matrices.

To identify which bioregionalization is most representative of the others, the function can compute
the correlation between the pairwise membership of each bioregionalization and the total frequency
of pairwise membership across all bioregionalizations. This is enabled by setting cor_frequency
= TRUE.

Value

A list containing 4 to 7 elements:

1. args: A list of user-provided arguments.

2. inputs: A list containing information on the input bioregionalizations, such as the number
of items clustered.

3. pairwise_membership (optional): If store_pairwise_membership = TRUE, a boolean matrix
where TRUE indicates two items are in the same cluster, and FALSE indicates they are not.

4. freq_item_pw_membership: A numeric vector containing the number of times each item
pair is clustered together, corresponding to the sum of rows in pairwise_membership.

5. bioregionalization_freq_cor (optional): If cor_frequency = TRUE, a numeric vector of
correlations between individual bioregionalizations and the total frequency of pairwise mem-
bership.

6. confusion_matrix (optional): If store_confusion_matrix = TRUE, a list of confusion ma-
trices for each pair of bioregionalizations.

7. bioregionalization_comparison: A data.frame containing comparison results, where the
first column indicates the bioregionalizations compared, and the remaining columns contain
the requested indices.

10 cut_tree

Author(s)

Boris Leroy (<leroy.boris@gmail.com>)
Maxime Lenormand (<maxime.lenormand@inrae.fr>)
Pierre Denelle (<pierre.denelle@gmail.com>)

See Also

For more details illustrated with a practical example, see the vignette: https://biorgeo.github.
io/bioregion/articles/a5_2_compare_bioregionalizations.html.

Associated functions: bioregionalization_metrics

Examples

We here compare three different bioregionalizations
comat <- matrix(sample(0:1000, size = 500, replace = TRUE, prob = 1/1:1001),
20, 25)
rownames(comat) <- paste0("Site",1:20)
colnames(comat) <- paste0("Species",1:25)

dissim <- dissimilarity(comat, metric = "Simpson")
bioregion1 <- nhclu_kmeans(dissim, n_clust = 3, index = "Simpson")

net <- similarity(comat, metric = "Simpson")
bioregion2 <- netclu_greedy(net)
bioregion3 <- netclu_walktrap(net)

Make one single data.frame with the bioregionalizations to compare
compare_df <- merge(bioregion1$clusters, bioregion2$clusters, by = "ID")
compare_df <- merge(compare_df, bioregion3$clusters, by = "ID")
colnames(compare_df) <- c("Site", "Hclu", "Greedy", "Walktrap")
rownames(compare_df) <- compare_df$Site
compare_df <- compare_df[, c("Hclu", "Greedy", "Walktrap")]

Running the function
compare_bioregionalizations(compare_df)

Find out which bioregionalizations are most representative
compare_bioregionalizations(compare_df,

cor_frequency = TRUE)

cut_tree Cut a hierarchical tree

Description

This function is designed to work on a hierarchical tree and cut it at user-selected heights. It works
with outputs from either hclu_hierarclust or hclust objects. The function allows for cutting
the tree based on the chosen number(s) of clusters or specified height(s). Additionally, it includes a
procedure to automatically determine the cutting height for the requested number(s) of clusters.

https://biorgeo.github.io/bioregion/articles/a5_2_compare_bioregionalizations.html
https://biorgeo.github.io/bioregion/articles/a5_2_compare_bioregionalizations.html

cut_tree 11

Usage

cut_tree(
tree,
n_clust = NULL,
cut_height = NULL,
find_h = TRUE,
h_max = 1,
h_min = 0,
dynamic_tree_cut = FALSE,
dynamic_method = "tree",
dynamic_minClusterSize = 5,
dissimilarity = NULL,
...

)

Arguments

tree A bioregion.hierar.tree or an hclust object.

n_clust An integer vector or a single integer indicating the number of clusters to be
obtained from the hierarchical tree, or the output from bioregionalization_metrics().
This should not be used concurrently with cut_height.

cut_height A numeric vector specifying the height(s) at which the tree should be cut. This
should not be used concurrently with n_clust or optim_method.

find_h A boolean indicating whether the cutting height should be determined for the
requested n_clust.

h_max A numeric value indicating the maximum possible tree height for determining
the cutting height when find_h = TRUE.

h_min A numeric value specifying the minimum possible height in the tree for deter-
mining the cutting height when find_h = TRUE.

dynamic_tree_cut

A boolean indicating whether the dynamic tree cut method should be used. If
TRUE, n_clust and cut_height are ignored.

dynamic_method A character string specifying the method to be used for dynamically cutting
the tree: either "tree" (clusters searched only within the tree) or "hybrid"
(clusters searched in both the tree and the dissimilarity matrix).

dynamic_minClusterSize

An integer indicating the minimum cluster size for the dynamic tree cut method
(see dynamicTreeCut::cutreeDynamic()).

dissimilarity Relevant only if dynamic_method = "hybrid". Provide the dissimilarity data.frame
used to build the tree.

... Additional arguments passed to dynamicTreeCut::cutreeDynamic() to customize
the dynamic tree cut method.

12 cut_tree

Details

The function supports two main methods for cutting the tree. First, the tree can be cut at a uniform
height (specified by cut_height or determined automatically for the requested n_clust). Second,
the dynamic tree cut method (Langfelder et al., 2008) can be applied, which adapts to the shape of
branches in the tree, cutting at varying heights based on cluster positions.

The dynamic tree cut method has two variants:

• The tree-based variant (dynamic_method = "tree") uses a top-down approach, relying solely
on the tree and the order of clustered objects.

• The hybrid variant (dynamic_method = "hybrid") employs a bottom-up approach, leveraging
both the tree and the dissimilarity matrix to identify clusters based on dissimilarity among
sites. This approach is useful for detecting outliers within clusters.

Value

If tree is an output from hclu_hierarclust(), the same object is returned with updated content
(i.e., args and clusters). If tree is an hclust object, a data.frame containing the clusters is
returned.

Note

The find_h argument is ignored if dynamic_tree_cut = TRUE, as cutting heights cannot be deter-
mined in this case.

Author(s)

Pierre Denelle (<pierre.denelle@gmail.com>)
Maxime Lenormand (<maxime.lenormand@inrae.fr>)
Boris Leroy (<leroy.boris@gmail.com>)

References

Langfelder P, Zhang B & Horvath S (2008) Defining clusters from a hierarchical cluster tree: the
Dynamic Tree Cut package for R. BIOINFORMATICS 24, 719-720.

See Also

For more details illustrated with a practical example, see the vignette: https://biorgeo.github.
io/bioregion/articles/a4_1_hierarchical_clustering.html.

Associated functions: hclu_hierarclust

Examples

comat <- matrix(sample(0:1000, size = 500, replace = TRUE, prob = 1/1:1001),
20, 25)
rownames(comat) <- paste0("Site", 1:20)
colnames(comat) <- paste0("Species", 1:25)

simil <- similarity(comat, metric = "all")

https://biorgeo.github.io/bioregion/articles/a4_1_hierarchical_clustering.html
https://biorgeo.github.io/bioregion/articles/a4_1_hierarchical_clustering.html

dissimilarity 13

dissimilarity <- similarity_to_dissimilarity(simil)

User-defined number of clusters
tree1 <- hclu_hierarclust(dissimilarity,

n_clust = 5)
tree2 <- cut_tree(tree1, cut_height = .05)
tree3 <- cut_tree(tree1, n_clust = c(3, 5, 10))
tree4 <- cut_tree(tree1, cut_height = c(.05, .1, .15, .2, .25))
tree5 <- cut_tree(tree1, n_clust = c(3, 5, 10), find_h = FALSE)

hclust_tree <- tree2$algorithm$final.tree
clusters_2 <- cut_tree(hclust_tree, n_clust = 10)

cluster_dynamic <- cut_tree(tree1, dynamic_tree_cut = TRUE,
dissimilarity = dissimilarity)

dissimilarity Compute dissimilarity metrics (beta-diversity) between sites based on
species composition

Description

This function generates a data.frame where each row provides one or several dissimilarity metrics
between pairs of sites, based on a co-occurrence matrix with sites as rows and species as columns.

Usage

dissimilarity(comat, metric = "Simpson", formula = NULL, method = "prodmat")

Arguments

comat A co-occurrence matrix with sites as rows and species as columns.

metric A character vector or a single character string specifying the metrics to com-
pute (see Details). Available options are "abc", "ABC", "Jaccard", "Jaccardturn",
"Sorensen", "Simpson", "Bray", "Brayturn", and "Euclidean". If "all" is
specified, all metrics will be calculated. Can be set to NULL if formula is used.

formula A character vector or a single character string specifying custom formula(s)
based on the a, b, c, A, B, and C quantities (see Details). The default is NULL.

method A character string specifying the method to compute abc (see Details). The
default is "prodmat", which is more efficient but memory-intensive. Alterna-
tively, "loops" is less memory-intensive but slower.

14 dissimilarity

Details

With a the number of species shared by a pair of sites, b species only present in the first site and c
species only present in the second site.

Jaccard = (b + c) / (a + b + c)

Jaccardturn = 2min(b, c) / (a + 2min(b, c)) (Baselga, 2012)

Sorensen = (b + c) / (2a + b + c)

Simpson = min(b, c) / (a + min(b, c))

If abundances data are available, Bray-Curtis and its turnover component can also be computed with
the following equation:

Bray = (B + C) / (2A + B + C)

Brayturn = min(B, C)/(A + min(B, C)) (Baselga, 2013)

with A the sum of the lesser values for common species shared by a pair of sites. B and C are the
total number of specimens counted at both sites minus A.

formula can be used to compute customized metrics with the terms a, b, c, A, B, and C. For exam-
ple formula = c("pmin(b,c) / (a + pmin(b,c))", "(B + C) / (2*A + B + C)") will compute the
Simpson and Bray-Curtis dissimilarity metrics, respectively. Note that pmin is used in the Simpson
formula because a, b, c, A, B and C are numeric vectors.

Euclidean computes the Euclidean distance between each pair of sites.

Value

A data.frame with the additional class bioregion.pairwise.metric, containing one or several
dissimilarity metrics between pairs of sites. The first two columns represent the pairs of sites. There
is one column per similarity metric provided in metric and formula, except for the abc and ABC
metrics, which are stored in three separate columns (one for each letter).

Author(s)

Maxime Lenormand (<maxime.lenormand@inrae.fr>)
Pierre Denelle (<pierre.denelle@gmail.com>)
Boris Leroy (<leroy.boris@gmail.com>)

References

Baselga, A. (2012) The Relationship between Species Replacement, Dissimilarity Derived from
Nestedness, and Nestedness. Global Ecology and Biogeography, 21(12), 1223–1232.

Baselga, A. (2013) Separating the two components of abundance-based dissimilarity: balanced
changes in abundance vs. abundance gradients. Methods in Ecology and Evolution, 4(6), 552–557.

See Also

For more details illustrated with a practical example, see the vignette: https://biorgeo.github.
io/bioregion/articles/a3_pairwise_metrics.html.

Associated functions: similarity dissimilarity_to_similarity

https://biorgeo.github.io/bioregion/articles/a3_pairwise_metrics.html
https://biorgeo.github.io/bioregion/articles/a3_pairwise_metrics.html

dissimilarity_to_similarity 15

Examples

comat <- matrix(sample(0:1000, size = 50, replace = TRUE,
prob = 1 / 1:1001), 5, 10)
rownames(comat) <- paste0("Site", 1:5)
colnames(comat) <- paste0("Species", 1:10)

dissim <- dissimilarity(comat,
metric = c("abc", "ABC", "Simpson", "Brayturn"))

dissim <- dissimilarity(comat, metric = "all",
formula = "1 - (b + c) / (a + b + c)")

dissimilarity_to_similarity

Convert dissimilarity metrics to similarity metrics

Description

This function converts a data.frame of dissimilarity metrics (beta diversity) between sites into
similarity metrics.

Usage

dissimilarity_to_similarity(dissimilarity, include_formula = TRUE)

Arguments

dissimilarity the output object from dissimilarity() or similarity_to_dissimilarity().
include_formula

a boolean indicating whether metrics based on custom formula(s) should also
be converted (see Details). The default is TRUE.

Value

A data.frame with the additional class bioregion.pairwise.metric, providing similarity met-
rics for each pair of sites based on a dissimilarity object.

Note

The behavior of this function changes depending on column names. Columns Site1 and Site2 are
copied identically. If there are columns called a, b, c, A, B, C they will also be copied identically.
If there are columns based on your own formula (argument formula in dissimilarity()) or not
in the original list of dissimilarity metrics (argument metrics in dissimilarity()) and if the
argument include_formula is set to FALSE, they will also be copied identically. Otherwise there
are going to be converted like they other columns (default behavior).

If a column is called Euclidean, the similarity will be calculated based on the following formula:

16 find_optimal_n

Euclidean similarity = 1 / (1 - Euclidean distance)

Otherwise, all other columns will be transformed into dissimilarity with the following formula:

similarity = 1 - dissimilarity

Author(s)

Maxime Lenormand (<maxime.lenormand@inrae.fr>)
Boris Leroy (<leroy.boris@gmail.com>)
Pierre Denelle (<pierre.denelle@gmail.com>)

See Also

For more details illustrated with a practical example, see the vignette: https://biorgeo.github.
io/bioregion/articles/a3_pairwise_metrics.html.

Associated functions: similarity dissimilarity_to_similarity

Examples

comat <- matrix(sample(0:1000, size = 50, replace = TRUE,
prob = 1 / 1:1001), 5, 10)
rownames(comat) <- paste0("Site", 1:5)
colnames(comat) <- paste0("Species", 1:10)

dissimil <- dissimilarity(comat, metric = "all")
dissimil

similarity <- dissimilarity_to_similarity(dissimil)
similarity

find_optimal_n Search for an optimal number of clusters in a list of bioregionaliza-
tions

Description

This function aims to optimize one or several criteria on a set of ordered bioregionalizations. It
is typically used to find one or more optimal cluster counts on hierarchical trees to cut or ranges
of bioregionalizations from k-means or PAM. Users should exercise caution in other cases (e.g.,
unordered bioregionalizations or unrelated bioregionalizations).

Usage

find_optimal_n(
bioregionalizations,
metrics_to_use = "all",
criterion = "elbow",
step_quantile = 0.99,

https://biorgeo.github.io/bioregion/articles/a3_pairwise_metrics.html
https://biorgeo.github.io/bioregion/articles/a3_pairwise_metrics.html

find_optimal_n 17

step_levels = NULL,
step_round_above = TRUE,
metric_cutoffs = c(0.5, 0.75, 0.9, 0.95, 0.99, 0.999),
n_breakpoints = 1,
plot = TRUE

)

Arguments

bioregionalizations

A bioregion.bioregionalization.metrics object (output from bioregionalization_metrics())
or a data.frame with the first two columns named K (bioregionalization name)
and n_clusters (number of clusters), followed by columns with numeric eval-
uation metrics.

metrics_to_use A character vector or single string specifying metrics in bioregionalizations
for calculating optimal clusters. Defaults to "all" (uses all metrics).

criterion A character string specifying the criterion to identify optimal clusters. Op-
tions include "elbow", "increasing_step", "decreasing_step", "cutoff",
"breakpoints", "min", or "max". Defaults to "elbow". See Details.

step_quantile For "increasing_step" or "decreasing_step", specifies the quantile of dif-
ferences between consecutive bioregionalizations as the cutoff to identify sig-
nificant steps in eval_metric.

step_levels For "increasing_step" or "decreasing_step", specifies the number of largest
steps to retain as cutoffs.

step_round_above

A boolean indicating whether the optimal clusters are above (TRUE) or below
(FALSE) identified steps. Defaults to TRUE.

metric_cutoffs For criterion = "cutoff", specifies the cutoffs of eval_metric to extract
cluster counts.

n_breakpoints Specifies the number of breakpoints to find in the curve. Defaults to 1.

plot A boolean indicating if a plot of the first eval_metric with identified optimal
clusters should be drawn.

Details

This function explores evaluation metric ~ cluster relationships, applying criteria to find optimal
cluster counts.

Note on criteria: Several criteria can return multiple optimal cluster counts, emphasizing hier-
archical or nested bioregionalizations. This approach aligns with modern recommendations for
biological datasets, as seen in Ficetola et al. (2017)’s reanalysis of Holt et al. (2013).

Criteria for optimal clusters:

• elbow: Identifies the "elbow" point in the evaluation metric curve, where incremental im-
provements diminish. Based on a method to find the maximum distance from a straight line
linking curve endpoints.

18 find_optimal_n

• increasing_step or decreasing_step: Highlights significant increases or decreases in met-
rics by analyzing pairwise differences between bioregionalizations. Users specify step_quantile
or step_levels.

• cutoffs: Derives clusters from specified metric cutoffs, e.g., as in Holt et al. (2013). Adjust
cutoffs based on spatial scale.

• breakpoints: Uses segmented regression to find breakpoints. Requires specifying n_breakpoints.

• min & max: Selects clusters at minimum or maximum metric values.

Value

A list of class bioregion.optimal.n with these elements:

• args: Input arguments.

• evaluation_df: The input evaluation data.frame, appended with boolean columns for op-
timal cluster counts.

• optimal_nb_clusters: A list with optimal cluster counts for each metric in "metrics_to_use",
based on the chosen criterion.

• plot: The plot (if requested).

Note

Please note that finding the optimal number of clusters is a procedure which normally requires deci-
sions from the users, and as such can hardly be fully automatized. Users are strongly advised to read
the references indicated below to look for guidance on how to choose their optimal number(s) of
clusters. Consider the "optimal" numbers of clusters returned by this function as first approximation
of the best numbers for your bioregionalization.

Author(s)

Boris Leroy (<leroy.boris@gmail.com>)
Maxime Lenormand (<maxime.lenormand@inrae.fr>)
Pierre Denelle (<pierre.denelle@gmail.com>)

References

Holt BG, Lessard J, Borregaard MK, Fritz SA, Araújo MB, Dimitrov D, Fabre P, Graham CH,
Graves GR, Jønsson Ka, Nogués-Bravo D, Wang Z, Whittaker RJ, Fjeldså J & Rahbek C (2013) An
update of Wallace’s zoogeographic regions of the world. Science 339, 74-78.

Ficetola GF, Mazel F & Thuiller W (2017) Global determinants of zoogeographical boundaries.
Nature Ecology & Evolution 1, 0089.

See Also

For more details illustrated with a practical example, see the vignette: https://biorgeo.github.
io/bioregion/articles/a4_1_hierarchical_clustering.html#optimaln.

Associated functions: hclu_hierarclust

https://biorgeo.github.io/bioregion/articles/a4_1_hierarchical_clustering.html#optimaln
https://biorgeo.github.io/bioregion/articles/a4_1_hierarchical_clustering.html#optimaln

fishdf 19

Examples

comat <- matrix(sample(0:1000, size = 500, replace = TRUE, prob = 1/1:1001),
20, 25)
rownames(comat) <- paste0("Site",1:20)
colnames(comat) <- paste0("Species",1:25)

dissim <- dissimilarity(comat, metric = "all")

User-defined number of clusters
tree <- hclu_hierarclust(dissim,

optimal_tree_method = "best",
n_clust = 5:10)

tree

a <- bioregionalization_metrics(tree,
dissimilarity = dissim,
species_col = "Node2",
site_col = "Node1",
eval_metric = "anosim")

find_optimal_n(a, criterion = 'increasing_step', plot = FALSE)

fishdf Spatial distribution of fish in Europe (data.frame)

Description

A dataset containing the abundance of 195 species in 338 sites.

Usage

fishdf

Format

A data.frame with 2,703 rows and 3 columns:

Site Unique site identifier (corresponding to the field ID of fishsf)

Species Unique species identifier

Abundance Species abundance

20 fishsf

fishmat Spatial distribution of fish in Europe (co-occurrence matrix)

Description

A dataset containing the abundance of each of the 195 species in each of the 338 sites.

Usage

fishmat

Format

A co-occurrence matrix with sites as rows and species as columns. Each element of the matrix
represents the abundance of the species in the site.

fishsf Spatial distribution of fish in Europe

Description

A dataset containing the geometry of the 338 sites.

Usage

fishsf

Format

A

ID Unique site identifier

geometry Geometry of the site

hclu_diana 21

hclu_diana Divisive hierarchical clustering based on dissimilarity or beta-
diversity

Description

This function computes a divisive hierarchical clustering from a dissimilarity (beta-diversity) data.frame,
calculates the cophenetic correlation coefficient, and can generate clusters from the tree if requested
by the user. The function implements randomization of the dissimilarity matrix to generate the tree,
with a selection method based on the optimal cophenetic correlation coefficient. Typically, the dis-
similarity data.frame is a bioregion.pairwise.metric object obtained by running similarity
or similarity followed by similarity_to_dissimilarity.

Usage

hclu_diana(
dissimilarity,
index = names(dissimilarity)[3],
n_clust = NULL,
cut_height = NULL,
find_h = TRUE,
h_max = 1,
h_min = 0

)

Arguments

dissimilarity The output object from dissimilarity() or similarity_to_dissimilarity(),
or a dist object. If a data.frame is used, the first two columns represent pairs
of sites (or any pair of nodes), and the remaining column(s) contain the dissimi-
larity indices.

index The name or number of the dissimilarity column to use. By default, the third
column name of dissimilarity is used.

n_clust An integer vector or a single integer indicating the number of clusters to be
obtained from the hierarchical tree, or the output from bioregionalization_metrics.
Should not be used concurrently with cut_height.

cut_height A numeric vector indicating the height(s) at which the tree should be cut. Should
not be used concurrently with n_clust.

find_h A boolean indicating whether the cutting height should be determined for the
requested n_clust.

h_max A numeric value indicating the maximum possible tree height for the chosen
index.

h_min A numeric value indicating the minimum possible height in the tree for the
chosen index.

22 hclu_diana

Details

The function is based on diana. Chapter 6 of Kaufman & Rousseeuw (1990) fully details the
functioning of the diana algorithm.

To find an optimal number of clusters, see bioregionalization_metrics()

Value

A list of class bioregion.clusters with five slots:

1. name: A character string containing the name of the algorithm.

2. args: A list of input arguments as provided by the user.

3. inputs: A list describing the characteristics of the clustering process.

4. algorithm: A list containing all objects associated with the clustering procedure, such as
the original cluster objects.

5. clusters: A data.frame containing the clustering results.

Author(s)

Pierre Denelle (<pierre.denelle@gmail.com>)
Boris Leroy (<leroy.boris@gmail.com>)
Maxime Lenormand (<maxime.lenormand@inrae.fr>)

References

Kaufman L & Rousseeuw PJ (2009) Finding groups in data: An introduction to cluster analysis. In
& Sons. JW (ed.), Finding groups in data: An introduction to cluster analysis.

See Also

For more details illustrated with a practical example, see the vignette: https://biorgeo.github.
io/bioregion/articles/a4_1_hierarchical_clustering.html.

Associated functions: cut_tree

Examples

comat <- matrix(sample(0:1000, size = 500, replace = TRUE, prob = 1/1:1001),
20, 25)
rownames(comat) <- paste0("Site",1:20)
colnames(comat) <- paste0("Species",1:25)

dissim <- dissimilarity(comat, metric = "all")

data("fishmat")
fishdissim <- dissimilarity(fishmat)
fish_diana <- hclu_diana(fishdissim, index = "Simpson")

https://biorgeo.github.io/bioregion/articles/a4_1_hierarchical_clustering.html
https://biorgeo.github.io/bioregion/articles/a4_1_hierarchical_clustering.html

hclu_hierarclust 23

hclu_hierarclust Hierarchical clustering based on dissimilarity or beta-diversity

Description

This function generates a hierarchical tree from a dissimilarity (beta-diversity) data.frame, cal-
culates the cophenetic correlation coefficient, and optionally retrieves clusters from the tree upon
user request. The function includes a randomization process for the dissimilarity matrix to gener-
ate the tree, with two methods available for constructing the final tree. Typically, the dissimilarity
data.frame is a bioregion.pairwise.metric object obtained by running similarity, or by
running similarity followed by similarity_to_dissimilarity.

Usage

hclu_hierarclust(
dissimilarity,
index = names(dissimilarity)[3],
method = "average",
randomize = TRUE,
n_runs = 100,
keep_trials = FALSE,
optimal_tree_method = "iterative_consensus_tree",
n_clust = NULL,
cut_height = NULL,
find_h = TRUE,
h_max = 1,
h_min = 0,
consensus_p = 0.5,
verbose = TRUE

)

Arguments

dissimilarity The output object from dissimilarity() or similarity_to_dissimilarity(),
or a dist object. If a data.frame is used, the first two columns represent pairs
of sites (or any pair of nodes), and the subsequent column(s) contain the dissim-
ilarity indices.

index The name or number of the dissimilarity column to use. By default, the third
column name of dissimilarity is used.

method The name of the hierarchical classification method, as in hclust. Should be one
of "ward.D", "ward.D2", "single", "complete", "average" (= UPGMA),
"mcquitty" (= WPGMA), "median" (= WPGMC), or "centroid" (= UP-
GMC).

randomize A boolean indicating whether the dissimilarity matrix should be randomized to
account for the order of sites in the dissimilarity matrix.

n_runs The number of trials for randomizing the dissimilarity matrix.

24 hclu_hierarclust

keep_trials A boolean indicating whether all random trial results should be stored in the
output object. Set to FALSE to save space if your dissimilarity object is large.
Note that this cannot be set to TRUE if optimal_tree_method = "iterative_consensus_tree".

optimal_tree_method

A character string indicating how the final tree should be obtained from all tri-
als. Possible values are "iterative_consensus_tree" (default), "best", and
"consensus". We recommend "iterative_consensus_tree". See Details.

n_clust An integer vector or a single integer indicating the number of clusters to be
obtained from the hierarchical tree, or the output from bioregionalization_metrics.
This parameter should not be used simultaneously with cut_height.

cut_height A numeric vector indicating the height(s) at which the tree should be cut. This
parameter should not be used simultaneously with n_clust.

find_h A boolean indicating whether the height of the cut should be found for the
requested n_clust.

h_max A numeric value indicating the maximum possible tree height for the chosen
index.

h_min A numeric value indicating the minimum possible height in the tree for the
chosen index.

consensus_p A numeric value (applicable only if optimal_tree_method = "consensus")
indicating the threshold proportion of trees that must support a region/cluster
for it to be included in the final consensus tree.

verbose A boolean (applicable only if optimal_tree_method = "iterative_consensus_tree")
indicating whether to display progress messages. Set to FALSE to suppress these
messages.

Details

The function is based on hclust. The default method for the hierarchical tree is average, i.e. UP-
GMA as it has been recommended as the best method to generate a tree from beta diversity dissim-
ilarity (Kreft & Jetz, 2010).

Clusters can be obtained by two methods:

• Specifying a desired number of clusters in n_clust

• Specifying one or several heights of cut in cut_height

To find an optimal number of clusters, see bioregionalization_metrics()

It is important to pay attention to the fact that the order of rows in the input distance matrix influ-
ences the tree topology as explained in Dapporto (2013). To address this, the function generates
multiple trees by randomizing the distance matrix.

Two methods are available to obtain the final tree:

• optimal_tree_method = "iterative_consensus_tree": The Iterative Hierarchical Con-
sensus Tree (IHCT) method reconstructs a consensus tree by iteratively splitting the dataset
into two subclusters based on the pairwise dissimilarity of sites across n_runs trees based
on n_runs randomizations of the distance matrix. At each iteration, it identifies the majority
membership of sites into two stable groups across all trees, calculates the height based on

hclu_hierarclust 25

the selected linkage method (method), and enforces monotonic constraints on node heights to
produce a coherent tree structure. This approach provides a robust, hierarchical representation
of site relationships, balancing cluster stability and hierarchical constraints.

• optimal_tree_method = "best": This method selects one tree among with the highest cophe-
netic correlation coefficient, representing the best fit between the hierarchical structure and the
original distance matrix.

• optimal_tree_method = "consensus": This method constructs a consensus tree using phy-
logenetic methods with the function consensus. When using this option, you must set the
consensus_p parameter, which indicates the proportion of trees that must contain a region/cluster
for it to be included in the final consensus tree. Consensus trees lack an inherent height be-
cause they represent a majority structure rather than an actual hierarchical clustering. To
assign heights, we use a non-negative least squares method (nnls.tree) based on the initial dis-
tance matrix, ensuring that the consensus tree preserves approximate distances among clusters.

We recommend using the "iterative_consensus_tree" as all the branches of this tree will al-
ways reflect the majority decision among many randomized versions of the distance matrix. This
method is inspired by Dapporto et al. (2015), which also used the majority decision among many
randomized versions of the distance matrix, but it expands it to reconstruct the entire topology of
the tree iteratively.

We do not recommend using the basic consensus method because in many contexts it provides
inconsistent results, with a meaningless tree topology and a very low cophenetic correlation coeffi-
cient.

For a fast exploration of the tree, we recommend using the best method which will only select
the tree with the highest cophenetic correlation coefficient among all randomized versions of the
distance matrix.

Value

A list of class bioregion.clusters with five slots:

1. name: A character string containing the name of the algorithm.

2. args: A list of input arguments as provided by the user.

3. inputs: A list describing the characteristics of the clustering process.

4. algorithm: A list containing all objects associated with the clustering procedure, such as
the original cluster objects.

5. clusters: A data.frame containing the clustering results.

In the algorithm slot, users can find the following elements:

• trials: A list containing all randomization trials. Each trial includes the dissimilarity ma-
trix with randomized site order, the associated tree, and the cophenetic correlation coefficient
(Spearman) for that tree.

• final.tree: An hclust object representing the final hierarchical tree to be used.

• final.tree.coph.cor: The cophenetic correlation coefficient between the initial dissimilar-
ity matrix and the final.tree.

26 hclu_hierarclust

Author(s)

Boris Leroy (<leroy.boris@gmail.com>)
Pierre Denelle (<pierre.denelle@gmail.com>)
Maxime Lenormand (<maxime.lenormand@inrae.fr>)

References

Kreft H & Jetz W (2010) A framework for delineating biogeographical regions based on species
distributions. Journal of Biogeography 37, 2029-2053.

Dapporto L, Ramazzotti M, Fattorini S, Talavera G, Vila R & Dennis, RLH (2013) Recluster: an
unbiased clustering procedure for beta-diversity turnover. Ecography 36, 1070–1075.

Dapporto L, Ciolli G, Dennis RLH, Fox R & Shreeve TG (2015) A new procedure for extrapolat-
ing turnover regionalization at mid-small spatial scales, tested on British butterflies. Methods in
Ecology and Evolution 6 , 1287–1297.

See Also

For more details illustrated with a practical example, see the vignette: https://biorgeo.github.
io/bioregion/articles/a4_1_hierarchical_clustering.html.

Associated functions: cut_tree

Examples

comat <- matrix(sample(0:1000, size = 500, replace = TRUE, prob = 1/1:1001),
20, 25)
rownames(comat) <- paste0("Site",1:20)
colnames(comat) <- paste0("Species",1:25)

dissim <- dissimilarity(comat, metric = "Simpson")

User-defined number of clusters
tree1 <- hclu_hierarclust(dissim,

n_clust = 5)
tree1
plot(tree1)
str(tree1)
tree1$clusters

User-defined height cut
Only one height
tree2 <- hclu_hierarclust(dissim,

cut_height = .05)
tree2
tree2$clusters

Multiple heights
tree3 <- hclu_hierarclust(dissim,

cut_height = c(.05, .15, .25))

tree3$clusters # Mind the order of height cuts: from deep to shallow cuts

https://biorgeo.github.io/bioregion/articles/a4_1_hierarchical_clustering.html
https://biorgeo.github.io/bioregion/articles/a4_1_hierarchical_clustering.html

hclu_optics 27

Info on each partition can be found in table cluster_info
tree3$cluster_info
plot(tree3)

hclu_optics OPTICS hierarchical clustering algorithm

Description

This function performs semi-hierarchical clustering based on dissimilarity using the OPTICS algo-
rithm (Ordering Points To Identify the Clustering Structure).

Usage

hclu_optics(
dissimilarity,
index = names(dissimilarity)[3],
minPts = NULL,
eps = NULL,
xi = 0.05,
minimum = FALSE,
show_hierarchy = FALSE,
algorithm_in_output = TRUE,
...

)

Arguments

dissimilarity The output object from dissimilarity() or similarity_to_dissimilarity(),
or a dist object. If a data.frame is used, the first two columns represent pairs
of sites (or any pair of nodes), and the subsequent column(s) contain the dissim-
ilarity indices.

index The name or number of the dissimilarity column to use. By default, the third
column name of dissimilarity is used.

minPts A numeric value specifying the minPts argument of dbscan. minPts is the min-
imum number of points required to form a dense region. By default, it is set to
the natural logarithm of the number of sites in dissimilarity.

eps A numeric value specifying the eps argument of optics. It defines the upper
limit of the size of the epsilon neighborhood. Limiting the neighborhood size
improves performance and has no or very little impact on the ordering as long
as it is not set too low. If not specified (default behavior), the largest minPts-
distance in the dataset is used, which gives the same result as infinity.

xi A numeric value specifying the steepness threshold to identify clusters hierar-
chically using the Xi method (see optics).

28 hclu_optics

minimum A boolean specifying whether the hierarchy should be pruned from the output
to only retain clusters at the "minimal" level, i.e., only leaf / non-overlapping
clusters. If TRUE, then the argument show_hierarchy should be set to FALSE.

show_hierarchy A boolean specifying whether the hierarchy of clusters should be included in
the output. By default, the hierarchy is not visible in the clusters obtained
from OPTICS; it can only be visualized by plotting the OPTICS object. If
show_hierarchy = TRUE, the output cluster data.frame will contain additional
columns showing the hierarchy of clusters.

algorithm_in_output

A boolean indicating whether the original output of dbscan should be returned
in the output (TRUE by default, see Value).

... Additional arguments to be passed to optics() (see optics).

Details

The OPTICS (Ordering points to identify the clustering structure) is a semi-hierarchical cluster-
ing algorithm which orders the points in the dataset such that points which are closest become
neighbors, and calculates a reachability distance for each point. Then, clusters can be extracted in a
hierarchical manner from this reachability distance, by identifying clusters depending on changes in
the relative cluster density. The reachability plot should be explored to understand the clusters and
their hierarchical nature, by running plot on the output of the function if algorithm_in_output
= TRUE: plot(object$algorithm). We recommend reading (Hahsler et al., 2019) to grasp the
algorithm, how it works, and what the clusters mean.

To extract the clusters, we use the extractXi function which is based on the steepness of the reacha-
bility plot (see optics)

Value

A list of class bioregion.clusters with five slots:

1. name: A character string containing the name of the algorithm.
2. args: A list of input arguments as provided by the user.
3. inputs: A list describing the characteristics of the clustering process.
4. algorithm: A list containing all objects associated with the clustering procedure, such as

the original cluster objects.
5. clusters: A data.frame containing the clustering results.

In the algorithm slot, if algorithm_in_output = TRUE, users can find the output of optics.

Author(s)

Boris Leroy (<leroy.boris@gmail.com>)
Pierre Denelle (<pierre.denelle@gmail.com>)
Maxime Lenormand (<maxime.lenormand@inrae.fr>)

References

Hahsler M, Piekenbrock M & Doran D (2019) Dbscan: Fast density-based clustering with R. Jour-
nal of Statistical Software 91, 1–30.

install_binaries 29

See Also

For more details illustrated with a practical example, see the vignette: https://biorgeo.github.
io/bioregion/articles/a4_1_hierarchical_clustering.html.

Associated functions: nhclu_dbscan

Examples

dissim <- dissimilarity(fishmat, metric = "all")

clust1 <- hclu_optics(dissim, index = "Simpson")
clust1

Visualize the optics plot (the hierarchy of clusters is illustrated at the
bottom)
plot(clust1$algorithm)

Extract the hierarchy of clusters
clust1 <- hclu_optics(dissim, index = "Simpson", show_hierarchy = TRUE)
clust1

install_binaries Download, unzip, check permissions, and test the bioregion’s binary
files

Description

This function downloads and unzips the ’bin’ folder required to run certain functions of the bioregion
package. It also verifies if the files have the necessary permissions to be executed as programs. Fi-
nally, it tests whether the binary files are running correctly.

Usage

install_binaries(
binpath = "tempdir",
download_only = FALSE,
infomap_version = c("2.1.0", "2.6.0", "2.7.1", "2.8.0")

)

Arguments

binpath A character string specifying the path to the folder that will host the bin folder
containing the binary files (see Details).

download_only A logical value indicating whether the function should only download the
bin.zip file or perform the entire process (see Details).

infomap_version

A character vector or a single character string specifying the Infomap ver-
sion(s) to install.

https://biorgeo.github.io/bioregion/articles/a4_1_hierarchical_clustering.html
https://biorgeo.github.io/bioregion/articles/a4_1_hierarchical_clustering.html

30 map_bioregions

Details

By default, the binary files are installed in R’s temporary directory (binpath = "tempdir"). In this
case, the bin folder will be automatically removed at the end of the R session. Alternatively, the
binary files can be installed in the bioregion package folder (binpath = "pkgfolder").

A custom folder path can also be specified. In this case, and only in this case, download_only can
be set to TRUE, but you must ensure that the files have the required permissions to be executed as
programs.

In all cases, PLEASE MAKE SURE to update the binpath and check_install parameters
accordingly in netclu_infomap, netclu_louvain, and netclu_oslom.

Value

No return value.

Note

Currently, only Infomap versions 2.1.0, 2.6.0, 2.7.1, and 2.8.0 are available.

Author(s)

Maxime Lenormand (<maxime.lenormand@inrae.fr>)
Boris Leroy (<leroy.boris@gmail.com>)
Pierre Denelle (<pierre.denelle@gmail.com>)

See Also

For more details illustrated with a practical example, see the vignette: https://biorgeo.github.
io/bioregion/articles/a1_install_binary_files.html.

map_bioregions Create a map of bioregions

Description

This plot function can be used to visualize bioregions based on a bioregion.clusters object
combined with a geometry (sf objects).

Usage

map_bioregions(clusters, geometry, write_clusters = FALSE, plot = TRUE, ...)

https://biorgeo.github.io/bioregion/articles/a1_install_binary_files.html
https://biorgeo.github.io/bioregion/articles/a1_install_binary_files.html

mat_to_net 31

Arguments

clusters An object of class bioregion.clusters or a data.frame. If a data.frame
is used, the first column should represent the sites’ ID, and the subsequent col-
umn(s) should represent the clusters.

geometry A spatial object that can be handled by the sf package. The first attribute should
correspond to the sites’ ID (see Details).

write_clusters A boolean indicating if the clusters should be added to the geometry.

plot A boolean indicating if the plot should be drawn.

... Further arguments to be passed to sf::plot().

Details

The clusters and geometry site IDs should correspond. They should have the same type (i.e.,
character if clusters is a bioregion.clusters object) and the sites of clusters should be
included in the sites of geometry.

Value

One or several maps of bioregions if plot = TRUE and the geometry with additional clusters’ at-
tributes if write_clusters = TRUE.

Author(s)

Maxime Lenormand (<maxime.lenormand@inrae.fr>)
Boris Leroy (<leroy.boris@gmail.com>)
Pierre Denelle (<pierre.denelle@gmail.com>)

Examples

data(fishmat)
data(fishsf)

net <- similarity(fishmat, metric = "Simpson")
clu <- netclu_greedy(net)
map <- map_bioregions(clu, fishsf, write_clusters = TRUE, plot = FALSE)

mat_to_net Create a data.frame from a contingency table

Description

This function generates a two- or three-column data.frame, where each row represents the inter-
action between two nodes (e.g., site and species) and an optional third column indicates the weight
of the interaction (if weight = TRUE). The input is a contingency table, with rows representing one
set of entities (e.g., site) and columns representing another set (e.g., species).

32 mat_to_net

Usage

mat_to_net(
mat,
weight = FALSE,
remove_zeroes = TRUE,
include_diag = TRUE,
include_lower = TRUE

)

Arguments

mat A contingency table (i.e., a matrix).

weight A logical value indicating whether the values in the matrix should be inter-
preted as interaction weights.

remove_zeroes A logical value determining whether interactions with a weight equal to 0
should be excluded from the output.

include_diag A logical value indicating whether the diagonal (self-interactions) should be
included in the output. This applies only to square matrices.

include_lower A logical value indicating whether the lower triangular part of the matrix
should be included in the output. This applies only to square matrices.

Value

A data.frame where each row represents the interaction between two nodes. If weight = TRUE,
the data.frame includes a third column representing the weight of each interaction.

Author(s)

Maxime Lenormand (<maxime.lenormand@inrae.fr>)
Pierre Denelle (<pierre.denelle@gmail.com>)
Boris Leroy (<leroy.boris@gmail.com>)

See Also

For more details illustrated with a practical example, see the vignette: https://biorgeo.github.
io/bioregion/articles/a2_matrix_and_network_formats.html.

Associated functions: net_to_mat

Examples

mat <- matrix(sample(1000, 50), 5, 10)
rownames(mat) <- paste0("Site", 1:5)
colnames(mat) <- paste0("Species", 1:10)

net <- mat_to_net(mat, weight = TRUE)

https://biorgeo.github.io/bioregion/articles/a2_matrix_and_network_formats.html
https://biorgeo.github.io/bioregion/articles/a2_matrix_and_network_formats.html

netclu_beckett 33

netclu_beckett Community structure detection in weighted bipartite networks via
modularity optimization

Description

This function takes a bipartite weighted graph and computes modules by applying Newman’s mod-
ularity measure in a bipartite weighted version.

Usage

netclu_beckett(
net,
weight = TRUE,
cut_weight = 0,
index = names(net)[3],
seed = NULL,
forceLPA = FALSE,
site_col = 1,
species_col = 2,
return_node_type = "both",
algorithm_in_output = TRUE

)

Arguments

net A data.frame representing a bipartite network with the first two columns rep-
resenting undirected links between pairs of nodes, and the next column(s) rep-
resenting the weights of the links.

weight A boolean indicating whether weights should be considered if there are more
than two columns (see Note).

cut_weight A minimal weight value. If weight is TRUE, links with weights strictly lower
than this value will not be considered (0 by default).

index The name or number of the column to use as weight. By default, the third
column name of net is used.

seed The seed for the random number generator (NULL for random by default).

forceLPA A boolean indicating whether the even faster pure LPA-algorithm of Beckett
should be used. DIRT-LPA (the default) is less likely to get trapped in a local
minimum but is slightly slower. Defaults to FALSE.

site_col The name or number of the column for site nodes (i.e., primary nodes).

species_col The name or number of the column for species nodes (i.e., feature nodes).
return_node_type

A character indicating which types of nodes ("site", "species", or "both")
should be returned in the output ("both" by default).

34 netclu_beckett

algorithm_in_output

A boolean indicating whether the original output of computeModules should
be returned in the output (TRUE by default, see Value).

Details

This function is based on the modularity optimization algorithm provided by Stephen Beckett
(Beckett, 2016) as implemented in the bipartite package (computeModules).

Value

A list of class bioregion.clusters with five slots:

1. name: A character containing the name of the algorithm.

2. args: A list of input arguments as provided by the user.

3. inputs: A list of characteristics of the clustering process.

4. algorithm: A list of all objects associated with the clustering procedure, such as original
cluster objects (only if algorithm_in_output = TRUE).

5. clusters: A data.frame containing the clustering results.

If algorithm_in_output = TRUE, users can find the output of computeModules in the algorithm
slot.

Note

Beckett’s algorithm is designed to handle weighted bipartite networks. If weight = FALSE, a weight
of 1 will be assigned to each pair of nodes. Ensure that the site_col and species_col arguments
correctly identify the respective columns for site nodes (primary nodes) and species nodes (feature
nodes). The type of nodes returned in the output can be selected using the return_node_type
argument: "both" to include both node types, "site" to return only site nodes, or "species" to
return only species nodes.

Author(s)

Maxime Lenormand (<maxime.lenormand@inrae.fr>)
Pierre Denelle (<pierre.denelle@gmail.com>)
Boris Leroy (<leroy.boris@gmail.com>)

References

Beckett SJ (2016) Improved community detection in weighted bipartite networks. Royal Society
Open Science 3, 140536.

See Also

For more details illustrated with a practical example, see the vignette: https://biorgeo.github.
io/bioregion/articles/a4_3_network_clustering.html.

Associated functions: netclu_infomap netclu_louvain netclu_oslom

https://cran.r-project.org/package=bipartite
https://biorgeo.github.io/bioregion/articles/a4_3_network_clustering.html
https://biorgeo.github.io/bioregion/articles/a4_3_network_clustering.html

netclu_greedy 35

Examples

net <- data.frame(
Site = c(rep("A", 2), rep("B", 3), rep("C", 2)),
Species = c("a", "b", "a", "c", "d", "b", "d"),
Weight = c(10, 100, 1, 20, 50, 10, 20))

com <- netclu_beckett(net)

netclu_greedy Community structure detection via greedy optimization of modularity

Description

This function finds communities in a (un)weighted undirected network via greedy optimization of
modularity.

Usage

netclu_greedy(
net,
weight = TRUE,
cut_weight = 0,
index = names(net)[3],
bipartite = FALSE,
site_col = 1,
species_col = 2,
return_node_type = "both",
algorithm_in_output = TRUE

)

Arguments

net The output object from similarity() or dissimilarity_to_similarity().
If a data.frame is used, the first two columns represent pairs of sites (or any
pair of nodes), and the next column(s) are the similarity indices.

weight A boolean indicating if the weights should be considered if there are more than
two columns.

cut_weight A minimal weight value. If weight is TRUE, the links between sites with a
weight strictly lower than this value will not be considered (0 by default).

index The name or number of the column to use as weight. By default, the third
column name of net is used.

bipartite A boolean indicating if the network is bipartite (see Details).

site_col The name or number for the column of site nodes (i.e. primary nodes).

species_col The name or number for the column of species nodes (i.e. feature nodes).

36 netclu_greedy

return_node_type

A character indicating what types of nodes (site, species or both) should
be returned in the output (return_node_type = "both" by default).

algorithm_in_output

A boolean indicating if the original output of cluster_fast_greedy should be
returned in the output (TRUE by default, see Value).

Details

This function is based on the fast greedy modularity optimization algorithm (Clauset et al., 2004)
as implemented in the igraph package (cluster_fast_greedy).

Value

A list of class bioregion.clusters with five slots:

1. name: character containing the name of the algorithm

2. args: list of input arguments as provided by the user

3. inputs: list of characteristics of the clustering process

4. algorithm: list of all objects associated with the clustering procedure, such as original clus-
ter objects (only if algorithm_in_output = TRUE)

5. clusters: data.frame containing the clustering results

In the algorithm slot, if algorithm_in_output = TRUE, users can find the output of cluster_fast_greedy.

Note

Although this algorithm was not primarily designed to deal with bipartite network, it is possible to
consider the bipartite network as unipartite network (bipartite = TRUE).

Do not forget to indicate which of the first two columns is dedicated to the site nodes (i.e. primary
nodes) and species nodes (i.e. feature nodes) using the arguments site_col and species_col. The
type of nodes returned in the output can be chosen with the argument return_node_type equal to
both to keep both types of nodes, sites to preserve only the sites nodes and species to preserve
only the species nodes.

Author(s)

Maxime Lenormand (<maxime.lenormand@inrae.fr>)
Pierre Denelle (<pierre.denelle@gmail.com>)
Boris Leroy (<leroy.boris@gmail.com>)

References

Clauset A, Newman MEJ & Moore C (2004) Finding community structure in very large networks.
Phys. Rev. E 70, 066111.

https://cran.r-project.org/package=igraph

netclu_infomap 37

See Also

For more details illustrated with a practical example, see the vignette: https://biorgeo.github.
io/bioregion/articles/a4_3_network_clustering.html.

Associated functions: netclu_infomap netclu_louvain netclu_oslom

Examples

comat <- matrix(sample(1000, 50), 5, 10)
rownames(comat) <- paste0("Site", 1:5)
colnames(comat) <- paste0("Species", 1:10)

net <- similarity(comat, metric = "Simpson")
com <- netclu_greedy(net)

net_bip <- mat_to_net(comat, weight = TRUE)
clust2 <- netclu_greedy(net_bip, bipartite = TRUE)

netclu_infomap Infomap community finding

Description

This function finds communities in a (un)weighted (un)directed network based on the Infomap
algorithm (https://github.com/mapequation/infomap).

Usage

netclu_infomap(
net,
weight = TRUE,
cut_weight = 0,
index = names(net)[3],
seed = NULL,
nbmod = 0,
markovtime = 1,
numtrials = 1,
twolevel = FALSE,
show_hierarchy = FALSE,
directed = FALSE,
bipartite_version = FALSE,
bipartite = FALSE,
site_col = 1,
species_col = 2,
return_node_type = "both",
version = "2.8.0",
binpath = "tempdir",

https://biorgeo.github.io/bioregion/articles/a4_3_network_clustering.html
https://biorgeo.github.io/bioregion/articles/a4_3_network_clustering.html
https://github.com/mapequation/infomap

38 netclu_infomap

check_install = TRUE,
path_temp = "infomap_temp",
delete_temp = TRUE

)

Arguments

net The output object from similarity() or dissimilarity_to_similarity().
If a data.frame is used, the first two columns represent pairs of sites (or any
pair of nodes), and the next column(s) are the similarity indices.

weight A boolean indicating if the weights should be considered if there are more than
two columns.

cut_weight A minimal weight value. If weight is TRUE, the links between sites with a
weight strictly lower than this value will not be considered (0 by default).

index The name or number of the column to use as weight. By default, the third
column name of net is used.

seed The seed for the random number generator (NULL for random by default).

nbmod Penalize solutions the more they differ from this number (0 by default for no
preferred number of modules).

markovtime Scales link flow to change the cost of moving between modules, higher values
result in fewer modules (1 by default).

numtrials For the number of trials before picking up the best solution.

twolevel A boolean indicating if the algorithm should optimize a two-level partition of
the network (FALSE by default for multi-level).

show_hierarchy A boolean specifying if the hierarchy of community should be identifiable in
the outputs (FALSE by default).

directed A boolean indicating if the network is directed (from column 1 to column 2).
bipartite_version

A boolean indicating if the bipartite version of Infomap should be used (see
Note).

bipartite A boolean indicating if the network is bipartite (see Note).

site_col The name or number for the column of site nodes (i.e. primary nodes).

species_col The name or number for the column of species nodes (i.e. feature nodes).
return_node_type

A character indicating what types of nodes ("site", "species", or "both")
should be returned in the output ("both" by default).

version A character indicating the Infomap version to use.

binpath A character indicating the path to the bin folder (see install_binaries and De-
tails).

check_install A boolean indicating if the function should check that the Infomap has been
properly installed (see install_binaries and Details).

path_temp A character indicating the path to the temporary folder (see Details).

delete_temp A boolean indicating if the temporary folder should be removed (see Details).

netclu_infomap 39

Details

Infomap is a network clustering algorithm based on the Map equation proposed in Rosvall &
Bergstrom (2008) that finds communities in (un)weighted and (un)directed networks.

This function is based on the C++ version of Infomap (https://github.com/mapequation/infomap/
releases). This function needs binary files to run. They can be installed with install_binaries.

If you changed the default path to the bin folder while running install_binaries PLEASE
MAKE SURE to set binpath accordingly.

If you did not use install_binaries to change the permissions and test the binary files PLEASE
MAKE SURE to set check_install accordingly.

The C++ version of Infomap generates temporary folders and/or files that are stored in the path_temp
folder ("infomap_temp" with a unique timestamp located in the bin folder in binpath by default).
This temporary folder is removed by default (delete_temp = TRUE).

Several versions of Infomap are available in the package. See install_binaries for more details.

Value

A list of class bioregion.clusters with five slots:

1. name: A character containing the name of the algorithm.

2. args: A list of input arguments as provided by the user.

3. inputs: A list of characteristics of the clustering process.

4. algorithm: A list of all objects associated with the clustering procedure, such as original
cluster objects.

5. clusters: A data.frame containing the clustering results.

In the algorithm slot, users can find the following elements:

• cmd: The command line used to run Infomap.

• version: The Infomap version.

• web: Infomap’s GitHub repository.

Note

Infomap has been designed to deal with bipartite networks. To use this functionality, set the
bipartite_version argument to TRUE in order to approximate a two-step random walker (see
https://www.mapequation.org/infomap/ for more information). Note that a bipartite network
can also be considered as a unipartite network (bipartite = TRUE).

In both cases, do not forget to indicate which of the first two columns is dedicated to the site
nodes (i.e., primary nodes) and species nodes (i.e. feature nodes) using the arguments site_col
and species_col. The type of nodes returned in the output can be chosen with the argument
return_node_type equal to "both" to keep both types of nodes, "site" to preserve only the site
nodes, and "species" to preserve only the species nodes.

https://github.com/mapequation/infomap/releases
https://github.com/mapequation/infomap/releases
https://www.mapequation.org/infomap/

40 netclu_labelprop

Author(s)

Maxime Lenormand (<maxime.lenormand@inrae.fr>)
Pierre Denelle (<pierre.denelle@gmail.com>)
Boris Leroy (<leroy.boris@gmail.com>)

References

Rosvall M & Bergstrom CT (2008) Maps of random walks on complex networks reveal community
structure. Proceedings of the National Academy of Sciences 105, 1118-1123.

See Also

For more details illustrated with a practical example, see the vignette: https://biorgeo.github.
io/bioregion/articles/a4_3_network_clustering.html.

Associated functions: netclu_greedy netclu_louvain netclu_oslom

Examples

comat <- matrix(sample(1000, 50), 5, 10)
rownames(comat) <- paste0("Site", 1:5)
colnames(comat) <- paste0("Species", 1:10)

net <- similarity(comat, metric = "Simpson")
com <- netclu_infomap(net)

netclu_labelprop Finding communities based on propagating labels

Description

This function finds communities in a (un)weighted undirected network based on propagating labels.

Usage

netclu_labelprop(
net,
weight = TRUE,
cut_weight = 0,
index = names(net)[3],
seed = NULL,
bipartite = FALSE,
site_col = 1,
species_col = 2,
return_node_type = "both",
algorithm_in_output = TRUE

)

https://biorgeo.github.io/bioregion/articles/a4_3_network_clustering.html
https://biorgeo.github.io/bioregion/articles/a4_3_network_clustering.html

netclu_labelprop 41

Arguments

net The output object from similarity() or dissimilarity_to_similarity().
If a data.frame is used, the first two columns represent pairs of sites (or any
pair of nodes), and the next column(s) are the similarity indices.

weight A boolean indicating if the weights should be considered if there are more than
two columns.

cut_weight A minimal weight value. If weight is TRUE, the links between sites with a
weight strictly lower than this value will not be considered (0 by default).

index The name or number of the column to use as weight. By default, the third
column name of net is used.

seed The seed for the random number generator (NULL for random by default).

bipartite A boolean indicating if the network is bipartite (see Details).

site_col The name or number for the column of site nodes (i.e. primary nodes).

species_col The name or number for the column of species nodes (i.e. feature nodes).
return_node_type

A character indicating what types of nodes ("site", "species", or "both")
should be returned in the output ("both" by default).

algorithm_in_output

A boolean indicating if the original output of cluster_label_prop should be re-
turned in the output (TRUE by default, see Value).

Details

This function is based on propagating labels (Raghavan et al., 2007) as implemented in the igraph
package (cluster_label_prop).

Value

A list of class bioregion.clusters with five slots:

1. name: A character containing the name of the algorithm.

2. args: A list of input arguments as provided by the user.

3. inputs: A list of characteristics of the clustering process.

4. algorithm: A list of all objects associated with the clustering procedure, such as original
cluster objects (only if algorithm_in_output = TRUE).

5. clusters: A data.frame containing the clustering results.

In the algorithm slot, if algorithm_in_output = TRUE, users can find a "communities" object,
output of cluster_label_prop.

Note

Although this algorithm was not primarily designed to deal with bipartite networks, it is possible to
consider the bipartite network as a unipartite network (bipartite = TRUE).

Do not forget to indicate which of the first two columns is dedicated to the site nodes (i.e., primary
nodes) and species nodes (i.e. feature nodes) using the arguments site_col and species_col. The

https://cran.r-project.org/package=igraph

42 netclu_leadingeigen

type of nodes returned in the output can be chosen with the argument return_node_type equal to
"both" to keep both types of nodes, "site" to preserve only the site nodes, and "species" to
preserve only the species nodes.

Author(s)

Maxime Lenormand (<maxime.lenormand@inrae.fr>)
Pierre Denelle (<pierre.denelle@gmail.com>)
Boris Leroy (<leroy.boris@gmail.com>)

References

Raghavan UN, Albert R & Kumara S (2007) Near linear time algorithm to detect community struc-
tures in large-scale networks. Physical Review E 76, 036106.

See Also

For more details illustrated with a practical example, see the vignette: https://biorgeo.github.
io/bioregion/articles/a4_3_network_clustering.html.

Associated functions: netclu_infomap netclu_louvain netclu_oslom

Examples

comat <- matrix(sample(1000, 50), 5, 10)
rownames(comat) <- paste0("Site", 1:5)
colnames(comat) <- paste0("Species", 1:10)

net <- similarity(comat, metric = "Simpson")
com <- netclu_labelprop(net)

net_bip <- mat_to_net(comat, weight = TRUE)
clust2 <- netclu_labelprop(net_bip, bipartite = TRUE)

netclu_leadingeigen Finding communities based on the leading eigenvector of the commu-
nity matrix

Description

This function finds communities in a (un)weighted undirected network based on the leading eigen-
vector of the community matrix.

Usage

netclu_leadingeigen(
net,
weight = TRUE,
cut_weight = 0,

https://biorgeo.github.io/bioregion/articles/a4_3_network_clustering.html
https://biorgeo.github.io/bioregion/articles/a4_3_network_clustering.html

netclu_leadingeigen 43

index = names(net)[3],
bipartite = FALSE,
site_col = 1,
species_col = 2,
return_node_type = "both",
algorithm_in_output = TRUE

)

Arguments

net The output object from similarity() or dissimilarity_to_similarity().
If a data.frame is used, the first two columns represent pairs of sites (or any
pair of nodes), and the next column(s) are the similarity indices.

weight A boolean indicating if the weights should be considered if there are more than
two columns.

cut_weight A minimal weight value. If weight is TRUE, the links between sites with a
weight strictly lower than this value will not be considered (0 by default).

index The name or number of the column to use as weight. By default, the third
column name of net is used.

bipartite A boolean indicating if the network is bipartite (see Details).

site_col The name or number for the column of site nodes (i.e., primary nodes).

species_col The name or number for the column of species nodes (i.e., feature nodes).
return_node_type

A character indicating what types of nodes ("site", "species", or "both")
should be returned in the output ("both" by default).

algorithm_in_output

A boolean indicating if the original output of cluster_leading_eigen should be
returned in the output (TRUE by default, see Value).

Details

This function is based on the leading eigenvector of the community matrix (Newman, 2006) as
implemented in the igraph package (cluster_leading_eigen).

Value

A list of class bioregion.clusters with five slots:

1. name: A character containing the name of the algorithm.

2. args: A list of input arguments as provided by the user.

3. inputs: A list of characteristics of the clustering process.

4. algorithm: A list of all objects associated with the clustering procedure, such as original
cluster objects (only if algorithm_in_output = TRUE).

5. clusters: A data.frame containing the clustering results.

In the algorithm slot, if algorithm_in_output = TRUE, users can find the output of cluster_leading_eigen.

https://cran.r-project.org/package=igraph

44 netclu_leiden

Note

Although this algorithm was not primarily designed to deal with bipartite networks, it is possible to
consider the bipartite network as a unipartite network (bipartite = TRUE).

Do not forget to indicate which of the first two columns is dedicated to the site nodes (i.e., primary
nodes) and species nodes (i.e. feature nodes) using the arguments site_col and species_col. The
type of nodes returned in the output can be chosen with the argument return_node_type equal to
"both" to keep both types of nodes, "site" to preserve only the site nodes, and "species" to
preserve only the species nodes.

Author(s)

Maxime Lenormand (<maxime.lenormand@inrae.fr>)
Pierre Denelle (<pierre.denelle@gmail.com>)
Boris Leroy (<leroy.boris@gmail.com>)

References

Newman MEJ (2006) Finding community structure in networks using the eigenvectors of matrices.
Physical Review E 74, 036104.

See Also

For more details illustrated with a practical example, see the vignette: https://biorgeo.github.
io/bioregion/articles/a4_3_network_clustering.html.

Associated functions: netclu_infomap netclu_louvain netclu_oslom

Examples

comat <- matrix(sample(1000, 50), 5, 10)
rownames(comat) <- paste0("Site", 1:5)
colnames(comat) <- paste0("Species", 1:10)

net <- similarity(comat, metric = "Simpson")
com <- netclu_leadingeigen(net)

net_bip <- mat_to_net(comat, weight = TRUE)
clust2 <- netclu_leadingeigen(net_bip, bipartite = TRUE)

netclu_leiden Finding communities using the Leiden algorithm

Description

This function finds communities in a (un)weighted undirected network based on the Leiden algo-
rithm of Traag, van Eck & Waltman.

https://biorgeo.github.io/bioregion/articles/a4_3_network_clustering.html
https://biorgeo.github.io/bioregion/articles/a4_3_network_clustering.html

netclu_leiden 45

Usage

netclu_leiden(
net,
weight = TRUE,
cut_weight = 0,
index = names(net)[3],
seed = NULL,
objective_function = "CPM",
resolution_parameter = 1,
beta = 0.01,
n_iterations = 2,
vertex_weights = NULL,
bipartite = FALSE,
site_col = 1,
species_col = 2,
return_node_type = "both",
algorithm_in_output = TRUE

)

Arguments

net The output object from similarity() or dissimilarity_to_similarity().
If a data.frame is used, the first two columns represent pairs of sites (or any
pair of nodes), and the next column(s) are the similarity indices.

weight A boolean indicating if the weights should be considered if there are more than
two columns.

cut_weight A minimal weight value. If weight is TRUE, the links between sites with a
weight strictly lower than this value will not be considered (0 by default).

index The name or number of the column to use as weight. By default, the third
column name of net is used.

seed The random number generator seed (NULL for random by default).
objective_function

A string indicating the objective function to use, either the Constant Potts Model
("CPM") or "modularity" ("CPM" by default).

resolution_parameter

The resolution parameter to use. Higher resolutions lead to smaller communi-
ties, while lower resolutions lead to larger communities.

beta A parameter affecting the randomness in the Leiden algorithm. This affects only
the refinement step of the algorithm.

n_iterations The number of iterations for the Leiden algorithm. Each iteration may further
improve the partition.

vertex_weights The vertex weights used in the Leiden algorithm. If not provided, they will be
automatically determined based on the objective_function. Please see the details
of this function to understand how to interpret the vertex weights.

bipartite A boolean indicating if the network is bipartite (see Details).

46 netclu_leiden

site_col The name or number for the column of site nodes (i.e., primary nodes).

species_col The name or number for the column of species nodes (i.e., feature nodes).
return_node_type

A character indicating what types of nodes ("site", "species", or "both") should
be returned in the output ("both" by default).

algorithm_in_output

A boolean indicating if the original output of cluster_leiden should be returned
in the output (TRUE by default, see Value).

Details

This function is based on the Leiden algorithm (Traag et al., 2019) as implemented in the igraph
package (cluster_leiden).

Value

A list of class bioregion.clusters with five slots:

1. name: A character containing the name of the algorithm.

2. args: A list of input arguments as provided by the user.

3. inputs: A list of characteristics of the clustering process.

4. algorithm: A list of all objects associated with the clustering procedure, such as original
cluster objects (only if algorithm_in_output = TRUE).

5. clusters: A data.frame containing the clustering results.

In the algorithm slot, if algorithm_in_output = TRUE, users can find the output of cluster_leiden.

Note

Although this algorithm was not primarily designed to deal with bipartite networks, it is possible to
consider the bipartite network as a unipartite network (bipartite = TRUE).

Do not forget to indicate which of the first two columns is dedicated to the site nodes (i.e., primary
nodes) and species nodes (i.e. feature nodes) using the arguments site_col and species_col. The
type of nodes returned in the output can be chosen with the argument return_node_type equal to
"both" to keep both types of nodes, "site" to preserve only the site nodes, and "species" to
preserve only the species nodes.

Author(s)

Maxime Lenormand (<maxime.lenormand@inrae.fr>)
Pierre Denelle (<pierre.denelle@gmail.com>)
Boris Leroy (<leroy.boris@gmail.com>)

References

Traag VA, Waltman L & Van Eck NJ (2019) From Louvain to Leiden: guaranteeing well-connected
communities. Scientific reports 9, 5233.

https://cran.r-project.org/package=igraph

netclu_louvain 47

See Also

For more details illustrated with a practical example, see the vignette: https://biorgeo.github.
io/bioregion/articles/a4_3_network_clustering.html.

Associated functions: netclu_infomap netclu_louvain netclu_oslom

Examples

comat <- matrix(sample(1000, 50), 5, 10)
rownames(comat) <- paste0("Site", 1:5)
colnames(comat) <- paste0("Species", 1:10)

net <- similarity(comat, metric = "Simpson")
com <- netclu_leiden(net)

net_bip <- mat_to_net(comat, weight = TRUE)
clust2 <- netclu_leiden(net_bip, bipartite = TRUE)

netclu_louvain Louvain community finding

Description

This function finds communities in a (un)weighted undirected network based on the Louvain algo-
rithm.

Usage

netclu_louvain(
net,
weight = TRUE,
cut_weight = 0,
index = names(net)[3],
lang = "igraph",
resolution = 1,
seed = NULL,
q = 0,
c = 0.5,
k = 1,
bipartite = FALSE,
site_col = 1,
species_col = 2,
return_node_type = "both",
binpath = "tempdir",
check_install = TRUE,
path_temp = "louvain_temp",
delete_temp = TRUE,

https://biorgeo.github.io/bioregion/articles/a4_3_network_clustering.html
https://biorgeo.github.io/bioregion/articles/a4_3_network_clustering.html

48 netclu_louvain

algorithm_in_output = TRUE
)

Arguments

net The output object from similarity() or dissimilarity_to_similarity().
If a data.frame is used, the first two columns represent pairs of sites (or any
pair of nodes), and the next column(s) are the similarity indices.

weight A boolean indicating if the weights should be considered if there are more than
two columns.

cut_weight A minimal weight value. If weight is TRUE, the links between sites with a
weight strictly lower than this value will not be considered (0 by default).

index The name or number of the column to use as weight. By default, the third
column name of net is used.

lang A string indicating which version of Louvain should be used ("igraph" or
"cpp", see Details).

resolution A resolution parameter to adjust the modularity (1 is chosen by default, see
Details).

seed The random number generator seed (only when lang = "igraph", NULL for
random by default).

q The quality function used to compute the partition of the graph (modularity is
chosen by default, see Details).

c The parameter for the Owsinski-Zadrozny quality function (between 0 and 1,
0.5 is chosen by default).

k The kappa_min value for the Shi-Malik quality function (it must be > 0, 1 is
chosen by default).

bipartite A boolean indicating if the network is bipartite (see Details).

site_col The name or number for the column of site nodes (i.e., primary nodes).

species_col The name or number for the column of species nodes (i.e., feature nodes).
return_node_type

A character indicating what types of nodes ("site", "species", or "both")
should be returned in the output ("both" by default).

binpath A character indicating the path to the bin folder (see install_binaries and De-
tails).

check_install A boolean indicating if the function should check that Louvain has been prop-
erly installed (see install_binaries and Details).

path_temp A character indicating the path to the temporary folder (see Details).

delete_temp A boolean indicating if the temporary folder should be removed (see Details).
algorithm_in_output

A boolean indicating if the original output of cluster_louvain should be returned
in the output (TRUE by default, see Value).

netclu_louvain 49

Details

Louvain is a network community detection algorithm proposed in (Blondel et al., 2008). This
function offers two implementations of the Louvain algorithm (controlled by the lang parameter):
the igraph implementation (cluster_louvain) and the C++ implementation (https://sourceforge.
net/projects/louvain/, version 0.3).

The igraph implementation allows adjustment of the resolution parameter of the modularity function
(resolution argument) used internally by the algorithm. Lower values typically yield fewer, larger
clusters. The original definition of modularity is recovered when the resolution parameter is set to
1 (by default).

The C++ implementation provides several quality functions: q = 0 for the classical Newman-Girvan
criterion (Modularity), q = 1 for the Zahn-Condorcet criterion, q = 2 for the Owsinski-Zadrozny
criterion (parameterized by c), q = 3 for the Goldberg Density criterion, q = 4 for the A-weighted
Condorcet criterion, q = 5 for the Deviation to Indetermination criterion, q = 6 for the Deviation
to Uniformity criterion, q = 7 for the Profile Difference criterion, q = 8 for the Shi-Malik criterion
(parameterized by k), and q = 9 for the Balanced Modularity criterion.

The C++ version is based on version 0.3 (https://sourceforge.net/projects/louvain/). Bi-
nary files are required to run it, and can be installed with install_binaries.

If you changed the default path to the bin folder while running install_binaries, PLEASE
MAKE SURE to set binpath accordingly.

If you did not use install_binaries to change the permissions or test the binary files, PLEASE
MAKE SURE to set check_install accordingly.

The C++ version generates temporary folders and/or files in the path_temp folder ("louvain_temp"
with a unique timestamp located in the bin folder in binpath by default). This temporary folder is
removed by default (delete_temp = TRUE).

Value

A list of class bioregion.clusters with five slots:

1. name: A character containing the name of the algorithm.

2. args: A list of input arguments as provided by the user.

3. inputs: A list of characteristics of the clustering process.

4. algorithm: A list of all objects associated with the clustering procedure, such as original
cluster objects (only if algorithm_in_output = TRUE).

5. clusters: A data.frame containing the clustering results.

In the algorithm slot, if algorithm_in_output = TRUE, users can find the output of cluster_louvain
if lang = "igraph" and the following element if lang = "cpp":

• cmd: The command line used to run Louvain.

• version: The Louvain version.

• web: The Louvain’s website.

https://cran.r-project.org/package=igraph
https://sourceforge.net/projects/louvain/
https://sourceforge.net/projects/louvain/
https://cran.r-project.org/package=igraph
https://sourceforge.net/projects/louvain/

50 netclu_oslom

Note

Although this algorithm was not primarily designed to deal with bipartite networks, it is possible to
consider the bipartite network as a unipartite network (bipartite = TRUE).

Do not forget to indicate which of the first two columns is dedicated to the site nodes (i.e., primary
nodes) and species nodes (i.e., feature nodes) using the arguments site_col and species_col. The
type of nodes returned in the output can be chosen with the argument return_node_type equal to
"both" to keep both types of nodes, "site" to preserve only the site nodes, and "species" to
preserve only the species nodes.

Author(s)

Maxime Lenormand (<maxime.lenormand@inrae.fr>)
Pierre Denelle (<pierre.denelle@gmail.com>)
Boris Leroy (<leroy.boris@gmail.com>)

References

Blondel VD, Guillaume JL, Lambiotte R & Mech ELJS (2008) Fast unfolding of communities in
large networks. J. Stat. Mech. 10, P10008.

See Also

For more details illustrated with a practical example, see the vignette: https://biorgeo.github.
io/bioregion/articles/a4_3_network_clustering.html.

Associated functions: netclu_infomap netclu_greedy netclu_oslom

Examples

comat <- matrix(sample(1000, 50), 5, 10)
rownames(comat) <- paste0("Site", 1:5)
colnames(comat) <- paste0("Species", 1:10)

net <- similarity(comat, metric = "Simpson")
com <- netclu_louvain(net, lang = "igraph")

netclu_oslom OSLOM community finding

Description

This function finds communities in a (un)weighted (un)directed network based on the OSLOM
algorithm (http://oslom.org/, version 2.4).

https://biorgeo.github.io/bioregion/articles/a4_3_network_clustering.html
https://biorgeo.github.io/bioregion/articles/a4_3_network_clustering.html
http://oslom.org/

netclu_oslom 51

Usage

netclu_oslom(
net,
weight = TRUE,
cut_weight = 0,
index = names(net)[3],
seed = NULL,
reassign = "no",
r = 10,
hr = 50,
t = 0.1,
cp = 0.5,
directed = FALSE,
bipartite = FALSE,
site_col = 1,
species_col = 2,
return_node_type = "both",
binpath = "tempdir",
check_install = TRUE,
path_temp = "oslom_temp",
delete_temp = TRUE

)

Arguments

net The output object from similarity() or dissimilarity_to_similarity().
If a data.frame is used, the first two columns represent pairs of sites (or any
pair of nodes), and the next column(s) are the similarity indices.

weight A boolean indicating if the weights should be considered if there are more than
two columns.

cut_weight A minimal weight value. If weight is TRUE, the links between sites with a
weight strictly lower than this value will not be considered (0 by default).

index Name or number of the column to use as weight. By default, the third column
name of net is used.

seed For the random number generator (NULL for random by default).

reassign A character indicating if the nodes belonging to several community should be
reassigned and what method should be used (see Note).

r The number of runs for the first hierarchical level (10 by default).

hr The number of runs for the higher hierarchical level (50 by default, 0 if you are
not interested in hierarchies).

t The p-value, the default value is 0.10. Increase this value if you want more
modules.

cp Kind of resolution parameter used to decide between taking some modules or
their union (default value is 0.5; a bigger value leads to bigger clusters).

directed A boolean indicating if the network is directed (from column 1 to column 2).

52 netclu_oslom

bipartite A boolean indicating if the network is bipartite (see Details).

site_col Name or number for the column of site nodes (i.e. primary nodes).

species_col Name or number for the column of species nodes (i.e. feature nodes).
return_node_type

A character indicating what types of nodes (site, species, or both) should
be returned in the output (return_node_type = "both" by default).

binpath A character indicating the path to the bin folder (see install_binaries and De-
tails).

check_install A boolean indicating if the function should check that the OSLOM has been
properly installed (see install_binaries and Details).

path_temp A character indicating the path to the temporary folder (see Details).

delete_temp A boolean indicating if the temporary folder should be removed (see Details).

Details

OSLOM is a network community detection algorithm proposed in Lancichinetti et al. (2011) that
finds statistically significant (overlapping) communities in (un)weighted and (un)directed networks.

This function is based on the 2.4 C++ version of OSLOM (http://www.oslom.org/software.
htm). This function needs files to run. They can be installed with install_binaries.

If you changed the default path to the bin folder while running install_binaries, PLEASE
MAKE SURE to set binpath accordingly.

If you did not use install_binaries to change the permissions and test the binary files, PLEASE
MAKE SURE to set check_install accordingly.

The C++ version of OSLOM generates temporary folders and/or files that are stored in the path_temp
folder (folder "oslom_temp" with a unique timestamp located in the bin folder in binpath by de-
fault). This temporary folder is removed by default (delete_temp = TRUE).

Value

A list of class bioregion.clusters with five slots:

1. name: A character containing the name of the algorithm.

2. args: A list of input arguments as provided by the user.

3. inputs: A list of characteristics of the clustering process.

4. algorithm: A list of all objects associated with the clustering procedure, such as original
cluster objects (only if algorithm_in_output = TRUE).

5. clusters: A data.frame containing the clustering results.

In the algorithm slot, users can find the following elements:

• cmd: The command line used to run OSLOM.

• version: The OSLOM version.

• web: The OSLOM’s web site.

http://www.oslom.org/software.htm
http://www.oslom.org/software.htm

netclu_oslom 53

Note

Although this algorithm was not primarily designed to deal with bipartite networks, it is possible to
consider the bipartite network as unipartite network (bipartite = TRUE). Do not forget to indicate
which of the first two columns is dedicated to the site nodes (i.e. primary nodes) and species nodes
(i.e. feature nodes) using the arguments site_col and species_col. The type of nodes returned
in the output can be chosen with the argument return_node_type equal to both to keep both types
of nodes, sites to preserve only the sites nodes, and species to preserve only the species nodes.

Since OSLOM potentially returns overlapping communities, we propose two methods to reassign
the ’overlapping’ nodes: randomly (reassign = "random") or based on the closest candidate com-
munity (reassign = "simil") (only for weighted networks, in this case the closest candidate com-
munity is determined with the average similarity). By default, reassign = "no" and all the in-
formation will be provided. The number of partitions will depend on the number of overlapping
modules (up to three). The suffix _semel, _bis, and _ter are added to the column names. The
first partition (_semel) assigns a module to each node. A value of NA in the second (_bis) and third
(_ter) columns indicates that no overlapping module was found for this node (i.e. non-overlapping
nodes).

Author(s)

Maxime Lenormand (<maxime.lenormand@inrae.fr>)
Pierre Denelle (<pierre.denelle@gmail.com>)
Boris Leroy (<leroy.boris@gmail.com>)

References

Lancichinetti A, Radicchi F, Ramasco JJ & Fortunato S (2011) Finding statistically significant com-
munities in networks. PLOS ONE 6, e18961.

See Also

For more details illustrated with a practical example, see the vignette: https://biorgeo.github.
io/bioregion/articles/a4_3_network_clustering.html.

Associated functions: netclu_greedy netclu_infomap netclu_louvain

Examples

comat <- matrix(sample(1000, 50), 5, 10)
rownames(comat) <- paste0("Site", 1:5)
colnames(comat) <- paste0("Species", 1:10)

net <- similarity(comat, metric = "Simpson")
com <- netclu_oslom(net)

https://biorgeo.github.io/bioregion/articles/a4_3_network_clustering.html
https://biorgeo.github.io/bioregion/articles/a4_3_network_clustering.html

54 netclu_walktrap

netclu_walktrap Community structure detection via short random walks

Description

This function finds communities in a (un)weighted undirected network via short random walks.

Usage

netclu_walktrap(
net,
weight = TRUE,
cut_weight = 0,
index = names(net)[3],
steps = 4,
bipartite = FALSE,
site_col = 1,
species_col = 2,
return_node_type = "both",
algorithm_in_output = TRUE

)

Arguments

net The output object from similarity() or dissimilarity_to_similarity().
If a data.frame is used, the first two columns represent pairs of sites (or any
pair of nodes), and the next column(s) are the similarity indices.

weight A boolean indicating if the weights should be considered if there are more than
two columns.

cut_weight A minimal weight value. If weight is TRUE, the links between sites with a
weight strictly lower than this value will not be considered (0 by default).

index Name or number of the column to use as weight. By default, the third column
name of net is used.

steps The length of the random walks to perform.

bipartite A boolean indicating if the network is bipartite (see Details).

site_col Name or number for the column of site nodes (i.e. primary nodes).

species_col Name or number for the column of species nodes (i.e. feature nodes).
return_node_type

A character indicating what types of nodes (site, species, or both) should
be returned in the output (return_node_type = "both" by default).

algorithm_in_output

A boolean indicating if the original output of cluster_walktrap should be re-
turned in the output (TRUE by default, see Value).

netclu_walktrap 55

Details

This function is based on random walks (Pons & Latapy, 2005) as implemented in the igraph pack-
age (cluster_walktrap).

Value

A list of class bioregion.clusters with five slots:

1. name: A character containing the name of the algorithm.

2. args: A list of input arguments as provided by the user.

3. inputs: A list of characteristics of the clustering process.

4. algorithm: A list of all objects associated with the clustering procedure, such as original
cluster objects (only if algorithm_in_output = TRUE).

5. clusters: A data.frame containing the clustering results.

In the algorithm slot, if algorithm_in_output = TRUE, users can find the output of cluster_walktrap.

Note

Although this algorithm was not primarily designed to deal with bipartite networks, it is possible to
consider the bipartite network as unipartite network (bipartite = TRUE).

Do not forget to indicate which of the first two columns is dedicated to the site nodes (i.e. primary
nodes) and species nodes (i.e. feature nodes) using the arguments site_col and species_col. The
type of nodes returned in the output can be chosen with the argument return_node_type equal to
both to keep both types of nodes, sites to preserve only the site nodes, and species to preserve
only the species nodes.

Author(s)

Maxime Lenormand (<maxime.lenormand@inrae.fr>)
Pierre Denelle (<pierre.denelle@gmail.com>)
Boris Leroy (<leroy.boris@gmail.com>)

References

Pons P & Latapy M (2005) Computing Communities in Large Networks Using Random Walks. In
Yolum I, Güngör T, Gürgen F, Özturan C (eds.), Computer and Information Sciences - ISCIS 2005,
Lecture Notes in Computer Science, 284-293.

See Also

For more details illustrated with a practical example, see the vignette: https://biorgeo.github.
io/bioregion/articles/a4_3_network_clustering.html.

Associated functions: netclu_infomap netclu_louvain netclu_oslom

https://cran.r-project.org/package=igraph
https://biorgeo.github.io/bioregion/articles/a4_3_network_clustering.html
https://biorgeo.github.io/bioregion/articles/a4_3_network_clustering.html

56 net_to_mat

Examples

comat <- matrix(sample(1000, 50), 5, 10)
rownames(comat) <- paste0("Site", 1:5)
colnames(comat) <- paste0("Species", 1:10)

net <- similarity(comat, metric = "Simpson")
com <- netclu_walktrap(net)

net_bip <- mat_to_net(comat, weight = TRUE)
clust2 <- netclu_walktrap(net_bip, bipartite = TRUE)

net_to_mat Create a contingency table from a data.frame

Description

This function generates a contingency table from a two- or three-column data.frame, where each
row represents the interaction between two nodes (e.g., site and species) and an optional third col-
umn indicates the weight of the interaction (if weight = TRUE).

Usage

net_to_mat(
net,
weight = FALSE,
squared = FALSE,
symmetrical = FALSE,
missing_value = 0

)

Arguments

net A two- or three-column data.frame where each row represents the interaction
between two nodes (e.g., site and species), with an optional third column indi-
cating the weight of the interaction.

weight A logical value indicating whether the weight column should be considered.

squared A logical value indicating whether the output matrix should be square (i.e.,
containing the same nodes in rows and columns).

symmetrical A logical value indicating whether the resulting matrix should be symmetrical.
This applies only if squared = TRUE. Note that different weights associated with
opposite pairs already present in net will be preserved.

missing_value The value to assign to pairs of nodes not present in net. Defaults to 0.

nhclu_affprop 57

Value

A matrix with the first nodes (from the first column of net) as rows and the second nodes (from the
second column of net) as columns. If squared = TRUE, the rows and columns will have the same
number of elements, corresponding to the unique union of objects in the first and second columns
of net. If squared = TRUE and symmetrical = TRUE, the matrix will be forced to be symmetrical
based on the upper triangular part of the matrix.

Author(s)

Maxime Lenormand (<maxime.lenormand@inrae.fr>)
Pierre Denelle (<pierre.denelle@gmail.com>)
Boris Leroy (<leroy.boris@gmail.com>)

See Also

For more details illustrated with a practical example, see the vignette: https://biorgeo.github.
io/bioregion/articles/a2_matrix_and_network_formats.html.

Associated functions: mat_to_net

Examples

net <- data.frame(
Site = c(rep("A", 2), rep("B", 3), rep("C", 2)),
Species = c("a", "b", "a", "c", "d", "b", "d"),
Weight = c(10, 100, 1, 20, 50, 10, 20)

)

mat <- net_to_mat(net, weight = TRUE)

nhclu_affprop Non-hierarchical clustering: Affinity Propagation

Description

This function performs non-hierarchical clustering using the Affinity Propagation algorithm.

Usage

nhclu_affprop(
similarity,
index = names(similarity)[3],
seed = NULL,
p = NA,
q = NA,
maxits = 1000,
convits = 100,

https://biorgeo.github.io/bioregion/articles/a2_matrix_and_network_formats.html
https://biorgeo.github.io/bioregion/articles/a2_matrix_and_network_formats.html

58 nhclu_affprop

lam = 0.9,
details = FALSE,
nonoise = FALSE,
K = NULL,
prc = NULL,
bimaxit = NULL,
exact = NULL,
algorithm_in_output = TRUE

)

Arguments

similarity The output object from similarity() or dissimilarity_to_similarity(),
or a dist object. If a data.frame is used, the first two columns should represent
pairs of sites (or any pair of nodes), and the subsequent column(s) should contain
the similarity indices.

index The name or number of the similarity column to use. By default, the third col-
umn name of similarity is used.

seed The seed for the random number generator used when nonoise = FALSE.
p Input preference, which can be a vector specifying individual preferences for

each data point. If scalar, the same value is used for all data points. If NA,
exemplar preferences are initialized based on the distribution of non-Inf values
in the similarity matrix, controlled by q.

q If p = NA, exemplar preferences are initialized according to the distribution of
non-Inf values in the similarity matrix. By default, the median is used. A value
between 0 and 1 specifies the sample quantile, where q = 0.5 results in the me-
dian.

maxits The maximum number of iterations to execute.
convits The algorithm terminates if the exemplars do not change for convits iterations.
lam The damping factor, a value in the range [0.5, 1). Higher values correspond to

heavier damping, which may help prevent oscillations.
details If TRUE, detailed information about the algorithm’s progress is stored in the out-

put object.
nonoise If TRUE, disables the addition of a small amount of noise to the similarity object,

which prevents degenerate cases.
K The desired number of clusters. If not NULL, the function apclusterK is called.
prc A parameter needed when K is not NULL. The algorithm stops if the number of

clusters deviates by less than prc percent from the desired value K. Set to 0 to
enforce exactly K clusters.

bimaxit A parameter needed when K is not NULL. Specifies the maximum number of bi-
section steps to perform. No warning is issued if the number of clusters remains
outside the desired range.

exact A flag indicating whether to compute the initial preference range exactly.
algorithm_in_output

A boolean indicating whether to include the original output of apcluster in the
result. Defaults to TRUE.

nhclu_affprop 59

Details

This function is based on the apcluster package (apcluster).

Value

A list of class bioregion.clusters with five slots:

1. name: A character string containing the name of the algorithm.

2. args: A list of input arguments as provided by the user.

3. inputs: A list describing the characteristics of the clustering process.

4. algorithm: A list of objects associated with the clustering procedure, such as original cluster
objects (if algorithm_in_output = TRUE).

5. clusters: A data.frame containing the clustering results.

If algorithm_in_output = TRUE, the algorithm slot includes the output of apcluster.

Author(s)

Pierre Denelle (<pierre.denelle@gmail.com>)
Boris Leroy (<leroy.boris@gmail.com>)
Maxime Lenormand (<maxime.lenormand@inrae.fr>)

References

Frey B & Dueck D (2007) Clustering by Passing Messages Between Data Points. Science 315,
972-976.

See Also

For more details illustrated with a practical example, see the vignette: https://biorgeo.github.
io/bioregion/articles/a4_2_non_hierarchical_clustering.html.

Associated functions: nhclu_clara nhclu_clarans nhclu_dbscan nhclu_kmeans nhclu_affprop

Examples

comat_1 <- matrix(sample(0:1000, size = 10*12, replace = TRUE,
prob = 1/1:1001), 10, 12)
rownames(comat_1) <- paste0("Site", 1:10)
colnames(comat_1) <- paste0("Species", 1:12)
comat_1 <- cbind(comat_1,

matrix(0, 10, 8,
dimnames = list(paste0("Site", 1:10),

paste0("Species", 13:20))))

comat_2 <- matrix(sample(0:1000,
size = 10*12,
replace = TRUE,
prob = 1/1:1001),

10, 12)

https://cran.r-project.org/package=apcluster
https://biorgeo.github.io/bioregion/articles/a4_2_non_hierarchical_clustering.html
https://biorgeo.github.io/bioregion/articles/a4_2_non_hierarchical_clustering.html

60 nhclu_clara

rownames(comat_2) <- paste0("Site", 11:20)
colnames(comat_2) <- paste0("Species", 9:20)
comat_2 <- cbind(matrix(0, 10, 8,

dimnames = list(paste0("Site", 11:20),
paste0("Species", 1:8))),

comat_2)

comat <- rbind(comat_1, comat_2)

dissim <- dissimilarity(comat, metric = "Simpson")
sim <- dissimilarity_to_similarity(dissim)

clust1 <- nhclu_affprop(sim)

clust2 <- nhclu_affprop(sim, q = 1)

Fixed number of clusters
clust3 <- nhclu_affprop(sim, K = 2, prc = 10, bimaxit = 20, exact = FALSE)

nhclu_clara Non-hierarchical clustering: CLARA

Description

This function performs non-hierarchical clustering based on dissimilarity using partitioning around
medoids, implemented via the Clustering Large Applications (CLARA) algorithm.

Usage

nhclu_clara(
dissimilarity,
index = names(dissimilarity)[3],
seed = NULL,
n_clust = c(1, 2, 3),
maxiter = 0,
initializer = "LAB",
fasttol = 1,
numsamples = 5,
sampling = 0.25,
independent = FALSE,
algorithm_in_output = TRUE

)

Arguments

dissimilarity The output object from dissimilarity() or similarity_to_dissimilarity(),
or a dist object. If a data.frame is used, the first two columns should repre-
sent pairs of sites (or any pair of nodes), and the subsequent column(s) should
contain the dissimilarity indices.

nhclu_clara 61

index The name or number of the dissimilarity column to use. By default, the third
column name of dissimilarity is used.

seed A value for the random number generator (set to NULL for random initialization
by default).

n_clust An integer vector or a single integer specifying the desired number(s) of
clusters.

maxiter An integer defining the maximum number of iterations.

initializer A character string, either "BUILD" (used in the classic PAM algorithm) or
"LAB" (Linear Approximate BUILD).

fasttol A positive numeric value defining the tolerance for fast swapping behavior. De-
faults to 1.

numsamples A positive integer specifying the number of samples to draw.

sampling A positive numeric value defining the sampling rate.

independent A boolean indicating whether the previous medoids are excluded in the next
sample. Defaults to FALSE.

algorithm_in_output

A boolean indicating whether the original output of fastclara should be included
in the output. Defaults to TRUE (see Value).

Details

Based on fastkmedoids package (fastclara).

Value

A list of class bioregion.clusters with five components:

1. name: A character string containing the name of the algorithm.

2. args: A list of input arguments as provided by the user.

3. inputs: A list of characteristics of the clustering process.

4. algorithm: A list of all objects associated with the clustering procedure, such as original
cluster objects (only if algorithm_in_output = TRUE).

5. clusters: A data.frame containing the clustering results.

If algorithm_in_output = TRUE, the algorithm slot includes the output of fastclara.

Author(s)

Pierre Denelle (<pierre.denelle@gmail.com>)
Boris Leroy (<leroy.boris@gmail.com>)
Maxime Lenormand (<maxime.lenormand@inrae.fr>)

References

Schubert E & Rousseeuw PJ (2019) Faster k-Medoids Clustering: Improving the PAM, CLARA,
and CLARANS Algorithms. Similarity Search and Applications 11807, 171-187.

https://cran.r-project.org/package=fastkmedoids

62 nhclu_clarans

See Also

For more details illustrated with a practical example, see the vignette: https://biorgeo.github.
io/bioregion/articles/a4_2_non_hierarchical_clustering.html.

Associated functions: nhclu_clarans nhclu_dbscan nhclu_kmeans nhclu_pam nhclu_affprop

Examples

comat <- matrix(sample(0:1000, size = 500, replace = TRUE, prob = 1/1:1001),
20, 25)
rownames(comat) <- paste0("Site",1:20)
colnames(comat) <- paste0("Species",1:25)

dissim <- dissimilarity(comat, metric = "all")

#clust <- nhclu_clara(dissim, index = "Simpson", n_clust = 5)

nhclu_clarans Non-hierarchical clustering: CLARANS

Description

This function performs non-hierarchical clustering based on dissimilarity using partitioning around
medoids, implemented via the Clustering Large Applications based on RANdomized Search (CLARANS)
algorithm.

Usage

nhclu_clarans(
dissimilarity,
index = names(dissimilarity)[3],
seed = NULL,
n_clust = c(1, 2, 3),
numlocal = 2,
maxneighbor = 0.025,
algorithm_in_output = TRUE

)

Arguments

dissimilarity The output object from dissimilarity() or similarity_to_dissimilarity(),
or a dist object. If a data.frame is used, the first two columns should repre-
sent pairs of sites (or any pair of nodes), and the subsequent column(s) should
contain the dissimilarity indices.

index The name or number of the dissimilarity column to use. By default, the third
column name of dissimilarity is used.

https://biorgeo.github.io/bioregion/articles/a4_2_non_hierarchical_clustering.html
https://biorgeo.github.io/bioregion/articles/a4_2_non_hierarchical_clustering.html

nhclu_clarans 63

seed A value for the random number generator (NULL for random initialization by
default).

n_clust An integer vector or a single integer specifying the desired number(s) of
clusters.

numlocal An integer defining the number of local searches to perform.

maxneighbor A positive numeric value defining the maximum number of neighbors to con-
sider for each local search.

algorithm_in_output

A boolean indicating whether the original output of fastclarans should be in-
cluded in the output. Defaults to TRUE (see Value).

Details

Based on fastkmedoids package (fastclarans).

Value

A list of class bioregion.clusters with five components:

1. name: A character string containing the name of the algorithm.

2. args: A list of input arguments as provided by the user.

3. inputs: A list of characteristics of the clustering process.

4. algorithm: A list of all objects associated with the clustering procedure, such as original
cluster objects (only if algorithm_in_output = TRUE).

5. clusters: A data.frame containing the clustering results.

If algorithm_in_output = TRUE, the algorithm slot includes the output of fastclarans.

Author(s)

Pierre Denelle (<pierre.denelle@gmail.com>)
Boris Leroy (<leroy.boris@gmail.com>)
Maxime Lenormand (<maxime.lenormand@inrae.fr>)

References

Schubert E & Rousseeuw PJ (2019) Faster k-Medoids Clustering: Improving the PAM, CLARA,
and CLARANS Algorithms. Similarity Search and Applications 11807, 171-187.

See Also

For more details illustrated with a practical example, see the vignette: https://biorgeo.github.
io/bioregion/articles/a4_2_non_hierarchical_clustering.html.

Associated functions: nhclu_clara nhclu_dbscan nhclu_kmeans nhclu_pam nhclu_affprop

https://cran.r-project.org/package=fastkmedoids
https://biorgeo.github.io/bioregion/articles/a4_2_non_hierarchical_clustering.html
https://biorgeo.github.io/bioregion/articles/a4_2_non_hierarchical_clustering.html

64 nhclu_dbscan

Examples

comat <- matrix(sample(0:1000, size = 500, replace = TRUE, prob = 1/1:1001),
20, 25)
rownames(comat) <- paste0("Site",1:20)
colnames(comat) <- paste0("Species",1:25)

dissim <- dissimilarity(comat, metric = "all")

#clust <- nhclu_clarans(dissim, index = "Simpson", n_clust = 5)

nhclu_dbscan Non-hierarchical clustering: DBSCAN

Description

This function performs non-hierarchical clustering based on dissimilarity using the Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) algorithm.

Usage

nhclu_dbscan(
dissimilarity,
index = names(dissimilarity)[3],
minPts = NULL,
eps = NULL,
plot = TRUE,
algorithm_in_output = TRUE,
...

)

Arguments

dissimilarity The output object from dissimilarity() or similarity_to_dissimilarity(),
or a dist object. If a data.frame is used, the first two columns should repre-
sent pairs of sites (or any pair of nodes), and the subsequent column(s) should
contain the dissimilarity indices.

index The name or number of the dissimilarity column to use. By default, the third
column name of dissimilarity is used.

minPts A numeric vector or a single numeric value specifying the minPts argument of
dbscan::dbscan(). minPts is the minimum number of points to form a dense
region. By default, it is set to the natural logarithm of the number of sites in
dissimilarity. See Details for guidance on choosing this parameter.

eps A numeric vector or a single numeric value specifying the eps argument of
dbscan::dbscan(). eps specifies how similar points should be to each other
to be considered part of a cluster. See Details for guidance on choosing this
parameter.

nhclu_dbscan 65

plot A boolean indicating whether the k-nearest neighbor distance plot should be
displayed.

algorithm_in_output

A boolean indicating whether the original output of dbscan::dbscan should be
included in the output. Defaults to TRUE (see Value).

... Additional arguments to be passed to dbscan() (see dbscan::dbscan).

Details

The DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm clusters
points based on the density of neighbors around each data point. It requires two main arguments:
minPts, the minimum number of points to identify a core, and eps, the radius used to find neighbors.

Choosing minPts: This determines how many points are necessary to form a cluster. For example,
what is the minimum number of sites expected in a bioregion? Choose a value sufficiently large for
your dataset and expectations.

Choosing eps: This determines how similar sites should be to form a cluster. If eps is too small,
most points will be considered too distinct and marked as noise. If eps is too large, clusters may
merge. The value of eps depends on minPts. It is recommended to choose eps by identifying a
knee in the k-nearest neighbor distance plot.

By default, the function attempts to find a knee in this curve automatically, but the result is uncer-
tain. Users should inspect the graph and modify eps accordingly. To explore eps values, run the
function initially without defining eps, review the recommendations, and adjust as needed based on
clustering results.

Value

A list of class bioregion.clusters with five components:

1. name: A character string containing the name of the algorithm.

2. args: A list of input arguments as provided by the user.

3. inputs: A list of characteristics of the clustering process.

4. algorithm: A list of all objects associated with the clustering procedure, such as original
cluster objects (only if algorithm_in_output = TRUE).

5. clusters: A data.frame containing the clustering results.

If algorithm_in_output = TRUE, the algorithm slot includes the output of dbscan::dbscan.

Author(s)

Boris Leroy (<leroy.boris@gmail.com>)
Pierre Denelle (<pierre.denelle@gmail.com>)
Maxime Lenormand (<maxime.lenormand@inrae.fr>)

References

Hahsler M, Piekenbrock M & Doran D (2019) Dbscan: Fast density-based clustering with R. Jour-
nal of Statistical Software, 91(1), 1–30.

66 nhclu_kmeans

See Also

For more details illustrated with a practical example, see the vignette: https://biorgeo.github.
io/bioregion/articles/a4_2_non_hierarchical_clustering.html.

Associated functions: nhclu_clara nhclu_clarans nhclu_kmeans nhclu_pam nhclu_affprop

Examples

comat <- matrix(sample(0:1000, size = 500, replace = TRUE, prob = 1/1:1001),
20, 25)
rownames(comat) <- paste0("Site",1:20)
colnames(comat) <- paste0("Species",1:25)

dissim <- dissimilarity(comat, metric = "all")

clust1 <- nhclu_dbscan(dissim, index = "Simpson")
clust2 <- nhclu_dbscan(dissim, index = "Simpson", eps = 0.2)
clust3 <- nhclu_dbscan(dissim, index = "Simpson", minPts = c(5, 10, 15, 20),

eps = c(.1, .15, .2, .25, .3))

nhclu_kmeans Non-hierarchical clustering: K-means analysis

Description

This function performs non-hierarchical clustering based on dissimilarity using a k-means analysis.

Usage

nhclu_kmeans(
dissimilarity,
index = names(dissimilarity)[3],
seed = NULL,
n_clust = c(1, 2, 3),
iter_max = 10,
nstart = 10,
algorithm = "Hartigan-Wong",
algorithm_in_output = TRUE

)

Arguments

dissimilarity The output object from dissimilarity() or similarity_to_dissimilarity(),
or a dist object. If a data.frame is used, the first two columns should repre-
sent pairs of sites (or any pair of nodes), and the subsequent column(s) should
contain the dissimilarity indices.

index The name or number of the dissimilarity column to use. By default, the third
column name of dissimilarity is used.

https://biorgeo.github.io/bioregion/articles/a4_2_non_hierarchical_clustering.html
https://biorgeo.github.io/bioregion/articles/a4_2_non_hierarchical_clustering.html

nhclu_kmeans 67

seed A value for the random number generator (NULL for random by default).

n_clust An integer vector or a single integer value specifying the requested num-
ber(s) of clusters.

iter_max An integer specifying the maximum number of iterations for the k-means
method (see kmeans).

nstart An integer specifying how many random sets of n_clust should be selected
as starting points for the k-means analysis (see kmeans).

algorithm A character specifying the algorithm to use for k-means (see kmeans). Avail-
able options are Hartigan-Wong, Lloyd, Forgy, and MacQueen.

algorithm_in_output

A boolean indicating whether the original output of kmeans should be included
in the output. Defaults to TRUE (see Value).

Details

This method partitions data into k groups such that the sum of squares of Euclidean distances
from points to the assigned cluster centers is minimized. K-means cannot be applied directly to
dissimilarity or beta-diversity metrics because these distances are not Euclidean. Therefore, it first
requires transforming the dissimilarity matrix using Principal Coordinate Analysis (PCoA) with
pcoa, and then applying k-means to the coordinates of points in the PCoA.

Because this additional transformation alters the initial dissimilarity matrix, the partitioning around
medoids method (nhclu_pam) is preferred.

Value

A list of class bioregion.clusters with five components:

1. name: A character string containing the name of the algorithm.

2. args: A list of input arguments as provided by the user.

3. inputs: A list of characteristics of the clustering process.

4. algorithm: A list of all objects associated with the clustering procedure, such as original
cluster objects (only if algorithm_in_output = TRUE).

5. clusters: A data.frame containing the clustering results.

If algorithm_in_output = TRUE, the algorithm slot includes the output of kmeans.

Author(s)

Boris Leroy (<leroy.boris@gmail.com>)
Pierre Denelle (<pierre.denelle@gmail.com>)
Maxime Lenormand (<maxime.lenormand@inrae.fr>)

See Also

For more details illustrated with a practical example, see the vignette: https://biorgeo.github.
io/bioregion/articles/a4_2_non_hierarchical_clustering.html.

Associated functions: nhclu_clara nhclu_clarans nhclu_dbscan nhclu_pam nhclu_affprop

https://biorgeo.github.io/bioregion/articles/a4_2_non_hierarchical_clustering.html
https://biorgeo.github.io/bioregion/articles/a4_2_non_hierarchical_clustering.html

68 nhclu_pam

Examples

comat <- matrix(sample(0:1000, size = 500, replace = TRUE, prob = 1/1:1001),
20, 25)
rownames(comat) <- paste0("Site",1:20)
colnames(comat) <- paste0("Species",1:25)

comnet <- mat_to_net(comat)

dissim <- dissimilarity(comat, metric = "all")

clust <- nhclu_kmeans(dissim, n_clust = 2:10, index = "Simpson")

nhclu_pam Non-hierarchical clustering: Partitioning Around Medoids

Description

This function performs non-hierarchical clustering based on dissimilarity using partitioning around
medoids (PAM).

Usage

nhclu_pam(
dissimilarity,
index = names(dissimilarity)[3],
seed = NULL,
n_clust = c(1, 2, 3),
variant = "faster",
nstart = 1,
cluster_only = FALSE,
algorithm_in_output = TRUE,
...

)

Arguments

dissimilarity The output object from dissimilarity() or similarity_to_dissimilarity(),
or a dist object. If a data.frame is used, the first two columns should repre-
sent pairs of sites (or any pair of nodes), and the subsequent column(s) should
contain the dissimilarity indices.

index The name or number of the dissimilarity column to use. By default, the third
column name of dissimilarity is used.

seed A value for the random number generator (NULL for random by default).

n_clust An integer vector or a single integer value specifying the requested num-
ber(s) of clusters.

nhclu_pam 69

variant A character string specifying the PAM variant to use. Defaults to faster.
Available options are original, o_1, o_2, f_3, f_4, f_5, or faster. See pam
for more details.

nstart An integer specifying the number of random starts for the PAM algorithm.
Defaults to 1 (for the faster variant).

cluster_only A boolean specifying whether only the clustering results should be returned
from the pam function. Setting this to TRUE makes the function more efficient.

algorithm_in_output

A boolean indicating whether the original output of pam should be included in
the result. Defaults to TRUE (see Value).

... Additional arguments to pass to pam() (see pam).

Details

This method partitions the data into the chosen number of clusters based on the input dissimilarity
matrix. It is more robust than k-means because it minimizes the sum of dissimilarities between
cluster centers (medoids) and points assigned to the cluster. In contrast, k-means minimizes the
sum of squared Euclidean distances, which makes it unsuitable for dissimilarity matrices that are
not based on Euclidean distances.

Value

A list of class bioregion.clusters with five components:

1. name: A character string containing the name of the algorithm.
2. args: A list of input arguments as provided by the user.
3. inputs: A list of characteristics of the clustering process.
4. algorithm: A list of all objects associated with the clustering procedure, such as original

cluster objects (only if algorithm_in_output = TRUE).
5. clusters: A data.frame containing the clustering results.

If algorithm_in_output = TRUE, the algorithm slot includes the output of pam.

Author(s)

Boris Leroy (<leroy.boris@gmail.com>)
Pierre Denelle (<pierre.denelle@gmail.com>)
Maxime Lenormand (<maxime.lenormand@inrae.fr>)

References

Kaufman L & Rousseeuw PJ (2009) Finding groups in data: An introduction to cluster analysis. In
& Sons. JW (ed.), Finding groups in data: An introduction to cluster analysis.

See Also

For more details illustrated with a practical example, see the vignette: https://biorgeo.github.
io/bioregion/articles/a4_2_non_hierarchical_clustering.html.

Associated functions: nhclu_clara nhclu_clarans nhclu_dbscan nhclu_kmeans nhclu_affprop

https://biorgeo.github.io/bioregion/articles/a4_2_non_hierarchical_clustering.html
https://biorgeo.github.io/bioregion/articles/a4_2_non_hierarchical_clustering.html

70 similarity

Examples

comat <- matrix(sample(0:1000, size = 500, replace = TRUE, prob = 1/1:1001),
20, 25)
rownames(comat) <- paste0("Site",1:20)
colnames(comat) <- paste0("Species",1:25)

comnet <- mat_to_net(comat)
dissim <- dissimilarity(comat, metric = "all")

clust <- nhclu_pam(dissim, n_clust = 2:15, index = "Simpson")

similarity Compute similarity metrics between sites based on species composi-
tion

Description

This function generates a data.frame where each row provides one or several similarity metrics
between pairs of sites, based on a co-occurrence matrix with sites as rows and species as columns.

Usage

similarity(comat, metric = "Simpson", formula = NULL, method = "prodmat")

Arguments

comat A co-occurrence matrix with sites as rows and species as columns.

metric A character vector or a single character string specifying the metrics to com-
pute (see Details). Available options are "abc", "ABC", "Jaccard", "Jaccardturn",
"Sorensen", "Simpson", "Bray", "Brayturn", and "Euclidean". If "all" is
specified, all metrics will be calculated. Can be set to NULL if formula is used.

formula A character vector or a single character string specifying custom formula(s)
based on the a, b, c, A, B, and C quantities (see Details). The default is NULL.

method A character string specifying the method to compute abc (see Details). The
default is "prodmat", which is more efficient but memory-intensive. Alterna-
tively, "loops" is less memory-intensive but slower.

Details

With a the number of species shared by a pair of sites, b species only present in the first site and c
species only present in the second site.

Jaccard = 1 - (b + c) / (a + b + c)

Jaccardturn = 1 - 2min(b, c) / (a + 2min(b, c)) (Baselga, 2012)

Sorensen = 1 - (b + c) / (2a + b + c)

Simpson = 1 - min(b, c) / (a + min(b, c))

similarity 71

If abundances data are available, Bray-Curtis and its turnover component can also be computed with
the following equation:

Bray = 1 - (B + C) / (2A + B + C)

Brayturn = 1 - min(B, C) / (A + min(B, C)) (Baselga, 2013)

with A the sum of the lesser values for common species shared by a pair of sites. B and C are the
total number of specimens counted at both sites minus A.

formula can be used to compute customized metrics with the terms a, b, c, A, B, and C. For example
formula = c("1 - pmin(b,c) / (a + pmin(b,c))", "1 - (B + C) / (2*A + B + C)") will compute
the Simpson and Bray-Curtis similarity metrics, respectively. Note that pmin is used in the Simpson
formula because a, b, c, A, B and C are numeric vectors.

Euclidean computes the Euclidean similarity between each pair of site following this equation:

Euclidean = 1 / (1 + d_ij)

Where d_ij is the Euclidean distance between site i and site j in terms of species composition.

Value

A data.frame with the additional class bioregion.pairwise.metric, containing one or several
similarity metrics between pairs of sites. The first two columns represent the pairs of sites. There
is one column per similarity metric provided in metric and formula, except for the abc and ABC
metrics, which are stored in three separate columns (one for each letter).

Author(s)

Maxime Lenormand (<maxime.lenormand@inrae.fr>)
Pierre Denelle (<pierre.denelle@gmail.com>)
Boris Leroy (<leroy.boris@gmail.com>)

References

Baselga A (2012) The Relationship between Species Replacement, Dissimilarity Derived from
Nestedness, and Nestedness. Global Ecology and Biogeography 21, 1223–1232.

Baselga A (2013) Separating the two components of abundance-based dissimilarity: balanced
changes in abundance vs. abundance gradients. Methods in Ecology and Evolution 4, 552–557.

See Also

For more details illustrated with a practical example, see the vignette: https://biorgeo.github.
io/bioregion/articles/a3_pairwise_metrics.html.

Associated functions: dissimilarity similarity_to_dissimilarity

Examples

comat <- matrix(sample(0:1000, size = 50, replace = TRUE,
prob = 1 / 1:1001), 5, 10)
rownames(comat) <- paste0("Site", 1:5)
colnames(comat) <- paste0("Species", 1:10)

https://biorgeo.github.io/bioregion/articles/a3_pairwise_metrics.html
https://biorgeo.github.io/bioregion/articles/a3_pairwise_metrics.html

72 similarity_to_dissimilarity

sim <- similarity(comat, metric = c("abc", "ABC", "Simpson", "Brayturn"))

sim <- similarity(comat, metric = "all",
formula = "1 - (b + c) / (a + b + c)")

similarity_to_dissimilarity

Convert similarity metrics to dissimilarity metrics

Description

This function converts a data.frame of similarity metrics between sites into dissimilarity metrics
(beta diversity).

Usage

similarity_to_dissimilarity(similarity, include_formula = TRUE)

Arguments

similarity The output object from similarity() or dissimilarity_to_similarity().

include_formula

A boolean indicating whether metrics based on custom formula(s) should also
be converted (see Details). The default is TRUE.

Value

A data.frame with additional class bioregion.pairwise.metric, providing dissimilarity met-
ric(s) between each pair of sites based on a similarity object.

Note

The behavior of this function changes depending on column names. Columns Site1 and Site2 are
copied identically. If there are columns called a, b, c, A, B, C they will also be copied identically.
If there are columns based on your own formula (argument formula in similarity()) or not in
the original list of similarity metrics (argument metrics in similarity()) and if the argument
include_formula is set to FALSE, they will also be copied identically. Otherwise there are going
to be converted like they other columns (default behavior).

If a column is called Euclidean, its distance will be calculated based on the following formula:

Euclidean distance = (1 - Euclidean similarity) / Euclidean similarity

Otherwise, all other columns will be transformed into dissimilarity with the following formula:

dissimilarity = 1 - similarity

site_species_metrics 73

Author(s)

Maxime Lenormand (<maxime.lenormand@inrae.fr>)
Boris Leroy (<leroy.boris@gmail.com>)
Pierre Denelle (<pierre.denelle@gmail.com>)

See Also

For more details illustrated with a practical example, see the vignette: https://biorgeo.github.
io/bioregion/articles/a3_pairwise_metrics.html.

Associated functions: dissimilarity similarity_to_dissimilarity

Examples

comat <- matrix(sample(0:1000, size = 50, replace = TRUE,
prob = 1 / 1:1001), 5, 10)
rownames(comat) <- paste0("Site", 1:5)
colnames(comat) <- paste0("Species", 1:10)

simil <- similarity(comat, metric = "all")
simil

dissimilarity <- similarity_to_dissimilarity(simil)
dissimilarity

site_species_metrics Calculate contribution metrics of sites and species

Description

This function calculates metrics to assess the contribution of a given species or site to its bioregion.

Usage

site_species_metrics(
bioregionalization,
comat,
indices = c("rho"),
net = NULL,
site_col = 1,
species_col = 2

)

https://biorgeo.github.io/bioregion/articles/a3_pairwise_metrics.html
https://biorgeo.github.io/bioregion/articles/a3_pairwise_metrics.html

74 site_species_metrics

Arguments

bioregionalization

A bioregion.clusters object.
comat A co-occurrence matrix with sites as rows and species as columns.
indices A character specifying the contribution metric to compute. Available options

are rho, affinity, fidelity, indicator_value and Cz.
net NULL by default. Required for Cz indices. A data.frame where each row repre-

sents an interaction between two nodes and an optional third column indicating
the interaction’s weight.

site_col A number indicating the position of the column containing the sites in net. 1 by
default.

species_col A number indicating the position of the column containing the species in net. 2
by default.

Details

The ρ metric is derived from Lenormand et al. (2019) with the following formula:

ρij =
nij−

ninj
n√(

n−nj
n−1

)
(1−

nj
n)

ninj
n

where n is the number of sites, ni is the number of sites in which species i is present, nj is the
number of sites in bioregion j, and nij is the number of occurrences of species i in sites of bioregion
j.

Affinity A, fidelity F , and individual contributions IndV al describe how species are linked to their
bioregions. These metrics are described in Bernardo-Madrid et al. (2019):

• Affinity of species to their region: Ai =
Ri

Z , where Ri is the occurrence/range size of species
i in its associated bioregion, and Z is the total size (number of sites) of the bioregion. High
affinity indicates that the species occupies most sites in its bioregion.

• Fidelity of species to their region: Fi =
Ri

Di
, where Ri is the occurrence/range size of species

i in its bioregion, and Di is its total range size. High fidelity indicates that the species is not
present in other regions.

• Indicator Value of species: IndV al = Fi ·Ai.

Cz metrics are derived from Guimerà & Amaral (2005):

• Participation coefficient: Ci = 1 −
∑NM

s=1

(
kis

ki

)2

, where kis is the number of links of node
i to nodes in bioregion s, and ki is the total degree of node i. A high value means links are
uniformly distributed; a low value means links are within the node’s bioregion.

• Within-bioregion degree z-score: zi = ki−ksi

σksi
, where ki is the number of links of node i to

nodes in its bioregion si, ksi is the average degree of nodes in si, and σksi
is the standard

deviation of degrees in si.

Value

A data.frame with columns Bioregion, Species, and the desired summary statistics, or a list of
data.frames if Cz and other indices are selected.

site_species_metrics 75

Author(s)

Pierre Denelle (<pierre.denelle@gmail.com>)
Boris Leroy (<leroy.boris@gmail.com>)
Maxime Lenormand (<maxime.lenormand@inrae.fr>)

References

Bernardo-Madrid R, Calatayud J, González-Suárez M, Rosvall M, Lucas P, Antonelli A & Revilla E
(2019) Human activity is altering the world’s zoogeographical regions. Ecology Letters 22, 1297–
1305.

Guimerà R & Amaral LAN (2005) Functional cartography of complex metabolic networks. Nature
433, 895–900.

Lenormand M, Papuga G, Argagnon O, Soubeyrand M, Alleaume S & Luque S (2019) Biogeo-
graphical network analysis of plant species distribution in the Mediterranean region. Ecology and
Evolution 9, 237–250.

See Also

For more details illustrated with a practical example, see the vignette: https://biorgeo.github.
io/bioregion/articles/a5_3_summary_metrics.html.

Associated functions: bioregion_metrics bioregionalization_metrics

Examples

comat <- matrix(sample(0:1000, size = 500, replace = TRUE, prob = 1/1:1001),
20, 25)

rownames(comat) <- paste0("Site",1:20)
colnames(comat) <- paste0("Species",1:25)

dissim <- dissimilarity(comat, metric = "Simpson")
clust1 <- nhclu_kmeans(dissim, n_clust = 3, index = "Simpson")

net <- similarity(comat, metric = "Simpson")
com <- netclu_greedy(net)

site_species_metrics(bioregionalization = clust1, comat = comat,
indices = "rho")

Contribution metrics
site_species_metrics(bioregionalization = com, comat = comat,
indices = c("rho", "affinity", "fidelity", "indicator_value"))

Cz indices
net_bip <- mat_to_net(comat, weight = TRUE)
clust_bip <- netclu_greedy(net_bip, bipartite = TRUE)
site_species_metrics(bioregionalization = clust_bip, comat = comat,
net = net_bip, indices = "Cz")

https://biorgeo.github.io/bioregion/articles/a5_3_summary_metrics.html
https://biorgeo.github.io/bioregion/articles/a5_3_summary_metrics.html

76 site_species_subset

site_species_subset Extract a subset of sites or species from a bioregion.clusters ob-
ject

Description

This function extracts a subset of nodes based on their type ("site" or "species") from a bioregion.clusters
object, which contains both types of nodes (sites and species).

Usage

site_species_subset(clusters, node_type = "site")

Arguments

clusters An object of class bioregion.clusters.
node_type A character string indicating the type of nodes to extract. Possible values are

"site" or "species". The default is "site".

Value

An object of class bioregion.clusters containing only the specified node type (sites or species).

Note

Network clustering functions (prefixed with netclu_) may return both types of nodes (sites and
species) when applied to bipartite networks (using the bipartite argument). In such cases, the
type of nodes included in the output can be specified with the return_node_type argument. This
function allows you to extract a particular type of nodes (sites or species) from the output and adjust
the return_node_type attribute accordingly.

Author(s)

Maxime Lenormand (<maxime.lenormand@inrae.fr>)
Pierre Denelle (<pierre.denelle@gmail.com>)
Boris Leroy (<leroy.boris@gmail.com>)

Examples

net <- data.frame(
Site = c(rep("A", 2), rep("B", 3), rep("C", 2)),
Species = c("a", "b", "a", "c", "d", "b", "d"),
Weight = c(10, 100, 1, 20, 50, 10, 20)

)

clusters <- netclu_louvain(net, lang = "igraph", bipartite = TRUE)

clusters_sites <- site_species_subset(clusters, node_type = "site")

vegedf 77

vegedf Spatial distribution of Mediterranean vegetation (data.frame)

Description

A dataset containing the abundance of 3,697 species in 715 sites.

Usage

vegedf

Format

A data.frame with 460,878 rows and 3 columns:

Site Unique site identifier (corresponding to the field ID of vegesp)

Species Unique species identifier

Abundance Species abundance

Source

doi:10.1002/ece3.4718

vegemat Spatial distribution of Mediterranean vegetation (co-occurrence ma-
trix)

Description

A dataset containing the abundance of each of the 3,697 species in each of the 715 sites.

Usage

vegemat

Format

A co-occurrence matrix with sites as rows and species as columns. Each element of the matrix
represents the abundance of the species in the site.

Source

doi:10.1002/ece3.4718

https://doi.org/10.1002/ece3.4718
https://doi.org/10.1002/ece3.4718

78 vegesf

vegesf Spatial distribution of Mediterranean vegetation (spatial grid)

Description

A dataset containing the geometry of the 715 sites.

Usage

vegesf

Format

A

ID Unique site identifier

geometry Geometry of the site

Source

doi:10.1002/ece3.4718

https://doi.org/10.1002/ece3.4718

Index

∗ datasets
fishdf, 19
fishmat, 20
fishsf, 20
vegedf, 77
vegemat, 77
vegesf, 78

apcluster, 58, 59
apclusterK, 58

betapart_to_bioregion, 3
bioregion_metrics, 6, 75
bioregionalization_metrics, 4, 7, 10, 21,

24, 75
bioregionalization_metrics(), 11, 17, 22,

24

cluster_fast_greedy, 36
cluster_label_prop, 41
cluster_leading_eigen, 43
cluster_leiden, 46
cluster_louvain, 48, 49
cluster_walktrap, 54, 55
compare_bioregionalizations, 6, 8
computeModules, 34
consensus, 25
cut_tree, 10, 22, 26

dbscan, 27, 28
dbscan::dbscan, 65
dbscan::dbscan(), 64
diana, 22
dissimilarity, 13, 71, 73
dissimilarity(), 15, 21, 23, 27, 60, 62, 64,

66, 68
dissimilarity_to_similarity, 14, 15, 16
dissimilarity_to_similarity(), 35, 38,

41, 43, 45, 48, 51, 54, 58, 72
dynamicTreeCut::cutreeDynamic(), 11

extractXi, 28

fastclara, 61
fastclarans, 63
find_optimal_n, 6, 16
fishdf, 19
fishmat, 20
fishsf, 20

hclu_diana, 21
hclu_hierarclust, 12, 18, 23
hclu_hierarclust(), 12
hclu_optics, 27
hclust, 23, 24

install_binaries, 29, 38, 39, 48, 49, 52

kmeans, 67

map_bioregions, 30
mat_to_net, 31, 57

net_to_mat, 32, 56
netclu_beckett, 33
netclu_greedy, 35, 40, 50, 53
netclu_infomap, 30, 34, 37, 37, 42, 44, 47,

50, 53, 55
netclu_labelprop, 40
netclu_leadingeigen, 42
netclu_leiden, 44
netclu_louvain, 30, 34, 37, 40, 42, 44, 47,

47, 53, 55
netclu_oslom, 30, 34, 37, 40, 42, 44, 47, 50,

50, 55
netclu_walktrap, 54
nhclu_affprop, 57, 59, 62, 63, 66, 67, 69
nhclu_clara, 59, 60, 63, 66, 67, 69
nhclu_clarans, 59, 62, 62, 66, 67, 69
nhclu_dbscan, 29, 59, 62, 63, 64, 67, 69
nhclu_kmeans, 59, 62, 63, 66, 66, 69
nhclu_pam, 62, 63, 66, 67, 68

79

80 INDEX

nnls.tree, 25

optics, 27, 28

pam, 69
pcoa, 67

similarity, 14, 16, 70
similarity(), 35, 38, 41, 43, 45, 48, 51, 54,

58, 72
similarity_to_dissimilarity, 71, 72, 73
similarity_to_dissimilarity(), 4, 15, 21,

23, 27, 60, 62, 64, 66, 68
site_species_metrics, 7, 73
site_species_subset, 76

vegan::anosim(), 5
vegedf, 77
vegemat, 77
vegesf, 78

	betapart_to_bioregion
	bioregionalization_metrics
	bioregion_metrics
	compare_bioregionalizations
	cut_tree
	dissimilarity
	dissimilarity_to_similarity
	find_optimal_n
	fishdf
	fishmat
	fishsf
	hclu_diana
	hclu_hierarclust
	hclu_optics
	install_binaries
	map_bioregions
	mat_to_net
	netclu_beckett
	netclu_greedy
	netclu_infomap
	netclu_labelprop
	netclu_leadingeigen
	netclu_leiden
	netclu_louvain
	netclu_oslom
	netclu_walktrap
	net_to_mat
	nhclu_affprop
	nhclu_clara
	nhclu_clarans
	nhclu_dbscan
	nhclu_kmeans
	nhclu_pam
	similarity
	similarity_to_dissimilarity
	site_species_metrics
	site_species_subset
	vegedf
	vegemat
	vegesf
	Index

