Package 'GenomeAdmixR'

January 20, 2025

Type Package

Title Simulate Admixture of Genomes

Version 2.1.7

Description Individual-based simulations forward in time, simulating how patterns in ancestry along the genome change after admixture. Full description can be found in Janzen (2021) <doi:10.1111/2041-210X.13612>.

License GPL (>= 2)

URL https://github.com/thijsjanzen/GenomeAdmixR

BugReports https://github.com/thijsjanzen/GenomeAdmixR/issues

Imports ggplot2, ggridges, hierfstat, methods, Rcpp, RcppParallel, rlang, stringr, tibble, vcfR

Suggests dplyr, junctions, knitr, magrittr, rmarkdown, testit, testthat, pbapply

LinkingTo Rcpp, RcppArmadillo, RcppParallel

VignetteBuilder knitr

Encoding UTF-8

RoxygenNote 7.1.2

SystemRequirements C++14

Depends R (>= 2.10)

NeedsCompilation yes

Author Thijs Janzen [aut, cre], Fernando Diaz G. [ctb], Richèl J.C. Bilderbeek [ctb]

Maintainer Thijs Janzen <thijsjanzen@gmail.com>

Repository CRAN

Date/Publication 2022-03-01 21:10:15 UTC

Contents

GenomeAdmixR-package
ancestry_module
calculate_allele_frequencies
calculate_average_ld
calculate_dist_junctions
calculate_fst
calculate_heterozygosity 9
calculate_ld
calculate_marker_frequency 10
combine_input_data
create_artificial_genomeadmixr_data
create_iso_female
dgrp2.3R.5k.data
iso_female_ancestry 14
iso_female_sequence
load_population
migration_settings
plink_to_genomeadmixr_data 18
plot.individual
plot_chromosome
plot_difference_frequencies
plot_dist_junctions
plot_frequencies
plot_joyplot_frequencies
plot_over_time
plot_start_end
print.genomeadmixr_data
print.individual
print.population
read_input_data
save_population
sequence_module
simulate_admixture
simulate_ancestry
simulate_ancestry_migration
simulate_sequence
simulate_sequence_migration
simulation_data_to_genomeadmixr_data
vcfR_to_genomeadmixr_data
write_as_plink

41

Description

Individual-based simulations forward in time, simulating how patterns in ancestry along the genome change after admixture. The simulation assumes Wright-Fisher dynamics, e.g. random mating and non-overlapping generations. In the simulation, instead of specific alleles, local ancestry is tracked, thus assuming that local molecular data can always be uniquely traced back to one of the founding individuals (populations). The package provides functionality to perform such simulations, but also to perform post-hoc statistical analyses and to visualize the obtained results.

Version 2.1.7 - Improve documentation

Version 2.1.6 - check classes with inherits

Version 2.1.5 - Removed debugging output

Version 2.1.4 - Only output when verbose = TRUE

Version 2.1.3 - Changed DOI link in description

Version 2.1.2 - Improved testing

Version 2.1.1 - Removed GNU make dependency

Version 2.1 - Removed error in calculate_allele_frequency

Version 2.0.1 - Moved migration outside the modules

Version 2.0 - Added ancestry_module and sequence_module to distinguish between implementa-

tions of the model

Version 1.2 - Added example sequencing data

Version 1.2 - Added the option to load sequence data for admixing

Version 1.1 - Fixed a minor bug with plot_joyplot_frequencies

Version 1.1 - Improved tests

Version 1.1 - Improved recombination code (again)

Version 1.0 - Release associated with bioRxiv submission, to be found here: https://doi.org/10.1101/2020.10.19.343491

Version 0.66 - Improved recombination code, about twice as fast

Version 0.65 - Added testing and added logo

Version 0.64 - Reduced cyclomatic complexity

Version 0.63 - Updated random number generation

Version 0.62 - Updated to Roxygen

Version 0.61 - Added plot_over_time

Version 0.60 - Added admixture with migration

Version 0.59 - Updated frequency code under the hood

Version 0.58 - Renamed to GenomeAdmixR

Version 0.58 - Collapsed and improved many functions

Version 0.57 - Added function to generate admixed individuals

Version 0.56 - Added starting frequencies to 'simulate_admixture'

Version 0.55 - Extended 'calculate_marker_frequency' to handle a vector of locations

Version 0.55 - Increased accuracy of choosing a random position for recombination, this should prevent the rare bug fixed in version 0.54

Version 0.54 - Fixed a MAJOR bug regarding recombination: in rare cases, a crossover position could be picked on an existing junction, due to the limited number of digits in uniform()

Version 0.54 - Improved plot_difference_frequencies to handle modified input

Version 0.53 - Added multiplicative_selection Version 0.52 - Added plot_difference_frequencies Version 0.51 - Added tajima's d calculation Version 0.50 - Added simulated_admixture until Version 0.49 - Added 'simulate' to cpp Version 0.48 - Added a general 'simulate' function Version 0.47 - Changed the effect of migration Version 0.46 - Added joyplot & increase ancestor Version 0.45 - Removed create two populations Version 0.44 - Added tracking regions Version 0.43 - Fixed bugs in select population Version 0.42 - Added initial and final frequency tables Version 0.41 - Added multiple marker support Version 0.40 - Collapsed selection functions Version 0.39 - Added support for non-additive selection Version 0.38 - Added track frequencies Version 0.37 - Removed selection on regions Version 0.36 - Added progress_bar option Version 0.35 - Added calculate_marker_frequency Version 0.34 - Added selection markers Version 0.33 - Fixed bugs in selection Version 0.32 - Moved Fish.h code to Fish.cpp Version 0.31 - Changed random number generator to R based Version 0.30 - Added Recombination = 1 code Version 0.29 - Changed internal junction representation: removed .left Version 0.28 - Reverted to Agner Fog Random number generation Version 0.27 - Speed up return types Version 0.26 - Added class verification code Version 0.25 - Squashed plotting bug Version 0.24 - Removed Output.cpp Version 0.23 - Removed number_of_founders from calc_allele_spectrum Version 0.22 - Added save and load functions Version 0.21 - Changed random-seed management Version 0.20 - Removed superfluous code Version 0.19 - Removed number_of_founders from Fst and LD code Version 0.18 - Start of tracking changes

Author(s)

Thijs Janzen Maintainer: (thijsjanzen@gmail.com)

References

Janzen, T., Diaz, F. (2020) Individual-based simulations of genome evolution with ancestry: the GenomeAdmixR R package. bioRxiv 2020.10.19.343491; doi: https://doi.org/10.1101/2020.10.19.343491

ancestry_module

Description

Module to perform simulations based on local ancestry

Usage

```
ancestry_module(
    input_population = NA,
    number_of_founders = 2,
    initial_frequencies = NA,
    morgan = 1,
    markers = NA,
    track_junctions = FALSE
)
```

Arguments

input_population

Potential earlier simulated population used as starting point for the simulation. If not provided by the user, the simulation starts from scratch.

	······································
number_of_found	lers Number of unique ancestors / ancestries to be tracked in the simulation
initial_frequer	
morgan	vector is normalized. Length of the genomic stretch simulated, expressed in Morgan (e.g. the number of crossovers during meiosis)
markers	A vector of locations of markers, with the location in Morgan. Ancestry at these marker positions is tracked for every generation.
track_junctions	Tracks the average number of junctions over time if TRUE

Value

list with type = "Ancestry". Can be used in simulate_admixture.

calculate_allele_frequencies

Calculate allele frequencies

Description

Calculate for a number of regularly spaced markers the relative frequency of each ancestor in the population.

Usage

```
calculate_allele_frequencies(
  source_pop,
  locations = seq(0, 1, length.out = 100),
  progress_bar = FALSE
)
```

Arguments

source_pop	Population for which to estimate allele frequencies
locations	A vector indicating the locations (in Morgan) where to calculate the allele fre- quencies.
progress_bar	Displays a progress_bar if TRUE. Default value is TRUE

Details

Markers are equidistantly spaced, with a distance of step_size in between them.

Value

A tibble containing the allele frequencies

Examples

calculate_average_ld Calculates the ld between two alleles

Description

calculate the average ld between two loci

Usage

```
calculate_average_ld(alleles_pos_1, alleles_pos_2)
```

Arguments

alleles_pos_1 alleles at locus 1 alleles_pos_2 alleles at locus 2

Value

a list with two entries: LD and r_squared

```
calculate_dist_junctions
```

collect the full distribution of junctions in the population

Description

calculates the distribution of junctions across the population

Usage

```
calculate_dist_junctions(pop)
```

Arguments

pop object of the class 'population'

Value

vector with two entries per individual, each indicating the number of junctions in the respective chromosomes

calculate_fst

Description

The FST value between two populations is calculated, given a number of markers. Markers are superimposed upon the (known) ancestry along the chromosome for all sampled individuals. Markers can be chosen to be regularly spaced, or randomly distributed.

Usage

```
calculate_fst(
   pop1,
   pop2,
   sampled_individuals = 10,
   number_of_markers = 100,
   random_markers = FALSE
)
```

Arguments

pop1	Population object	
pop2	Population object	
sampled_individuals		
	Number of individuals to base the FST upon. Individuals are randomly drawn from each population, a lower number speeds up calculations.	
number_of_markers		
	Number of markers along the chromosome used to calculate FST metrics.	
random_markers	If TRUE, markers are randomly spaced along the chromosome, if FALSE, markers are equidistantly spaced along the chromosome.	

Details

Uses the function wc from the package hierfstat to calculate the FST. The function wc computes the Weir and Cockerham F statistic.

Value

FST value

Examples

two_populations <- simulate_admixture(</pre>

```
module = ancestry_module(),
migration = migration_settings(migration_rate = 0.01,
population_size = c(100, 100)))
```

calculate_heterozygosity

Calculate heterozygosity

Description

Calculate the average population level heterozygosity

Usage

```
calculate_heterozygosity(source_pop, locations, progress_bar = FALSE)
```

Arguments

source_pop	Population for which to estimate allele frequencies, or a list of individuals for which to calculate average heterozygosity
locations	A vector indicating the locations (in Morgan) of markers for which to calculate the heterozygosity
progress_bar	Displays a progress_bar if TRUE. Default value is TRUE

Value

A tibble containing the heterozygosities

calculate_ld	Calculate linkage disequilibrium statistics This function calculates
	two matrices, once containing all pairwise linkage disequilibrium (ld)
	values, and one matrix containing all pairwise r statistics

Description

Calculate linkage disequilibrium statistics This function calculates two matrices, once containing all pairwise linkage disequilibrium (ld) values, and one matrix containing all pairwise r statistics

Usage

```
calculate_ld(pop, sampled_individuals = 10, markers = NA, verbose = FALSE)
```

Arguments

рор	focal population
sampled_individuals	
	Number of individuals randomly sampled to calculate the LD matrices
markers	vector of markers. If a single number is used, that number of markers is ran- domly placed along the genome.
verbose	display verbose output, default is FALSE.

Value

An object containing two items:

ld_matrix	Pairwise ld statistics for all markers
rsq_matrix	Pairwise rsq statistics for all markers

Examples

```
ylab = "Linkage Disequilibrium")
```

calculate_marker_frequency

Calculate allele frequencies at a specific marker location

Description

Calculate the relative frequency of each ancestor in the population at a specific marker location

Usage

```
calculate_marker_frequency(pop, location)
```

Arguments

рор	Population for which to estimate allele frequencies at the given marker
location	A vector or scalar of location(s) along the chromosome for which allele frequen-
	cies are to be calculated. Locations are in Morgan.

Value

A tibble containing the frequency of each present ancestor at the provided location. Ancestors with frequency = 0 are dropped out of the table. The tibble contains three columns: location, ancestor and frequency.

Examples

```
combine_input_data combine sequence data that was previously read from file into a popu-
lation
```

Description

Create data in a format that can be used by GenomeAdmixR, entries are sampled randomly from each input data set, with replacement. Probability of sampling from each input data set is driven by the input frequencies, and total number of individuals sampled is driven by pop_size.

Usage

```
combine_input_data(input_data_list, frequencies = NA, pop_size)
```

Arguments

input_data_list		
	list where each entry is the result of create_input_data	
frequencies	frequency of each entry in the list in the starting population	
pop_size	intended population size	

Value

the input data entries are combined to one single population that can be used to seed simulate_admixture_data. Output is identical to create_input_data

```
create_artificial_genomeadmixr_data
```

function to generate artificial genomeadmixr_data

Description

function to generate artificial genomeadmixr_data

Usage

```
create_artificial_genomeadmixr_data(
   number_of_individuals,
   marker_locations,
   used_nucleotides = 1:4,
   nucleotide_frequencies = NA
)
```

Arguments

number_of_individuals number of individuals marker_locations location of markers, either in bp or Morgan used_nucleotides subset or full set of [1/2/3/4] (reflecting a/c/t/g) nucleotide_frequencies frequencies of the used nucleotides, if not provided, equal frequencies are assumed.

Value

genomeadmixr_data object ready for simulate_admixture_data

create_iso_female *function to simulate creation of an isofemale line*

Description

create_isofemale simulates the creation of an isofemale line through extreme inbreeding.

dgrp2.3R.5k.data

Usage

```
create_iso_female(
  module = ancestry_module(),
  n = 1,
  inbreeding_pop_size = 100,
  run_time = 2000,
  num_threads = 1,
  verbose = FALSE
)
```

Arguments

module	Source population from which isofemales are generated
n	Number of isofemales to be generated
inbreeding_pop_size	
	Population size of the population used to generate homozygous individuals
run_time	Maximum runtime used for inbreeding
num_threads	number of threads. Default is 1. Set to -1 to use all available threads
verbose	Displays verbose output if TRUE. Default value is FALSE

Details

To create an isofemale, two individuals are randomly picked from the source population. Using these two individuals, a new population is seeded, of size inbreeding_pop_size. Then, this population is allowed to inbreed until either run_time is reached, or until all individuals are homozygous and genetically identical, whatever happens first.

Value

A list of length n, where each entry is a fully homozygous isofemale.

dgrp2.3R.5k.data A subset of sequencing data from the Drosophila Genetics Reference Panel

Description

This data set contains sequences from the 3R chromosome. Included are 4603 SNPs with at least 0.05 minor allele frequency, sequenced across 410 isofemale lines. Sequences were downloaded from http://dgrp2.gnets.ncsu.edu/data.html.

Usage

data("dgrp2.3R.5k.data")

Format

genomeadmixr_data object

References

Mackay, T., Richards, S., Stone, E. et al. The Drosophila melanogaster Genetic Reference Panel. Nature 482, 173–178 (2012). https://doi.org/10.1038/nature10811

Examples

```
data("dgrp2.3R.5k.data")
simulate_admixture(
    module = sequence_module(molecular_data = dgrp2.3R.5k.data),
    pop_size = 100,
    total_runtime = 10)
```

iso_female_ancestry Create isofemale

Description

Creates isofemale individuals, given a population

Usage

```
iso_female_ancestry(
  source_pop = NA,
  n = 1,
  inbreeding_pop_size = 100,
  run_time = 2000,
  morgan = 1,
  num_threads = 1,
  verbose = FALSE
)
```

Arguments

source_pop	Source population from which isofemales are generated
n	Number of isofemales to be generated
inbreeding_pop	_size
	Population size of the population used to generate homozygous individuals
run_time	Maximum runtime used for inbreeding
morgan	Size of the chromosome in Morgan (e.g. the number of crossovers during meiosis)
num_threads	number of threads. Default is 1. Set to -1 to use all available threads
verbose	Displays verbose output if TRUE. Default value is FALSE

14

Details

To create an isofemale, two individuals are randomly picked from the source population. Using these two individuals, a new population is seeded, of size inbreeding_pop_size. Then, this population is allowed to inbreed until either run_time is reached, or until all individuals are homozygous and genetically identical, whatever happens first.

Value

A list of length n, where each entry is a fully homozygous isofemale.

iso_female_sequence Create isofemale

Description

Creates isofemale individuals, given a population

Usage

```
iso_female_sequence(
    input_data = NA,
    n = 1,
    inbreeding_pop_size = 100,
    run_time = 2000,
    morgan = 1,
    recombination_rate = NA,
    num_threads = 1,
    verbose = FALSE
)
```

Arguments

input_data	Source population from which isofemales are generated	
n	Number of isofemales to be generated	
inbreeding_pop	_size	
	Population size of the population used to generate homozygous individuals	
run_time	Maximum runtime used for inbreeding	
morgan	Size of the chromosome in Morgan (e.g. the number of crossovers during meio-	
	sis)	
recombination_rate		
	rate in cM / Mbp, used to map recombination to the markers. If the recombination_rate is not set, the value for Morgan is used, assuming that the markers included span an entire chromosome.	
num_threads	number of threads. Default is 1. Set to -1 to use all available threads	
verbose	Displays verbose output if TRUE. Default value is FALSE	

Details

To create an isofemale, two individuals are randomly picked from the source population. Using these two individuals, a new population is seeded, of size inbreeding_pop_size. Then, this population is allowed to inbreed until either run_time is reached, or until all individuals are homozygous and genetically identical, whatever happens first.

Value

A list of length n, where each entry is a fully homozygous isofemale.

load_population Load a population from file

Description

Loads a population that has previously been written to file.

Usage

```
load_population(file_name)
```

Arguments

file_name Name of the file to save the population

Details

This function is a wrapper for readRDS.

Value

A population object

See Also

save_population

16

migration_settings Function to manage settings associated with migration

Description

creates a list with settings associated with migration.

Usage

```
migration_settings(
  migration_rate = NA,
  stop_at_critical_fst = FALSE,
  critical_fst = NA,
  population_size = c(100, 100),
  initial_frequencies = list(c(1, 0), c(0, 1)),
  generations_between_update = 10,
  sampled_individuals = 10,
  number_of_markers = 100,
  random_markers = TRUE
)
```

Arguments

migration_rate	Rate of migration between the two populations. Migration is implemented such that with probability m (migration rate) one of the two parents of a new offspring
	is from the other population, with probability 1-m both parents are of the focal population.
stop_at_critica	l_fst
	option to stop at a critical FST value, default is FALSE
critical_fst	the critical fst value to stop, if stop_simulation_at_critical_fst is TRUE
population_size	
	vector of population sizes, one size for each population
initial_frequen	cies
	A list describing the initial frequency of each ancestor in each population. Each entry in the list contains a vector with the frequencies for all ancestor. The length
	of the vector indicates the number of unique ancestors. If a vector not summing to 1 is provided, the vector is normalized.
generations_bet	•
80	The number of generations after which the simulation has to check again whether the critical Fst value is exceeded
sampled_individ	
	Number of individuals to be sampled at random from the population to estimate
	Fst
number_of_marke	rs
	Number of markers to be used to estimate Fst
random_markers	Are the markers to estimate Fst randomly distributed, or regularly distributed? Default is TRUE.

Value

list with migration associated settings. To be used to pass on migration settings to simulate_admixture.

```
plink_to_genomeadmixr_data
```

function to convert plink style (ped/map) data to genome_admixr_data

Description

function to convert plink style (ped/map) data to genome_admixr_data

Usage

```
plink_to_genomeadmixr_data(
   ped_data,
   map_data,
   chosen_chromosome,
   verbose = FALSE
)
```

Arguments

ped_data	result of read.table(ped_file, header = F)	
map_data	result of read.table(map_file, header = F)	
chosen_chromosome		
	chromosome of choice	
verbose	verbose output	

Value

genomeadmixr_data object ready for simulate_admixture_data

plot.individual plot the genome of an individual

Description

visualise ancestry blocks on both chromosomes

Usage

```
## S3 method for class 'individual'
plot(x, cols = NA, ...)
```

plot_chromosome

Arguments

х	object of type individual
cols	colors for the different ancestors
	other arguments

Value

No return value

plot_chromosome	e plots a chromosome	

Description

This function plots a chromosome in the range [xmin, xmax]. Colors indicate different ancestry.

Usage

plot_chromosome(chrom, xmin = 0, xmax = 1)

Arguments

chrom	object of type chromosome, typically a table with two columns. The first column indicates the start of an ancestry block (location in Morgan), the second column indicates the ancestry type.
xmin	minimum value of the range, $default = 0$.
xmax	maximum value of the range, $default = 1$.

Value

No return value

Examples

```
wildpop = simulate_admixture(
    module = ancestry_module(number_of_founders = 10, morgan = 1),
    pop_size = 1000,
    total_runtime = 10)
```

plot_chromosome(chrom = isofemale[[1]]\$chromosome1)

```
# and a detail of the chromosome:
plot_chromosome(chrom = isofemale[[1]]$chromosome1,
                xmin = 0.4,
                xmax = 0.6)
```

```
plot_difference_frequencies
```

Plot the change in frequency between the start and end of a simulation

Description

This function plots the change in frequency of one or multiple ancestors after performing a simulation.

Usage

```
plot_difference_frequencies(
  results,
  picked_ancestor = "ALL",
  picked_population = 1
)
```

Arguments

results

An object which is the result of simulate_admixture being a list with four properties: population, frequencies, initial_frequencies and final frequencies

```
picked_ancestor
```

Default is "ALL", where different colors indicate different ancestors. Alternatively, for clarity, the user can specify a specific ancestral allele, and only that allele is plotted

```
picked_population
```

If multiple populations were simulated (in the case of simulate_admixture_migration), which population should be plotted? Default is population_1.

Value

a ggplot2 object

Examples

```
s <- 0.1
select_matrix <- matrix(nrow = 1, ncol = 5)</pre>
select_matrix[1, ] <- c(0.25, 1.0, 1 + 0.5 * s, 1 + s, 0)</pre>
markers <- seq(from = 0.2, to = 0.3, length.out = 100)
selected_pop <- simulate_admixture(</pre>
                     module = ancestry_module(number_of_founders = 10,
```

20

```
morgan = 1,
markers = markers),
pop_size = 1000,
total_runtime = 11,
select_matrix = select_matrix)
require(ggplot2)
plot_difference_frequencies(results = selected_pop,
picked_ancestor = "ALL")
```

plot_dist_junctions plot the distribution of junctions

Description

plots the distribution of junctions in the population using base R

Usage

```
plot_dist_junctions(pop)
```

Arguments

pop of the class 'population'

Value

No return value

plot_frequencies *Plot the frequencies of all ancestors along the genome.*

Description

This function plots the frequency of all ancestors after performing a simulation.

Usage

```
plot_frequencies(
   result,
   locations = seq(0, 1, length.out = 100),
   progress_bar = FALSE
)
```

Arguments

result	An object which is the result of select_population or create_population_selection, being a list with four properties: population, frequencies, initial_frequencies and final frequencies
locations	A vector indicating the locations (in Morgan) where to calculate the allele fre- quencies.
progress_bar	Displays a progress_bar if TRUE. Default value is FALSE

Value

a ggplot2 object

Examples

```
pop <- simulate_admixture(</pre>
             module = ancestry_module(number_of_founders = 4),
             pop_size = 1000,
             total_runtime = 11)
require(ggplot2)
plot_frequencies(result = pop)
```

```
plot_joyplot_frequencies
```

make a joy plot of the distribution of allele frequencies within a region

Description

This function plots the distribution of allele frequencies within a region over time, making use of a 'joyplot'

Usage

```
plot_joyplot_frequencies(
  frequencies,
  time_points,
 picked_ancestor = "ALL",
 picked_population = 1
)
```

frequencies	A tibble containing four columns: time, location, ancestor, frequency.	
Typically one of the items returned by create_population_selection or select_		
	when the user specifies track_frequency.	
time_points	A sequence of time points for which the user wants to create the joyplot	

Arguments

```
picked_ancestor
```

Default is "ALL", where different colors indicate different ancestors. Alternatively, for clarity, the user can specify a specific ancestral allele, and only that allele is plotted

picked_population

If multiple populations were simulated (in the case of simulate_admixture_migration), which population should be plotted? Default is population_1.

Value

a ggplot object

Examples

```
s <- 0.01
select_matrix <- matrix(nrow = 1, ncol = 5)</pre>
select_matrix[1, ] <- c(0.25, 1.0, 1 + 0.5 * s, 1 + s, 0)</pre>
markers <- seq(from = 0.2, to = 0.3, length.out = 100)
selected_pop <- simulate_admixture(</pre>
                    module = ancestry_module(number_of_founders = 10,
                                              morgan = 1,
                                              markers = markers),
                    pop_size = 1000,
                    total_runtime = 11,
                    select_matrix = select_matrix)
require(ggplot2)
plot_joyplot_frequencies(frequencies = selected_pop$frequencies,
                          time_points = 0:11,
                          picked_ancestor = "ALL")
# joyplot frequencies returns a ggplot object, so we can
# add extra elements:
plot_joyplot_frequencies(frequencies = selected_pop$frequencies,
                          time_points = 0:11,
                         picked_ancestor = "ALL") +
 ggplot2::xlab("Location") +
 ggplot2::ylab("Generations")
```

plot_over_time Plot the frequencies of all ancestors over time

Description

This function plots the frequency of all ancestors over time at a specific location on the chromosome, after performing a simulation.

Usage

```
plot_over_time(frequencies, focal_location)
```

Arguments

frequencies A tibble containing four columns: time, location, ancestor, frequency. A fifth colum population can be included if the tibble is the result of simulate_admixture_migration.

focal_location Location (in Morgan) where to plot the allele frequencies.

Value

a ggplot2 object

Examples

```
pop <- simulate_admixture(
                module = ancestry_module(number_of_founders = 10,
                     markers = 0.5),
                pop_size = 1000,
                total_runtime = 11)
require(ggplot2)
plot_over_time(frequencies = pop$frequencies,
                    focal_location = 0.5)</pre>
```

plot_start_end Plot both the starting frequencies and the final frequencies in one plot

Description

This function plots the distribution of both the starting and the final frequencies in one plot

Usage

```
plot_start_end(results, picked_ancestor = "ALL", picked_population = 1)
```

Arguments

results	An object which is the result of simulate_admixture, being a list with four properties: population, frequencies, initial_frequencies and final frequencies	
picked_ancestor	n	
	Default is "ALL", where different colors indicate different ancestors. Alterna- tively, for clarity, the user can specify a specific ancestral allele, and only that allele is plotted	
picked_population		
	If multiple populations were simulated (in the case of simulate_admixture_migration), which population should be plotted? Default is population_1.	

Value

a ggplot object

Examples

print.genomeadmixr_data

```
print an individual to the console
```

Description

prints an object of class genomeadmixr_data to the console

Usage

```
## S3 method for class 'genomeadmixr_data'
print(x, ...)
```

Arguments

х	individual
	other arguments

Value

No return value

print.individual print an individual to the console

Description

prints an object of class individual to the console

Usage

```
## S3 method for class 'individual'
print(x, ...)
```

Arguments

х	individual
	other arguments

Value

No return value

print.population print a population object

Description

prints the contents of a population nicely

Usage

```
## S3 method for class 'population'
print(x, ...)
```

Arguments

х	input population
•••	other arguments

Value

No return value

read_input_data read sequence data from file to be used in simulation

Description

Create data in a format that can be used by GenomeAdmixR

Usage

```
read_input_data(
   file_names,
   type,
   chosen_chromosome,
   number_of_snps = NA,
   random_snps = TRUE,
   verbose = FALSE
)
```

Arguments

file_names	names of input files
type	type of data, options are 'ped' and 'vcf'
chosen_chromosome	
	GenomeAdmixR simulates only a single chromosome.
number_of_snps	number of snps to be loaded from file, default is to load all snps
random_snps	if a subset of all snps has to be taken, should these be sampled sequentially (e.g. the first 100 snps) or randomly (100 randomly sampled snps) (examples are for 'number_of_snps' = 100).
verbose	give verbose output

Value

list with two properties: genomes a matrix with the sequence translated to numerics, such that [actg] corresponds to [1234], and missing data is represented with "-". Rows in the matrix correspond to chromosomes, and columns represent bases. Two consecutive rows represent an individual, such that rows 1-2 are individual, rows 3-4 are one individual etc. markers corresponds to the locations of the markers (in bp) on the chosen chromosome.

save_population Save a

Description

Saves a population to file for later use

Usage

save_population(population, file_name, compression = TRUE)

Arguments

population	Object of class population
file_name	Name of the file to save the population
compression	By default, the population is compressed to reduce file size. See for more infor- mation saveRDS

Details

This function functions as a wrapper for the base function saveRDS.

Value

No return value

sequence_module create sequence module

Description

creates a sequence module, which contains all relevant information in order to perform a simulation based on sequence data.

Usage

```
sequence_module(
  molecular_data = NA,
  initial_frequencies = NA,
  morgan = 1,
  recombination_rate = NA,
  markers = NA,
  mutation_rate = 0,
  substitution_matrix = matrix(1/4, 4, 4)
)
```

Arguments

molecular_data	Genomic data used as input, should be of type genomeadmixr_data. Either a single dataset is provided, or a list of multiple genomeadmixr_data objects.	
initial_frequencies		
	A vector describing the initial contribution of each provided input data set to the starting hybrid swarm. By default, equal frequencies are assumed. If a vector not summing to 1 is provided, the vector is normalized.	
morgan	Length of the molecular sequence in Morgan (e.g. the number of crossovers during meiosis), alternatively, the recombination rate can be used, see below.	
recombination_rate		
	rate in cM / Mbp , used to map recombination to the markers. If the recombination_rate is not set, the value for Morgan is used, assuming that the markers included span an entire chromosome.	
markers	A vector of locations of markers, these markers are tracked for every generation.	
mutation_rate	the per base probability of mutation. Default is 0.	
substitution_matrix		
	a 4x4 matrix representing the probability of mutating to another base (where $[1/2/3/4] = [a/c/t/g]$), conditional on the event of a mutation happening. Default is the JC69 matrix, with equal probabilities for all transitions / transversions.	

Value

sequence module object, used as starting point for simulate_admixture.

simulate_admixture	Individual based simulation of the breakdown of contiguous ancestry blocks.

Description

Individual based simulation of the breakdown of contiguous ancestry blocks, with or without selection. Simulations can be started from scratch, or from a predefined input population.

Usage

```
simulate_admixture(
  module = ancestry_module(),
  pop_size = 100,
  total_runtime = 100,
  migration = migration_settings(),
  select_matrix = NA,
  multiplicative_selection = TRUE,
  verbose = FALSE,
  num_threads = 1
)
```

Arguments

module	Chosen module to simulate, either created with module_ancestry or module_sequence.	
pop_size	The number of individuals in the population. If the number is larger than the number of individuals in the input population (if provided), additional individuals are sampled randomly from the input population to reach the intended size.	
total_runtime	Number of generations	
migration	settings associated with migration, should be created with migration_settings	
select_matrix	Selection matrix indicating the markers which are under selection. If not pro- vided by the user, the simulation proceeds neutrally. If provided, each row in the matrix should contain five entries: location location of the marker under selec- tion (in Morgan) fitness of wildtype (aa) fitness of heterozygote (aA) fitness of homozygote mutant (AA) Ancestral type that represents the mutant allele A	
multiplicative_selection		
	Default: TRUE. If TRUE, fitness is calculated for multiple markers by multi- plying fitness values for each marker. If FALSE, fitness is calculated by adding fitness values for each marker.	
verbose	Verbose output if TRUE. Default value is FALSE	
num_threads	number of threads. Default is 1. Set to -1 to use all available threads	

Value

A list with: population a population object, and three tibbles with allele frequencies (only contain values of a vector was provided to the argument markers: frequencies, initial_frequencies and final_frequencies. Each tibble contains four columns, time, location, ancestor and frequency, which indicates the number of generations, the location along the chromosome of the marker, the ancestral allele at that location in that generation, and finally, the frequency of that allele.

Examples

```
# local ancestry simulation
two_populations <- simulate_admixture(</pre>
                         module = ancestry_module(number_of_founders = 3,
                                                   morgan = 0.8),
                         migration = migration_settings(
                                          migration_rate = 0.01,
                                          population_size = c(100, 100)),
                          total_runtime = 10)
# sequence simulation
data(dgrp2.3R.5k.data)
sequence_population <-</pre>
     simulate_admixture(
                  module = sequence_module(molecular_data = dgrp2.3R.5k.data,
                           recombination_rate = 0.2,
                           mutation_rate = 1e-5),
                  pop_size = 1000,
                  total_runtime = 10)
```

 $\verb"simulate_ancestry"$

Description

Individual based simulation of the breakdown of contiguous ancestry blocks, with or without selection. Simulations can be started from scratch, or from a predefined input population.

Usage

```
simulate_ancestry(
    input_population = NA,
    pop_size = NA,
    number_of_founders = 2,
    initial_frequencies = NA,
    total_runtime = 100,
    morgan = 1,
    num_threads = 1,
    select_matrix = NA,
    markers = NA,
    verbose = FALSE,
    track_junctions = FALSE,
    multiplicative_selection = TRUE
)
```

Arguments

input_population		
	Potential earlier simulated population used as starting point for the simulation. If not provided by the user, the simulation starts from scratch.	
pop_size	The number of individuals in the population. If the number is larger than the number of individuals in the input population (if provided), additional individuals are sampled randomly from the input population to reach the intended size.	
number_of_founders		
	Number of unique ancestors	
initial_frequencies		
	A vector describing the initial frequency of each ancestor. By default, equal frequencies are assumed. If a vector not summing to 1 is provided, the vector is normalized.	
total_runtime	Number of generations	
morgan	Length of the chromosome in Morgan (e.g. the number of crossovers during meiosis)	
num_threads	number of threads. Default is 1. Set to -1 to use all available threads	

select_matrix	Selection matrix indicating the markers which are under selection. If not provided by the user, the simulation proceeds neutrally. If provided, each row in the matrix should contain five entries: location location of the marker under selection (in Morgan) fitness of wildtype (aa) fitness of heterozygote (aA) fitness of homozygote mutant (AA) Ancestral type that represents the mutant allele A	
markers	A vector of locations of markers (relative locations in $[0, 1]$). If a vector is provided, ancestry at these marker positions is tracked for every generation.	
verbose	Verbose output if TRUE. Default value is FALSE	
track_junctions		
	Track the average number of junctions over time if TRUE	
multiplicative_selection		
	Default: TRUE. If TRUE, fitness is calculated for multiple markers by multiplying fitness values for each marker. If FALSE, fitness is calculated by adding fitness values for each marker.	

Value

A list with: population a population object, and three tibbles with allele frequencies (only contain values of a vector was provided to the argument markers: frequencies, initial_frequencies and final_frequencies. Each tibble contains four columns, time, location, ancestor and frequency, which indicates the number of generations, the location along the chromosome of the marker, the ancestral allele at that location in that generation, and finally, the frequency of that allele.

simulate_ancestry_migration

Individual based simulation of the breakdown of contiguous ancestry blocks in two populations linked by migration

Description

Individual based simulation of the breakdown of contiguous ancestry blocks, with or without selection. Simulations can be started from scratch, or from a predefined input population. Two populations are simulated, connected by migration

Usage

```
simulate_ancestry_migration(
  input_population_1 = NA,
  input_population_2 = NA,
  pop_size = c(100, 100),
  initial_frequencies = list(c(1, 0), c(0, 1)),
  total_runtime = 100,
 morgan = 1,
 num_threads = 1,
```

```
select_matrix = NA,
markers = NA,
verbose = FALSE,
track_junctions = FALSE,
multiplicative_selection = TRUE,
migration_rate = 0,
stop_at_critical_fst = FALSE,
critical_fst = 0.1,
generations_between_update = 100,
sampled_individuals = 10,
number_of_markers = 100,
random_markers = TRUE
```

Arguments

)

input_population_1 Potential earlier simulated population used as starting point for the simulation. If not provided by the user, the simulation starts from scratch. input_population_2 Potential earlier simulated population used as starting point for the simulation. If not provided by the user, the simulation starts from scratch. Vector containing the number of individuals in both populations. pop_size initial_frequencies A list describing the initial frequency of each ancestor in each population. Each entry in the list contains a vector with the frequencies for all ancestor. The length of the vector indicates the number of unique ancestors. If a vector not summing to 1 is provided, the vector is normalized. total_runtime Number of generations Length of the chromosome in Morgan (e.g. the number of crossovers during morgan meiosis) number of threads. Default is 1. Set to -1 to use all available threads num_threads Selection matrix indicating the markers which are under selection. If not proselect_matrix vided by the user, the simulation proceeds neutrally. If provided, each row in the matrix should contain five entries: location location of the marker under selection (in Morgan) fitness of wildtype (aa) fitness of heterozygote (aA) fitness of homozygote mutant (AA) Ancestral type that representes the mutant allele A markers A vector of locations of markers (relative locations in [0, 1]). If a vector is provided, ancestry at these marker positions is tracked for every generation. Verbose output if TRUE. Default value is FALSE verbose track_junctions Track the average number of junctions over time if TRUE multiplicative_selection Default: TRUE. If TRUE, fitness is calculated for multiple markers by multiplying fitness values for each marker. If FALSE, fitness is calculated by adding fitness values for each marker.

migration_rate	Rate of migration between the two populations. Migration is implemented such that with probability m (migration rate) one of the two parents of a new offspring is from the other population, with probability 1-m both parents are of the focal population.	
<pre>stop_at_critica</pre>	al_fst	
	option to stop at a critical FST value, default is FALSE	
critical_fst	the critical fst value to stop, if stop_simulation_at_critical_fst is TRUE	
generations_between_update		
	The number of generations after which the simulation has to check again whether	
	the critical Fst value is exceeded	
sampled_individuals		
	Number of individuals to be sampled at random from the population to estimate	
	Fst	
number_of_markers		
	Number of markers to be used to estimate Fst	
random_markers	Are the markers to estimate Fst randomly distributed, or regularly distributed? Default is TRUE.	

Value

A list with: population_1, population_2 two population objects, and three tibbles with allele frequencies (only contain values of a vector was provided to the argument markers: frequencies, initial_frequencies and final_frequencies. Each tibble contains five columns, time, location, ancestor, frequency and population, which indicates the number of generations, the location along the chromosome of the marker, the ancestral allele at that location in that generation, the frequency of that allele and the population in which it was recorded (1 or 2). If a critical fst value was used to terminate the simulation, and object FST with the final FST estimate is returned as well.

simulate_sequence Individual based simulation of the breakdown of contiguous ancestry blocks.

Description

Individual based simulation of the breakdown of contiguous ancestry blocks, with or without selection. Simulations can be started from scratch, or from a predefined input population.

Usage

```
simulate_sequence(
    input_data = NA,
    pop_size = NA,
    initial_frequencies = NA,
    total_runtime = 100,
    morgan = 1,
    recombination_rate = NA,
```

simulate_sequence

```
num_threads = 1,
select_matrix = NA,
markers = NA,
verbose = FALSE,
multiplicative_selection = TRUE,
mutation_rate = 0,
substitution_matrix = matrix(1/4, 4, 4)
)
```

Arguments

input_data	Genomic data used as input, should be of type genomeadmixr_data. Either a single dataset is provided, or a list of multiple genomeadmixr_data objects.
pop_size	Vector containing the number of individuals in both populations.
initial_freque	ncies
	A vector describing the initial contribution of each provided input data set to the starting hybrid swarm. By default, equal frequencies are assumed. If a vector not summing to 1 is provided, the vector is normalized.
total_runtime	Number of generations
morgan	Length of the chromosome in Morgan (e.g. the number of crossovers during meiosis)
recombination_	rate
	rate in cM / Mbp, used to map recombination to the markers. If the recombination_rate is not set, the value for Morgan is used, assuming that the markers included span an entire chromosome.
num_threads	number of threads. Default is 1. Set to -1 to use all available threads
select_matrix	Selection matrix indicating the markers which are under selection. If not pro- vided by the user, the simulation proceeds neutrally. If provided, each row in the matrix should contain five entries: location location of the marker under selec- tion (in Morgan) fitness of wildtype (aa) fitness of heterozygote (aA) fitness of homozygote mutant (AA) Ancestral type that represents the mutant allele A
markers	A vector of locations of markers, these markers are tracked for every generation.
verbose	Verbose output if TRUE. Default value is FALSE
multiplicative_	_selection Default: TRUE. If TRUE, fitness is calculated for multiple markers by multi- plying fitness values for each marker. If FALSE, fitness is calculated by adding fitness values for each marker.
mutation_rate	the per base probability of mutation. Default is 0.
substitution_ma	atrix a 4x4 matrix representing the probability of mutating to another base (where [1/2/3/4] = [a/c/t/g]), conditional on the event of a mutation happening. Default is the JC69 matrix, with equal probabilities for all transitions / transversions.

Value

A list with: population a population object, and three tibbles with allele frequencies (only contain values of a vector was provided to the argument markers: frequencies, initial_frequencies and final_frequencies. Each tibble contains four columns, time, location, ancestor and frequency, which indicates the number of generations, the location along the chromosome of the marker, the ancestral allele at that location in that generation, and finally, the frequency of that allele.

simulate_sequence_migration

Individual based simulation of the breakdown of contiguous ancestry blocks in two populations linked by migration

Description

Individual based simulation of the breakdown of contiguous ancestry blocks, with or without selection. Simulations can be started from scratch, or from a predefined input population. Two populations are simulated, connected by migration

Usage

```
simulate_sequence_migration(
  input_data_population_1 = NA,
  input_data_population_2 = NA,
  pop_size = c(100, 100),
  total_runtime = 100,
 morgan = 1,
  recombination_rate = NA,
  num_threads = 1,
  select_matrix = NA,
 markers = NA,
  verbose = FALSE,
 multiplicative_selection = TRUE,
 migration_rate = 0,
  stop_at_critical_fst = FALSE,
  critical_fst = NA,
  generations_between_update = 100,
  sampled_individuals = 10,
  number_of_markers = 100,
  random_markers = TRUE,
 mutation_rate = 0,
  substitution_matrix = matrix(1/4, 4, 4)
)
```

36

Arguments

input_data_popu	
	Genomic data used as input, should be created by the function create_input_data or by the function combine_input_data
input_data_popu	ulation_2
	Genomic data used as input, should be created by the function create_input_data or by the function combine_input_data
pop_size	Vector containing the number of individuals in both populations.
total_runtime	Number of generations
morgan	Length of the chromosome in Morgan (e.g. the number of crossovers during meiosis)
recombination_r	rate
	rate in cM / Mbp, used to map recombination to the markers. If the recombination_rate is not set, the value for morgan is used, assuming that the markers included span an entire chromosome.
num_threads	number of threads. Default is 1. Set to -1 to use all available threads
select_matrix	Selection matrix indicating the markers which are under selection. If not provided by the user, the simulation proceeds neutrally. If provided, each row in the matrix should contain five entries: location location of the marker under selection (in Morgan) fitness of wildtype (aa) fitness of heterozygote (aA) fitness of homozygote mutant (AA) Ancestral type that representes the mutant allele A
markers	A vector of locations of markers (relative locations in [0, 1]). If a vector is provided, ancestry at these marker positions is tracked for every generation.
verbose	Verbose output if TRUE. Default value is FALSE
multiplicative_	selection
	Default: TRUE. If TRUE, fitness is calculated for multiple markers by multi- plying fitness values for each marker. If FALSE, fitness is calculated by adding fitness values for each marker.
migration_rate	Rate of migration between the two populations. Migration is implemented such that with probability m (migration rate) one of the two parents of a new offspring is from the other population, with probability 1-m both parents are of the focal population.
stop_at_critica	al_fst
	option to stop at a critical FST value , default is FALSE
critical_fst	the critical fst value to stop, if stop_simulation_at_critical_fst is TRUE
generations_bet	
	The number of generations after which the simulation has to check again whether the critical Fst value is exceeded
sampled_indivic	Number of individuals to be sampled at random from the population to estimate Fst
number_of_marke	ers
	Number of markers to be used to estimate Fst

random_markers Are the markers to estimate Fst randomly distributed, or regularly distributed? Default is TRUE. mutation_rate the per base probability of mutation. Default is 0.

substitution_matrix

a 4x4 matrix representing the probability of mutating to another base (where [1/2/3/4] = [a/c/t/g]), conditional on the event of a mutation happening. Default is the JC69 matrix, with equal probabilities for all transitions / transversions.

Value

A list with: population_1, population_2 two population objects, and three tibbles with allele frequencies (only contain values of a vector was provided to the argument markers: frequencies, initial_frequencies and final_frequencies. Each tibble contains five columns, time, location, ancestor, frequency and population, which indicates the number of generations, the location along the chromosome of the marker, the ancestral allele at that location in that generation, the frequency of that allele and the population in which it was recorded (1 or 2). If a critical fst value was used to terminate the simulation, and object FST with the final FST estimate is returned as well.

simulation_data_to_genomeadmixr_data
 function to convert ped/map data to genome_admixr_data

Description

function to convert ped/map data to genome_admixr_data

Usage

```
simulation_data_to_genomeadmixr_data(
   simulation_data,
   markers = NA,
   verbose = FALSE
)
```

Arguments

ma

ve

simulation_data

_	result of simulate_admixture
arkers	vector of locations of markers (in Morgan). If no vector is provided, the function searches for marker locations in the simulation data.
erbose	provide verbose output (default is FALSE)

Value

genomeadmixr_data object ready for simulate_admixture_data

vcfR_to_genomeadmixr_data

function to convert a vcfR object to genome_admixr_data

Description

function to convert a vcfR object to genome_admixr_data

Usage

```
vcfR_to_genomeadmixr_data(
  vcfr_object,
  chosen_chromosome,
  number_of_snps = NA,
  random_snps = TRUE,
  verbose = FALSE
)
```

Arguments

vcfr_object	result of vcfR::read.vcfR
chosen_chromosome	
	chromosome of choice
number_of_snps	number of snps to be loaded from the vcf file, default is to load all snps
random_snps	if a subset of all snps has to be taken, should these be sampled sequentially (e.g. the first 100 snps) or randomly (100 randomly sampled snps) (examples are for 'number_of_snps' = 100).
verbose	if true, print progress bar

Value

genomeadmixr_data object ready for simulate_admixture_data

write_as_plink function to write simulation output as PLINK style data

Description

function to write simulation output as PLINK style data

Usage

```
write_as_plink(
    input_pop,
    marker_locations,
    file_name_prefix,
    chromosome = 1,
    recombination_rate = 1
)
```

Arguments

```
input_pop input population, either of class "population" or of class "genomeadmixr_data"
marker_locations
```

location of markers, in bp

file_name_prefix

prefix of the ped/map files. chromosome chromosome indication for map file recombination_rate

recombination rate in cM / kb

Value

No return value

40

Index

* datasets dgrp2.3R.5k.data, 13 ancestry_module, 5 calculate_allele_frequencies, 6 calculate_average_ld,7 calculate_dist_junctions, 7 calculate_fst, 8 calculate_heterozygosity, 9 calculate_ld, 9 calculate_marker_frequency, 10 combine_input_data, 11 create_artificial_genomeadmixr_data, 12 create_iso_female, 12 dgrp2.3R.5k.data, 13 GenomeAdmixR (GenomeAdmixR-package), 3 GenomeAdmixR-package, 3 iso_female_ancestry, 14 iso_female_sequence, 15 load_population, 16 migration_settings, 17, 30 plink_to_genomeadmixr_data, 18 plot.individual, 18 plot_chromosome, 19 plot_difference_frequencies, 20 plot_dist_junctions, 21 plot_frequencies, 21 plot_joyplot_frequencies, 22 plot_over_time, 23 plot_start_end, 24 print.genomeadmixr_data, 25 print.individual, 26 print.population, 26

read_input_data, 27

vcfR_to_genomeadmixr_data, 39

write_as_plink, 39