Package 'WordOfMouth'

	January 20, 2025
Type Package	
Title Estimate	s Economic Variables for Word-of-Mouth-Campaigns
Version 1.1.0	
Date 2021-10	-04
Maintainer M	Michael Scholz <michael.scholz@th-deg.de></michael.scholz@th-deg.de>
	for estimating profit, profit-maximizing price, demand and consumer surplus of Word-h-campaigns on mean-field networks.
License GPL-	3
Depends R (>	= 3.0.1), methods, stats, LambertW
LazyLoad ye	S
ByteCompile	yes
RoxygenNote	7.1.2
NeedsCompile	ation no
	nel Scholz [cre, aut], Woehner [aut], ers [ctb]
Repository C	RAN
Date/Publicat	ion 2021-10-04 14:20:02 UTC
Contents	
comp comp comp comp comp comp	OfMouth-package pareToFIMarket puteConsumerSurplus puteDemand puteInformationCostsThreshold puteOptimalPrice puteProfit puteRoundDemand puteWoMIntensity 1

Description

2

This packages provides classes, methods and functions for modeling Word-of-Mouth-campaigns. General model assumptions are:

- · monopoly market
- no variable costs
- network is the mean-field case of percolation
- only those persons who bought a product will forward information about it

Details

Package: WordOfMouth Type: Package Version: 1.1.0 2021-10-04 Date: License: GPL-3 Depends: R (>= 3.0.1), methods

Author(s)

Michael Scholz <michael.scholz@th-deg.de>

Thomas Woehner <Thomas.Woehner@eah-jena.de>

Ralf Peters <ralf.peters@wiwi.uni-halle.de>

compareToFIMarket 3

compareToFIMarket	Compares the welfare of the WoM campaign to that of a fully informed market
	murket

Description

Compares the welfare of the WoM campaign to the welfare of a fully informed market assuming a uniformly distributed willingness to pay.

Usage

```
compareToFIMarket(campaign)
```

Arguments

campaign

Word-of-Mouth campaign as instance of class WoMCampaign.

Value

Data frame containing the profit-maximizing price, the resulting demand, profit, consumer surplus and economic welfare for a fully informed market and a WoM market.

Author(s)

```
Michael Scholz <michael.scholz@th-deg.de>
Thomas Woehner <Thomas.Woehner@eah-jena.de>
Ralf Peters <ralf.peters@wiwi.uni-halle.de>
```

See Also

 ${\tt computeOptimalPrice\ computeProfit\ computeConsumerSurplus}$

```
network <- new("WoMNetwork", size = 1000, avgConnections = 5)
campaign <- new("WoMCampaign", network = network, seedingSize = 10, forwardProbability = 0.2)
comparison <- compareToFIMarket(campaign)
print(comparison)</pre>
```

computeConsumerSurplus

Computes the expected cumulative consumer surplus

Description

Computes the expected cumulative consumer surplus for a given Word-of-Mouth campaign at a given price.

Usage

```
computeConsumerSurplus(campaign, price)
```

Arguments

campaign Word-of-Mouth campaign as instance of class WoMCampaign.

price Price as number in [0; 1] where 0 is the minimal and 1 is the maximal price.

Value

Expected cumulative consumer surplus.

Author(s)

```
Michael Scholz <michael.scholz@th-deg.de>
Thomas Woehner <Thomas.Woehner@eah-jena.de>
Ralf Peters <ralf.peters@wiwi.uni-halle.de>
```

See Also

computeDemand computeProfit computeOptimalPrice

```
network <- new("WoMNetwork", size = 1000, avgConnections = 5)
campaign <- new("WoMCampaign", network = network, seedingSize = 10, forwardProbability = 0.2)
surplus <- computeConsumerSurplus(campaign, price = 0.5)
print(surplus)</pre>
```

computeDemand 5

			_	
CON	าทา	† 🗚)ema	nd

Computes the expected demand

Description

Computes the expected demand for a given Word-of-Mouth campaign at a given price.

Usage

```
computeDemand(campaign, price)
```

Arguments

campaign Word-of-Mouth campaign as instance of class WoMCampaign.

price Price as number in [0; 1] where 0 is the minimal and 1 is the maximal price.

Value

Expected demand in number of persons.

Author(s)

```
Michael Scholz <michael.scholz@th-deg.de>
Thomas Woehner <Thomas.Woehner@eah-jena.de>
Ralf Peters <ralf.peters@wiwi.uni-halle.de>
```

See Also

 $compute Round Demand\ compute Profit\ compute Consumer Surplus\ compute Optimal Price$

```
network <- new("WoMNetwork", size = 1000, avgConnections = 5)
campaign <- new("WoMCampaign", network = network, seedingSize = 10, forwardProbability = 0.2)
demand <- computeDemand(campaign, price = 0.5)
print(demand)</pre>
```

computeInformationCostsThreshold

Computes the information costs threshold

Description

Computes the information costs that need to be surpassed in order to generate a higher profit than in a transparent market.

Usage

computeInformationCostsThreshold(campaign)

Arguments

campaign

Word-of-Mouth campaign as instance of class WoMCampaign.

Value

Information costs in [0; 1] that need to be surpassed in order to generate a higher profit than in a transparent market.

Author(s)

```
Michael Scholz <michael.scholz@th-deg.de>
Thomas Woehner <Thomas.Woehner@eah-jena.de>
Ralf Peters <ralf.peters@wiwi.uni-halle.de>
```

See Also

computeOptimalPrice computeProfit

```
network <- new("WoMNetwork", size = 1000, avgConnections = 5)
campaign <- new("WoMCampaign", network = network, seedingSize = 10, forwardProbability = 0.2)
threshold <- computeInformationCostsThreshold(campaign)
print(threshold)</pre>
```

computeOptimalPrice 7

computeOptimalPrice

Computes the profit-maximizing price

Description

Computes the profit-maximizing for a given Word-of-Mouth campaign.

Usage

```
computeOptimalPrice(campaign)
```

Arguments

campaign

Word-of-Mouth campaign as instance of class WoMCampaign.

Value

Profit-maximizing price in [0, 1] where 0 is the lowest possible and 1 is the highest possible price.

Author(s)

```
Michael Scholz <michael.scholz@th-deg.de>
Thomas Woehner <Thomas.Woehner@eah-jena.de>
Ralf Peters <ralf.peters@wiwi.uni-halle.de>
```

See Also

 ${\tt computeDemand\ computeProfit\ computeConsumerSurplus}$

```
network <- new("WoMNetwork", size = 1000, avgConnections = 5)
campaign <- new("WoMCampaign", network = network, seedingSize = 10, forwardProbability = 0.2)
price <- computeOptimalPrice(campaign)
profit <- computeProfit(campaign, price)
print(price)
print(profit)</pre>
```

8 computeProfit

computeProfit

Computes the expected profit

Description

Computes the expected profit for a given Word-of-Mouth campaign at a given price.

Usage

```
computeProfit(campaign, price)
```

Arguments

campaign Word-of-Mouth campaign as instance of class WoMCampaign.

price Price as number in [0; 1] where 0 is the minimal and 1 is the maximal price.

Value

Expected profit as number of persons times price.

Author(s)

```
Michael Scholz <michael.scholz@th-deg.de>
Thomas Woehner <Thomas.Woehner@eah-jena.de>
Ralf Peters <ralf.peters@wiwi.uni-halle.de>
```

See Also

computeDemand computeConsumerSurplus computeOptimalPrice

```
network <- new("WoMNetwork", size = 1000, avgConnections = 5)
campaign <- new("WoMCampaign", network = network, seedingSize = 10, forwardProbability = 0.2)
profit <- computeProfit(campaign, price = 0.5)
print(profit)</pre>
```

computeRoundDemand

computeRoundDemand	Computes the expected demand per round
--------------------	--

Description

Computes the expected demand for a given Word-of-Mouth campaign at a given price and a given round or a given round and all previous rounds

Usage

```
computeRoundDemand(campaign, price, round, previousRounds = TRUE)
```

Arguments

campaign Word-of-Mouth campaign as instance of class WoMCampaign.

price Price as number in [0; 1] where 0 is the minimal and 1 is the maximal price.

round Round at which or until which the demand per round will be computed.

previous Rounds Should the demand of all previous rounds be returned or not. Default is TRUE.

Value

Expected demand in number of persons. Note that the first value in the demand vector is the number of initial consumers when previousRounds is TRUE. The number of initial consumers is (1-p)*seedingSize.

Author(s)

```
Michael Scholz <michael.scholz@th-deg.de>
Thomas Woehner <Thomas.Woehner@eah-jena.de>
Ralf Peters <ralf.peters@wiwi.uni-halle.de>
```

See Also

 $compute {\tt Demand\ compute Profit\ compute Consumer Surplus\ compute Optimal Price}$

```
network <- new("WoMNetwork", size = 1000, avgConnections = 5)
campaign <- new("WoMCampaign", network = network, seedingSize = 10, forwardProbability = 0.2)
demand <- computeRoundDemand(campaign, price = 0.5, round = 3)
print(demand)</pre>
```

computeWoMIntensity Com

Computes the WoM intensity

Description

Computes the WoM intensity in a given Word-of-Mouth campaign.

Usage

```
computeWoMIntensity(campaign)
```

Arguments

campaign

Word-of-Mouth campaign as instance of class WoMCampaign.

Value

```
WoM intensity in [0; 1].
```

Author(s)

```
Michael Scholz <michael.scholz@th-deg.de>
Thomas Woehner <Thomas.Woehner@eah-jena.de>
Ralf Peters <ralf.peters@wiwi.uni-halle.de>
```

Examples

```
network <- new("WoMNetwork", size = 1000, avgConnections = 5)
campaign <- new("WoMCampaign", network = network, seedingSize = 10, forwardProbability = 0.2)
intensity <- computeWoMIntensity(campaign)
print(intensity)</pre>
```

show, WoMCampaign-method

Shows a WoMCampaign object

Description

Shows a WoMCampaign object

Usage

```
## S4 method for signature 'WoMCampaign'
show(object)
```

Arguments

object

An instance of the WoMCampaign-class

Methods

list("signature(object = \"WoMCampaign\")") Shows an WoMCampaign object.

Author(s)

```
Michael Scholz <michael.scholz@th-deg.de>
Thomas Woehner <Thomas.Woehner@eah-jena.de>
Ralf Peters <ralf.peters@wiwi.uni-halle.de>
```

show, WoMNetwork-method

Shows a WoMNetwork object

Description

Shows a WoMNetwork object

Usage

```
## S4 method for signature 'WoMNetwork'
show(object)
```

Arguments

object

An instance of the WoMNetwork-class

Methods

list("signature(object = \"WoMNetwork\")") Shows an WoMNetwork object.

Author(s)

```
Michael Scholz <michael.scholz@th-deg.de>
Thomas Woehner <Thomas.Woehner@eah-jena.de>
Ralf Peters <ralf.peters@wiwi.uni-halle.de>
```

12 WoMNetwork-class

WoMCampaign-class

Class WoMCampaign

Description

This class represents a WoM campaign that is performed on a given network to promote a durable good with no variable costs.

Slots

network (WoMNetwork) The network to which the WoM campaign is applied.

seedingSize (numeric) Number of consumers who are initially informed about the good by the firm.

forwardProbability (numeric) Probability at which a consumer forwards information about the good to others.

informationCosts (numeric) Costs to information one consumer about the good.

Objects from the Class

Objects can be created by calls of the form new("WoMCampaign", ...). This S4 class describes WoMNetwork objects.

Author(s)

```
Michael Scholz <michael.scholz@th-deg.de>
Thomas Woehner <Thomas.Woehner@eah-jena.de>
Ralf Peters <ralf.peters@wiwi.uni-halle.de>
```

Examples

```
network <- new("WoMNetwork", size = 1000, avgConnections = 5)
campaign <- new("WoMCampaign", network = network, seedingSize = 10, forwardProbability = 0.2)
print(campaign)</pre>
```

WoMNetwork-class

Class WoMNetwork

Description

This class represents an average random graph.

Slots

```
size (numeric) The number of consumers in the network.

avgConnections (numeric) Average number of connections per consumer.
```

WoMNetwork-class 13

Objects from the Class

Objects can be created by calls of the form new("WoMNetwork", ...). This S4 class describes WoMNetwork objects.

Author(s)

```
Michael Scholz <michael.scholz@th-deg.de>
Thomas Woehner <Thomas.Woehner@eah-jena.de>
Ralf Peters <ralf.peters@wiwi.uni-halle.de>
```

```
network <- new("WoMNetwork", size = 1000, avgConnections = 5)
print(network)</pre>
```

Index

```
* Word-of-Mouth
    WordOfMouth-package, 2
* classes
    WoMCampaign-class, 12
    WoMNetwork-class, 12
* methods
    show, WoMCampaign-method, 10
    show, WoMNetwork-method, 11
compareToFIMarket, 3
computeConsumerSurplus, 3, 4, 5, 7-9
computeDemand, 4, 5, 7-9
computeInformationCostsThreshold, 6
computeOptimalPrice, 3-6, 7, 8, 9
computeProfit, 3-7, 8, 9
computeRoundDemand, 5, 9
computeWoMIntensity, 10
\verb|show,WoMCampaign-method|, 10|
show, WoMNetwork-method, 11
WoMCampaign-class, 12
WoMNetwork-class, 12
WordOfMouth (WordOfMouth-package), 2
WordOfMouth-package, 2
```