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2 grace

grace Graph-Constrained Estimation

Description

Calculate coefficient estimates of Grace based on methods described in Li and Li (2008).

Usage

grace(Y, X, L, lambda.L, lambda.1=0, lambda.2=0, normalize.L=FALSE, K=10, verbose=FALSE)

Arguments

Y outcome vector.

X matrix of predictors.

L penalty weight matrix L.

lambda.L tuning parameter value for the penalty induced by the L matrix (see details). If a
sequence of lambda.L values is supplied, K-fold cross-validation is performed.

lambda.1 tuning parameter value for the lasso penalty (see details). If a sequence of
lambda.1 values is supplied, K-fold cross-validation is performed.

lambda.2 tuning parameter value for the ridge penalty (see details). If a sequence of
lambda.2 values is supplied, K-fold cross-validation is performed.

normalize.L whether the penalty weight matrix L should be normalized.

K number of folds in cross-validation.

verbose whether computation progress should be printed.

Details

The Grace estimator is defined as

(α̂, β̂) = argmin
α,β

∥Y − α1−Xβ∥22 + lambda.L(βTLβ) + lambda.1∥β∥1 + lambda.2∥β∥22

In the formulation, L is the penalty weight matrix. Tuning parameters lambda.L, lambda.1 and
lambda.2 may be chosen by cross-validation. In practice, X and Y are standardized and centered,
respectively, before estimating β̂. The resulting estimate is then rescaled back into the original
scale. Note that the intercept α̂ is not penalized.

The Grace estimator could be considered as a generalized elastic net estimator (Zou and Hastie,
2005). It penalizes the regression coefficient towards the space spanned by eigenvectors of L with
the smallest eigenvalues. Therefore, if L is informative in the sense that Lβ is small, then the Grace
estimator could be less biased than the elastic net.
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Value

An R ‘list’ with elements:

intercept fitted intercept.

beta fitted regression coefficients.

Author(s)

Sen Zhao

References

Zou, H., and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of
the Royal Statistical Society: Series B, 67, 301-320.

Li, C., and Li, H. (2008). Network-constrained regularization and variable selection for analysis of
genomic data. Bioinformatics, 24, 1175-1182.

Examples

set.seed(120)
n <- 100
p <- 200

L <- matrix(0, nrow = p, ncol = p)
for(i in 1:10){
L[((i - 1) * p / 10 + 1), ((i - 1) * p / 10 + 1):(i * (p / 10))] <- -1
}
diag(L) <- 0
ind <- lower.tri(L, diag = FALSE)
L[ind] <- t(L)[ind]
diag(L) <- -rowSums(L)

beta <- c(rep(1, 10), rep(0, p - 10))

Sigma <- solve(L + 0.1 * diag(p))
sigma.error <- sqrt(t(beta) %*% Sigma %*% beta) / 2

X <- mvrnorm(n, mu = rep(0, p), Sigma = Sigma)
Y <- c(X %*% beta + rnorm(n, sd = sigma.error))

grace(Y, X, L, lambda.L = c(0.08, 0.12), lambda.2 = c(0.08, 0.12))

grace.test Graph-Constrained Hypothesis Testing Procedure

Description

Test for the association between Y and each column of X using the Grace test based on Zhao and
Shojaie (2016).
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Usage

grace.test(Y, X, L=NULL, lambda.L=NULL, lambda.2=0, normalize.L=FALSE,
eta=0.05, C=4*sqrt(3), K=10, sigma.error=NULL, verbose=FALSE)

Arguments

Y outcome vector.

X matrix of predictors.

L penalty weight matrix L.

lambda.L tuning parameter value for the penalty induced by the L matrix (see details). If a
sequence of lambda.L values is supplied, K-fold cross-validation is performed.

lambda.2 tuning parameter value for the ridge penalty (see details). If a sequence of
lambda.2 values is supplied, K-fold cross-validation is performed.

normalize.L whether the penalty weight matrix L should be normalized.

eta sparsity parameter η (see details).

C parameter for the initial estimator (see details). It could also be "cv" or "scaled.lasso",
in which case cross-validation or the scaled lasso are applied to estimate the ini-
tial estimator.

K number of folds in cross-validation.

sigma.error error standard deviation. If NULL, scaled lasso is then applied to estimate it.

verbose whether computation progress should be printed

Details

This function performs the Grace test (if lambda.2 = 0), the GraceI test (if lambda.L = 0) and
the GraceR test as introduced in Zhao and Shojaie (2016). The Grace tests examine the null hy-
pothesis βj = 0 conditional on all other covariates, even if the design matrix X has more covari-
ates (columns) than observations (rows). Network information on associations between covariates,
which is represented by the L matrix, could be used to improve the power of the test. When L is
informative (see Zhao and Shojaie (2016) for details), the Grace test is expected to deliver higher
power than the GraceI test and other competing methods which ignores the network information
(see e.g. Buhlmann (2013), van de Geer et al. (2014), Zhang and Zhang (2014)). When L is poten-
tially uninformative or inaccurate, the GraceR test could be used. Using data-adaptive choices (e.g.
by cross-validation) of lambda.L and lambda.2, the GraceR test could adaptively choose the amount
of outside information to be incorporated, which leads to more robust performance. Regardless of
the informativeness of L, type-I error rates of the Grace, GraceI and GraceR tests are asymptotically
controlled.

The Grace tests are based on the following Grace estimator:

(α̂, β̂) = argmin
α,β

∥Y − α1−Xβ∥22 + lambda.L(βTLβ) + lambda.2∥β∥22

In the formulation, L is the penalty weight matrix. Tuning parameters lambda.L and lambda.2 may
be chosen by cross-validation. In practice, X and Y are standardized and centered, respectively,
before estimating β̂. The resulting estimate is then rescaled back into the original scale. Note that
the intercept α̂ is not penalized.
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To perform the Grace tests, the lasso initial estimator is calculated using lasso tuning parameter
σϵC

√
log(p)/n. The Grace test requires C to be larger than 2

√
2. σϵ is the error standard deviation,

which is estimated using the scaled lasso (Sun and Zhang, 2012).

η < 0.5 is the sparsity parameter of β, which controls the level of bias correction. It is assumed
that the number of nonzero elements in β, s = o([n/ log(p)]η). This parameter is usually unknown.
Using larger values of η leads to more conservative results.

Value

An R ‘list’ with elements:

intercept fitted intercept.

beta fitted regression coefficients.

pvalue p-values based on the Grace tests.

group.test function to perform the group test, with the null hypothesis being that all the
regression coefficients in the group equal zero. The argument of this function
needs to be an index vector of variables. There is an optimal second argument,
which specifies whether the group test should be performed based on the "holm"
procedure (default), or based on the "max" test statstic. The output is the p-value
of the group test. See examples below.

Author(s)

Sen Zhao

References

Li, C., and Li, H. (2008). Network-constrained regularization and variable selection for analysis of
genomic data. Bioinformatics, 24, 1175-1182.

Sun, T., and Zhang, C.-H. (2012). Scaled sparse linear regression. Biometrika, 99, 879-898.

Buhlmann, P. (2013). Statistical significance in high-dimensional linear models. Bernoulli, 19,
1212-1242.

van de Geer, S., Buhlmann, P., Rotiv, Y., and Dezeure, R. (2014). On asymptotically optimal
confidence regions and tests for high-dimensional models. The Annals of Statistics, 42, 1166-1202.

Zhang, C.-H., and Zhang, S.S. (2014). Confidence intervals for low dimensional parameters in high
dimensional linear models. Journal of the Royal Statistical Society: Series B, 76, 217-242.

Zhao, S., and Shojaie, A. (2016). A signifiance test for graph-constrained estimation. Biometrics,
72, 484-493.

Examples

set.seed(120)
n <- 100
p <- 200

L <- matrix(0, nrow = p, ncol = p)
for(i in 1:10){
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L[((i - 1) * p / 10 + 1), ((i - 1) * p / 10 + 1):(i * (p / 10))] <- -1
}
diag(L) <- 0
ind <- lower.tri(L, diag = FALSE)
L[ind] <- t(L)[ind]
diag(L) <- -rowSums(L)

beta <- c(rep(1, 10), rep(0, p - 10))

Sigma <- solve(L + 0.1 * diag(p))
sigma.error <- sqrt(t(beta) %*% Sigma %*% beta) / 2

X <- mvrnorm(n, mu = rep(0, p), Sigma = Sigma)
Y <- c(X %*% beta + rnorm(n, sd = sigma.error))

grace.test.result <- grace.test(Y, X, L, lambda.L = c(0.08, 0.12),
lambda.2 = c(0.08, 0.12))

mean(grace.test.result$pvalue[beta == 0] < 0.05)

grace.test.result$group.test(1:2)
grace.test.result$group.test(3:50)
grace.test.result$group.test(11:100)
grace.test.result$group.test(1:5, method = "max")

grace.test.result <- grace.test(Y, X, L, lambda.L = 0.08,
lambda.2 = 0.08, C = "cv")

mean(grace.test.result$pvalue[beta == 0] < 0.05)

graceI.test Graph-Constrained Hypothesis Testing Procedure

Description

Test for the association between Y and each column of X using the GraceI test based on Zhao and
Shojaie (2016).

Usage

graceI.test(Y,X,lambda.2,eta=0.05,C=4*sqrt(3),K=10,sigma.error=NULL,verbose=FALSE)

Arguments

Y outcome vector.

X matrix of predictors.

lambda.2 tuning parameter value for the ridge penalty (see details). If a sequence of
lambda.2 values is supplied, K-fold cross-validation is performed.

eta sparsity parameter η (see details).
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C parameter for the initial estimator (see details). It could also be "cv" or "scaled.lasso",
in which case cross-validation or the scaled lasso are applied to estimate the ini-
tial estimator.

K number of folds in cross-validation.

sigma.error error standard deviation. If NULL, scaled lasso is then applied to estimate it.

verbose whether computation progress should be printed.

Details

This function performs the GraceI test. See the documentation for grace.test.

Value

An R ‘list’ with elements:

intercept fitted intercept.

beta fitted regression coefficients.

pvalue p-values based on the Grace tests.

group.test function to perform the group test, with the null hypothesis being that all the
regression coefficients in the group equal zero. The argument of this function
needs to be an index vector of variables. There is an optimal second argument,
which specifies whether the group test should be performed based on the "holm"
procedure (default), or based on the "max" test statstic. The output is the p-value
of the group test. See examples below.

Author(s)

Sen Zhao

References

Li, C., and Li, H. (2008). Network-constrained regularization and variable selection for analysis of
genomic data. Bioinformatics, 24, 1175-1182.

Sun, T., and Zhang, C.-H. (2012). Scaled sparse linear regression. Biometrika, 99, 879-898.

Buhlmann, P. (2013). Statistical significance in high-dimensional linear models. Bernoulli, 19,
1212-1242.

van de Geer, S., Buhlmann, P., Rotiv, Y., and Dezeure, R. (2014). On asymptotically optimal
confidence regions and tests for high-dimensional models. The Annals of Statistics, 42, 1166-1202.

Zhang, C.-H., and Zhang, S.S. (2014). Confidence intervals for low dimensional parameters in high
dimensional linear models. Journal of the Royal Statistical Society: Series B, 76, 217-242.

Zhao, S., and Shojaie, A. (2016). A signifiance test for graph-constrained estimation. Biometrics,
72, 484-493.
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make.L Graph Laplacian Matrix Builder

Description

This function builds the graph Laplacian matrix from an adjacency matrix.

Usage

make.L(adj,normalize.Laplacian=FALSE)

Arguments

adj adjacency matrix of the graph.
normalize.Laplacian

whether the graph Laplacian matrix should be normalized to make all diagonal
entries equal to 1. Grace test with the normalized Laplacian matrix is more
powerful in identifying hub-covariates.

Value

A matrix object of the graph Laplacian matrix.

Author(s)

Sen Zhao
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