
Package ‘TIGERr’
January 20, 2025

Type Package

Title Technical Variation Elimination with Ensemble Learning
Architecture

Version 1.0.0

Author Siyu Han [aut, cre], Jialing Huang [aut], Francesco Foppiano [aut], Cor-
nelia Prehn [aut], Jerzy Adamski [aut], Karsten Suhre [aut], Ying Li [aut], Giuseppe Mat-
ullo [aut], Freimut Schliess [aut], Christian Gieger [aut], Annette Peters [aut], Rui Wang-
Sattler [aut]

Maintainer Siyu Han <siyu.han@helmholtz-muenchen.de>

Acknowledgments TAI Yun-hsiu, WANG Ruoyu, CHENG Ming, GUO Yuan, LI
Han, FAN Linrui

Description The R implementation of TIGER.
TIGER integrates random forest algorithm into an innovative ensemble learning architec-
ture. Benefiting from this advanced architecture, TIGER is resilient to out-
liers, free from model tuning and less likely to be affected by specific hyperparameters.
TIGER supports targeted and untargeted metabolomics data and is competent to perform both in-
tra- and inter-batch technical variation removal. TIGER can also be used for cross-kit adjust-
ment to ensure data obtained from different analytical assays can be effectively com-
bined and compared.
Reference: Han S. et al. (2022) <doi:10.1093/bib/bbab535>.

License GPL (>= 3)

Depends R (>= 3.5.0)

Imports parallel (>= 2.1.0), pbapply (>= 1.4-3), ppcor (>= 1.1),
randomForest (>= 4.6-14), stats (>= 3.0.0)

BugReports https://github.com/HAN-Siyu/TIGER/issues

Encoding UTF-8

LazyData true

RoxygenNote 7.1.1

NeedsCompilation no

Repository CRAN

Date/Publication 2022-01-06 14:00:02 UTC

1

https://doi.org/10.1093/bib/bbab535
https://github.com/HAN-Siyu/TIGER/issues

2 compute_RSD

Contents
compute_RSD . 2
compute_targetVal . 3
FF4_qc . 5
run_TIGER . 6
select_variable . 12

Index 16

compute_RSD Compute RSD (relative standard deviation)

Description

This function computes the RSD (relative standard deviation) of the values in input_data. Missing
values are removed before the computation automatically.

Usage

compute_RSD(input_data)

Arguments

input_data a numeric vector

Details

The RSD in this function is computed by:

sd(input_data, na.rm = TRUE) / mean(input_data, na.rm = TRUE).

Value

The RSD of the values in input_data is computed, as a numeric of length one.

Examples

RSD_1 <- compute_RSD(c(1:10))

data(FF4_qc) # load demo dataset

RSD of QC:
RSD_2 <- sapply(FF4_qc[FF4_qc$sampleType == "QC", -c(1:5)], compute_RSD)
quantile(RSD_2)

RSD of different types of QC samples:
(each metabolote has its own RSD)
RSD_3 <- aggregate(FF4_qc[-c(1:5)], by = list(Type = FF4_qc$sampleType),

FUN = compute_RSD)

compute_targetVal 3

compute_targetVal Compute target values for ensemble learning architecture

Description

This function provides an advanced option to calculate the target values of one reference dataset
(i.e. QC_num, numeric values of quality control samples). The generated target values (a list) can be
further passed to argument targetVal_external in function run_TIGER such that TIGER can align
the test_samples with the reference dataset. This is useful for longitudinal datasets correction and
cross-kit adjustment. See case study section of our original paper for detailed explanation.

Usage

compute_targetVal(
QC_num,
sampleType,
batchID = NULL,
targetVal_method = c("mean", "median"),
targetVal_batchWise = FALSE,
targetVal_removeOutlier = !targetVal_batchWise,
coerce_numeric = FALSE

)

Arguments

QC_num a numeric data.frame including the metabolite values of quality control (QC)
samples. Missing values and infinite values will not be taken into account. Row:
sample. Column: metabolite variable. See Examples.

sampleType a vector corresponding to QC_num to specify the type of each QC sample. QC
samples of the same type should have the same type name. See Examples.

batchID a vector corresponding to QC_num to specify the batch of each sample. Ignored
if targetVal_batchWise = FALSE. See Examples.

targetVal_method

a character string specifying how the target values are computed. Can be "mean"
(default) or "median". See Details.

targetVal_batchWise

logical. If TRUE, the target values will be computed based on each batch, other-
wise, based on the whole dataset. Setting TRUE might be useful if your dataset
has very obvious batch effects, but this may also make the algorithm less robust.
See Details. Default: FALSE.

targetVal_removeOutlier

logical. If TRUE, outliers will be removed before the computation. Outliers are
determined with 1.5 * IQR (interquartile range) rule. We recommend turning
this off when the target values are computed based on batches. See Details.
Default: !targetVal_batchWise.

4 compute_targetVal

coerce_numeric logical. If TRUE, values in QC_num will be coerced to numeric before the com-
putation. The columns cannot be coerced will be removed (with warnings). See
Examples. Default: FALSE.

Details

See run_TIGER.

Value

If targetVal_batchWise = FALSE, the function returns a list of length one containing the target
values computed on the whole dataset.

If targetVal_batchWise = TRUE, a list containing the target values computed on different batches
is returned. The length of the returned list equals the number of batch specified by batchID.

Examples

data(FF4_qc) # load demo dataset
QC_num <- FF4_qc[-c(1:5)] # only contain numeric metabolite values.

target values computed on the whole dataset:
tarVal_1 <- compute_targetVal(QC_num = QC_num,

sampleType = FF4_qc$sampleType,
batchID = FF4_qc$plateID,
targetVal_method = "mean",
targetVal_batchWise = FALSE,
targetVal_removeOutlier = TRUE)

target values computed on batches:
tarVal_2 <- compute_targetVal(QC_num = QC_num,

sampleType = FF4_qc$sampleType,
batchID = FF4_qc$plateID,
targetVal_method = "mean",
targetVal_batchWise = TRUE,
targetVal_removeOutlier = FALSE)

If coerce_numeric = TRUE,
columns cannot be coerced to numeric will be removed (with warnings):
tarVal_3 <- compute_targetVal(QC_num = FF4_qc[-c(4:5)],

sampleType = FF4_qc$sampleType,
batchID = FF4_qc$plateID,
targetVal_method = "mean",
targetVal_batchWise = TRUE,
targetVal_removeOutlier = FALSE,
coerce_numeric = TRUE)

identical(tarVal_2, tarVal_3) # identical to tarVal_2

Not run:

will throw errors if input data have non-numeric columns
and coerce_numeric = FALSE:

FF4_qc 5

tarVal_4 <- compute_targetVal(QC_num = FF4_qc,
sampleType = FF4_qc$sampleType,
batchID = FF4_qc$plateID,
targetVal_method = "mean",
targetVal_batchWise = TRUE,
targetVal_removeOutlier = FALSE,
coerce_numeric = FALSE)

End(Not run)

FF4_qc Accompanying QC samples of KORA FF4 (demo data)

Description

This demo dataset, a data.frame with 232 samples (rows) and 108 variables (columns). The dataset
includes four types of quality control (QC) samples from 29 kit plates:

• QC1 (N = 29, one per plate),

• QC2 (N = 29, one per plate),

• QC3 (N = 29, one per plate),

• QC (N = 145, five per plate).

The columns include sample ID, sample type, plate ID, well position, injection order and the con-
centrations of 103 selected targeted metabolites. These QC samples are measured with the cohort
samples of KORA FF4 (Cooperative Health Research in the Augsburg Region, the second follow-
up study, 2013–2014) using the analytical assay Biocrates AbsoluteIDQ® p180 (BIOCRATES Life
Sciences AG, Innsbruck, Austria).

In our paper, we used QC as training samples, while QC1, QC2, QC3 and cohort samples were used
as test samples. The cohort data are operated by Helmholtz Zentrum München and available via
KORA platform https://www.helmholtz-munich.de/en/kora/ upon reasonable request. See
Reference for detailed information.

Usage

data(FF4_qc)

Reference

Han S. et al. TIGER: technical variation elimination for metabolomics data using ensemble learning
architecture. Briefings in Bioinformatics (2022) bbab535. doi: 10.1093/bib/bbab535.

https://www.helmholtz-munich.de/en/kora/
https://doi.org/10.1093/bib/bbab535

6 run_TIGER

run_TIGER Run TIGER to eliminate technical variation

Description

Use TIGER algorithm to eliminate the technical variation in metabolomics data. TIGER supports
targeted and untargeted metabolomics data and is competent to perform both intra- and inter-batch
technical variation removal.

Usage

run_TIGER(
test_samples,
train_samples,
col_sampleID,
col_sampleType,
col_batchID,
col_order = NULL,
col_position = NULL,
targetVal_external = NULL,
targetVal_method = c("mean", "median"),
targetVal_batchWise = FALSE,
targetVal_removeOutlier = !targetVal_batchWise,
selectVar_external = NULL,
selectVar_corType = c("cor", "pcor"),
selectVar_corMethod = c("pearson", "spearman"),
selectVar_minNum = 5,
selectVar_maxNum = 10,
selectVar_batchWise = FALSE,
mtry_percent = seq(0.2, 0.8, 0.2),
nodesize_percent = seq(0.2, 0.8, 0.2),
...,
parallel.cores = 2

)

Arguments

test_samples (required) a data.frame containing the samples to be corrected (for example,
subject samples). This data.frame should contain columns of

• sample ID (required): name or label for each sample,
• sample type (required): indicating the type of each sample,
• batch ID (required): the batch of each sample,
• order information (optional): injection order or temporal information of

each sample,
• position information (optional): well position of each sample,

run_TIGER 7

• metabolite values (required): values to be normalised. Infinite values are
not allowed.

Row: sample. Column: variable. See Examples.

train_samples (required) a data.frame containing the quality control (QC) samples used for
model training. The columns in this data.frame should correspond to the columns
in test_samples. And test_samples and train_samples should have the
identical column names.

col_sampleID (required) a character string indicating the name of the column that specifies the
sample ID of each sample. The values in this column will not affect the data
correction process but can act as labels for different samples. See Examples.

col_sampleType (required) a character string indicating the name of the column that specifies the
type (such as QC1, QC2, subject) of each sample. This column can be used to
indicate different kinds of QC samples in train_samples. QC samples of the
same type should have the same type name. See Examples.

col_batchID (required) a character string indicating the name of the column that specifies the
batch ID of each sample. See Examples.

col_order (optional) NULL or a character string indicating the name of the column that con-
tains the injection order or temporal information (numeric values). This can
explicitly ask the algorithm capture the technical variation introduced by injec-
tion order, which might be useful when your data have very obvious temporal
drifts. If NULL (default), train_samples and test_samples should have No
column contains injection order information.

col_position (optional) NULL or a character string indicating the name of the column that
contains the well position information (numeric values). This can explicitly
ask the algorithm capture the technical variation introduced by well position,
which might be useful when the well position has a great impact during data
acquisition. If NULL (default), train_samples and test_samples should have
No column contains well position information.

targetVal_external

(optional) a list generated by function compute_targetVal. See Details.
targetVal_method

a character string specifying how target values are to be computed. Can be
"mean" (default) or "median". Ignored if a list of external target values has
been assigned to targetVal_external.

targetVal_batchWise

logical. If TRUE, the target values will be computed based on each batch, other-
wise, based on the whole dataset. Setting TRUE might be useful if your dataset
has very obvious batch effects, but this may also make the algorithm less robust.
Default: FALSE. Ignored if a list of external target values has been assigned to
targetVal_external.

targetVal_removeOutlier

logical. If TRUE, outliers will be removed before the computation. Outliers
are determined with 1.5 * IQR (interquartile range) rule. We recommend turn-
ing this off when the target values are computed based on batches. Default:
!targetVal_batchWise. Ignored if a list of external target values has been
assigned to targetVal_external.

8 run_TIGER

selectVar_external

(optional) a list generated by function select_variable. See Details.
selectVar_corType

a character string indicating correlation ("cor", default) or partial correlation
("pcor") is to be used. Can be abbreviated. Ignored if a list of selected variables
has been assigned to selectVar_external. Note: computing partial correla-
tions of a large dataset can be very time-consuming.

selectVar_corMethod

a character string indicating which correlation coefficient is to be computed.
One of "spearman" (default) or "pearson". Can be abbreviated. Ignored if a
list of selected variables has been assigned to selectVar_external.

selectVar_minNum

an integer specifying the minimum number of the selected metabolite variables
(injection order and well position are not regarded as metabolite variables). If
NULL, no limited, but 1 at least. Default: 5. Ignored if a list of selected variables
has been assigned to selectVar_external.

selectVar_maxNum

an integer specifying the maximum number of the selected metabolite variables
(injection order and well position are not regarded as metabolite variables). If
NULL, no limited, but no more than the number of all available metabolite vari-
ables. Default: 10. Ignored if a list of selected variables has been assigned to
selectVar_external.

selectVar_batchWise

(advanced) logical. Specify whether the variable selection should be performed
based on each batch. Default: FALSE. Ignored if a list of selected variables
has been assigned to selectVar_external. Note: the support of batch-wise
variable selection is provided for data requiring special processing (for example,
data with strong batch effects). But in most case, batch-wise variable selection
is not necessary. Setting TRUE can make the algorithm less robust.

mtry_percent (advanced) a numeric vector indicating the percentages of selected variables ran-
domly sampled as candidates at each split when training random forest models
(base learners). Note: providing more arguments will include more base learn-
ers into the ensemble model, which will increase the processing time. Default:
seq(0.2, 0.8, 0.2).

nodesize_percent

(advanced) a numeric vector indicating the percentages of sample size used as
the minimum sizes of the terminal nodes in random forest models (base learn-
ers). Note: providing more arguments will include more base learners into the
ensemble model, which will increase the processing time. Default: seq(0.2,
0.8, 0.2).

... (advanced) optional arguments (except mtry and nodesize) to be passed to
randomForest for model training. Arguments mtry and nodesize are deter-
mined by mtry_percent and nodesize_percent. See randomForest and Ex-
amples. Note: providing more arguments will include more base learners into
the ensemble model, which will increase the processing time.

parallel.cores an integer (== -1 or >= 1) specifying the number of cores for parallel computa-
tion. Setting -1 to run with all cores. Default: 2.

run_TIGER 9

Details

TIGER can effectively process the datasets with its default setup. The following hyperparameters
are provided to customise the algorithm and achieve the best possible performance. These hyper-
parameters are also practical for some special purposes (such as cross-kit adjustment, longitudinal
dataset correction) or datasets requiring special processing (for example, data with very strong tem-
poral drifts or batch effects). We recommend users to examine the normalised result with different
metrics, such as RSD (relative standard deviation), MAPE (mean absolute percentage error) and
PCA (principal component analysis), especially when using advanced options of TIGER.

Hyperparameters for target value computation

• targetVal_external

TIGER by default captures and eliminate the technical variation within the input dataset, and
the target values are automatically computed from train_samples. The target values can
also be calculated from a reference dataset using function compute_targetVal and then
passed to this function as an argument. This will enable TIGER to align test_samples
with the reference dataset. In this case, train_samples is still the accompanying QC sam-
ples of test_samples. And argument targetVal_external accepts external target val-
ues (a list). If the list of external target values is provided, values in targetVal_method,
targetVal_batchWise and targetVal_removeOutlier will be ignored.

• targetVal_method

The target values can be the mean or median values of metabolite values. The target values of
different kinds of QC samples are computed separately. "mean" is recommended here, but the
optimal selection can differ for different datasets.

• targetVal_batchWise

The target values can be computed from the whole dataset or from different batches. By
default, the target values are computed based on the whole dataset. Computing based on
batches (targetVal_batchWise = TRUE) is only recommended when the samples has very
strong batch effects. For example, we set this as TRUE when normalising WaveICA’s Amide
dataset in our original paper.

• targetVal_removeOutlier

If computing is based on the whole dataset (targetVal_batchWise = TRUE), users can re-
move the outliers in each metabolite by setting targetVal_removeOutlier as TRUE. This
can weaken the impact of extreme values. If targetVal_batchWise = FALSE, it is generally
not recommended to remove outliers, as we assume the input data have strong batch effects
and contain extreme values—we hope TIGER can take these into account. Code for checking
outliers is adapted from boxplot.stats.

Hyperparameters for variable selection

• selectVar_external:
This argument accepts a list of selected variables generated by select_variable. This is
helpful when you want to use the same selected variables to correct several datasets. You can
also pass a self-defined list to this argument, as long as the self-defined list has similar data
structure as the one generated by select_variable.

• selectVar_corType and selectVar_corMethod:

10 run_TIGER

TIGER supports Pearson product-moment correlation ("pearson") and Spearman’s rank cor-
relation ("spearman") to compute correlation coefficients ("cor") or partial correlation coef-
ficients ("por") for variable selection. See cor and pcor for further details.

• selectVar_minNum and selectVar_maxNum:
For an objective metabolite to be corrected, the intersection of its top t highly-correlated
metabolites calculated from training and test samples are selected to train the ensemble model.
The highly-correlated metabolites are the ones with correlation coefficients greater than 0.5
(the objective metabolite itself will not be regarded as its highly-correlated metabolite). Ar-
guments selectVar_minNum and selectVar_maxNum are used to avoid selecting too many or
too few metabolites. Selecting too many metabolites can lower the process, sometimes even
lower the accuracy.

• selectVar_batchWise:
Advanced option designed for special cases. Setting it TRUE might be useful when your data
have very obvious batch effects.

Hyperparameters for model construction

• mtry_percent, nodesize_percent and ...:
Advanced options to specify mtry, nodesize and other related arguments in randomForest
for a customised ensemble learning architecture. See Examples.

Value

This function returns a data.frame with the same data structure as the input test_samples, but the
metabolite values are the normalised/corrected ones. NA and zeros in the original test_samples
will not be changed or normalised.

Reference

Han S. et al. TIGER: technical variation elimination for metabolomics data using ensemble learning
architecture. Briefings in Bioinformatics (2022) bbab535. doi: 10.1093/bib/bbab535.

Examples

data(FF4_qc) # load demo dataset

QC as training samples; QC1, QC2 and QC3 as test samples:
train_samples <- FF4_qc[FF4_qc$sampleType == "QC",]
test_samples <- FF4_qc[FF4_qc$sampleType != "QC",]

col_sampleID includes labels. You can assign names for different samples:
train_samples$sampleID <- "train"
test_samples$sampleID <- "test"

Use default setting and
include injection order and well position into feature set:
test_norm_1 <- run_TIGER(test_samples = test_samples,

train_samples = train_samples,
col_sampleID = "sampleID", # input column name
col_sampleType = "sampleType", # input column name

https://doi.org/10.1093/bib/bbab535

run_TIGER 11

col_batchID = "plateID", # input column name
col_order = "injectionOrder", # input column name
col_position = "wellPosition", # input column name
parallel.cores = 2)

If the information of injection order and well position is not available,
or you don't want to use them:
train_data <- train_samples[-c(4:5)] # remove the two columns
test_data <- test_samples[-c(4:5)] # remove the two columns

test_norm_2 <- run_TIGER(test_samples = test_data,
train_samples = train_data,
col_sampleID = "sampleID",
col_sampleType = "sampleType",
col_batchID = "plateID",
col_order = NULL, # set NULL
col_position = NULL, # set NULL
parallel.cores = 2)

If use external target values and selected variables with
customised settings:
target_val <- compute_targetVal(QC_num = train_samples[-c(1:5)],

sampleType = train_samples$sampleType,
batchID = train_samples$plateID,
targetVal_method = "median",
targetVal_batchWise = TRUE)

select_var <- select_variable(train_num = train_samples[-c(1:5)],
test_num = test_samples[-c(1:5)],
train_batchID = train_samples$plateID,
test_batchID = test_samples$plateID,
selectVar_corType = "pcor",
selectVar_corMethod = "spearman",
selectVar_minNum = 10,
selectVar_maxNum = 30,
selectVar_batchWise = TRUE)

test_norm_3 <- run_TIGER(test_samples = test_samples,
train_samples = train_samples,
col_sampleID = "sampleID",
col_sampleType = "sampleType",
col_batchID = "plateID",
col_order = "injectionOrder",
col_position = "wellPosition",
targetVal_external = target_val,
selectVar_external = select_var,
parallel.cores = 2)

The definitions of other hyperparameters correspond to
randomForest::randomForest().
If want to include more hyperparameters into model training,
put hyperparameter values like this:
mtry_percent <- c(0.4, 0.8)

12 select_variable

nodesize_percent <- c(0.4, 0.8)
replace <- c(TRUE, FALSE)
ntree <- c(100, 200, 300)

test_norm_4 <- run_TIGER(test_samples = test_data,
train_samples = train_data,
col_sampleID = "sampleID",
col_sampleType = "sampleType",
col_batchID = "plateID",
mtry_percent = mtry_percent,
nodesize_percent = nodesize_percent,
replace = replace,
ntree = ntree,
parallel.cores = 2)

test_norm_4 is corrected by the ensemble model consisted of base learners
trained with (around) 24 different hyperparameter combinations:
expand.grid(mtry_percent, nodesize_percent, replace, ntree)

Note: mtry and nodesize are calculated by mtry_percent and nodesize_percent,
duplicated hyperparameter combinations, if any, will be removed.
Thus, the total number of hyperparameter combinations can be less than 24.
This is determined by the shape of your input datasets.

select_variable Select variables for ensemble learning architecture

Description

This function provides an advanced option to select metabolite variables from external dataset(s).
The selected variables (as a list) can be further passed to argument selectVar_external in func-
tion run_TIGER for a customised data correction.

Usage

select_variable(
train_num,
test_num = NULL,
train_batchID = NULL,
test_batchID = NULL,
selectVar_corType = c("cor", "pcor"),
selectVar_corMethod = c("spearman", "pearson"),
selectVar_minNum = 5,
selectVar_maxNum = 10,
selectVar_batchWise = FALSE,
coerce_numeric = FALSE

)

select_variable 13

Arguments

train_num a numeric data.frame only including the metabolite values of training samples
(can be quality control samples). Information such as injection order or well
position need to be excluded. Row: sample. Column: metabolite variable. See
Examples.

test_num an optional numeric data.frame including the metabolite values of test sam-
ples (can be subject samples). If provided, the column names of test_num
should correspond to the column names of train_num. Row: sample. Column:
metabolite variable. If NULL, the variables will be selected based on train_num
only. See Examples.

train_batchID NULL or a vector corresponding to train_num to specify the batch of each sam-
ple. Ignored if selectVar_batchWise = FALSE. See Examples.

test_batchID NULL or a vector corresponding to test_num to specify the batch of each sample.
Ignored if selectVar_batchWise = FALSE. See Examples.

selectVar_corType

a character string indicating correlation ("cor", default) or partial correlation
("pcor") is to be used. Can be abbreviated. See Details. Note: computing
partial correlations of a large dataset can be very time-consuming.

selectVar_corMethod

a character string indicating which correlation coefficient is to be computed.
One of "spearman" (default) or "pearson". Can be abbreviated. See Details.

selectVar_minNum

an integer specifying the minimum number of the selected variables. If NULL,
no limited, but 1 at least. See Details. Default: 5.

selectVar_maxNum

an integer specifying the maximum number of the selected variables. If NULL,
no limited, but ncol(train_num) - 1 at most. See Details. Default: 10.

selectVar_batchWise

(advanced) logical. Specify whether the variable selection should be performed
based on each batch. Default: FALSE. Note: if TRUE, batch ID of each sample
are required. The support of batch-wise variable selection is provided for data
requiring special processing (for example, data with strong batch effects). But
in most case, batch-wise variable selection is not necessary. Setting TRUE might
make the algorithm less robust. See Details.

coerce_numeric logical. If TRUE, values in train_num and test_num will be coerced to numeric
before the computation. The columns cannot be coerced will be removed (with
warnings). See Examples. Default: FALSE.

Details

See run_TIGER.

Value

If selectVar_batchWise = FALSE, the function returns a list of length one containing the selected
variables computed on the whole dataset.

14 select_variable

If selectVar_batchWise = TRUE, a list containing the selected variables computed on different
batches is returned. The length of the returned list equals the number of batch specified by test_batchID
and/or train_batchID.

Examples

data(FF4_qc) # load demo dataset

QC as training samples; QC1, QC2 and QC3 as test samples:
train_samples <- FF4_qc[FF4_qc$sampleType == "QC",]
test_samples <- FF4_qc[FF4_qc$sampleType != "QC",]

Only numeric data of metabolite variables are allowed:
train_num = train_samples[-c(1:5)]
test_num = test_samples[-c(1:5)]

If the selection is performed on the whole dataset:
based on training samples only:
selected_var_1 <- select_variable(train_num = train_num,

test_num = NULL,
selectVar_batchWise = FALSE)

also consider test samples:
selected_var_2 <- select_variable(train_num = train_num,

test_num = test_num,
selectVar_batchWise = FALSE)

If the selection is based on different batches:
(In selectVar_batchWise, batch ID is required.)
selected_var_3 <- select_variable(train_num = train_num,

test_num = NULL,
train_batchID = train_samples$plateID,
test_batchID = NULL,
selectVar_batchWise = TRUE)

If coerce_numeric = TRUE,
columns cannot be coerced to numeric will be removed (with warnings):
(In this example, columns of injection order and well position are excluded.
Because we don't want to calculate the correlations between metabolites and
injection order/well position.)
selected_var_4 <- select_variable(train_num = train_samples[-c(4,5)],

train_batchID = train_samples$plateID,
selectVar_batchWise = TRUE,
coerce_numeric = TRUE)

identical(selected_var_3, selected_var_4) # identical to selected_var_3

Not run:

will throw errors if input data have non-numeric columns
and coerce_numeric = FALSE:

selected_var_5 <- select_variable(train_num = train_samples[-c(4,5)],
coerce_numeric = FALSE)

select_variable 15

End(Not run)

Index

boxplot.stats, 9

compute_RSD, 2
compute_targetVal, 3, 7, 9
cor, 10

FF4_qc, 5

pcor, 10

randomForest, 8, 10
run_TIGER, 3, 4, 6, 12, 13

select_variable, 8, 9, 12

16

	compute_RSD
	compute_targetVal
	FF4_qc
	run_TIGER
	select_variable
	Index

