## ----echo=FALSE,message=FALSE,warning=FALSE,eval=TRUE------------------------- library(FeatureExtraction) ## ----eval=FALSE--------------------------------------------------------------- # createLooCovariateSettings <- function(useLengthOfObs = TRUE) { # covariateSettings <- list(useLengthOfObs = useLengthOfObs) # attr(covariateSettings, "fun") <- "getDbLooCovariateData" # class(covariateSettings) <- "covariateSettings" # return(covariateSettings) # } ## ----eval=FALSE--------------------------------------------------------------- # getDbLooCovariateData <- function(connection, # oracleTempSchema = NULL, # cdmDatabaseSchema, # cdmVersion = "5", # cohortTable = "#cohort_person", # cohortIds = c(-1), # rowIdField = "subject_id", # covariateSettings, # aggregated = FALSE, # minCharacterizationMean = 0) { # writeLines("Constructing length of observation covariates") # if (covariateSettings$useLengthOfObs == FALSE) { # return(NULL) # } # if (aggregated) { # stop("Aggregation not supported") # } # # # Some SQL to construct the covariate: # sql <- paste( # "SELECT @row_id_field AS row_id, 1 AS covariate_id,", # "DATEDIFF(DAY, observation_period_start_date, cohort_start_date)", # "AS covariate_value", # "FROM @cohort_table c", # "INNER JOIN @cdm_database_schema.observation_period op", # "ON op.person_id = c.subject_id", # "WHERE cohort_start_date >= observation_period_start_date", # "AND cohort_start_date <= observation_period_end_date", # "{@cohort_ids != -1} ? {AND cohort_definition_id IN @cohort_ids}" # ) # sql <- SqlRender::render(sql, # cohort_table = cohortTable, # cohort_ids = cohortIds, # row_id_field = rowIdField, # cdm_database_schema = cdmDatabaseSchema # ) # sql <- SqlRender::translate(sql, targetDialect = attr(connection, "dbms")) # # # Retrieve the covariate: # covariates <- DatabaseConnector::querySql(connection, sql, snakeCaseToCamelCase = TRUE) # # # Construct covariate reference: # covariateRef <- data.frame( # covariateId = 1, # covariateName = "Length of observation", # analysisId = 1, # conceptId = 0 # ) # # # Construct analysis reference: # analysisRef <- data.frame( # analysisId = 1, # analysisName = "Length of observation", # domainId = "Demographics", # startDay = 0, # endDay = 0, # isBinary = "N", # missingMeansZero = "Y" # ) # # # Construct analysis reference: # metaData <- list(sql = sql, call = match.call()) # result <- Andromeda::andromeda( # covariates = covariates, # covariateRef = covariateRef, # analysisRef = analysisRef # ) # attr(result, "metaData") <- metaData # class(result) <- "CovariateData" # return(result) # } ## ----eval=FALSE--------------------------------------------------------------- # looCovSet <- createLooCovariateSettings(useLengthOfObs = TRUE) # # covariates <- getDbCovariateData( # connectionDetails = connectionDetails, # cdmDatabaseSchema = cdmDatabaseSchema, # cohortDatabaseSchema = resultsDatabaseSchema, # cohortTable = "rehospitalization", # cohortIds = c(1), # covariateSettings = looCovSet # ) ## ----eval=FALSE--------------------------------------------------------------- # covariateSettings <- createCovariateSettings( # useDemographicsGender = TRUE, # useDemographicsAgeGroup = TRUE, # useDemographicsRace = TRUE, # useDemographicsEthnicity = TRUE, # useDemographicsIndexYear = TRUE, # useDemographicsIndexMonth = TRUE # ) # # looCovSet <- createLooCovariateSettings(useLengthOfObs = TRUE) # # covariateSettingsList <- list(covariateSettings, looCovSet) # # covariates <- getDbCovariateData( # connectionDetails = connectionDetails, # cdmDatabaseSchema = cdmDatabaseSchema, # cohortDatabaseSchema = resultsDatabaseSchema, # cohortTable = "rehospitalization", # cohortIds = c(1), # covariateSettings = covariateSettingsList # )