Package 'MixTwice'

January 20, 2025

Type Package

Title Large-Scale Hypothesis Testing by Variance Mixing	
Version 2.0	
Imports alabama, ashr, fdrtool, Iso, stats	
Date 2022-02-28	
Author Zihao Zheng and Michael A.Newton	
Maintainer Zihao Zheng <zihao.zheng@wisc.edu></zihao.zheng@wisc.edu>	
Description Implements large-scale hypothesis testing by variance mixing. It takes two statistics per testing unit an estimated effect and its associated squared standard error and fits a nonparametric, shape-constrained mixture separately on two latent parameters. It reports local false discovery rates (lfdr) and local false sign rates (lfsr). Manuscript describing algorithm of MixTwice: Zheng et al(2021) <doi:10.1093 bioinformatics="" btab162="">.</doi:10.1093>	
License GPL-2	
NeedsCompilation no	
Depends R (>= 3.5.0)	
Repository CRAN	
Date/Publication 2022-03-02 16:50:02 UTC	
Contents	
MixTwice-package mixtwice peptide_data	2 3
Index	8

2 MixTwice-package

MixTwice-package Large-Scale Hypothesis Testing by Variance Mixing

Description

Implements large-scale hypothesis testing by variance mixing. It takes two statistics per testing unit – an estimated effect and its associated squared standard error – and fits a nonparametric, shape-constrained mixture separately on two latent parameters. It reports local false discovery rates (lfdr) and local false sign rates (lfsr). Manuscript describing algorithm of MixTwice: Zheng et al(2021) <doi: 10.1093/bioinformatics/btab162>.

Details

The DESCRIPTION file:

Package: MixTwice Type: Package

Title: Large-Scale Hypothesis Testing by Variance Mixing

Version: 2.0

Imports: alabama, ashr, fdrtool, Iso, stats

Date: 2022-02-28

Author: Zihao Zheng and Michael A.Newton Maintainer: Zihao Zheng <zihao.zheng@wisc.edu>

Description: Implements large-scale hypothesis testing by variance mixing. It takes two statistics per testing unit – an estimate of the statistics per testing unit view of the statist

License: GPL-2

Index of help topics:

MixTwice-package Large-Scale Hypothesis Testing by Variance

Mixing

mixtwice Large-scale hypothesis testing by variance

mixing

Author(s)

Zihao Zheng and Michael A.Newton

Maintainer: Zihao Zheng <zihao.zheng@wisc.edu>

References

Zheng et al. MixTwice: Large scale hypothesis testing for peptide arrays by variance mixing. **Bioinformatics**, 2021.

Zheng et al. Disordered Antigens and Epitope Overlap Between Anti Citrullinated Protein Antibodies and Rheumatoid Factor in Rheumatoid Arthritis. **Arthritis & Rheumatology** 72.2 (2020): 262-272.

mixtwice 3

Examples

```
data(peptide_data)
## For more detail and example, use ?peptide_data and ?mixtwice
```

mixtwice Large-scale hypothesis testing by variance mixing

Description

MixTwice deploys large-scale hypothesis testing in the case when testing units provide estimated effects and estimated standard errors. It produces empirical Bayesian local false discovery and sign rates for tests of zero effect.

Usage

```
mixtwice(thetaHat, s2, Btheta = 15, Bsigma2 = 10, df,
method = c("EM-pava", "AugLag"), maxit = 100, prop = 1)
```

Arguments

thetaHat	Estimated effect sizes (vector over testing units))
s2	Estimated squared standard errors of thetaHat (vector over testing units)
Btheta	Grid size parameter for effect distribution
Bsigma2	Grid size parameter for variance distribution
df	Degrees of freedom in chisquare associated with estimated standard error
method	Method used for solving the non-parametric MLE optimization. method = "EM-pava" solves the optimization problem using EM approach with pool adjacent violator algorithm (pava) and method = "EM-pava" solves the optimization problem directly using Augmented Lagrangian approach.
maxit	Number of iterations in EM if method = "EM-pava", with default, maxit = 100
prop	Proportion of units randomly selected to fit the distribution, with default, prop = 1 (use all units to fit the distribution).

Details

mixtwice takes estimated effects and standard errors over a set of testing units. To compute local error-rate statistics, it finds nonparametric MLEs of the underlying distributions. It is similar to "ashr", except that mixtwice allows both a mixing distribution of underlying effects theta as well as a mixing distribution over underlying variance parameters. Furthermore, it treats the effect mixing distribution nonparametrically, but enforces the shape constraint that this distribution is unimodal with mode at theta=0. (We do not assume symmetry). The distribution of variance parameters is also treated nonparametrically, but with no shape constraints. The observations are assumed to be emitted from a normal distribution (on estimated effects) and an independent Chi-square distribution (on estimated squared standard errors).

4 mixtwice

Value

grid.theta	Support of the estimated mixing distribution on effects
grid.sigma2	Support of the estimated mixing distribution of variances
mix.theta	Estimated distribution of effect size, on grid.theta
mix.sigma2	Estimated distribution of variance, on grid.sigma2
lfdr	Local false discovery rate for each testing unit
lfsr	Local false sign rate for each testing unit

Note

See Zheng et al. 2021 for further detail

Author(s)

Zihao Zheng, Michael A.Newton

References

Zheng et al. MixTwice: Large scale hypothesis testing for peptide arrays by variance mixing. Bioinformatics, 2021.

See Also

See Also as ?peptide_data

Examples

```
set.seed(1)

1 = 1000 ## number of testing units

neach = 20 ## number of subjects in each group

pi0 = 0.8 ## null proportion

signal1 = rep(0, 1)

signal2 = signal1

signal2[1:round((1-pi0)*1)] = rnorm(round((1-pi0)*1), mean = 0, sd = 3)

## I will generate the sigma^2 parameter

sigma2 = rep(1,1)

sigma = sqrt(sigma2)

## Then I can generate data
```

mixtwice 5

```
data1 <- data2 <- matrix(NA, nrow = 1, ncol = neach)</pre>
for (i in 1:1) {
  data1[i,] = rnorm(neach, mean = rep(signal1[i], each = neach), sd = sigma[i])
  data2[i,] = rnorm(neach, mean = rep(signal2[i], each = neach), sd = sigma[i])
}
thetaHat = rowMeans(data2) - rowMeans(data1)
sd1 = apply(data1, 1, sd)
sd2 = apply(data2, 1, sd)
s2 = sd1^2/neach + sd2^2/neach
fit.EM = mixtwice(thetaHat, s2, Btheta = 15, Bsigma2 = 10, df = 2*neach - 2,
                   method = "EM-pava", maxit = 100, prop = 1)
## you can try to visualize the result
plot(fit.EM$grid.theta, cumsum(fit.EM$mix.theta), type = "s",
     xlab = "grid.theta", ylab = "ecdf of theta", lwd = 2)
lines(ecdf(signal2 - signal1),cex = 0.1, lwd = 0.5, lty = 2, col = "red")
legend("topleft", legend = c("fit.mix", "true.mix"), col = c("black", "red"),
       1wd = 1, pch = 19
## calculate false discovery rate and true positive under 0.05
oo = order(fit.EM$lfdr)
# number of discovery
x1 = sum(cumsum(fit.EM$lfdr[oo])/c(1:1) <= 0.05)
# number of true discovery
x2 = sum(cumsum(fit.EM$lfdr[oo])/c(1:1) \le 0.05 & (signal2 != 0)[oo])
# number of real positive
x3 = sum(signal2 != 0)
# number of false discovery
x4 = sum(cumsum(fit.EM$lfdr[oo])/c(1:1) \le 0.05 & (signal2 == 0)[oo])
x4/x1 ## false discovery rate FDR
x2/x3 ## true positive rate
```

6 peptide_data

```
## null proportion estimation
max(fit.EM$mix.theta)

## you can also try using another method (Augmented Lagrangian), the result would be similar

# fit.AugLag = mixtwice2(thetaHat, s2, Btheta = 15, Bsigma2 = 10, df = 2*neach - 2,

# method = "AugLag", prop = 1)
```

peptide_data

Peptide array data example

Description

A high-density peptide microarray example to identify peptides for which antibody binding levels differ between control subjects and rheumatoid arthritis (RA) patients expressing a specific disease marker combination (i.e., CCP+RF+ RA).

Usage

```
data("peptide_data")
```

Format

A data frame with 152603 observations on the following 16 variables.

The first 8 columns are RA patients and the remaining columns are from control subjects.

Details

Each row of the data (rownames(peptide_data)) is a probed length-12 peptide and each column of the data (colnames(peptide_data)) is a subject with distinct pseudo sample ID. The binding value is doubly-log transformed using natural base to stabilize variance.

Source

Zheng, Zihao, et al. Disordered Antigens and Epitope Overlap Between Anti Citrullinated Protein Antibodies and Rheumatoid Factor in Rheumatoid Arthritis. **Arthritis & Rheumatology** 72.2 (2020): 262-272.

References

Zheng et al. MixTwice: Large scale hypothesis testing for peptide arrays by variance mixing. Bioinformatics, 2021.

peptide_data 7

Examples

```
#### load the RA data
data(peptide_data)

#### visualize the data

## each row is a peptide with unique peptide sequence

## each column is a subject with information on group and pseudo ID

colnames(peptide_data)

## z-score for peptide

get_zscore = function(x){

    n = length(x)

    t = t.test(x[1:(n/2)], x[(n/2 + 1):n], var.equal = TRUE)$statistic

    return(qnorm(pt(t, df = n-2)))
}

z = apply(peptide_data, 1, get_zscore)

## visualize the density of z-score

hist(z, probability = TRUE, 100, ylim = c(0,0.4), col = "blue")
lines(density(rnorm(10^5)), lwd =2)
```

Index

```
* High density peptide array
    mixtwice, 3
* Large-scale hypothesis testing
    mixtwice, 3
* Local false discovery rate
    mixtwice, 3
* Mixing distribution
    mixtwice, 3
*\ datasets
    peptide_data, 6
* package
    MixTwice-package, 2
MixTwice (MixTwice-package), 2
mixtwice, 3
MixTwice-package, 2
peptide_data, 6
```