
Package ‘arealDB’
January 20, 2025

Title Harmonise and Integrate Heterogeneous Areal Data

Description Many relevant applications in the environmental and socioeconomic
sciences use areal data, such as biodiversity checklists, agricultural statistics,
or socioeconomic surveys. For applications that surpass the spatial, temporal or
thematic scope of any single data source, data must be integrated from several
heterogeneous sources. Inconsistent concepts, definitions, or messy data tables
make this a tedious and error-prone process. 'arealDB' tackles those problems and
helps the user to integrate a harmonised databases of areal data. Read the paper
at Ehrmann, Seppelt & Meyer (2020) <doi:10.1016/j.envsoft.2020.104799>.

Version 0.9.4

URL https://github.com/luckinet/arealDB

BugReports https://github.com/luckinet/arealDB/issues

Depends R (>= 3.5.0)

Imports archive, beepr, checkmate, dplyr, fuzzyjoin, magrittr,
ontologics, progress, purrr, readr, rlang, rmapshaper, stringr,
sf, tabshiftr, tibble, tidyr, tidyselect,

Suggests testthat, knitr, rmarkdown, bookdown, covr

Language en-gb

License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

VignetteBuilder knitr

NeedsCompilation no

Author Steffen Ehrmann [aut, cre] (<https://orcid.org/0000-0002-2958-0796>),
Arne Rümmler [aut, ctb] (<https://orcid.org/0000-0001-8637-9071>),
Felipe Melges [ctb] (<https://orcid.org/0000-0003-0833-8973>),
Carsten Meyer [aut] (<https://orcid.org/0000-0003-3927-5856>)

Maintainer Steffen Ehrmann <steffen.ehrmann@posteo.de>

Repository CRAN

Date/Publication 2025-01-20 13:40:05 UTC

1

https://doi.org/10.1016/j.envsoft.2020.104799
https://github.com/luckinet/arealDB
https://github.com/luckinet/arealDB/issues
https://orcid.org/0000-0002-2958-0796
https://orcid.org/0000-0001-8637-9071
https://orcid.org/0000-0003-0833-8973
https://orcid.org/0000-0003-3927-5856

2 .editMatches

Contents
.editMatches . 2
.getColTypes . 4
.matchOntology . 4
.updateOntology . 5
adb_archive . 6
adb_backup . 7
adb_diagnose . 7
adb_example . 8
adb_init . 9
adb_inventory . 10
adb_metadata . 11
adb_ontology . 11
adb_querry . 12
adb_reset . 13
adb_restore . 13
adb_schemas . 14
adb_translations . 14
normGeometry . 15
normTable . 17
regDataseries . 19
regGeometry . 20
regTable . 23
territories . 26

Index 27

.editMatches Edit matches manually in a csv-table

Description

Allows the user to match concepts with an already existing ontology, without actually writing into
the ontology, but instead storing the resulting matching table as csv.

Usage

.editMatches(
new,
topLevel,
source = NULL,
ontology = NULL,
matchDir = NULL,
stringdist = TRUE,
verbose = TRUE,
beep = NULL

)

.editMatches 3

Arguments

new data.frame(.)
the new concepts that shall be manually matched, includes "label", "class" and
"has_broader" columns.

topLevel logical(1)
whether or not the new concepts are at the highest level only, i.e., have to be
matched without context, or whether they are contain columns that must be
matched within parent columns.

source character(1)
any character uniquely identifying the source dataset of the new concepts.

ontology ontology(1)
either a path where the ontology is stored, or an already loaded ontology.

matchDir character(1)
the directory where to store source-specific matching tables.

stringdist logical(1)
whether or not to use string distance to find matches (should not be used for
large datasets/when a memory error is shown).

verbose logical(1)
whether or not to give detailed information on the process of this function.

beep integerish(1)
Number specifying what sound to be played to signal the user that a point of
interaction is reached by the program, see beep.

Details

In order to match new concepts into an already existing ontology, it may become necessary to carry
out manual matches of the new concepts with already harmonised concepts, for example, when the
new concepts are described with terms that are not yet in the ontology. This function puts together a
table, in which the user would edit matches by hand. Whith the argument verbose = TRUE, detailed
information about the edit process are shown to the user. After defining matches, and even if not
all necessary matches are finished, the function stores a specific "matching table" with the name
match_SOURCE.csv in the respective directory (matchDir), from where work can be picked up
and continued at another time.

Fuzzy matching is carried out and matches with 0, 1 or 2 differing charcters are presented in a
respective column.

Value

A table that contains all new matches, or if none of the new concepts weren’t already in the ontology,
a table of the already sucessful matches.

4 .matchOntology

.getColTypes Get the column types of a tibble

Description

(internal function not for user interaction)

Usage

.getColTypes(input = NULL)

Arguments

input data.frame
table from which to get column types.

.matchOntology Match target terms with an ontology

Description

This function takes a table to replace the values of various columns with harmonised values listed
in the project specific gazetteer.

Usage

.matchOntology(
table = NULL,
columns = NULL,
dataseries = NULL,
ontology = NULL,
beep = NULL,
colsAsClass = TRUE,
groupMatches = FALSE,
stringdist = TRUE,
strictMatch = FALSE,
verbose = FALSE

)

Arguments

table data.frame(1)
a table that contains columns that should be harmonised by matching with the
gazetteer.

columns character(1)
the columns containing the concepts

.updateOntology 5

dataseries character(1)
the source dataseries from which territories are sourced.

ontology onto
path where the ontology/gazetteer is stored.

beep integerish(1)
Number specifying what sound to be played to signal the user that a point of
interaction is reached by the program, see beep.

colsAsClass logical(1)
whether to match columns by their name with the respective classes, or with
concepts of all classes.

groupMatches logical(1)
whether or not to group harmonized concepts when there are more than one
match (for example for broader or narrower matches).

stringdist logical(1)
whether or not to use string distance to find matches (should not be used for
large datasets/when a memory error is shown).

strictMatch logical(1)
whether or not matches are strict, i.e., there should be clear one-to-one relation-
ships and no changes in broader concepts.

verbose logical(1)
whether or not to give detailed information on the process of this function.

Value

Returns a table that resembles the input table where the target columns were translated according to
the provided ontology.

.updateOntology Update an ontology

Description

This function takes a table (spatial) and updates all territorial concepts in the provided gazetteer.

Usage

.updateOntology(
table = NULL,
threshold = NULL,
dataseries = NULL,
ontology = NULL

)

6 adb_archive

Arguments

table character(1)
a table that contains a match column as the basis to update the gazetteer.

threshold numeric(1)
a threshold value above which matches are updated in the gazetteer.

dataseries character(1)
the source dataseries of the external concepts for which the gazetteer shall be
updated.

ontology onto
path where the ontology/gazetteer is stored.

Value

called for its side-effect of updating a gazetteer

adb_archive Archive the data from an areal database

Description

Archive the data from an areal database

Usage

adb_archive(pattern = NULL, variables = NULL, compress = FALSE, outPath = NULL)

Arguments

pattern character(1)
a regular expression used to filter files to load.

variables character(.)
columns, typically observed variables, to select.

compress logical(1)
whether or not the database should be compressed into a tar.gz archive. Will
delete the database folder in outPath.

outPath character(1)
directory, where the archive should be stored.

Details

This function prepares and packages the data into an archiveable form. This contains geopacakge
files for geometries and csv files for all tables, such as inventory, matching and thematic data tables.

Value

no return value, called for the side-effect of creating a database archive.

adb_backup 7

adb_backup Backup the current state of an areal database

Description

Backup the current state of an areal database

Usage

adb_backup()

Details

This function creates a tag that is composed of the version and the date, appends it to all stage3
files (tables and geometries), the inventory and the ontology/gazetteer files and stores them in the
backup folder of the current areal database.

Value

No return value, called for the side effect of saving the inventory, the stage3 files and modified
ontology/gazetteer into the backup directory.

adb_diagnose Diagnose databse contents

Description

work in progress, not yet useable

Usage

adb_diagnose(
territory = NULL,
concept = NULL,
variable = NULL,
level = NULL,
year = NULL

)

Arguments

territory description
concept description
variable description
level description
year description

8 adb_example

adb_example Build an example areal database

Description

This function helps setting up an example database up until a certain step.

Usage

adb_example(path = NULL, until = NULL, verbose = FALSE)

Arguments

path character(1)
The database gets created by default in tempdir(), but if you want it in a partic-
ular location, specify that in this argument.

until character(1)
The database building step in terms of the function names until which the ex-
ample database shall be built, one of "start_arealDB", "regDataseries",
"regGeometry", "regTable", "normGeometry" or "normTable".

verbose logical(1)
be verbose about building the example database (default FALSE).

Details

Setting up a database with an R-based tool can appear to be cumbersome and too complex and thus
intimidating. By creating an example database, this functions allows interested users to learn step by
step how to build a database of areal data. Moreover, all functions in this package contain verbose
information and ask for information that would be missing or lead to an inconsistent database,
before a failure renders hours of work useless.

Value

No return value, called for the side effect of creating an example database at the specified path.

Examples

if(dev.interactive()){
to build the full example database
adb_example(path = paste0(tempdir(), "/newDB"))

to make the example database until a certain step
adb_example(path = paste0(tempdir(), "/newDB"), until = "regDataseries")

}

adb_init 9

adb_init Initiate an areal database

Description

Initiate a geospatial database or register a database that exists at the root path.

Usage

adb_init(
root,
version,
author,
licence,
ontology,
gazetteer = NULL,
top = NULL,
staged = TRUE

)

Arguments

root character(1)
path to the root directory that contains or shall contain an areal database.

version character(1)
version identifier for this areal database.

author character(1)
authors that contributed to building this areal database. Should be a list with
items "cre" (creator), "aut" (authors) and "ctb" (contributors).

licence character(1)
licence (link) for this areal database.

ontology list(.)
named list with the path(s) of ontologies, where the list name identifies the vari-
able that shall be matched with the ontology at the path.

gazetteer character(1)
path to the gazetteer that holds the (hierarchical) information of territorial units
used in this database.

top character(1)
the label of the class in the gazetteer that represents the top-most unit (e.g. coun-
try) of the areal database that shall be started.

staged logical(1)
whether or not the file structure is arranged according to stages (with geometries
and tables separated), or merely as input/output (of all types).

10 adb_inventory

Details

This is the first function that is run in a project, as it initiates the areal database by creating the
default sub-directories and initial inventory tables. When a database has already been set up, this
function is used to register that path in the options of the current R session.

Value

No return value, called for the side effect of creating the directory structure of the new areal database
and tables that contain the database metadata.

Examples

adb_init(root = paste0(tempdir(), "/newDB"),
version = "1.0.0", licence = "CC-BY-0.4",
author = list(cre = "Gordon Freeman", aut = "Alyx Vance", ctb = "The G-Man"),
gazetteer = paste0(tempdir(), "/newDB/territories.rds"),
top = "al1",
ontology = list(var = paste0(tempdir(), "/newDB/ontology.rds")))

getOption("adb_path"); getOption("gazetteer_path")

adb_inventory Load the inventory of the currently active areal database

Description

Load the inventory of the currently active areal database

Usage

adb_inventory(type = NULL)

Arguments

type character(1)
the inventory sub-table to load, either "dataseries", "tables", "geometries"
or "references".

Value

returns the table selected in type

adb_metadata 11

adb_metadata Load the metadata from an areal database

Description

Load the metadata from an areal database

Usage

adb_metadata()

adb_ontology Load the currently active ontology

Description

Load the currently active ontology

Usage

adb_ontology(..., type = "ontology")

Arguments

... combination of column name in the ontology and value to filter that column by
to build a tree of the concepts nested into it; see make_tree.

type character(1)
the type of ontology to load, either "ontology" to get the thematic concepts, or
"gazetteer" to get the territories.

Value

returns a tidy table of an ontology or gazetteer that is used in an areal database.

12 adb_querry

adb_querry Extract database contents

Description

Extract database contents

Usage

adb_querry(
territory = NULL,
concept = NULL,
variable = NULL,
level = NULL,
year = NULL

)

Arguments

territory ‘character(.)
combination of column name in the ontology and value to filter that column by
to build a tree of the territories nested into it.

concept description

variable description

level description

year description

Value

returns ...

Examples

if(dev.interactive()){
adb_example(path = paste0(tempdir(), "/newDB"))

adb_querry(territory = list(al1 = "a_nation"),
concept = list(commodity = "barley"),
variable = "harvested")

}

adb_reset 13

adb_reset Reset an areal database to its unfilled state

Description

Reset an areal database to its unfilled state

Usage

adb_reset(what = "all")

Arguments

what logical(1)
what to reset, either "onto", "gaz", "schemas", "tables", "geometries" or
"all", the default.

Value

no return value, called for its side effect of reorganising an areal database into a state where no reg*
or norm* functions have been run

adb_restore Restore the database from a backup

Description

Restore the database from a backup

Usage

adb_restore(version = NULL, date = NULL)

Arguments

version ‘character(1)
a version tag for which to restore files.

date character(1)
a date for which to restore files.

Details

This function searches for files that have the version and date tag, as it was defined in a previous
run of adb_backup, to restore them to their original folders. This function overwrites by default, so
use with care.

14 adb_translations

Value

No return value, called for the side effect of restoring files that were previously stored in a backup.

adb_schemas Load the schemas of the currently active areal database

Description

Load the schemas of the currently active areal database

Usage

adb_schemas(pattern = NULL)

Arguments

pattern character(1)
an optional regular expression. Only schema names which match the regular
expression will be processed.

Value

returns a list of schema descriptions

adb_translations Load the translation tables of the currently active areal database

Description

Load the translation tables of the currently active areal database

Usage

adb_translations(type = NULL, dataseries = NULL)

Arguments

type character(1)
the type of ontology for which to load translation tables, either "ontology" to
get the thematic concepts, or "gazetteer" to get the territories.

dataseries character(1)
the name of a dataseries as registered in regDataseries.

Value

returns the selected translation table

normGeometry 15

normGeometry Normalise geometries

Description

Harmonise and integrate geometries into a standardised format

Usage

normGeometry(
input = NULL,
pattern = NULL,
query = NULL,
thresh = 10,
beep = NULL,
simplify = FALSE,
stringdist = TRUE,
strictMatch = FALSE,
verbose = FALSE

)

Arguments

input character(1)
path of the file to normalise. If this is left empty, all files at stage two as subset
by pattern are chosen.

pattern character(1)
an optional regular expression. Only dataset names which match the regular
expression will be processed.

query character(1)
part of the SQL query (starting from WHERE) used to subset the input geome-
tries, for example "where NAME_0 = 'Estonia'". The first part of the query
(where the layer is defined) is derived from the meta-data of the currently han-
dled geometry.

thresh integerish(1)
percent value of overlap below which two geometries (the input and the base)
are considered to be the same. This is required, because often the polygons from
different sources, albeit describing the same territorial unit, aren’t completely
the same.

beep integerish(1)
Number specifying what sound to be played to signal the user that a point of
interaction is reached by the program, see beep.

simplify logical(1)
whether or not to simplify geometries.

16 normGeometry

stringdist logical(1)
whether or not to use string distance to find matches (should not be used for
large datasets/when a memory error is shown).

strictMatch logical(1)
whether or not matches are strict, i.e., there should be clear one-to-one relation-
ships and no changes in broader concepts.

verbose logical(1)
be verbose about what is happening (default FALSE). Furthermore, you can use
suppressMessages to make this function completely silent.

Details

To normalise geometries, this function proceeds as follows:

1. Read in input and extract initial metadata from the file name.

2. In case filters are set, the new geometry is filtered by those.

3. The territorial names are matched with the gazetteer to harmonise new territorial names (at
this step, the function might ask the user to edit the file ’matching.csv’ to align new names
with already harmonised names).

4. Loop through every nation potentially included in the file that shall be processed and carry out
the following steps:

• In case the geometries are provided as a list of simple feature POLYGONS, they are
dissolved into a single MULTIPOLYGON per main polygon.

• In case the nation to which a geometry belongs has not yet been created at stage three,
the following steps are carried out:

(a) Store the current geometry as basis of the respective level (the user needs to make
sure that all following levels of the same dataseries are perfectly nested into those
parent territories, for example by using the GADM dataset)

• In case the nation to which the geometry belongs has already been created, the following
steps are carried out:

(a) Check whether the new geometries have the same coordinate reference system as the
already existing database and re-project the new geometries if this is not the case.

(b) Check whether all new geometries are already exactly matched spatially and stop if
that is the case.

(c) Check whether the new geometries are all within the already defined parents, and
save those that are not as a new geometry.

(d) Calculate spatial overlap and distinguish the geometries into those that overlap with
more and those with less than thresh.

(e) For all units that dName match, copy gazID from the geometries they overlap.

(f) For all units that dName not match, rebuild metadata and a new gazID.

• store the processed geometry at stage three.

5. Move the geometry to the folder ’/processed’, if it is fully processed.

normTable 17

Value

This function harmonises and integrates so far unprocessed geometries at stage two into stage three
of the geospatial database. It produces for each main polygon (e.g. nation) in the registered geome-
tries a spatial file of the specified file-type.

See Also

Other normalise functions: normTable()

Examples

if(dev.interactive()){
library(sf)

build the example database
adb_example(until = "regGeometry", path = tempdir())

normalise all geometries ...
normGeometry(pattern = "estonia")

... and check the result
st_layers(paste0(tempdir(), "/geometries/stage3/Estonia.gpkg"))
output <- st_read(paste0(tempdir(), "/geometries/stage3/Estonia.gpkg"))

}

normTable Normalise data tables

Description

Harmonise and integrate data tables into standardised format

Usage

normTable(
input = NULL,
pattern = NULL,
query = NULL,
ontoMatch = NULL,
beep = NULL,
verbose = FALSE

)

Arguments

input character(1)
path of the file to normalise. If this is left empty, all files at stage two as subset
by pattern are chosen.

18 normTable

pattern character(1)
an optional regular expression. Only dataset names which match the regular
expression will be processed.

query character(1)
the expression that would be used in filter to subset a tibble in terms of the
columns defined via the schema and given as a single character string, such as
"al1 == 'Estonia'".

ontoMatch character(.)
name of the column(s) that shall be matched with an ontology (defined in adb_init).

beep integerish(1)
Number specifying what sound to be played to signal the user that a point of
interaction is reached by the program, see beep.

verbose logical(1)
be verbose about translating terms (default FALSE). Furthermore, you can use
suppressMessages to make this function completely silent.

Details

To normalise data tables, this function proceeds as follows:

1. Read in input and extract initial metadata from the file name.

2. Employ the function tabshiftr::reorganise() to reshape input according to the respec-
tive schema description.

3. The territorial names are matched with the gazetteer to harmonise new territorial names (at
this step, the function might ask the user to edit the file ’matching.csv’ to align new names
with already harmonised names).

4. Harmonise territorial unit names.

5. store the processed data table at stage three.

Value

This function harmonises and integrates so far unprocessed data tables at stage two into stage three
of the areal database. It produces for each main polygon (e.g. nation) in the registered data tables a
file that includes all thematic areal data.

See Also

Other normalise functions: normGeometry()

Examples

if(dev.interactive()){
build the example database
adb_example(until = "normGeometry", path = tempdir())

normalise all available data tables ...
normTable()

regDataseries 19

... and check the result
output <- readRDS(paste0(tempdir(), "/tables/stage3/Estonia.rds"))

}

regDataseries Register a new dataseries

Description

This function registers a new dataseries of both, geometries or areal data into the geospatial database.
This contains the name and relevant meta-data of a dataseries to enable provenance tracking and re-
producability.

Usage

regDataseries(
name = NULL,
description = NULL,
homepage = NULL,
version = NULL,
licence_link = NULL,
reference = NULL,
notes = NULL,
overwrite = FALSE

)

Arguments

name character(1)
the dataseries abbreviation or name.

description character()
the "long name" or "brief description" of the dataseries.

homepage character(1)
the homepage of the data provider where the dataseries or additional information
can be found.

version character(1)
the version number or date when meta data of the dataseries were recorded.

licence_link character(1)
link to the licence or the webpage from which the licence was copied.

reference bibentry(1)
in case the dataseries comes with a reference, provide this here as bibentry ob-
ject.

notes character(1)
optional notes.

overwrite logical(1)
whether or not the dataseries to register shall overwrite a potentially already
existing older version.

20 regGeometry

Value

Returns a tibble of the new entry that is appended to ’inv_dataseries.csv’.

See Also

Other register functions: regGeometry(), regTable()

Examples

if(dev.interactive()){
start the example database
adb_exampleDB(until = "match_gazetteer", path = tempdir())

regDataseries(name = "gadm",
description = "Database of Global Administrative Areas",
version = "3.6",
homepage = "https://gadm.org/index.html",
licence_link = "https://gadm.org/license.html")

}

regGeometry Register a new geometry entry

Description

This function registers a new geometry of territorial units into the geospatial database.

Usage

regGeometry(
...,
subset = NULL,
gSeries = NULL,
label = NULL,
ancillary = NULL,
layer = NULL,
archive = NULL,
archiveLink = NULL,
downloadDate = NULL,
updateFrequency = NULL,
notes = NULL,
overwrite = FALSE

)

regGeometry 21

Arguments

... character(1)
optional named argument selecting the main territory into which this geometry
is nested. The name of this must be a class of the gazetteer and the value must
be one of the territory names of that class, e.g. nation = "Estonia".

subset character(1)
optional argument to specify which subset the file contains. This could be a
subset of territorial units (e.g. only one municipality) or of a target variable.

gSeries character(1)
the name of the geometry dataseries (see regDataseries).

label list(.)
list of as many columns as there are in common in the ontology and this geom-
etry. Must be of the form list(class = columnName), with ’class’ as the class
of the ontology corresponding to the respective column name in the geometry.

ancillary list(.)
optinal list of columns containing ancillary information. Must be of the form
list(attribute = columnName), where attribute can be one or several of

• "name_ltn" (the english name in latin letters)
• "name_lcl" (the name in local language and letters)
• "code" (any code describing the unit)
• "type" (the type of territorial unit)
• "uri" (the semantic web URI) or
• "flag" (any flag attributed to the unit).

layer character(1)
the name of the file’s layer from which the geometry should be created (if appli-
cable).

archive character(1)
the original file (perhaps a *.zip) from which the geometry emerges.

archiveLink character(1)
download-link of the archive.

downloadDate character(1)
value describing the download date of this dataset (in YYYY-MM-DD format).

updateFrequency

character(1)
value describing the frequency with which the dataset is updated, according
to the ISO 19115 Codelist, MD_MaintenanceFrequencyCode. Possible val-
ues are: ’continual’, ’daily’, ’weekly’, ’fortnightly’, ’quarterly’, ’biannually’,
’annually’, ’asNeeded’, ’irregular’, ’notPlanned’, ’unknown’, ’periodic’, ’semi-
monthly’, ’biennially’.

notes character(1)
optional notes that are assigned to all features of this geometry.

overwrite logical(1)
whether or not the geometry to register shall overwrite a potentially already
existing older version.

22 regGeometry

Details

When processing geometries to which areal data shall be linked, carry out the following steps:

1. Determine the main territory (such as a nation, or any other polygon), a subset (if applicable),
the dataseries of the geometry and the ontology label, and provide them as arguments to this
function.

2. Run the function.

3. Export the shapefile with the following properties:

• Format: GeoPackage
• File name: What is provided as message by this function
• CRS: EPSG:4326 - WGS 84
• make sure that ’all fields are exported’

4. Confirm that you have saved the file.

Value

Returns a tibble of the entry that is appended to ’inv_geometries.csv’.

See Also

Other register functions: regDataseries(), regTable()

Examples

if(dev.interactive()){
build the example database
adb_exampleDB(until = "regDataseries", path = tempdir())

The GADM dataset comes as *.7z archive
regGeometry(gSeries = "gadm",

label = list(al1 = "NAME_0"),
layer = "example_geom1",
archive = "example_geom.7z|example_geom1.gpkg",
archiveLink = "https://gadm.org/",
nextUpdate = "2019-10-01",
updateFrequency = "quarterly")

The second administrative level in GADM contains names in the columns
NAME_0 and NAME_1
regGeometry(gSeries = "gadm",

label = list(al1 = "NAME_0", al2 = "NAME_1"),
ancillary = list(name_lcl = "VARNAME_1", code = "GID_1", type = "TYPE_1"),
layer = "example_geom2",
archive = "example_geom.7z|example_geom2.gpkg",
archiveLink = "https://gadm.org/",
nextUpdate = "2019-10-01",
updateFrequency = "quarterly")

}

regTable 23

regTable Register a new areal data table

Description

This function registers a new areal data table into the geospatial database.

Usage

regTable(
...,
subset = NULL,
dSeries = NULL,
gSeries = NULL,
label = NULL,
begin = NULL,
end = NULL,
schema = NULL,
archive = NULL,
archiveLink = NULL,
downloadDate = NULL,
updateFrequency = NULL,
metadataLink = NULL,
metadataPath = NULL,
notes = NULL,
diagnose = FALSE,
overwrite = FALSE

)

Arguments

... character(1)
name and value of the topmost unit under which the table shall be registered.
The name of this must be a class of the gazetteer and the value must be one of
the territory names of that class, e.g. nation = "Estonia".

subset character(1)
optional argument to specify which subset the file contains. This could be a
subset of territorial units (e.g. only one municipality) or of a target variable.

dSeries character(1)
the dataseries of the areal data (see regDataseries).

gSeries character(1)
optionally, the dataseries of the geometries, if the geometry dataseries deviates
from the dataseries of the areal data (see regDataseries).

label integerish(1)
the label in the onology this geometry should correspond to.

24 regTable

begin integerish(1)
the date from which on the data are valid.

end integerish(1)
the date until which the data are valid.

schema schema
the schema description of the table to read in (must have been placed in the
global environment before calling it here).

archive character(1)
the original file from which the boundaries emerge.

archiveLink character(1)
download-link of the archive.

downloadDate character(1)
value describing the download date of this dataset (in YYYY-MM-DD format).

updateFrequency

character(1)
value describing the frequency with which the dataset is updated, according
to the ISO 19115 Codelist, MD_MaintenanceFrequencyCode. Possible val-
ues are: ’continual’, ’daily’, ’weekly’, ’fortnightly’, ’quarterly’, ’biannually’,
’annually’, ’asNeeded’, ’irregular’, ’notPlanned’, ’unknown’, ’periodic’, ’semi-
monthly’, ’biennially’.

metadataLink character(1)
if there is already metadata existing: link to the meta dataset.

metadataPath character(1)
if an existing meta dataset was downloaded along the data: the path where it is
stored locally.

notes character(1)
optional notes.

diagnose logical(1)
whether or not to try to reorganise the table with the provided schema. note:
this does not save the reogranised table into the database yet, further steps of
harmonisation are carried out by normTable before that.

overwrite logical(1)
whether or not the geometry to register shall overwrite a potentially already
existing older version.

Details

When processing areal data tables, carry out the following steps:

1. Determine the main territory (such as a nation, or any other polygon), a subset (if applicable),
the ontology label and the dataseries of the areal data and of the geometry, and provide them
as arguments to this function.

2. Provide a begin and end date for the areal data.

3. Run the function.

4. (Re)Save the table with the following properties:

regTable 25

• Format: csv
• Encoding: UTF-8
• File name: What is provided as message by this function
• make sure that the file is not modified or reshaped. This will happen during data normal-

isation via the schema description, which expects the original table.

5. Confirm that you have saved the file.

Every areal data dataseries (dSeries) may come as a slight permutation of a particular table ar-
rangement. The function normTable expects internally a schema description (a list that describes
the position of the data components) for each data table, which is saved as paste0("meta_",
dSeries, TAB_NUMBER). See package tabshiftr.

Value

Returns a tibble of the entry that is appended to ’inv_tables.csv’ in case update = TRUE.

See Also

Other register functions: regDataseries(), regGeometry()

Examples

if(dev.interactive()){
build the example database
adb_exampleDB(until = "regGeometry", path = tempdir())

the schema description for this table
library(tabshiftr)

schema_madeUp <-
setIDVar(name = "al1", columns = 1) %>%
setIDVar(name = "year", columns = 2) %>%
setIDVar(name = "commodities", columns = 3) %>%
setObsVar(name = "harvested",

factor = 1, columns = 4) %>%
setObsVar(name = "production",

factor = 1, columns = 5)

regTable(nation = "Estonia",
subset = "barleyMaize",
label = "al1",
dSeries = "madeUp",
gSeries = "gadm",
begin = 1990,
end = 2017,
schema = schema_madeUp,
archive = "example_table.7z|example_table1.csv",
archiveLink = "...",
nextUpdate = "2024-10-01",
updateFrequency = "quarterly",
metadataLink = "...",

26 territories

metadataPath = "my/local/path")
}

territories Example gazetteer

Description

An ontology of territory names (gazetteer)

Usage

territories

Format

object of class onto for the example territories used in adb_example.

Index

∗ datasets
territories, 26

∗ normalise functions
normGeometry, 15
normTable, 17

∗ register functions
regDataseries, 19
regGeometry, 20
regTable, 23

.editMatches, 2

.getColTypes, 4

.matchOntology, 4

.updateOntology, 5
‘character(.), 12
‘character(1), 13

adb_archive, 6
adb_backup, 7, 13
adb_diagnose, 7
adb_example, 8, 26
adb_init, 9, 18
adb_inventory, 10
adb_metadata, 11
adb_ontology, 11
adb_querry, 12
adb_reset, 13
adb_restore, 13
adb_schemas, 14
adb_translations, 14

beep, 3, 5, 15, 18
bibentry(1), 19

character(), 19
character(.), 6, 18
character(1), 3–6, 8–11, 13–15, 17–19, 21,

23, 24

data.frame, 4
data.frame(.), 3

data.frame(1), 4

filter, 18

integerish(1), 3, 5, 15, 18, 23, 24

list(.), 9, 21
logical(1), 3, 5, 6, 8, 9, 13, 15, 16, 18, 19,

21, 24

make_tree, 11

normGeometry, 15, 18
normTable, 17, 17, 24, 25
numeric(1), 6

onto, 5, 6
ontology(1), 3

regDataseries, 14, 19, 21–23, 25
regGeometry, 20, 20, 25
regTable, 20, 22, 23

schema, 24
suppressMessages, 16, 18

tabshiftr::reorganise(), 18
territories, 26

27

	.editMatches
	.getColTypes
	.matchOntology
	.updateOntology
	adb_archive
	adb_backup
	adb_diagnose
	adb_example
	adb_init
	adb_inventory
	adb_metadata
	adb_ontology
	adb_querry
	adb_reset
	adb_restore
	adb_schemas
	adb_translations
	normGeometry
	normTable
	regDataseries
	regGeometry
	regTable
	territories
	Index

