This is a compact version of the paper arXiv 1805.09550.
First we define the NFW PDF for any input scale radius q=R/Rvir
d(q,c)=c2(cq+1)2(1c+1+ln(c+1)−1)
We define the un-normalised integral up to a normalised radius q as
p′(q,c)=ln(1+cq)−cq1+cq.
We can define p, the correctly normalised probability (where p(q=1,c)=1 with a domain [0,1]) as
p(q,c)=p′(q,c)p′(1,c)⇒p′(q,c)=p(q,c)p′(1,c)
Using the un-normalised variant p′ we can state that
p′+1=ln(1+cq)−cq1+cq+1+cq1+cq=ln(1+cq)+11+cq.
Taking exponents and setting equal to y we get
y=ep′+1=(1+cq)e1/(1+cq).
We can the define x such that
x=1+cq,y=xe1/x.
Here we can use the Lambert W function to solve for x, since it generically solves for relations like y = x e^{x} (where x=W0(y))). The exponent has a 1/x term, which modifies that solution to the slightly less elegant
x=−1W0(−1/y)=−1W0(−1/e(p′+1)),sub for q=x−1c,q=−1c(1W0(−1/e(p′+1))+1).
Given the above, this opens up an analytic route for generating exact random samples of the NFW for any c (where we must be careful to scale such that p′(q,c)=p(q,c)p′(1,c)) via,
r([0,1];c)=q(p=U[0,1];c).
Both the PDF (dnfw) integrated up to x, and CDF at q (pnfw) should be the same (0.373, 0.562, 0.644, 0.712):
for(con in c(1,5,10,20)){
print(integrate(dnfw, lower=0, upper=0.5, con=con)$value)
print(pnfw(0.5, con=con))
}
## [1] 0.373455
## [1] 0.373455
## [1] 0.5618349
## [1] 0.5618349
## [1] 0.6437556
## [1] 0.6437556
## [1] 0.7116174
## [1] 0.7116174
The qnfw should invert the pnfw, returning the input vector (1:9)/10:
for(con in c(1,5,10,20)){
print(qnfw(p=pnfw(q=(1:9)/10,con=con), con=con))
}
## [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
## [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
## [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
## [1] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
The sampling from rnfw should recreate the expected PDF from dnfw:
for(con in c(1,5,10,20)){
par(mar=c(4.1,4.1,1.1,1.1))
plot(density(rnfw(1e6,con=con), bw=0.01))
lines(seq(0,1,len=1e3), dnfw(seq(0,1,len=1e3),con=con),col='red')
legend('topright',legend=paste('con =',con))
}
Happy sampling!