
Package ‘Directional’
February 12, 2025

Type Package

Title A Collection of Functions for Directional Data Analysis

Version 7.1

Date 2025-02-11

Maintainer Michail Tsagris <mtsagris@uoc.gr>

Description A collection of functions for directional data (including massive data, with millions of ob-
servations) analysis.
Hypothesis testing, discriminant and regression analysis, MLE of distributions and more are in-
cluded.

The standard textbook for such data is the ``Directional Statistics'' by Mar-
dia, K. V. and Jupp, P. E. (2000).

Other references include:
a) Paine J.P., Preston S.P., Tsagris M. and Wood A.T.A. (2018). ``An elliptically sym-

metric angular Gaussian distribution''. Statistics and Computing 28(3): 689-
697. <doi:10.1007/s11222-017-9756-4>.

b) Tsagris M. and Alenazi A. (2019). ``Comparison of discriminant analysis meth-
ods on the sphere''. Communications in Statistics: Case Studies, Data Analysis and Applica-
tions 5(4):467--491. <doi:10.1080/23737484.2019.1684854>.

c) Paine J.P., Preston S.P., Tsagris M. and Wood A.T.A. (2020). ``Spherical regres-
sion models with general covariates and anisotropic errors''. Statistics and Comput-
ing 30(1): 153--165. <doi:10.1007/s11222-019-09872-2>.

d) Tsagris M. and Alenazi A. (2024). ``An investigation of hypothesis testing proce-
dures for circular and spherical mean vectors''. Communications in Statistics-
Simulation and Computation, 53(3): 1387--1408. <doi:10.1080/03610918.2022.2045499>.

e) Yu Z. and Huang X. (2024). A new parameterization for elliptically symmetric angu-
lar Gaussian distributions of arbitrary dimension. Electronic Journal of Statistics, 18(1): 301--
334. <doi:10.1214/23-EJS2210>.

f) Tsagris M. and Alzeley O. (2024). ``Circular and spherical projected Cauchy distribu-
tions: A Novel Framework for Circular and Directional Data Modeling''. Aus-
tralian & New Zealand Journal of Statistics (Accepted for publica-
tion). <doi:10.1111/anzs.12434>.

g) Tsagris M., Papastamoulis P. and Kato S. (2024). ``Directional data analysis: spheri-
cal Cauchy or Poisson kernel-based distribution''. Statistics and Computing (Accepted for publi-
cation). <doi:10.48550/arXiv.2409.03292>.

License GPL (>= 2)

1

https://doi.org/10.1007/s11222-017-9756-4
https://doi.org/10.1080/23737484.2019.1684854
https://doi.org/10.1007/s11222-019-09872-2
https://doi.org/10.1080/03610918.2022.2045499
https://doi.org/10.1214/23-EJS2210
https://doi.org/10.1111/anzs.12434
https://doi.org/10.48550/arXiv.2409.03292


2 Contents

Imports bigstatsr, doParallel, foreach, ggplot2, grDevices, magrittr,
parallel, Rfast, Rfast2, Rnanoflann, rgl, rnaturalearth, sf

Suggests bigreadr

RoxygenNote 6.1.1

NeedsCompilation no

Author Michail Tsagris [aut, cre],
Giorgos Athineou [aut],
Christos Adam [aut],
Zehao Yu [aut],
Anamul Sajib [ctb],
Eli Amson [ctb],
Micah J. Waldstein [ctb],
Panagiotis Papastamoulis [ctb]

Repository CRAN

Date/Publication 2025-02-11 23:40:02 UTC

Contents
Directional-package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
(Hyper-)spherical regression using rotational symmetric distributions . . . . . . . . . . . 6
A test for testing the equality of the concentration parameters for ciruclar data . . . . . . 8
Angular central Gaussian random values simulation . . . . . . . . . . . . . . . . . . . . 10
Anova for (hyper-)spherical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Anova for circular data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
BIC for the model based clustering using mixtures of rotationally symmetric distributions 14
Bootstrap 2-sample mean test for (hyper-)spherical data . . . . . . . . . . . . . . . . . . 15
Bootstrap 2-sample mean test for circular data . . . . . . . . . . . . . . . . . . . . . . . 17
Bootstrap ANOVA for (hyper-)spherical data . . . . . . . . . . . . . . . . . . . . . . . 18
Bootstrap ANOVA for circular data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Check visually whether matrix Fisher samples is correctly generated or not . . . . . . . 21
Circular correlations between one and many circular variables . . . . . . . . . . . . . . 22
Circular correlations between two circular variables . . . . . . . . . . . . . . . . . . . . 23
Circular distance correlation between two circular variables . . . . . . . . . . . . . . . . 24
Circular or angular regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Circular-linear correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Column-wise MLE of the angular Gaussian and the von Mises Fisher distributions . . . 28
Column-wise uniformity Watson test for circular data . . . . . . . . . . . . . . . . . . . 30
Contour plot (on the plane) of the ESAG and Kent distributions without any data . . . . 31
Contour plot (on the sphere) of a mixture of von Mises-Fisher distributions . . . . . . . 32
Contour plot (on the sphere) of some spherical rotationally symmetric distributions . . . 33
Contour plot (on the sphere) of the ESAG and Kent distributions . . . . . . . . . . . . . 35
Contour plot (on the sphere) of the SESPC distribution . . . . . . . . . . . . . . . . . . 37
Contour plot of a mixture of von Mises-Fisher distributions model . . . . . . . . . . . . 38
Contour plot of spherical data using a von Mises-Fisher kernel density estimate . . . . . 39
Contour plots of some rotationally symmetric distributions . . . . . . . . . . . . . . . . 41
Conversion of cosines to azimuth and plunge . . . . . . . . . . . . . . . . . . . . . . . 42



Contents 3

Converting a rotation matrix on SO(3) to an unsigned unit quaternion . . . . . . . . . . 43
Converting an unsigned unit quaternion to rotation matrix on SO(3) . . . . . . . . . . . 44
Cross validation for estimating the classification rate . . . . . . . . . . . . . . . . . . . 45
Cumulative distribution function of circular distributions . . . . . . . . . . . . . . . . . 47
Density of a mixture of rotationally symmetric distributions . . . . . . . . . . . . . . . . 49
Density of some (hyper-)spherical distributions . . . . . . . . . . . . . . . . . . . . . . 50
Density of some circular distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Density of the SESPC distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Density of the spherical ESAG and Kent distributions and of the ESAG distribution in

arbitrary dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
Density of the Wood bimodal distribution on the sphere . . . . . . . . . . . . . . . . . . 56
Euclidean transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Euler angles from a rotation matrix on SO(3) . . . . . . . . . . . . . . . . . . . . . . . 58
Forward Backward Early Dropping selection for circular data using the SPML regression 59
Generate random folds for cross-validation . . . . . . . . . . . . . . . . . . . . . . . . . 61
Generation of unit vector(s) with a given angle . . . . . . . . . . . . . . . . . . . . . . . 62
Goodness of fit test for grouped data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Habeck’s rotation matrix generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Haversine distance matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Hyper spherical-spherical regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Hypothesis test for IAG distribution over the ESAG distribution . . . . . . . . . . . . . 67
Hypothesis test for SIPC distribution over the SESPC distribution . . . . . . . . . . . . 69
Hypothesis test for von Mises-Fisher distribution over Kent distribution . . . . . . . . . 70
Interactive 3D plot of spherical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Inverse of Lambert’s equal area projection . . . . . . . . . . . . . . . . . . . . . . . . . 72
Inverse of the Euclidean transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 73
k-NN algorithm using the arc cosinus distance . . . . . . . . . . . . . . . . . . . . . . . 74
k-NN regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Lambert’s equal area projection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Logarithm of the Kent distribution normalizing constant . . . . . . . . . . . . . . . . . . 78
Many simple circular or angular regressions . . . . . . . . . . . . . . . . . . . . . . . . 79
Maps of the world and the continents . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Mixtures of rotationally symmetric distributions . . . . . . . . . . . . . . . . . . . . . . 81
MLE of (hyper-)spherical rotationally symmetric distributions . . . . . . . . . . . . . . 83
MLE of some circular distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
MLE of some circular distributions with multiple samples . . . . . . . . . . . . . . . . . 88
MLE of the ESAG distribution in arbitrary dimensions . . . . . . . . . . . . . . . . . . 90
MLE of the Kent distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
MLE of the Matrix Fisher distribution on SO(3) . . . . . . . . . . . . . . . . . . . . . . 93
MLE of the Purkayashta distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
MLE of the SESPC distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
MLE of the Wood bimodal distribution on the sphere . . . . . . . . . . . . . . . . . . . 97
Naive Bayes classifiers for circular data . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Normalised spatial median for directional data . . . . . . . . . . . . . . . . . . . . . . . 99
Permutation based 2-sample mean test for (hyper-)spherical data . . . . . . . . . . . . . 100
Permutation based 2-sample mean test for circular data . . . . . . . . . . . . . . . . . . 102
Prediction in discriminant analysis based on some distributions . . . . . . . . . . . . . . 103
Prediction with some naive Bayes classifiers for circular data . . . . . . . . . . . . . . . 104



4 Contents

Projections based test of uniformity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
Random sample of matrices in SO(p) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Rayleigh’s test of uniformity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
Read a file as a Filebacked Big Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Rotation axis and angle of rotation given a rotation matrix . . . . . . . . . . . . . . . . 110
Rotation matrix from a rotation axis and angle of rotation . . . . . . . . . . . . . . . . . 111
Rotation matrix on SO(3) from three Euler angles . . . . . . . . . . . . . . . . . . . . . 112
Rotation matrix to rotate a spherical vector along the direction of another . . . . . . . . 113
Saddlepoint approximations of the Fisher-Bingham distributions . . . . . . . . . . . . . 115
Score test for many simple CIPC and SMPL regressions . . . . . . . . . . . . . . . . . 116
Simulation from a Bingham distribution using any symmetric matrix A . . . . . . . . . . 117
Simulation from a Matrix Fisher distribution on SO(3) . . . . . . . . . . . . . . . . . . 118
Simulation of random values from a Bingham distribution . . . . . . . . . . . . . . . . 119
Simulation of random values from a mixture of rotationally symmetric distributions . . . 120
Simulation of random values from a spherical Fisher-Bingham distribution . . . . . . . . 122
Simulation of random values from a spherical Kent distribution . . . . . . . . . . . . . . 123
Simulation of random values from rotationally symmetric distributions . . . . . . . . . . 124
Simulation of random values from some circular distributions . . . . . . . . . . . . . . . 126
Simulation of random values from the ESAG distribution . . . . . . . . . . . . . . . . . 128
Simulation of random values from the SESPC distribution . . . . . . . . . . . . . . . . 129
Spherical and hyper-spherical distance correlation . . . . . . . . . . . . . . . . . . . . . 130
Spherical and hyperspherical median . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
Spherical regression using rotationally symmetric distributions . . . . . . . . . . . . . . 132
Spherical regression using the ESAG distribution . . . . . . . . . . . . . . . . . . . . . 134
Spherical regression using the SESPC distribution . . . . . . . . . . . . . . . . . . . . . 135
Spherical-spherical correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
Spherical-spherical regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Summary statistics for circular data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Summary statistics for grouped circular data . . . . . . . . . . . . . . . . . . . . . . . . 140
Test for a given mean direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
Test for equality of concentration parameters for spherical data . . . . . . . . . . . . . . 143
Test of equality of the concentration parameters for circular data . . . . . . . . . . . . . 144
The k-nearest neighbours using the cosinus distance . . . . . . . . . . . . . . . . . . . . 145
Transform unit vectors to angular data . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Tuning of the bandwidth parameter in the von Mises kernel . . . . . . . . . . . . . . . . 147
Tuning of the bandwidth parameter in the von Mises-Fisher kernel . . . . . . . . . . . . 148
Tuning of the k-NN algorithm using the arc cosinus distance . . . . . . . . . . . . . . . 150
Tuning of the k-NN regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
Two sample location test for (hyper-)spherical data . . . . . . . . . . . . . . . . . . . . 153
Uniformity test for circular data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
von Mises kernel density estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
von Mises-Fisher kernel density estimation for (hyper-)spherical data . . . . . . . . . . . 158

Index 160



Directional-package 5

Directional-package This is an R package that provides methods for the statistical analysis
of directional data, including massive (very large scale) directional
data.

Description

Circular-linear regression, spherical-spherical regression, spherical regression, discriminant analy-
sis, ANOVA for circular and (hyper-)spherical data, tests for eaquality of conentration parameters,
maximum likelihood estimation of the parameters of many distributions, random values generation
from various distributions, contour plots and many more functions are included.

Details

Package: Directional
Type: Package
Version: 7.1
Date: 2025-02-11
License: GPL-2

Maintainers

Michail Tsagris <mtsagris@uoc.gr>.

Note

Acknowledgments:
Professor Andy Wood and Dr Simon Preston from the university of Nottingham are highly appre-
ciated for being my supervisors during my post-doc in directional data analysis.

Dr Georgios Pappas (former postDoc at the university of Nottingham) helped me construct the
contour plots of the von Mises-Fisher and the Kent distribution.

Dr Christopher Fallaize and Dr Theo Kypraios from the university of Nottingham have provided a
function for simulating from the Bingham distribution using rejection sampling. So any questions
regarding this function should be addressed to them.

Dr Kwang-Rae Kim (post-doc at the university of Nottingham) answered some of my questions.

Giorgos Borboudakis (PhD student at the university of Crete) pointed out to me a not so clear
message in the algorithm of generating random values from the von Mises-Fisher distribution.

Panagiotis (pronounced Panayiotis) Tzirakis (master student at the department of computer science
in Heraklion during the 2013-2015 seasons) showed me how to perform parallel computing in R
and he is greatly acknowledged and appreciated not only from me but from all the readers of this
document. He also helped me with the vectorization of some contour plot functions.
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Professor John Kent from the university of Leeds is acknowledged for clarifying one thing with the
ovalness parameter in his distribution.

Phillip Paine (postdoc at the university of Nottingham) spotted that the function rfb is rather slow
and he suggested me to change it. The function has changed now and this is also due to Joshua
Davis (from Carleton College, Northfield, MN) who spotted that mistakes could occur, due a vector
not being a matrix.

Professor Kurt Hornik from the Vienna university of economics and business is greatly acknowl-
edged for his patience and contast help with this (and not only) R package.

Manos Papadakis is also acknowledged for his programming tips and for his assistance with the
"htest" class object.

Dr Mojgan Golzy spotted a mistake in the function desag and Michail is very happy for that.

Lisette de Jonge-Hoekstra from the University of Groningen found a wrong sentence in the help file
of function spml.reg which is now deleted.

Peter Harremoes from the Copenhagen Business College spotted a mistake in the confidence inter-
val of the function circ.summary which has now been corrected.

Dr Gregory Emvalomatis from the University of Crete helped me understand better the EM algo-
rithm for mixture models and I fixed a bug in the function mixvmf.mle.

Kinley Russell, PhD student at the Johns Hopkins University School of Medicine, suggested that I
include bootstrap ANOVA functions.

Sia Ahmadi found a mistake in the function conc.test which has now been corrected.

If you want more information on many of these algorithms see Chapters 9 and 10 in the following
document. https://www.researchgate.net/publication/324363311_Multivariate_data_analysis_in_R

Author(s)

Michail Tsagris <mtsagris@uoc.gr>, Giorgos Athineou <gioathineou@gmail.com>, Christos Adam
<pada4m4@gmail.com>, Zehao Yu <zehaoy@email.sc.edu>, Anamul Sajib <sajibstat@du.ac.bd>,
Eli Amson <eli.amson1988@gmail.com>, Micah J. Waldstein <micah@waldste.in> and Panagiotis
Papastamoulis <papastamoulis@aueb.gr>.

References

Mardia K. V. and Jupp P. E. (2000). Directional statistics. Chicester: John Wiley and Sons.

(Hyper-)spherical regression using rotational symmetric
distributions

(Hyper-)spherical regression using the rotational symmetric distribu-
tions

Description

(Hyper-)spherical regression using the rotational symmetric distributions.
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Usage

vmfreg(y, x, con = TRUE, xnew = NULL, tol = 1e-06)
spcauchy.reg(y, x, con = TRUE, xnew = NULL, tol = 1e-06)
pkbd.reg(y, x, con = TRUE, xnew = NULL, tol = 1e-6)
pkbd.reg2(y, x, con = TRUE, xnew = NULL, tol = 1e-6)

Arguments

y A matrix with any number of columns containing the (unit vector) (hyper-)spherical
data.

x The predictor variable(s), they can be continnuous, (hyper-)spherical, categori-
cal or a mix of them.

con Do you want the constant term in the regression?

xnew If you have new data use it, otherwise leave it NULL.

tol A tolerance value to decide when to stop the successive optimaizations.

Details

The second parametrization of the projected normal and of the von Mises-Fisher regression (Paine
et al., 2020) is applied. The same is true for the SIPC distribution. For more information see the
paper by Paine et al. (2020). The difference from vmf.reg is that the latter is designed for the
sphere only, whereas this function works in the hyper-sphere also.

As for the spcauchy.reg() and pkbd.reg() they are based upon the spherical Cauchy (Kato and Mc-
Cullagh, 2020) and the Poisson kernel-based (Golzy and Markatou, 2020) distributions. These two
use Newton-Raphson, but the pkbd.reg2() uses the optim. We have noticed some numerical issues
with the pkbd.reg() when the dimensionalities of the variables are large and this is why we also
provide the (much slower) pkbd.reg2() function.

Value

A list including:

runtime The runtime of the regression.

iters The number of iterations required until convergence of the Newton-Raphson
algorithm.

loglik The log-likelihood of the regression model.

fit This is a measure of fit of the estimated values, defined as
∑n

i=1 y
T
i ŷi. This

appears if the argument "xnew" is NULL.

beta The beta coefficients.

seb The standard error of the beta coefficients.

ki The norm of the fitted values. In the von Mises-Fisher regression this is the
concentration parameter of each observation. This is returned if the argument
"xnew" is NULL.

g2 The norm of the fitted values. In the spherical Cauchy and the PKBD regression
this is the concentration parameter of each observation. This is returned if the
argument "xnew" is NULL.
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est The fitted values of xnew if "xnew" is NULL. If it is not NULL, the fitted values
for the "xnew" you supplied will be returned.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

P. J. Paine, S. P. Preston, M. Tsagris and Andrew T. A. Wood (2020). Spherical regression mod-
els with general covariates and anisotropic errors. Statistics and Computing, 30(1): 153–165.
https://link.springer.com/content/pdf/10.1007

Kato S. and McCullagh P. (2020). Some properties of a Cauchy family on the sphere derived from
the Mobius transformations. Bernoulli, 26(4): 3224–3248.

Golzy M. and Markatou M. (2020). Poisson kernel-based clustering on the sphere: convergence
properties, identifiability, and a method of sampling. Journal of Computational and Graphical
Statistics, 29(4): 758–770.

Tsagris M., Papastamoulis P. and Kato S. (2024). Directional data analysis using the spherical
Cauchy and the Poisson kernel-based distribution. https://arxiv.org/pdf/2409.03292.

See Also

esag.reg, vmf.reg, spml.reg

Examples

y <- rvmf(150, rnorm(5), 5)
a <- vmfreg(y, iris[, 1])
b <- spcauchy.reg(y, iris)

A test for testing the equality of the concentration parameters for
ciruclar data

A test for testing the equality of the concentration parameter among g
samples, where g >= 2 for ciruclar data

Description

A test for testing the equality of the concentration parameter among g samples, where g >= 2 for
ciruclar data. It is a tangential approach.

Usage

tang.conc(u, ina, rads = FALSE)
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Arguments

u A numeric vector containing the values of all samples.

ina A numerical variable or factor indicating the groups of each value.

rads If the data are in radians this should be TRUE and FALSE otherwise.

Details

This test works for circular data.

Value

This is an "htest"class object. Thus it returns a list including:

statistic The test statistic value.

parameter The degrees of freedom of the test.

p.value The p-value of the test.

alternative A character with the alternative hypothesis.

method A character with the test used.

data.name A character vector with two elements.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>.

References

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons. Fisher,
N. I. (1995). Statistical analysis of circular data. Cambridge University Press.

See Also

embed.circaov, hcf.circaov, lr.circaov, het.circaov, conc.test

Examples

x <- rvonmises(100, 2.4, 15)
ina <- rep(1:4,each = 25)
tang.conc(x, ina, rads = TRUE)
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Angular central Gaussian random values simulation

Angular central Gaussian random values simulation

Description

Angular central Gaussian random values simulation.

Usage

racg(n, sigma)

Arguments

n The sample size, a numerical value.

sigma The covariance matrix in Rd.

Details

The algorithm uses univariate normal random values and transforms them to multivariate via a
spectral decomposition. The vectors are then scaled to have unit length.

Value

A matrix with the simulated data.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Tyler D. E. (1987). Statistical analysis for the angular central Gaussian distribution on the sphere.
Biometrika 74(3): 579–589.

See Also

acg.mle, rvmf, rvonmises

Examples

s <- cov( iris[, 1:4] )
x <- racg(100, s)
Directional::acg.mle(x)
Directional::vmf.mle(x)
## the concentration parameter, kappa, is very low, close to zero, as expected.
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Anova for (hyper-)spherical data

Analysis of variance for (hyper-)spherical data

Description

Analysis of variance for (hyper-)spherical data.

Usage

hcf.aov(x, ina, fc = TRUE)
hclr.aov(x, ina)
lr.aov(x, ina)
embed.aov(x, ina)
het.aov(x, ina)

Arguments

x A matrix with the data in Euclidean coordinates, i.e. unit vectors.

ina A numerical variable or a factor indicating the group of each vector.

fc A boolean that indicates whether a corrected F test should be used or not.

Details

The high concentration (hcf.aov), high concentration log-likelihood ratio (hclr.aov), log-likelihood
ratio (lr.aov), embedding approach (embed.aov) or the non equal concentration parameters approach
(het.aov) is used.

Value

This is an "htest"class object. Thus it returns a list including:

statistic The test statistic value.

parameter The degree(s) of freedom of the test.

p.value The p-value of the test.

alternative A character with the alternative hypothesis.

method A character with the test used.

data.name A character vector with two elements.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>.
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Mardia K. V. and Jupp P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

Rumcheva P. and Presnell B. (2017). An improved test of equality of mean directions for the
Langevin-von Mises-Fisher distribution. Australian & New Zealand Journal of Statistics, 59(1):
119–135.

Tsagris M. and Alenazi A. (2024). An investigation of hypothesis testing procedures for circular
and spherical mean vectors. Communications in Statistics-Simulation and Computation, 53(3):
1387–1408.

See Also

hcf.boot, hcfboot, hclr.circaov,

Examples

x <- rvmf(60, rnorm(3), 15)
ina <- rep(1:3, each = 20)
hcf.aov(x, ina)
hcf.aov(x, ina, fc = FALSE)
lr.aov(x, ina)
embed.aov(x, ina)
het.aov(x, ina)

Anova for circular data

Analysis of variance for circular data

Description

Analysis of variance for circular data.

Usage

hcf.circaov(u, ina, rads = FALSE)
hclr.circaov(u, ina, rads = FALSE)
lr.circaov(u, ina, rads = FALSE)
het.circaov(u, ina, rads = FALSE)
embed.circaov(u, ina, rads = FALSE)

Arguments

u A numeric vector containing the data.

ina A numerical or factor variable indicating the group of each value.

rads If the data are in radians, this should be TRUE and FALSE otherwise.
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Details

The high concentration (hcf.circaov), high concentration likelihood ratio (hclr.aov), log-likelihood
ratio (lr.circaov), embedding approach (embed.circaov) or the non equal concentration parameters
approach (het.circaov) is used.

Value

This is an "htest"class object. Thus it returns a list including:

statistic The test statistic value.

parameter The degree(s) of freedom of the test.

p.value The p-value of the test.

alternative A character with the alternative hypothesis.

method A character with the test used.

data.name A character vector with two elements.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>.

References

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

Rumcheva P. and Presnell B. (2017). An improved test of equality of mean directions for the
Langevin-von Mises-Fisher distribution. Australian & New Zealand Journal of Statistics, 59(1):
119–135.

Tsagris M. and Alenazi A. (2024). An investigation of hypothesis testing procedures for circular
and spherical mean vectors. Communications in Statistics-Simulation and Computation, 53(3):
1387–1408.

See Also

hclr.aov, hcfcirc.boot, hcfcircboot

Examples

x <- rvonmises(100, 2.4, 15)
ina <- rep(1:4,each = 25)
hcf.circaov(x, ina, rads = TRUE)
lr.circaov(x, ina, rads = TRUE)
het.circaov(x, ina, rads = TRUE)
embed.circaov(x, ina, rads = TRUE)
hclr.circaov(x, ina, rads = TRUE)
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BIC for the model based clustering using mixtures of rotationally
symmetric distributions

BIC to choose the number of components in a model based clustering
using mixtures of rotationally symmetric distributions

Description

BIC to choose the number of components in a model based clustering using mixtures of rotationally
symmetric distributions

Usage

bic.mixvmf(x, G = 5, n.start = , tol = 1e-6, maxiters = 500)
bic.mixspcauchy(x, G = 5, n.start = 5, tol = 1e-6, maxiters = 500)
bic.mixpkbd(x, G = 5, n.start = 5, tol = 1e-6, maxiters = 500)

Arguments

x A matrix containing directional data.

G The maximum number of clusters to be tested. Default value is 5.

n.start The number of random starts to try. See also R’s built-in function kmeans for
more information about this.

tol The tolerance value to terminate the EM algorithm.

maxiters The maximum number of iterations to perform.

Details

The function computes the BIC (and ICL) to decide on the optimal number of clusters when using
mixtures of von Mises-Fisher, mixtures of spherical Cauchy or mixtures of Poisson kernel-based
distributions.

Value

A plot of the BIC values and a list including:

bic The BIC values for all the models tested.

icl The ICL values for all the models tested.

runtime The run time of the algorithm. A numeric vector. The first element is the user
time, the second element is the system time and the third element is the elapsed
time.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.
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References

Hornik, K. and Grun, B. (2014). movMF: An R package for fitting mixtures of von Mises-Fisher
distributions. Journal of Statistical Software, 58(10): 1–31.

Biernacki C., Celeux G. and Govaert, G. (2000). Assessing a mixture model for clustering with the
integrated completed likelihood. IEEE Transactions on Pattern Analysis and Machine Intelligence,
22(7): 719–725.

Tsagris M., Papastamoulis P. and Kato S. (2024). Directional data analysis using the spherical
Cauchy and the Poisson kernel-based distribution. https://arxiv.org/pdf/2409.03292

See Also

mixvmf.mle, rmixvmf, mixvmf.contour

Examples

x <- as.matrix( iris[, 1:4] )
x <- x / sqrt( rowSums(x^2) )
bic.mixvmf(x)

Bootstrap 2-sample mean test for (hyper-)spherical data

Bootstrap 2-sample mean test for (hyper-)spherical data

Description

Bootstrap 2-sample mean test for (hyper-)spherical data.

Usage

hcf.boot(x1, x2, fc = TRUE, B = 999)
lr.boot(x1, x2, B = 999)
hclr.boot(x1, x2, B = 999)
embed.boot(x1, x2, B = 999)
het.boot(x1, x2, B = 999)

Arguments

x1 A matrix with the data in Euclidean coordinates, i.e. unit vectors.

x2 A matrix with the data in Euclidean coordinates, i.e. unit vectors.

fc A boolean that indicates whether a corrected F test should be used or not.

B The number of bootstraps to perform.

Details

The high concentration (hcf.boot), log-likelihood ratio (lr.boot), high concentration log-likelihood
ratio (hclr.boot), embedding approach (embed.boot) or the non equal concentration parameters ap-
proach (het.boot) is used.
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Value

This is an "htest"class object. Thus it returns a list including:

statistic The test statistic value.

parameter The degrees of freedom of the test. Since these are bootstrap based tests this is
"NA".

p.value The p-value of the test.

alternative A character with the alternative hypothesis.

method A character with the test used.

data.name A character vector with two elements.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Mardia K. V. and Jupp P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

Rumcheva P. and Presnell B. (2017). An improved test of equality of mean directions for the
Langevin-von Mises-Fisher distribution. Australian & New Zealand Journal of Statistics, 59(1):
119–135.

Tsagris M. and Alenazi A. (2024). An investigation of hypothesis testing procedures for circular
and spherical mean vectors. Communications in Statistics-Simulation and Computation, 53(3):
1387–1408.

See Also

hcf.aov, hcf.perm, hcfboot

Examples

x <- rvmf(60, rnorm(3), 15)
ina <- rep(1:2, each = 30)
x1 <- x[ina == 1, ]
x2 <- x[ina == 2, ]
hcf.boot(x1, x2)
lr.boot(x1, x2)
het.boot(x1, x2)
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Bootstrap 2-sample mean test for circular data

Bootstrap 2-sample mean test for circular data

Description

Bootstrap 2-sample mean test for circular data.

Usage

hcfcirc.boot(u1, u2, rads = TRUE, B = 999)
lrcirc.boot(u1, u2, rads = TRUE, B = 999)
hclrcirc.boot(u1, u2, rads = TRUE, B = 999)
embedcirc.boot(u1, u2, rads = TRUE, B = 999)
hetcirc.boot(u1, u2, rads = TRUE, B = 999)

Arguments

u1 A numeric vector containing the data of the first sample.

u2 A numeric vector containing the data of the first sample.

rads If the data are in radians, this should be TRUE and FALSE otherwise.

B The number of bootstraps to perform.

Details

The high concentration (hcfcirc.boot), the log-likelihood ratio test (lrcirc.boot), high concentration
log-likelihood ratio (hclrcirc.boot), embedding approach (embedcirc.boot), or the non equal con-
centration parameters approach (hetcirc.boot) is used.

Value

This is an "htest"class object. Thus it returns a list including:

statistic The test statistic value.

parameter The degrees of freedom of the test. Since these are bootstrap based tests this is
"NA".

p.value The p-value of the test.

alternative A character with the alternative hypothesis.

method A character with the test used.

data.name A character vector with two elements.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.
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References

Mardia K. V. and Jupp P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

Rumcheva P. and Presnell B. (2017). An improved test of equality of mean directions for the
Langevin-von Mises-Fisher distribution. Australian & New Zealand Journal of Statistics, 59(1):
119–135.

Tsagris M. and Alenazi A. (2024). An investigation of hypothesis testing procedures for circular
and spherical mean vectors. Communications in Statistics-Simulation and Computation, 53(3):
1387–1408.

See Also

hcf.circaov, hcfcircboot, het.aov

Examples

u1 <- rvonmises(20, 2.4, 5)
u2 <- rvonmises(20, 2.4, 10)
hcfcirc.boot(u1, u2)

Bootstrap ANOVA for (hyper-)spherical data

Bootstrap ANOVA for (hyper-)spherical data

Description

Bootstrap ANOVA for (hyper-)spherical data.

Usage

hcfboot(x, ina, B = 999)
hetboot(x, ina, B = 999)

Arguments

x A matrix with the combined data (from all groups) in Euclidean coordinates, i.e.
unit vectors.

ina The grouping variables. A factor or a numerical vector specifying the groups to
which each observation belongs to.

B The number of bootstraps to perform.

Details

The high concentration (hcfboot), or the non equal concentration parameters approach (hetboot) is
used.
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Value

This is an "htest"class object. Thus it returns a list including:

statistic The test statistic value.

parameter The degrees of freedom of the test. Since these are bootstrap based tests this is
"NA".

p.value The p-value of the test.

alternative A character with the alternative hypothesis.

method A character with the test used.

data.name A character vector with two elements.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Mardia K. V. and Jupp P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

Rumcheva P. and Presnell B. (2017). An improved test of equality of mean directions for the
Langevin-von Mises-Fisher distribution. Australian & New Zealand Journal of Statistics, 59(1):
119–135.

Tsagris M. and Alenazi A. (2024). An investigation of hypothesis testing procedures for circular
and spherical mean vectors. Communications in Statistics-Simulation and Computation, 53(3):
1387–1408.

See Also

hcf.boot, hcf.aov

Examples

x <- rvmf(60, rnorm(3), 10)
ina <- rep(1:3, each = 20)
hcfboot(x, ina)

Bootstrap ANOVA for circular data

Bootstrap ANOVA for circular data

Description

Bootstrap ANOVA for circular data.
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Usage

hcfcircboot(u, ina, rads = TRUE, B = 999)
hetcircboot(u, ina, rads = TRUE, B = 999)

Arguments

u A numeric vector containing the data of all groups.

ina The grouping variables. A factor or a numerical vector specifying the groups to
which each observation belongs to.

rads If the data are in radians, this should be TRUE and FALSE otherwise.

B The number of bootstraps to perform.

Details

The high concentration (hcfcircboot), or the non equal concentration parameters approach (hetcirc-
boot) is used.

Value

This is an "htest"class object. Thus it returns a list including:

statistic The test statistic value.

parameter The degrees of freedom of the test. Since these are bootstrap based tests this is
"NA".

p.value The p-value of the test.

alternative A character with the alternative hypothesis.

method A character with the test used.

data.name A character vector with two elements.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Mardia K. V. and Jupp P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

Rumcheva P. and Presnell B. (2017). An improved test of equality of mean directions for the
Langevin-von Mises-Fisher distribution. Australian & New Zealand Journal of Statistics, 59(1):
119–135.

Tsagris M. and Alenazi A. (2024). An investigation of hypothesis testing procedures for circular
and spherical mean vectors. Communications in Statistics-Simulation and Computation, 53(3):
1387–1408.

See Also

hcf.circaov, het.aov
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Examples

u1 <- rvonmises(20, 2.4, 5)
u2 <- rvonmises(20, 2.4, 10)
hcfcirc.boot(u1, u2)

Check visually whether matrix Fisher samples is correctly generated
or not

Check visually whether matrix Fisher samples is correctly generated
or not.

Description

It plots the log probability trace of matrix Fisher distribution which should close to the maximum
value of the logarithm of matrix Fisher distribution, if samples are correctly generated.

Usage

visual.check(x, Fa)

Arguments

x The simulated data. An array with at least 2 3x3 matrices.

Fa An arbitrary 3x3 matrix represents the parameter matrix of this distribution.

Details

For a given parameter matrix Fa, maximum value of the logarithm of matrix Fisher distribution is
calculated via the form of singular value decomposition of Fa = UΛV T which is tr(Λ). Multiply
the last column of U by −1 and replace small eigenvalue, say, λ3 by −λ3 if |UV T | = −1.

Value

A plot which shows log probability trace of matrix Fisher distribution. The values are also returned.

Author(s)

Anamul Sajib.

R implementation and documentation: Anamul Sajib <sajibstat@du.ac.bd>.

References

Habeck M. (2009). Generation of three-dimensional random rotations in fitting and matching prob-
lems. Computational Statistics, 24(4):719–731.



22 Circular correlations between one and many circular variables

Examples

Fa <- matrix( c(85, 11, 41, 78, 39, 60, 43, 64, 48), ncol = 3) / 10
x <- rmatrixfisher(1000, Fa)
a <- visual.check(x, Fa)

Circular correlations between one and many circular variables

Circular correlations between two circular variables

Description

Circular correlations between two circular variables.

Usage

circ.cors1(theta, phi, rads = FALSE)
circ.cors2(theta, phi, rads = FALSE)

Arguments

theta The first cirular variable expressed in radians, not degrees.

phi The other cirular variable. In the case of "circ.cors1" this is a matrix with many
circular variables. In either case, the values must be in radians, not degrees.

rads If the data are expressed in rads, then this should be TRUE. If the data are in
degrees, then this is FALSE.

Details

Correlation for circular variables using the cosinus and sinus formula of Jammaladaka and Sen-
Gupta (1988).

Value

A matrix with two columns, the correlations and the p-values.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Jammalamadaka, R. S. and Sengupta, A. (2001). Topics in circular statistics. World Scientific.

Jammalamadaka, S. R. and Sarma, Y. R. (1988). A correlation coefficient for angular variables.
Statistical Theory and Data Analysis, 2:349–364.

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.
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See Also

spml.reg

Examples

y <- runif(50, 0, 2 * pi)
x <- matrix(runif(50 * 10, 0, 2 * pi), ncol = 10)
circ.cors1(y, x, rads = TRUE)

Circular correlations between two circular variables

Circular correlations between two circular variables

Description

Circular correlations between two circular variables.

Usage

circ.cor1(theta, phi, rads = FALSE)

circ.cor2(theta, phi, rads = FALSE)

Arguments

theta The first cirular variable.

phi The other cirular variable.

rads If the data are expressed in rads, then this should be TRUE. If the data are in
degrees, then this is FALSE.

Details

circ.cor1: Correlation for circular variables using the cosinus and sinus formula of Jammaladaka
and SenGupta (1988).

circ.cor2: Correlation for circular variables using the cosinus and sinus formula of Mardia and Jupp
(2000).

Value

A vector including:

rho The value of the correlation coefficient.

p-value The p-value of the zero correlation hypothesis testing.
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Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>.

References

Jammalamadaka, R. S. and Sengupta, A. (2001). Topics in circular statistics. World Scientific.

Jammalamadaka, S. R. and Sarma, Y. R. (1988) . A correlation coefficient for angular variables.
Statistical Theory and Data Analysis, 2:349–364.

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

See Also

circlin.cor, circ.cor2, spml.reg

Examples

y <- runif(50, 0, 2 * pi)
x <- runif(50, 0, 2 * pi)
circ.cor1(x, y, rads = TRUE)
circ.cor2(x, y, rads = TRUE)

Circular distance correlation between two circular variables

Circular distance correlation between two circular variables

Description

Circular distance correlation between two circular variables.

Usage

circ.dcor(theta, phi, rads = FALSE)

Arguments

theta The first cirular variable.

phi The other cirular variable.

rads If the data are expressed in rads, then this should be TRUE. If the data are in
degrees, then this is FALSE.

Details

The angular data are transformed to their Euclidean coordinates and then the distance correlation is
computed.
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Value

A list including:

dcov The distance covariance.

dvarX The distance variance of x.

dvarY The distance variance of Y.

dcor The distance correlation.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

G.J. Szekely, M.L. Rizzo and N. K. Bakirov (2007). Measuring and Testing Independence by
Correlation of Distances. Annals of Statistics, 35(6):2769-2794.

See Also

circlin.cor, circ.cor2, spher.dcor

Examples

y <- runif(50, 0, 2 * pi)
x <- runif(50, 0, 2 * pi)
circ.dcor(x, y, rads = TRUE)

Circular or angular regression

Circular or angular regression

Description

Regression with circular dependent variable and Euclidean or categorical independent variables.

Usage

spml.reg(y, x, rads = TRUE, xnew = NULL, seb = FALSE, tol = 1e-07)
circpurka.reg(y, x, rads = TRUE, xnew = NULL)
cipc.reg(y, x, rads = TRUE, xnew = NULL, tol = 1e-06)
gcpc.reg(y, x, rads = TRUE, reps = 20, xnew = NULL)
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Arguments

y The dependent variable, a numerical vector, it can be in radians or degrees.

x The independent variable(s). Can be Euclidean or categorical (factor variables).

rads If the dependent variable is expressed in rads, this should be TRUE and FALSE
otherwise.

reps How many starting values shall the algortihm use? By default it uses 20 different
starting values.

xnew The new values of some independent variable(s) whose circular values you want
to predict. Can be Euclidean or categorical. If they are categorical, the user must
provide them as dummy variables. It does not accept factor variables. If you
have no new x values, leave it NULL (default).

seb a boolean variable. If TRUE, the standard error of the coefficients will be be
returned. Set to FALSE in case of simulation studies or in other cases such as a
forward regression setting for example. In these cases, it can save some time.

tol The tolerance value to terminate the Newton-Raphson algorithm.

Details

For the spml.reg(), the Newton-Raphson algorithm is fitted in this regression as described in Presnell
et al. (1998). For the cipc.reg(), the Newton-Raphson algorithm is fitted in this regression as
described in Tsagris and Alenazy (2023). Note that the cipc.reg() is the same as the wrapped
Cauchy regression. For the circpurka.reg() the optim() function is employed. For the gcpc.reg() the
optim() and the optimise() functions are being used.

Value

A list including:

runtime The runtime of the procedure.

iters The number of iterations required until convergence of the Newton-Raphson
algorithm.

beta The regression coefficients.

seb The standard errors of the coefficients.

loglik The value of the maximised log-likelihood.

est The fitted values expressed in radians if the obsereved data are in radians and in
degrees otherwise. If xnew is not NULL, i.e. if you have new x values, then the
predicted values of y will be returned.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.
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References

Presnell B., Morrison S. P. and Littell Ramon C. (1998). Projected multivariate linear models for
directional data. Journal of the American Statistical Association, 93(443): 1068-1077.

Purkayastha S. (1991). A Rotationally Symmetric Directional Distribution: Obtained through Max-
imum Likelihood Characterization. The Indian Journal of Statistics, Series A, 53(1): 70-83

Tsagris M. and Alzeley O. (2024). Circular and spherical projected Cauchy distributions: A Novel
Framework for Circular and Directional Data Modeling. Australian & New Zealand Journal of
Statistics (accepted for publication). https://arxiv.org/pdf/2302.02468.pdf

See Also

circlin.cor, circ.cor1, circ.cor2, spher.cor, spher.reg

Examples

x <- rnorm(100)
z <- cbind(3 + 2 * x, 1 -3 * x)
y <- cbind( rnorm(100,z[ ,1], 1), rnorm(100, z[ ,2], 1) )
y <- y / sqrt( rowSums(y^2) )
y <- ( atan( y[, 2] / y[, 1] ) + pi * I(y[, 1] < 0) ) %% (2 * pi)
a <- spml.reg(y, x, rads = TRUE, xnew = x)
b <- cipc.reg(y, x, rads = TRUE, xnew = x)

Circular-linear correlation

Circular-linear correlation

Description

It calculates the squared correlation between a circular and one or more linear variables.

Usage

circlin.cor(theta, x, rads = FALSE)

Arguments

theta The circular variable.

x The linear variable or a matrix containing many linear variables.

rads If the circualr variable is in rads, this should be TRUE and FALSE otherwise.

Details

The squared correlation between a circular and one or more linear variables is calculated.
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Value

A matrix with as many rows as linear variables including:

R-squared The value of the squared correlation.

p-value The p-value of the zero correlation hypothesis testing.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>.

References

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

See Also

circ.cor1, circ.cor2, spml.reg

Examples

phi <- rvonmises(50, 2, 20, rads = TRUE)
x <- 2 * phi + rnorm(50)
y <- matrix(rnorm(50 * 5), ncol = 5)
circlin.cor(phi, x, rads = TRUE)
circlin.cor(phi, y, rads = TRUE)

Column-wise MLE of the angular Gaussian and the von Mises Fisher
distributions

Column-wise MLE of the angular Gaussian and the von Mises Fisher
distributions

Description

Column-wise MLE of the angular Gaussian and the von Mises Fisher distributions.

Usage

colspml.mle(x ,tol = 1e-07, maxiters = 100, parallel = FALSE)
colvm.mle(x, tol = 1e-07)
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Arguments

x A numerical matrix with data. Each column refers to a different vector of
observations of the same distribution. The values of for Lognormal must be
greater than zero, for the logitnormal they must by percentages, exluding 0 and
1, whereas for the Borel distribution the x must contain integer values greater
than 1.

tol The tolerance value to terminate the Newton-Raphson algorithm.

maxiters The maximum number of iterations that can take place in each regression.

parallel Do you want this to be executed in parallel or not. The parallel takes place in
C++, and the number of threads is defined by each system’s availiable cores.

Details

For each column, spml.mle function is applied that fits the angular Gaussian distribution estimates
its parameters and computes the maximum log-likelihood.

Value

A matrix with four columns. The first two are the mean vector, then the γ parameter, and the fourth
column contains maximum log-likelihood.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Presnell Brett, Morrison Scott P. and Littell Ramon C. (1998). Projected multivariate linear models
for directional data. Journal of the American Statistical Association, 93(443): 1068–1077.

See Also

spml.mle, spml.reg, vmf.mle

Examples

x <- matrix( runif(100 * 10), ncol = 10)
a <- colspml.mle(x)
b <- colvm.mle(x)
x <- NULL
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Column-wise uniformity Watson test for circular data

Column-wise uniformity tests for circular data

Description

Column-wise uniformity tests for circular data.

Usage

colwatsons(u, rads = FALSE)

Arguments

u A numeric matrix containing the circular data which are expressed in radians.
Each column is a different sample.

rads A boolean variable. If the data are in radians, put this TRUE. If the data are
expressed in degrees make this FALSE.

Details

These tests are used to test the hypothesis that the data come from a circular uniform distribution.

Value

A matrix with two columns, the value of the test statistic and its associated p-value.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Jammalamadaka S. Rao and SenGupta A. (2001). Topics in Circular Statistics, pg. 156–157.

See Also

watson, kuiper, fishkent

Examples

x <- matrix( rvonmises(n = 50 * 10, m = 2, k = 0), ncol = 10 )
res<-colwatsons(x)
x <- NULL
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Contour plot (on the plane) of the ESAG and Kent distributions
without any data

Contour plot (on the plane) of the ESAG and Kent and ESAG distribu-
tions without any data

Description

The contour plot (on the plane) of the spherical ESAG and Kent distributions is produced.

Usage

esag.contour(mu, gam, lat, long)
kent.contour(k, b)

Arguments

k The concentration parameter.
b The ovalness parameter. It has to be less than k/2 in order for the distribution to

be unimodal. Otherwise it is bimodal.
mu The mean vector the ESAG distribution, a vector in R3.
gam The two gamma parameters of the ESAG distribution.
lat A positive number determing the range of degrees to move left and right from

the latitude center. See the example to better understand this argument.
long A positive number determing the range of degrees to move up and down from

the longitude center. See the example to better understand this argument.

Details

The goal of this function is for the user to see how the Kent or the SAG distribution looks like.

Value

A plot containing the contours of the distribution.

Author(s)

Michail Tsagris and Christos Adam.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Christos Adam
<pada4m4@gmail.com>.

References

Kent John (1982). The Fisher-Bingham distribution on the sphere. Journal of the Royal Statistical
Society, Series B, 44(1): 71–80.

Paine P.J., Preston S.P., Tsagris M. and Wood A.T.A. (2018). An Elliptically Symmetric Angular
Gaussian Distribution. Statistics and Computing, 28(3):689–697.
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See Also

vmf.contour, vmf.kerncontour, spher.esag.contour

Examples

kent.contour(10, 4)

mu <- colMeans( as.matrix( iris[,1:3] ) )
gam <- c(1,0.5)
esag.contour(mu, gam, 50, 50)
esag.contour(mu, gam, 30, 40)

Contour plot (on the sphere) of a mixture of von Mises-Fisher
distributions

Contour plot (on the sphere) of a mixture of von Mises-Fisher distri-
butions

Description

The contour plot (on the sphere) of a mixture of von Mises-Fisher distributions is produced.

Usage

spher.mixvmf.contour(probs, mu, k, bgcol = "snow", dat = NULL, col = NULL,
lat = 50, long = 50)

Arguments

probs This is avector with the mixing probability of each group.

mu A matrix with the mean direction of each group.

k A vector with the concentration parameter of each group.

bgcol The color of the surface of the sphere.

dat If you have you want to plot supply them here. This has to be a numerical matrix
with three columns, i.e. unit vectors.

col If you supplied data then choose the color of the points. If you did not choose a
color, the points will appear in red.

lat A positive number determing the range of degrees to move left and right from
the latitude center. See the example to better understand this argument.

long A positive number determing the range of degrees to move up and down from
the longitude center. See the example to better understand this argument.

Details

The goal of this function is for the user to see how the mixtures of von Mises-Fisher look like.
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Value

A plot containing the contours of the mixture distribution.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Kurt Hornik and Bettina Grun (2014). movMF: An R Package for Fitting Mixtures of von Mises-
Fisher Distributions http://cran.r-project.org/web/packages/movMF/vignettes/movMF.pdf

Mardia K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

Sra S. (2012). A short note on parameter approximation for von Mises-Fisher distributions: and a
fast implementation of Is(x). Computational Statistics, 27(1): 177–190.

See Also

spher.esag.contour, spher.vmf.contour, mixvmf.mle

Examples

k <- runif(3, 4, 20)
probs <- c(0.2, 0.5, 0.3)
mu <- matrix(rnorm(9, 0, 0.5), ncol = 3)
mu <- mu / sqrt( rowSums(mu^2) )
## the lat and long are decreased to 10. Increase them back to 50 to
## see the difference
spher.mixvmf.contour(probs, mu, k, lat = 10, long = 10)

Contour plot (on the sphere) of some spherical rotationally symmetric
distributions

Contour plot (on the sphere) of some spherical rotationally symmetric
distributions

Description

The contour plot (on the sphere) of some spherical rotationally symmetric distributions is produced.
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Usage

spher.vmf.contour(mu, k, bgcol = "snow", dat = NULL, col = NULL,
lat = 50, long = 50)
spher.purka.contour(theta, a, bgcol = "snow", dat = NULL, col = NULL,
lat = 50, long = 50)
spher.spcauchy.contour(mu, rho, bgcol = "snow", dat = NULL, col = NULL,
lat = 50, long = 50)
spher.pkbd.contour(mu, rho, bgcol = "snow", dat = NULL, col = NULL,
lat = 50, long = 50)

Arguments

mu The mean or the median direction, depending on the distribution, a unit vector.

theta The mean direction (unit vector) of the Purkayastha distribution.

k The concentration parameter (κ) of the von Mises-Fisher distribution.

a The concentration parameter (α) of the Purkayastha distribution.

rho The concentration parameter (ρ) of the spherical Cauchy distribution.

bgcol The color of the surface of the sphere.

dat If you have you want to plot supply them here. This has to be a numerical matrix
with three columns, i.e. unit vectors.

col If you supplied data then choose the color of the points. If you did not choose a
color, the points will appear in red.

lat A positive number determing the range of degrees to move left and right from
the latitude center. See the example to better understand this argument.

long A positive number determing the range of degrees to move up and down from
the longitude center. See the example to better understand this argument.

Details

The goal of this function is for the user to see how the von Mises-Fisher, the Purkayastha, the
spherical Cauchy or the Poisson kernel-based distribution looks like.

Value

A plot containing the contours of the distribution.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.
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References

Tsagris M., Papastamoulis P. and Kato S. (2024). Directional data analysis using the spherical
Cauchy and the Poisson kernel-based distribution. https://arxiv.org/pdf/2409.03292.

Mardia K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

Sra S. (2012). A short note on parameter approximation for von Mises-Fisher distributions: and a
fast implementation of Is(x). Computational Statistics, 27(1): 177–190.

Purkayastha S. (1991). A Rotationally Symmetric Directional Distribution: Obtained through Max-
imum Likelihood Characterization. The Indian Journal of Statistics, Series A, 53(1): 70–83.

Cabrera J. and Watson G. S. (1990). On a spherical median related distribution. Communications
in Statistics-Theory and Methods, 19(6): 1973–1986.

Kato S. and McCullagh P. (2020). Some properties of a Cauchy family on the sphere derived from
the Mobius transformations. Bernoulli, 26(4): 3224–3248. https://arxiv.org/pdf/1510.07679.pdf

Golzy M. and Markatou M. (2020). Poisson kernel-based clustering on the sphere: convergence
properties, identifiability, and a method of sampling. Journal of Computational and Graphical
Statistics, 29(4): 758–770.

Sablica L., Hornik K. and Leydold J. (2023). Efficient sampling from the PKBD distribution.
Electronic Journal of Statistics, 17(2): 2180–2209.

See Also

spher.esag.contour, spher.mixvmf.contour, kent.contour

Examples

mu <- colMeans( as.matrix( iris[, 1:3] ) )
mu <- mu / sqrt( sum(mu^2) )
## the lat and long are decreased to 30. Increase them back to 50 to
## see the difference
spher.spcauchy.contour(mu, 0.7, lat = 30, long = 30)

Contour plot (on the sphere) of the ESAG and Kent distributions

Contour plot (on the sphere) of the ESAG and Kent distributions

Description

The contour plot (on the sphere) of the ESAG and Kent distributions is produced.

Usage

spher.esag.contour(mu, gam, bgcol = "snow", dat = NULL, col = NULL,
lat = 50, long = 50)
spher.kent.contour(G, param, bgcol = "snow", dat = NULL, col = NULL,
lat = 50, long = 50)
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Arguments

mu The mean vector the ESAG distribution, a vector in R3.

gam The two gamma parameters of the ESAG distribution.

G For the Kent distribution, a 3 x 3 matrix whose first column is the mean direction.
The second and third columns are the major and minor axes respectively.

param For the Kent distribution a vector with the concentration κ and ovalness β pa-
rameters. The angle ψ has been absorbed inside the matrix G.

bgcol The color of the surface of the sphere.

dat If you have you want to plot supply them here. This has to be a numerical matrix
with three columns, i.e. unit vectors.

col If you supplied data then choose the color of the points. If you did not choose a
color, the points will appear in red.

lat A positive number determing the range of degrees to move left and right from
the latitude center. See the example to better understand this argument.

long A positive number determing the range of degrees to move up and down from
the longitude center. See the example to better understand this argument.

Details

The goal of this function is for the user to see how the ESAG or the Kent distribution looks like.

Value

A plot containing the contours of the distribution.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Kent John (1982). The Fisher-Bingham distribution on the sphere. Journal of the Royal Statistical
Society, Series B, 44(1): 71–80.

Paine P.J., Preston S.P., Tsagris M. and Wood A.T.A. (2018). An Elliptically Symmetric Angular
Gaussian Distribution. Statistics and Computing, 28(3):689–697.

See Also

esag.contour, spher.purka.contour, kent.contour
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Examples

mu <- colMeans( as.matrix( iris[, 1:3] ) )
gam <- c(1 ,0.5)
## the lat and long are decreased to 30. Increase them back to 50 to
## see the difference
spher.esag.contour(mu, gam, lat = 30, long = 30)

Contour plot (on the sphere) of the SESPC distribution

Contour plot (on the sphere) of the SESPC distribution

Description

The contour plot (on the sphere) of the SESPC distribution is produced.

Usage

spher.sespc.contour(mu, theta, bgcol = "snow", dat = NULL, col = NULL,
lat = 50, long = 50)

Arguments

mu The mean vector the SESPC distribution, a vector in R3.
theta The two θ parameters of the SESPC distribution.
bgcol The color of the surface of the sphere.
dat If you have you want to plot supply them here. This has to be a numerical matrix

with three columns, i.e. unit vectors.
col If you supplied data then choose the color of the points. If you did not choose a

color, the points will appear in red.
lat A positive number determing the range of degrees to move left and right from

the latitude center. See the example to better understand this argument.
long A positive number determing the range of degrees to move up and down from

the longitude center. See the example to better understand this argument.

Details

The goal of this function is for the user to see how the SESPC distribution looks like.

Value

A plot containing the contours of the distribution.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.
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References

Tsagris M. and Alzeley O. (2024). Circular and spherical projected Cauchy distributions: A Novel
Framework for Circular and Directional Data Modeling. Australian & New Zealand Journal of
Statistics (accepted for publication). https://arxiv.org/pdf/2302.02468.pdf

See Also

spher.esag.contour, spher.spcauchy.contour

Examples

mu <- colMeans( as.matrix( iris[, 1:3] ) )
theta <- c(1 ,0.5)
## the lat and long are decreased to 30. Increase them back to 50 to
## see the difference
spher.sespc.contour(mu, theta, lat = 30, long = 30)

Contour plot of a mixture of von Mises-Fisher distributions model

Contour plot of a mixture of von Mises-Fisher distributions model for
spherical data only.

Description

Contour lines are produced of mixture model for spherical data only.

Usage

mixvmf.contour(u, mod)

Arguments

u A two column matrix. The first column is the longitude and the second is the
latitude.

mod This is mix.vmf object, actually it is a list. Run a mixture model and save it as
mod for example, mod = mix.vmf(x, 3).

Details

The contour plot is displayed with latitude and longitude in the axes. No Lambert projection is used
here. This works for spherical data only which are given as longitude and latitude.

Value

A plot including: The points and the contour lines.
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Author(s)

Michail Tsagris and Christos Adam.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Christos Adam
<pada4m4@gmail.com>.

References

Kurt Hornik and Bettina Grun (2014). movMF: An R Package for Fitting Mixtures of von Mises-
Fisher Distributions http://cran.r-project.org/web/packages/movMF/vignettes/movMF.pdf

See Also

vmf.kerncontour, vmf.contour, mixvmf.mle

Examples

k <- runif(2, 4, 20)
prob <- c(0.4, 0.6)
mu <- matrix( rnorm(6), ncol = 3 )
mu <- mu / sqrt( rowSums(mu^2) )
x <- rmixvmf(200, prob, mu, k)$x
mod <- mixvmf.mle(x, 2)
y <- euclid.inv(x)
mixvmf.contour(y, mod)

Contour plot of spherical data using a von Mises-Fisher kernel
density estimate

Contour plot of spherical data using a von Mises-Fisher kernel density
estimate

Description

Contour plot of spherical data using a von Mises-Fisher kernel density estimate.

Usage

vmf.kerncontour(u, thumb = "none", den.ret = FALSE, full = FALSE, ngrid = 100)

Arguments

u A two column matrix. The first coolumn is the latitude and the second is the
longitude.

thumb This is either ’none’ (defualt), or ’rot’ for the rule of thumb suggested by Garcia-
Portugues (2013). If it is "none" it is estimated via cross validation, with the fast
function vmfkde.tune.
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den.ret If FALSE (default), plots the contours of the density along with the individual
points. If TRUE, will instead return a list with the Longitudes, Latitudes and
Densities. Look at the ’value’ section for details.

full If FALSE (default), uses the range of positions from ’u’ to calculate and option-
ally plot densities. If TRUE, calculates densities covering the entire sphere.

ngrid Sets the resolution of the density calculation.

Details

It calculates the contour plot using a von Mises-Fisher kernel for spherical data only.

Value

The contour lines of the data. If "den.ret" was set to TRUE a list including:

lat The latitude values.

long The longitude values.

h The optimal bandwidth.

den The kernel density estimate contour points.

Author(s)

Michail Tsagris, Micah J. Waldstein and Christos Adam.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>, Micah J. Waldstein
<micah@waldste.in> and Christos Adam <pada4m4@gmail.com>.

References

Garcia Portugues, E. (2013). Exact risk improvement of bandwidth selectors for kernel density
estimation with directional data. Electronic Journal of Statistics, 7, 1655–1685.

See Also

vmf.kde, vmfkde.tune, vmf.contour

Examples

x <- rvmf(100, rnorm(3), 15)
x <- euclid.inv(x)

vmf.kerncontour(x, "rot")
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Contour plots of some rotationally symmetric distributions

Contour plots of some rotationally symmetric distributions

Description

Contour plots of some rotationally symmetric distributions.

Usage

vmf.contour(k)
spcauchy.contour(mu, rho, lat = 50, long = 50)
purka.contour(theta, a, lat = 50, long = 50)
pkbd.contour(mu, rho, lat = 50, long = 50)

Arguments

k The concentration parameter.

mu The mean direction (unit vector) of the von Mises-Fisher, the IAG, the spherical
Cauchy distribution, or the Poisson kernel-based distribution.

rho The ρ parameter of the spherical Cauchy distribution, or the Poisson kernel-
based distribution.

theta The median direction for the Purkayastha distribution, a unit vector.

a The concentration parameter of the Purkayastha distribution.

lat A positive number determing the range of degrees to move left and right from
the latitude center. See the example to better understand this argument.

long A positive number determing the range of degrees to move up and down from
the longitude center. See the example to better understand this argument.

Details

The user specifies the concentration parameter only and not the mean direction or data. This is
for illustration purposes only. The graph of the von Mises-Fisher distribution will always contain
circles, as this distribution is the analogue of a bivariate normal in two dimensions with a zero
covariance.

Value

A contour plot of the distribution.

Author(s)

Michail Tsagris and Christos Adam.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Christos Adam
<pada4m4@gmail.com>.
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References

Tsagris M., Papastamoulis P. and Kato S. (2024). Directional data analysis using the spherical
Cauchy and the Poisson kernel-based distribution. https://arxiv.org/pdf/2409.03292.

Mardia K. V. and Jupp P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

Kato S. and McCullagh P. (2020). Some properties of a Cauchy family on the sphere derived from
the Mobius transformations. Bernoulli, 26(4): 3224–3248. https://arxiv.org/pdf/1510.07679.pdf

Purkayastha S. (1991). A Rotationally Symmetric Directional Distribution: Obtained through Max-
imum Likelihood Characterization. The Indian Journal of Statistics, Series A, 53(1): 70–83

Cabrera J. and Watson G. S. (1990). On a spherical median related distribution. Communications
in Statistics-Theory and Methods, 19(6): 1973–1986.

Golzy M. and Markatou M. (2020). Poisson kernel-based clustering on the sphere: convergence
properties, identifiability, and a method of sampling. Journal of Computational and Graphical
Statistics, 29(4): 758–770.

Sablica L., Hornik K. and Leydold J. (2023). Efficient sampling from the PKBD distribution.
Electronic Journal of Statistics, 17(2): 2180–2209.

See Also

rvmf, vmf.mle, vmf.kerncontour, kent.contour, sphereplot

Examples

vmf.contour(5)
mu <- colMeans( as.matrix( iris[,1:3] ) )
mu <- mu / sqrt( sum(mu^2) )
spcauchy.contour(mu, 0.7, 30, 30)
spcauchy.contour(mu, 0.7, 60, 60)

Conversion of cosines to azimuth and plunge

Conversion of cosines to azimuth and plunge

Description

Conversion of cosines to azimuth and plunge.

Usage

cosap(x,y,z)

Arguments

x x component of cosine.

y y component of cosine.

z z component of cosine.



Converting a rotation matrix on SO(3) to an unsigned unit quaternion 43

Details

Orientation: x>0 is ’eastward’, y>0 is ’southward’, and z>0 is ’downward’.

Value

A list including:

A The azimuth

P The plunge

Author(s)

Eli Amson.

R implementation and documentation: Eli Amson <eli.amson1988@gmail.com>.

References

Amson E, Arnold P, Van Heteren AH, Cannoville A, Nyakatura JA. Trabecular architecture in the
forelimb epiphyses of extant xenarthrans (Mammalia). Frontiers in Zoology.

See Also

euclid, euclid.inv, eul2rot

Examples

cosap(-0.505, 0.510, -0.696)

Converting a rotation matrix on SO(3) to an unsigned unit quaternion

Converting a rotation matrix on SO(3) to an unsigned unit quaternion

Description

It returns an unsigned unite quaternion in S3 (the four-dimensional sphere) from a 3 × 3 rotation
matrix on SO(3).

Usage

rot2quat(X)

Arguments

X A rotation matrix in SO(3).
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Details

Firstly construct a system of linear equations by equating the corresponding components of the
theoretical rotation matrix proposed by Prentice (1986), and given a rotation matrix. Finally, the
system of linear equations are solved by following the tricks mentioned in second reference here in
order to achieve numerical accuracy to get quaternion values.

Value

A unsigned unite quaternion.

Author(s)

Anamul Sajib.

R implementation and documentation: Anamul Sajib <sajibstat@du.ac.bd>.

References

Prentice,M. J. (1986). Orientation statistics without parametric assumptions.Journal of the Royal
Statistical Society. Series B: Methodological 48(2). //http://www.euclideanspace.com/maths/geometry/rotations/conversions/matrixToQuaternion/index.htm

See Also

quat2rot, rotation, Arotation \ link{rot.matrix}

Examples

x <- rnorm(4)
x <- x/sqrt( sum(x^2) ) ## an unit quaternion in R4 ##
R <- quat2rot(x)
R
x
rot2quat(R) ## sign is not exact as you can see

Converting an unsigned unit quaternion to rotation matrix on SO(3)

Converting an unsigned unit quaternion to rotation matrix on SO(3)

Description

It forms a (3 x 3) rotation matrix on SO(3) from an unsigned unite quaternion in S3 (the four-
dimensional sphere).

Usage

quat2rot(x)
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Arguments

x An unsigned unit quaternion in S3.

Details

Given an unsigned unit quaternion in S3 it forms a rotation matrix on SO(3), according to the
transformation proposed by Prentice (1986).

Value

A rotation matrix.

Author(s)

Anamul Sajib.

R implementation and documentation: Anamul Sajib <sajibstat@du.ac.bd>.

References

Prentice,M. J. (1986). Orientation statistics without parametric assumptions.Journal of the Royal
Statistical Society. Series B: Methodological 48(2).

See Also

rot2quat, rotation, Arotation rot.matrix

Examples

x <- rnorm(4)
x <- x/sqrt( sum(x^2) )
x ## an unit quaternion in R4 ##
quat2rot(x)

Cross validation for estimating the classification rate

Cross validation for estimating the classification rate

Description

Cross validation for estimating the classification rate.

Usage

dirda.cv(x, ina, folds = NULL, nfolds = 10, stratified = FALSE,
type = c("vmf", "iag", "esag", "kent", "sc", "pkbd", "purka"),
seed = NULL, B = 1000)
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Arguments

x A matrix with the data in Eulcidean coordinates, i.e. unit vectors. The matrix
must have three columns, only spherical data are currently supported.

ina A variable indicating the groupings.

folds Do you already have a list with the folds? If not, leave this NULL.

nfolds How many folds to create?

stratified Should the folds be created in a stratified way? i.e. keeping the distribution of
the groups similar through all folds?

seed If seed is TRUE, the results will always be the same.

type The type of classifier to use. The avaliable options are "vmf" (von Mises-
Fisher distribution), "iag" (IAG distribution), "esag" (ESAG distribution), "kent"
(Kent distribution), "sc" and "sc2" (spherical Cauchy distribution), "pkbd" and
"pkbd2" (Poisson kernel-based distribution), and "purka" (Purkayastha distribu-
tion). The difference between "sc" and "sc2" and between "pkbd" and "pkbd2"
is that the first uses the Newton-Raphson algorithm and it is faster, whereas the
second uses a hybrid algorithm that does not require the Hessian matrix, but in
large dimensions the second will be faster. You can chose any of them or all of
them. Note that "kent" works only with spherical data.

B If you used k-NN, should a bootstrap correction of the bias be applied? If yes,
1000 is a good value.

Details

Cross-validation for the estimation of the performance of a classifier.

The estimated performance of the best classifier is overestimated. After the cross-valdiation pro-
cedure, the predicted values produced by all classifiers are colelcted, from all folds, in an n ×M
matrix, where n is the number of samples and M is the number of all classifiers used. We sample
rows (predictions) with replacement from P and denote them as the in-sample values. The non
re-sampled rows are denoted as out-of-sample values. The performance of each classifier in the
insample rows is calculated and the classifier with the optimal performance is selected, followed
by the calculation of performance in the out-of-sample values. This process is repeated B times
and the average performance is returned. The only computational overhead is with the repetitive
resampling and calculation of the performance, i.e. no model or classifier is fitted nor trained. For
more information see Tsamardinos et al. (2018).

The good thing with the function is that you can run any method you want by supplying the folds
yourselves using the command makefolds. Then suppose you want to run another method. By
suppying the same folds you will be able to have comparative results for all methods.

Value

A list including:

perf A vector with the estimated performance of each classifier.

bbc.perf The bootstrap bias corrected performance.
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Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Tsagris M., Papastamoulis P. and Kato S. (2024). Directional data analysis using the spherical
Cauchy and the Poisson kernel-based distribution. https://arxiv.org/pdf/2409.03292

Tsagris M. and Alenazi A. (2019). Comparison of discriminant analysis methods on the sphere.
Communications in Statistics: Case Studies, Data Analysis and Applications, 5(4), 467–491.

Mardia K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

Morris J. E. and Laycock P. J. (1974). Discriminant analysis of directional data. Biometrika, 61(2):
335–341.

Tsamardinos I., Greasidou E. and Borboudakis G. (2018). Machince Learning, 107(12): 1895–
1922.

See Also

dirda, dirknn, knn.reg

Examples

x <- rvmf(300, rnorm(3), 10)
ina <- sample.int(2, 300, replace = TRUE)
dirda.cv(x, ina, B = 1)

Cumulative distribution function of circular distributions

Cumulative distribution function of circular distributions

Description

Cumulative probability distribution of circular distributions.

Usage

pvm(u, m, k, rads = FALSE)
pspml(u, mu, rads = FALSE)
pwrapcauchy(u, m, rho, rads = FALSE)
pcircpurka(u, m, a, rads = FALSE)
pcircbeta(u, m, a, b, rads = FALSE)
pcardio(u, m, rho, rads = FALSE)
pcircexp(u, lambda, rads = FALSE)
pcipc(u, omega, g, rads = FALSE)
pgcpc(u, omega, g, rho, rads = FALSE)
pmmvm(u, m, k, N, rads = FALSE)
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Arguments

u A numerical value, either in radians or in degrees.
m The mean direction of the von Mises and the multi-modal von Mises distribution

in radians or in degrees.
mu The mean vector, a vector with two values for the "pspml".
omega The location parameter of the CIPC and GCPC distributions.
g The norm of the mean vector for the CIPC and GCPC distributions.
k The concentration parameter, κ.
lambda The λ parameter of the circular exponential distribution. This must be positive.
a The α parameter of the circular Purkayastha distribution or the α parameter of

the circular Beta distribution.
b The β parameter of the circular beta distribution.
rho The ρ parameter of the Cardioid, wrapped Cauchy and GCPC distributions.
N The number of modes to consider in the multi-modal von Mises distribution.
rads If the data are in radians, this should be TRUE and FALSE otherwise.

Details

This value calculates the probability of u being less than some value θ.

Value

The probability that of u being less than θ, where u follows a circular distribution.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Arthur Pewsey, Markus Neuhauser, and Graeme D. Ruxton (2013). Circular Statistics in R.

Barnett M. J. and Kingston R. L. (2024). A note on the Hendrickson-Lattman phase probabil-
ity distribution and its equivalence to the generalized von Mises distribution. Journal of Applied
Crystallography, 57(2).

Jammalamadaka S. R. and Kozubowski T. J. (2003). A new family of circular models: The wrapped
Laplace distributions. Advances and Applications in Statistics, 3(1): 77–103.

Purkayastha S. (1991). A Rotationally Symmetric Directional Distribution: Obtained through Max-
imum Likelihood Characterization. The Indian Journal of Statistics, Series A, 53(1): 70–83

Cabrera J. and Watson G. S. (1990). On a spherical median related distribution. Communications
in Statistics–Theory and Methods, 19(6): 1973–1986.

Paula F. V., Nascimento A. D., Amaral G. J. and Cordeiro G. M. (2021). Generalized Cardioid
distributions for circular data analysis. Stats, 4(3): 634–649.

Zheng Sun (2009). Comparing measures of fit for circular distributions. MSc Thesis, University of
Victoria. file:///C:/Users/mtsag/Downloads/zhengsun_master_thesis.pdf
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See Also

group.gof, dvm, dcircexp,purka.mle, dcircpurka, dmmvm

Examples

pvm(1, 2, 10, rads = TRUE)
pmmvm(1, 2, 10, 3, rads = TRUE)
pcircexp(c(1, 2), 2, rads = TRUE)
pcircpurka(2, 3, 0.3)

Density of a mixture of rotationally symmetric distributions

Density of a mixture of rotationally symmetric distributions

Description

Density of a mixture of rotationally symmetric distributions.

Usage

dmixvmf(y, probs, mu, k, logden = FALSE)
dmixspcauchy(y, probs, mu, rho, logden = FALSE)
dmixpkbd(y, probs, mu, rho, logden = FALSE)

Arguments

y A matrix with unit vectors.

probs This is avector with the mixing probability of each group.

mu A matrix with the mean direction of each group.

k A vector with the concentration parameter of each group.

rho A vector with the concentration parameter of each group.

logden If you the logarithm of the density values set this to TRUE.

Details

The function computes the density for a given mixture of von Mises-Fisher, spherical Cauchy or
Poisson kernel-based distributions.

Value

A vector with the (log) density values of y.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.
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References

Kurt Hornik and Bettina Grun (2014). movMF: An R Package for Fitting Mixtures of von Mises-
Fisher Distributions http://cran.r-project.org/web/packages/movMF/vignettes/movMF.pdf

Tsagris M., Papastamoulis P. and Kato S. (2024). Directional data analysis using the spherical
Cauchy and the Poisson kernel-based distribution. https://arxiv.org/pdf/2409.03292.

See Also

mixvmf.mle, rvmf, bic.mixvmf

Examples

k <- runif(3, 4, 6)
probs <- c(0.2, 0.5, 0.3)
mu <- matrix(rnorm(9), ncol = 3)
mu <- mu / sqrt( rowSums(mu^2) )
x <- rmixvmf(200, probs, mu, k)$x
b <- dmixvmf(x, probs, mu, k)

Density of some (hyper-)spherical distributions

Density of some (hyper-)spherical distributions

Description

Density of some (hyper-)spherical distributions.

Usage

dvmf(y, mu, k, logden = FALSE )
iagd(y, mu, logden = FALSE)
dpurka(y, theta, a, logden = FALSE)
dspcauchy(y, mu, rho, logden = FALSE)
dpkbd(y, mu, rho, logden = FALSE)

Arguments

y A matrix or a vector with the data expressed in Euclidean coordinates, i.e. unit
vectors.

mu The mean direction (unit vector) of the von Mises-Fisher, the IAG, the spherical
Cauchy distribution, or of the Poisson kernel-based distribution.

theta The mean direction (unit vector) of the Purkayastha distribution.
k The concentration parameter of the von Mises-Fisher distribution.
a The concentration parameter of the Purkayastha distribution.
rho The ρ parameter of the spherical Cauchy distribution, or of the Poisson kernel-

based distribution.
logden If you the logarithm of the density values set this to TRUE.
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Details

The density of the von Mises-Fisher, of the IAG, of the Purkayastha, of the spherical Cauchy distri-
bution, or of the Poisson kernel-based distribution is computed.

Value

A vector with the (log) density values of y.

Author(s)

Michail Tsagris and Zehao Yu.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Zehao Yu <zehaoy@email.sc.edu>.

References

Mardia K. V. and Jupp P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

Purkayastha S. (1991). A Rotationally Symmetric Directional Distribution: Obtained through Max-
imum Likelihood Characterization. The Indian Journal of Statistics, Series A, 53(1): 70–83

Cabrera J. and Watson G. S. (1990). On a spherical median related distribution. Communications
in Statistics-Theory and Methods, 19(6): 1973–1986.

Kato S. and McCullagh P. (2020). Some properties of a Cauchy family on the sphere derived from
the Mobius transformations. Bernoulli, 26(4): 3224–3248. https://arxiv.org/pdf/1510.07679.pdf

Golzy M. and Markatou M. (2020). Poisson kernel-based clustering on the sphere: convergence
properties, identifiability, and a method of sampling. Journal of Computational and Graphical
Statistics, 29(4): 758–770.

Sablica L., Hornik K. and Leydold J. (2023). Efficient sampling from the PKBD distribution.
Electronic Journal of Statistics, 17(2): 2180–2209.

Zehao Yu and Xianzheng Huang (2024). A new parameterization for elliptically symmetric angular
Gaussian distributions of arbitrary dimension. Electronic Journal of Statististics, 18(1): 301–334.

Tsagris M., Papastamoulis P. and Kato S. (2024). Directional data analysis using the spherical
Cauchy and the Poisson kernel-based distribution. https://arxiv.org/pdf/2409.03292.

See Also

kent.mle, rkent, esag.mle

Examples

m <- colMeans( as.matrix( iris[,1:3] ) )
y <- rvmf(1000, m = m, k = 10)
dvmf(y, k=10, m)
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Density of some circular distributions

Density of some circular distributions

Description

Density of some circular distributions.

Usage

dvm(x, m, k, rads = FALSE, logden = FALSE)
dspml(x, mu, rads = FALSE, logden = FALSE)
dwrapcauchy(x, m, rho, rads = FALSE, logden = FALSE)
dwrapnormal(x, m, rho, rads = FALSE, logden = FALSE)
dcircpurka(x, m, a, rads = FALSE, logden = FALSE)
dggvm(x, param, rads = FALSE, logden = FALSE)
dcircbeta(x, m, a, b, rads = FALSE, logden = FALSE)
dcardio(x, m, rho, rads = FALSE, logden = FALSE)
dcircexp(x, lambda, rads = FALSE, logden = FALSE)
dcipc(x, omega, g, rads = FALSE, logden = FALSE)
dgcpc(x, omega, g, rho, rads = FALSE, logden = FALSE)
dmmvm(x, m, k, N, rads = FALSE, logden = FALSE)

Arguments

x A vector with circular data.

m The mean value of the von Mises, wrapped Cauchy, wrapped normal and of the
cardioid distribution, a scalar. This is the median for the circular Purkayastha
distribution.

mu The mean vector, a vector with two values for the "spml" and the GCPC.

omega The location parameter of the CIPC and GCPC distributions.

g The norm of the mean vector for the CIPC and GCPC distributions.

k The concentration parameter.

rho For the wrapped Cauchy, normal and Cardioid distributions, this is the ρ param-
eter. For the GCPC distribution this is the eigenvalue parameter, or covariance
determinant.

a The α parameter of the circular Purkayastha distribution or the α parameter of
the circular Beta distribution.

b The β parameter of the circular Beta distribution.

lambda The λ parameter of the circular (or wrapped) exponential distribution. This must
be positive.

param The vector of parameters of the GGVM distribution as returned by the function
ggvm.mle.

N The number of modes to consider in the multi-modal von Mises distribution.
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rads If the data are in rads, then this should be TRUE, otherwise FALSE.

logden If you the logarithm of the density values set this to TRUE.

Details

The density of the von Mises, bivariate projected normal, cardio, circular exponential, wrapped
Cauchy, wrapped normal, circular Purkayastha, CIPC or GCPC distributions is computed.

Value

A vector with the (log) density values of x.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Mardia K. V. and Jupp P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

Tsagris M. and Alzeley O. (2024). Circular and spherical projected Cauchy distributions: A Novel
Framework for Circular and Directional Data Modeling. https://arxiv.org/pdf/2302.02468.pdf

Presnell B., Morrison S. P. and Littell R. C. (1998). Projected multivariate linear models for direc-
tional data. Journal of the American Statistical Association, 93(443): 1068–1077.

Jammalamadaka S. R. and Kozubowski T. J. (2003). A new family of circular models: The wrapped
Laplace distributions. Advances and Applications in Statistics, 3(1): 77–103.

Barnett M. J. and Kingston R. L. (2024). A note on the Hendrickson-Lattman phase probabil-
ity distribution and its equivalence to the generalized von Mises distribution. Journal of Applied
Crystallography, 57(2).

Paula F. V., Nascimento A. D., Amaral G. J. and Cordeiro G. M. (2021). Generalized Cardioid
distributions for circular data analysis. Stats, 4(3): 634–649.

Zheng Sun (2009). Comparing measures of fit for circular distributions. MSc Thesis, University of
Victoria. file:///C:/Users/mtsag/Downloads/zhengsun_master_thesis.pdf

Lopez-Custodio P. C. (2024). A cheat sheet for probability distributions of orientational data.
arXiv:2412.08934.

See Also

dkent, rvonmises, desag

Examples

x <- rvonmises(500, m = 2.5, k = 10, rads = TRUE)
mod <- circ.summary(x, rads = TRUE, plot = FALSE)
den <- dvm(x, mod$mesos, mod$kappa, rads = TRUE, logden = TRUE )
mod$loglik
sum(den)
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Density of the SESPC distribution

Density of the SESPC distribution

Description

Density of the SESPC distribution.

Usage

dsespc(y, mu, theta, logden = FALSE)

Arguments

y A matrix or a vector with the data expressed in Euclidean coordinates, i.e. unit
vectors.

mu The mean vector the SESPC distribution, a vector in R3.

theta The two θ parameters of the SESPC distribution.

logden If you the logarithm of the density values set this to TRUE.

Details

The density of the SESPC distribution is computed.

Value

A vector with the (log) density values of y.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Tsagris M. and Alzeley O. (2024). Circular and spherical projected Cauchy distributions: A Novel
Framework for Circular and Directional Data Modeling. Australian & New Zealand Journal of
Statistics (accepted for publication). https://arxiv.org/pdf/2302.02468.pdf

Mardia K. V. and Jupp P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

See Also

desag, sespc.mle
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Examples

m <- colMeans( as.matrix( iris[,1:3] ) )
y <- rsespc(1000, m, c(1, 1))
mod <- sespc.mle(y)
dsespc( y, mod$mu, mod$theta)

Density of the spherical ESAG and Kent distributions and of the ESAG
distribution in arbitrary dimensions

Density of the spherical ESAG and Kent distributions

Description

Density of the spherical ESAG and Kent distributions.

Usage

desag(y, mu, gam, logden = FALSE)
dkent(y, G, param, logden = FALSE)
dESAGd(y, mu, gam, logden = FALSE)

Arguments

y A matrix or a vector with the data expressed in Euclidean coordinates, i.e. unit
vectors. For the dESAGd it can have any dimension.

mu The mean vector the ESAG distribution.
gam The two γ parameters of the ESAG distribution.
G For the Kent distribution only, a 3 x 3 matrix whose first column is the mean

direction. The second and third columns are the major and minor axes respec-
tively.

param For the Kent distribution a vector with the concentration κ and ovalness β pa-
rameters. The ψ has been absorbed inside the matrix G.

logden If you the logarithm of the density values set this to TRUE.

Details

The density of the spherical ESAG or Kent distribution, or of the ESAG distribution in arbitrary
dimensions is computed.

Value

A vector with the (log) density values of y.

Author(s)

Michail Tsagris and Zehao Yu.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Zehao Yu <Zzehaoy@email.sc.edu>.
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References

Zehao Yu and Xianzheng Huang (2024). A new parameterization for elliptically symmetric angular
Gaussian distributions of arbitrary dimension. Electronic Journal of Statististics, 18(1): 301–334.

Paine P.J., Preston S.P., Tsagris M. and Wood A.T.A. (2018). An Elliptically Symmetric Angular
Gaussian Distribution. Statistics and Computing, 28(3):689–697.

Kent John (1982). The Fisher-Bingham distribution on the sphere. Journal of the Royal Statistical
Society, Series B, 44(1): 71–80.

Mardia K. V. and Jupp P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

See Also

kent.mle, rkent, esag.mle

Examples

m <- colMeans( as.matrix( iris[, 1:3] ) )
y <- rkent(1000, k = 10, m = m, b = 4)
mod <- kent.mle(y)
dkent( y, G = mod$G, param = mod$param )

Density of the Wood bimodal distribution on the sphere

Density of the Wood bimodal distribution on the sphere

Description

Density of the Wood bimodal distribution on the sphere.

Usage

dwood(y, param, logden = FALSE)

Arguments

y A matrix containing two columns. The first one is the latitude and the second is
the longitude, both expressed in degrees.

param A vector with the 5 parameters, in the order they are returned by the wood.mle
function. That is, (γ, δ, α, β, κ).

logden If you the logarithm of the density values set this to TRUE.

Details

The density of the spherical Wood distribution is computed.

Value

A vector with the (log) density values of y.
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Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Wood A.T.A. (1982). A bimodal distribution on the sphere. Journal of the Royal Statistical Society,
Series C, 31(1): 52–58.

See Also

dkent, desag, wood.mle

Examples

x <- rvmf(100, rnorm(3), 15)
x <- euclid.inv(x)
mod <- wood.mle(x)
d <- dwood(x, mod$info[, 1])

Euclidean transformation

Euclidean transformation

Description

It transforms the data from the spherical coordinates to Euclidean coordinates.

Usage

euclid(u)

Arguments

u A two column matrix or even one single vector, where the first column (or ele-
ment) is the latitude and the second is the longitude. The order is important.

Details

It takes the matrix of unit vectors of latitude and longitude and transforms it to unit vectors.

Value

A three column matrix:

U The Euclidean coordinates of the latitude and longitude.
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Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>.

See Also

euclid.inv, Arotation, lambert

Examples

x <- rvmf(10, rnorm(3), 10)
u <- euclid.inv(x)
euclid(u)
x

Euler angles from a rotation matrix on SO(3)

Compute the Euler angles from a rotation matrix on SO(3).

Description

It calculates three euler angles (θ12, θ13, θ23) from a (3× 3) rotation matrix X, where X is defined
as X = Rz(θ12)× Ry(θ13)× Rx(θ23). Here Rx(θ23) means a rotation of θ23 radians about the x
axis.

Usage

rot2eul(X)

Arguments

X A rotation matrix which is defined as a product of three elementary rotations
mentioned above. Here θ12, θ23 ∈ (−π, π) and and θ13 ∈ (−π/2, π/2).

Details

Given a rotation matrix X, euler angles are computed by equating each element in X with the
corresponding element in the matrix product defined above. This results in nine equations that can
be used to find the euler angles.

Value

For a given rotation matrix, there are two eqivalent sets of euler angles.
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Author(s)

Anamul Sajib <sajibstat@du.ac.bd>.

R implementation and documentation: Anamul Sajib <sajibstat@du.ac.bd>.

References

Green, P. J. and Mardia, K. V. (2006). Bayesian alignment using hierarchical models, with applica-
tions in proteins bioinformatics. Biometrika, 93(2):235–254.

http://www.staff.city.ac.uk/~sbbh653/publications/euler.pdf

See Also

eul2rot

Examples

# three euler angles

theta.12 <- sample( seq(-3, 3, 0.3), 1 )
theta.23 <- sample( seq(-3, 3, 0.3), 1 )
theta.13 <- sample( seq(-1.4, 1.4, 0.3), 1 )

theta.12 ; theta.23 ; theta.13

X <- eul2rot(theta.12, theta.23, theta.13)
X ## A rotation matrix

e <- rot2eul(X)$v1

theta.12 <- e[3]
theta.23 <- e[2]
theta.13 <- e[1]

theta.12 ; theta.23 ; theta.13

Forward Backward Early Dropping selection for circular data using
the SPML regression

Forward Backward Early Dropping selection for circular data using
the SPML regression

Description

Forward Backward Early Dropping selection for circular data using the SPML regression.

Usage

spml.fbed(y, x, alpha = 0.05, K = 0, backward = FALSE,
parallel = FALSE, tol = 1e-07, maxiters = 100)
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Arguments

y The response variable, a numeric vector expressed in rads.

x A matrix with continuous independent variables.

alpha The significance threshold value for assessing p-values. Default value is 0.05.

K How many times should the process be repeated? The default value is 0.

backward After the Forward Early Dropping phase, the algorithm proceeds witha the usual
Backward Selection phase. The default value is set to TRUE. It is advised to
perform this step as maybe some variables are false positives, they were wrongly
selected. This is rather experimental now and there could be some mistakes in
the indices of the selected variables. Do not use it for now.

parallel If you want the algorithm to run in parallel set this TRUE.

tol The tolerance value to terminate the Newton-Raphson algorithm.

maxiters The maximum number of iterations Newton-Raphson will perform.

Details

The algorithm is a variation of the usual forward selection. At every step, the most significant
variable enters the selected variables set. In addition, only the significant variables stay and are
further examined. The non signifcant ones are dropped. This goes until no variable can enter
the set. The user has the option to re-do this step 1 or more times (the argument K). In the end,
a backward selection is performed to remove falsely selected variables. Note that you may have
specified, for example, K=10, but the maximum value FBED used can be 4 for example.

Value

If K is a single number a list including: Note, that the "gam" argument must be the same though.

res A matrix with the selected variables and their test statistic.

info A matrix with the number of variables and the number of tests performed (or
models fitted) at each round (value of K). This refers to the forward phase only.

runtime The runtime required.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Borboudakis G. and Tsamardinos I. (2019). Forward-backward selection with early dropping. Jour-
nal of Machine Learning Research, 20(8): 1–39.

Tsagis M. (2018). Guide on performing feature selection with the R package MXM. https://f1000research.com/articles/7-
1505

Presnell Brett, Morrison Scott P. and Littell Ramon C. (1998). Projected multivariate linear models
for directional data. Journal of the American Statistical Association, 93(443): 1068–1077.
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See Also

spml.reg, spml.regs, spml.mle

Examples

x <- matrix( runif(100 * 50, 1, 100), ncol = 50 )
y <- runif(100)
a <- spml.fbed(y, x)

Generate random folds for cross-validation

Generate random folds for cross-validation

Description

Random folds for use in a cross validation are generated. There is the option for stratified splitting
as well.

Usage

makefolds(ina, nfolds = 10, stratified = TRUE, seed = NULL)

Arguments

ina A variable indicating the groupings.

nfolds The number of folds to produce.

stratified A boolean variable specifying whether stratified random (TRUE) or simple ran-
dom (FALSE) sampling is to be used when producing the folds.

seed You can specify your own seed number here or leave it NULL.

Details

I was inspired by the command in the package TunePareto in order to do the stratified version.

Value

A list with nfolds elements where each elements is a fold containing the indices of the data.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

See Also

dirda.cv
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Examples

a <- makefolds(iris[, 5], nfolds = 5, stratified = TRUE)
table(iris[a[[1]], 5]) ## 10 values from each group

Generation of unit vector(s) with a given angle

Generation of unit vector(s) with a given angle

Description

Generation of unit vector(s) with a given angle from a given unit vector.

Usage

vec(x, n = 1, deg = 90)

Arguments

x A unit vector. If it is not a unit vector it becomes one.

n The number of unit vectors to return.

deg The angle between the given vector and the n vectors to be returned. This must
be in degrees and it has to be between 0 and 180 degrees. If the angle is 0, the
same unit vector will be returned. If the angle is 180, the same unit vector with
the signs changed will be returned.

Details

The user provides a unit vector and the degrees. The function will return n unit vectors whose
angle with the given unit vector equals the degrees given. For example, if you want 10 unit vectors
purpendicualr to the x put vec(x, 10, 90).

Value

A list including:

runtime The runtime of the procedure.

crit The calculated angle between the given unit vector and each of the generated
unit vectors.

mat A matrix with the n unit vectors.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>.
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See Also

rvmf, rbingham, rfb

Examples

x <- rnorm(10)
x <- x / sqrt( sum(x^2) )
a <- vec(x, 20, 90)

Goodness of fit test for grouped data

Goodness of fit test for grouped data

Description

Goodness of fit test for grouped data.

Usage

group.gof(g, ni, m, k, dist = "vm", rads = FALSE, R = 999, ncores = 1)

Arguments

g A vector with the group points, either in radians or in degrees.

ni The frequency of each or group class.

m The mean direction in radians or in degrees.

k The concentration parameter, κ.

dist The distribution to be tested, it can be either "vm" or "uniform".

rads If the data are in radians, this should be TRUE and FALSE otherwise.

R The number of bootstrap simulations to perform, set to 999 by default.

ncores The number of cores to use.

Details

When you have grouped data, you can test whether the data come from the von Mises-Fisher distri-
bution or from a uniform distribution.

Value

This is an "htest"class object. Thus it returns a list including:

statistic The test statistic value.

parameter Since this is a bootstrap based test, there are no degrees of freedom, hence this
is "NA".

p.value The p-value of the test.
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alternative A character with the alternative hypothesis.

method A character with the test used.

data.name A character vector with two elements.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Arthur Pewsey, Markus Neuhauser, and Graeme D. Ruxton (2013). Circular Statistics in R.

See Also

pvm, circ.summary, rvonmises

Examples

x <- rvonmises(100, 2, 10)
g <- seq(min(x) - 0.1, max(x) + 0.1, length = 6)
ni <- as.vector( table( cut(x, g) ) )
group.gof(g, ni, 2, 10, dist = "vm", rads = TRUE, R = 299, ncores = 1)
group.gof(g, ni, 2, 5, dist = "vm", rads = TRUE, R = 299, ncores = 1)

Habeck’s rotation matrix generation

Generation of three-dimensional random rotations using Habeck’s al-
gorithm.

Description

It generates random rotations in three-dimensional space that follow a probability distribution, ma-
trix Fisher distribution, arising in fitting and matching problem.

Usage

habeck.rot(F)

Arguments

F An arbitrary 3 x 3 matrix represents the parameter matrix of this distribution.

Details

Firstly rotation matrices X are chosen which are the closest to F, and then parameterized using euler
angles. Then a Gibbs sampling algorithm is implemented to generate rotation matrices from the
resulting disribution of the euler angles.
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Value

A simulated rotation matrix.

Author(s)

Anamul Sajib.

R implementation and documentation: Anamul Sajib <sajibstat@du.ac.bd>.

References

Habeck M (2009). Generation of three-dimensional random rotations in fitting and matching prob-
lems. Computational Statistics, 24, 719–731.

Examples

F <- 10^(-1) * matrix( c(85, 11, 41, 78, 39, 60, 43, 64, 48), ncol = 3 ) ## Arbitrary F matrix
X <- habeck.rot(F)
det(X)

Haversine distance matrix

Harvesine distance matrix

Description

Haversine distance matrix.

Usage

haversine.dist(x)

Arguments

x A a matrix of two columns. The first column is the latitude and the second the
longitude.

Details

The function computes the haversine distance between all observations.

Value

A matrix with the haversine distances between all observations.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.
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References

https://en.wikipedia.org/wiki/Haversine_formula

See Also

cosnn, dirknn

Examples

x <- rvmf(10, rnorm(3), 10)
x <- euclid.inv(x)
haversine.dist(x)

Hyper spherical-spherical regression

Hyper spherical-spherical regression

Description

Regression when both the dependent and independent variables are directional data-.

Usage

hspher.reg(y, x, xnew = NULL)

Arguments

y The dependent variable; a matrix with either two columns, latitude and lon-
gitude, either in radians or in degrees. Alternatively it is a matrix with three
columns, unit vectors.

x The dependent variable; a matrix with either two columns, latitude and lon-
gitude, either in radians or in degrees. Alternatively it is a matrix with three
columns, unit vectors. The two matrices must agree in the scale and dimen-
sions.

xnew The new values of some directional independent variable(s) whose directional
response values you want to predict. If you have no new x values, leave it NULL
(default).

Details

Spherical regression as proposed by Chang (1986) is implemented. If the estimated rotation matrix
has a determinant equal to -1, singular value decomposition is performed and the last unit vector is
multiplied by -1.
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Value

A list including:

A The estimated rotation matrix.

est The fitted values in unit vectors, if the argument xnew is not NULL.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Ted Chang (1986). Spherical Regression. Annals of Statistics, 14(3): 907–924.

See Also

spher.cor, spml.reg, spher.reg, sphereplot

Examples

mx <- rnorm(5)
mx <- mx/sqrt( sum(mx^2) )
my <- rnorm(5)
my <- my/sqrt( sum(my^2) )
x <- rvmf(100, mx, 15)
A <- rotation(mx, my)
y <- x %*% t(A)
mod <- hspher.reg(y, x)
A
mod$A ## exact match, no noise
y <- x %*% t(A)
y <- y + rvmf(100, colMeans(y), 40)
mod <- hspher.reg(y, x)
A
mod$A ## noise added, more relistic example

Hypothesis test for IAG distribution over the ESAG distribution

Hypothesis test for IAG distribution over the ESAG distribution

Description

The null hypothesis is whether an IAG distribution fits the data well, where the altenrative is that
ESAG distribution is more suitable.

Usage

iagesag(x, B = 1, tol = 1e-07)
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Arguments

x A numeric matrix with three columns containing the data as unit vectors in Eu-
clidean coordinates.

B The number of bootstrap re-samples. By default is set to 999. If it is equal to 1,
no bootstrap is performed and the p-value is obtained throught the asymptotic
distribution.

tol The tolerance to accept that the Newton-Raphson algorithm used in the IAG
distribution has converged.

Details

Essentially it is a test of rotational symmetry, whether the two γ parameters are equal to zero. This
works for spherical data only.

Value

This is an "htest"class object. Thus it returns a list including:

statistic The test statistic value.

parameter The degrees of freedom of the test. If bootstrap was employed this is "NA".

p.value The p-value of the test.

alternative A character with the alternative hypothesis.

method A character with the test used.

data.name A character vector with two elements.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Paine P.J., Preston S.P., Tsagris M. and Wood A.T.A. (2018). An Elliptically Symmetric Angular
Gaussian Distribution. Statistics and Computing, 28(3):689–697.

See Also

fishkent, iagesag, pc.test, esag.mle, kent.mle,

Examples

x <- rvmf(100, rnorm(3), 15)
iagesag(x)
fishkent(x, B = 1)
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Hypothesis test for SIPC distribution over the SESPC distribution

Hypothesis test for SIPC distribution over the SESPC distribution

Description

The null hypothesis is whether an SIPC distribution fits the data well, where the altenrative is that
SESPC distribution is more suitable.

Usage

pc.test(x, B = 1, tol = 1e-06)

Arguments

x A numeric matrix with three columns containing the data as unit vectors in Eu-
clidean coordinates.

B The number of bootstrap re-samples. By default is set to 999. If it is equal to 1,
no bootstrap is performed and the p-value is obtained throught the asymptotic
distribution.

tol The tolerance to accept that the Newton-Raphson algorithm used in the IAG
distribution has converged.

Details

Essentially it is a test of rotational symmetry, whether the two θ parameters are equal to zero. This
works for spherical data only.

Value

This is an "htest"class object. Thus it returns a list including:

statistic The test statistic value.

parameter The degrees of freedom of the test. If bootstrap was employed this is "NA".

p.value The p-value of the test.

alternative A character with the alternative hypothesis.

method A character with the test used.

data.name A character vector with two elements.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.
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References

Tsagris M. and Alzeley O. (2024). Circular and spherical projected Cauchy distributions: A Novel
Framework for Circular and Directional Data Modeling. https://arxiv.org/pdf/2302.02468.pdf

See Also

iagesag, fishkent, sespc.mle

Examples

x <- rvmf(100, rnorm(3), 15)
iagesag(x)
pc.test(x)

Hypothesis test for von Mises-Fisher distribution over Kent
distribution

Hypothesis test for von Mises-Fisher distribution over Kent distribu-
tion

Description

The null hypothesis is whether a von Mises-Fisher distribution fits the data well, where the altenra-
tive is that Kent distribution is more suitable.

Usage

fishkent(x, B = 999)

Arguments

x A numeric matrix containing the data as unit vectors in Euclidean coordinates.

B The number of bootstrap re-samples. By default is set to 999. If it is equal to 1,
no bootstrap is performed and the p-value is obtained throught the asymptotic
distribution.

Details

Essentially it is a test of rotational symmetry, whether Kent’s ovalness parameter (beta) is equal to
zero. This works for spherical data only.
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Value

This is an "htest"class object. Thus it returns a list including:

statistic The test statistic value.

parameter The degrees of freedom of the test. If bootstrap was employed this is "NA".

p.value The p-value of the test.

alternative A character with the alternative hypothesis.

method A character with the test used.

data.name A character vector with two elements.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Rivest L. P. (1986). Modified Kent’s statistics for testing goodness of fit for the Fisher distribution
in small concentrated samples. Statistics & Probability Letters, 4(1): 1–4.

See Also

iagesag, pc.test, vmf.mle, kent.mle

Examples

x <- rvmf(100, rnorm(3), 15)
fishkent(x)
fishkent(x, B = 1)
iagesag(x)

Interactive 3D plot of spherical data

Interactive 3D plot of spherical data

Description

Interactive 3D plot of spherical data.

Usage

sphereplot(dat, col = NULL, bgcol = "snow")
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Arguments

dat A matrix with three columns, unit-vectors, spherical data.

col If you want the points to appear with different colours put numbers here, other-
wise leave it NULL.

bgcol The color of the surface of the sphere.

Value

An interactive 3D plot of the spherical data will appear.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

See Also

lambert, vmf.contour, euclid

Examples

x <- rvmf(100, rnorm(3), 5)
sphereplot(x)

Inverse of Lambert’s equal area projection

Inverse of Lambert’s equal area projection

Description

It takes some points from the cartesian coordinates and maps them onto the sphere. The inverse os
the Lambert’s equal area projection.

Usage

lambert.inv(z, mu)

Arguments

z A two- column matrix containing the Lambert’s equal rea projected data.

mu The mean direction of the data on the sphere.

Details

The data are first mapped on the sphere with mean direction equal to the north pole. Then, they are
rotated to have the given mean direction. It is the inverse of the Lambert’s equal are projection.
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Value

A matrix containing spherical data (unit vectors).

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>.

References

Kent, John T. (1982). The Fisher-Bingham distribution on the sphere. Journal of the Royal Statisti-
cal Society. Series B (Methodological) 44(1):71–80.

See Also

lambert

Examples

m <- rnorm(3)
m <- m / sqrt( sum(m^2) )
x <- rvmf(20, m, 19)
mu <- vmf.mle(x)$mu
y <- lambert( euclid.inv(x) )
lambert.inv(y, mu)
euclid.inv(x)

Inverse of the Euclidean transformation

Inverse of the Euclidean transformation

Description

It transforms the data from the Euclidan coordinates to latitude dn longitude.

Usage

euclid.inv(U)

Arguments

U A matrix of unit vectors, or even one single unit vector in three dimensions.

Details

It takes the matrix of unit vectors and back transforms it to latitude and longitude.
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Value

A two column matrix:

u The first column is the latitude and the second is the longitude, both expressed
in degrees.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>.

See Also

euclid, Arotation, lambert

Examples

x <- rvmf(10, rnorm(3), 10)
euclid.inv(x)
euclid( euclid.inv(x) )
x

k-NN algorithm using the arc cosinus distance

k-NN algorithm using the arc cosinus distance

Description

It classifies new observations to some known groups via the k-NN algorithm.

Usage

dirknn(xnew, ina, x, k = 5, mesos = TRUE, parallel = FALSE, rann = FALSE)

Arguments

xnew The new data whose membership is to be predicted, a numeric matrix with unit
vectors.

ina A variable indicating the groups of the data x.

x The data, a numeric matrix with unit vectors.

k The number of nearest neighbours, set to 5 by default. It can also be a vector
with many values.

mesos A boolean variable used only in the case of the non standard algorithm (type="NS").
Should the average of the distances be calculated (TRUE) or not (FALSE)? If it
is FALSE, the harmonic mean is calculated.
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parallel If you want the standard -NN algorithm to take place in parallel set this equal to
TRUE.

rann If you have large scale datasets and want a faster k-NN search, you can use kd-
trees implemented in the R package "RANN". In this case you must set this
argument equal to TRUE.

Details

The standard algorithm is to keep the k nearest observations and see the groups of these observa-
tions. The new observation is allocated to the most frequent seen group. The non standard algorithm
is to calculate the classical mean or the harmonic mean of the k nearest observations for each group.
The new observation is allocated to the group with the smallest mean distance.

Value

A vector including:

g A matrix with the predicted group(s). It has as many columns as the values of k.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Tsagris M. and Alenazi A. (2019). Comparison of discriminant analysis methods on the sphere.
Communications in Statistics: Case Studies, Data Analysis and Applications, 5(4), 467–491.

See Also

dirknn.tune, dirda, vm.nb

Examples

k <- runif(4, 4, 20)
prob <- c(0.2, 0.4, 0.3, 0.1)
mu <- matrix(rnorm(16), ncol = 4)
mu <- mu / sqrt( rowSums(mu^2) )
da <- rmixvmf(200, prob, mu, k)
nu <- sample(1:200, 180)
x <- da$x[nu, ]
ina <- da$id[nu]
xx <- da$x[-nu, ]
id <- da$id[-nu]
a1 <- dirknn(xx, ina, x, k = 5, mesos = TRUE)
a2 <- dirknn(xx, ina, x, k = 5, mesos = FALSE)
table(id, a1)
table(id, a2)
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k-NN regression k-NN regression with Euclidean or (hyper-)spherical response and or
predictor variables

Description

k-NN regression with Euclidean or (hyper-)spherical response and or predictor variables.

Usage

knn.reg(xnew, y, x, k = 5, res = "eucl", estim = "arithmetic")

Arguments

xnew The new data, new predictor variables values. A matrix with either euclidean
(univariate or multivariate) or (hyper-)spherical data. If you have a circular re-
sponse, say u, transform it to a unit vector via (cos(u), sin(u)). If xnew = x, you
will get the fitted values.

y The currently available data, the response variables values. A matrix with either
euclidean (univariate or multivariate) or (hyper-)spherical data. If you have a
circular response, say u, transform it to a unit vector via (cos(u), sin(u)).

x The currently available data, the predictor variables values. A matrix with either
euclidean (univariate or multivariate) or (hyper-)spherical data. If you have a
circular response, say u, transform it to a unit vector via (cos(u), sin(u)).

k The number of nearest neighbours, set to 5 by default. This can also be a vector
with many values.

res The type of the response variable. If it is Euclidean, set this argument equal to
"res". If it is a unit vector set it to res="spher".

estim Once the k observations whith the smallest distance are discovered, what should
the prediction be? The arithmetic average of the corresponding y values be used
estim="arithmetic" or their harmonic average estim="harmonic".

Details

This function covers a broad range of data, Euclidean and spherical, along with their combinations.

Value

A list with as many elements as the number of values of k. Each element in the list contains a matrix
(or a vector in the case of Euclidean data) with the predicted response values.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.
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See Also

knnreg.tune, spher.reg, spml.reg

Examples

y <- iris[, 1]
x <- as.matrix(iris[, 2:4])
x <- x/ sqrt( rowSums(x^2) ) ## Euclidean response
a <- knn.reg(x, y, x, k = 5, res = "eucl", estim = "arithmetic")

y <- iris[, 2:4]
y <- y / sqrt( rowSums(y^2) ) ## Spherical response
x <- iris[, 1]
a <- knn.reg(x, y, x, k = 5, res = "spher", estim = "arithmetic")

Lambert’s equal area projection

Lambert’s equal area projection

Description

It calculates the Lambert’s equal area projection.

Usage

lambert(y)

Arguments

y A two column matrix with the data. The first column is the altitude and the
second is the longitude.

Details

The spherical data are first rotated so that their mean direction is the north pole and then are pro-
jectedt on the plane tagent to the sphere at the north pole.

Value

A two-column matrix with the projected points.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>.
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References

Kent, John T. (1982). The Fisher-Bingham distribution on the sphere. Journal of the Royal Statisti-
cal Society. Series B (Methodological) 44(1):71-80.

See Also

euclid, lambert.inv

Examples

x <- rvmf(100, rnorm(3), 20)
x <- euclid.inv(x)
a <- lambert(x)
plot(a)

Logarithm of the Kent distribution normalizing constant

Logarithm of the Kent distribution normalizing constant

Description

Logarithm of the Kent distribution normalizing constant.

Usage

kent.logcon(k, b, j = 100)

Arguments

k The conencration parameter, κ.

b The ovalness parameter, β.

j The number of the terms in the sum to use. By default this is 100.

Details

It calculates logarithm of the normalising constant of the Kent distribution.

Value

The value of the logarithm of the normalising constant of the Kent distribution.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>.
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References

Kent John (1982). The Fisher-Bingham distribution on the sphere. Journal of the Royal Statistical
Society, Series B, 44(1): 71–80.

See Also

fb.saddle, kent.mle

Examples

kent.logcon(10, 2)
fb.saddle( c(0, 10, 0), c(0, -2, 2) )

Many simple circular or angular regressions

Many simple circular or angular regressions

Description

Many regressions with one circular dependent variable and one Euclidean independent variable.

Usage

spml.regs(y, x, tol = 1e-07, logged = FALSE, maxiters = 100, parallel = FALSE)

Arguments

y The dependent variable, it can be a numerical vector with data expressed in
radians or it can be a matrix with two columns, the cosinus and the sinus of
the circular data. The benefit of the matrix is that if the function is to be called
multiple times with the same response, there is no need to transform the vector
every time into a matrix.

x A matrix with independent variable.

tol The tolerance value to terminatate the Newton-Raphson algorithm.

logged Do you want the logarithm of the p-value be returned? TRUE or FALSE.

maxiters The maximum number of iterations to implement.

parallel Do you want the calculations to take plac ein parallel? The default value if
FALSE.

Details

The Newton-Raphson algorithm is fitted in these regression as described in Presnell et al. (1998).
For each colum of x a circual regression model is fitted and the hypothesis testing of no association
between y and this variable is performed.
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Value

A matrix with two columns, the test statistics and their associated (log) p-values.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Presnell B., Morrison S. P. and Littell R. C. (1998). Projected multivariate linear models for direc-
tional data. Journal of the American Statistical Association, 93(443): 1068–1077.

See Also

spml.reg, spml.mle, iag.mle, score.cipc

Examples

x <- rnorm(200)
z <- cbind(3 + 2 * x, 1 -3 * x)
y <- cbind( rnorm(100,z[, 1], 1), rnorm(100, z[, 2], 1) )
y <- y / sqrt( rowSums(y^2) )
x <- matrix( rnorm(100 * 50), ncol = 50 )
a <- Directional::spml.regs(y, x)
x <- NULL

Maps of the world and the continents

maps of the world and the continents

Description

It produces maps of the world and the continents.

Usage

asia(title = "Asia", coords = NULL)
africa(title = "Africa", coords = NULL)
europe(title = "Europe", coords = NULL)
north.america(title = "North America", coords = NULL)
oceania(title = "Oceania", coords = NULL)
south.america(title = "South America", coords = NULL)
worldmap(title = "World map", coords = NULL)
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Arguments

title A character vector with the title of the map.

coords If you want specific points to appear on the plot give the coordinates as a matrix,
where the first column contains the longitude and the second column contains
the latitude, in degrees.

Details

Maps of the world or the continents are produced. This are experimental functions and plot the
countries with specific colouring at the moment. More functionalities will be added in the future.

Value

A map of the selected continent or the whole world.

Author(s)

Christos Adam.

R implementation and documentation: Christos Adam <pada4m4@gmail.com> and Michail Tsagris.

See Also

sphereplot

Examples

x <- euclid.inv( rvmf(10, rnorm(3), 5) )

Mixtures of rotationally symmetric distributions

Mixtures of rotationally symmetric distributions

Description

It performs model based clustering for circualr, spherical and hyper-spherical data assuming rota-
tionally symetric distributions.

Usage

mixvmf.mle(x, g, n.start = 5, tol = 1e-6, maxiters = 100)
mixspcauchy.mle(x, g, n.start = 5, tol = 1e-6, maxiters = 100)
mixpkbd.mle(x, g, n.start = 5, tol = 1e-6, maxiters = 100)
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Arguments

x A matrix with the data expressed as unit vectors.

g The number of groups to fit. It must be greater than or equal to 2.

n.start The number of random starts to try. See also R’s built-in function kmeans for
more information about this.

tol The tolerance value to terminate the EM algorithm.

maxiters The maximum number of iterations to perform.

Details

The initial step of the algorithm is not based on a spherical k-means, but on simple k-means. The
results are comparable to the package movMF for the mixtures of von Mises-Fisher distributions.
The other cases are mixtures of spherical Cauchy distributions or mixtures of Poisson kernel-based
distributions.

Value

A list including:

param A matrix with the mean direction, the concentration parameters and mixing
probability of each group.

loglik The value of the maximised log-likelihood.

pred The predicted group of each observation.

w The estimated probabilities of each observation to belong to each cluster.

iter The number of iteration required by the EM algorithm.

runtime The run time of the algorithm. A numeric vector. The first element is the user
time, the second element is the system time and the third element is the elapsed
time.

Author(s)

Michail Tsagris and Panagiotis Papastamoulis.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Panagiotis Papas-
tamoulis <papastamoulis@aueb.gr>.

References

Kurt Hornik and Bettina Grun (2014). movMF: An R Package for Fitting Mixtures of von Mises-
Fisher Distributions http://cran.r-project.org/web/packages/movMF/vignettes/movMF.pdf

Tsagris M., Papastamoulis P. and Kato S. (2024). Directional data analysis using the spherical
Cauchy and the Poisson kernel-based distribution. https://arxiv.org/pdf/2409.03292.

See Also

rmixvmf, bic.mixvmf, mixvmf.contour
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Examples

k <- runif(4, 4, 6)
prob <- c(0.2, 0.4, 0.3, 0.1)
mu <- matrix(rnorm(16), ncol = 4)
mu <- mu / sqrt( rowSums(mu^2) )
x <- rmixvmf(200, prob, mu, k)$x
mixvmf.mle(x, 3)
mixvmf.mle(x, 4)
mixvmf.mle(x, 5)

MLE of (hyper-)spherical rotationally symmetric distributions

MLE of (hyper-)spherical rotationally symmetric distributions

Description

MLE of (hyper-)spherical rotationally symmetric distributions.

Usage

vmf.mle(x, fast = FALSE, tol = 1e-07)
multivmf.mle(x, ina, tol = 1e-07, ell = FALSE)
iag.mle(x, tol = 1e-06)
sipc.mle(x, tol = 1e-6)
acg.mle(x, tol = 1e-07)
spcauchy.mle(x, tol = 1e-06)
spcauchy.mle2(x, tol = 1e-06)
pkbd.mle(x, tol = 1e-6)
pkbd.mle2(x, tol = 1e-6)

Arguments

x A matrix with directional data, i.e. unit vectors.

fast IF you want a faster version, but with fewer information returned, set this equal
to TRUE.

ina A numerical vector with discrete numbers starting from 1, i.e. 1, 2, 3, 4,... or
a factor variable. Each number denotes a sample or group. If you supply a
continuous valued vector the function will obviously provide wrong results.

ell This is for the multivmf.mle only. Do you want the log-likelihood returned? The
default value is TRUE.

tol The tolerance value at which to terminate the iterations.
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Details

The vmf.mle() estimates the mean direction and concentration of a fitted von Mises-Fisher distribu-
tion.

The von Mises-Fisher distribution for groups of data is also implemented.

The acg.mle() fits the angular central Gaussian distribution. There is a constraint on the estimated
covariance matrix; its trace is equal to the number of variables. An iterative algorithm takes place
and convergence is guaranteed.

The iag.mle() implements MLE of the spherical projected normal distribution, for spherical and
hyper-spherical data.

The spcauchy.mle() is faster than the spcacuhy.mle2() because it employs the Newton-Raphson
algortihm. Both functions estimate the parameters of the spherical Cauchy distribution, for any
dimension. Despite the name sounds confusing, it is implemented for arbitrary dimensions, not
only the sphere. The function employs a combination of the fixed points iteration algorithm and the
Brent algorithm.

The pkbd.mle() estimates the parameters of the Poisson kernel-based distribution (PKBD), for any
dimension and it is faster than pkbd.mle2() for the same reason with the spcauchy.mle().

The sipc.mle() implements MLE of the spherical independent projected Cauchy distribution, for
spherical data only.

Value

For the von Mises-Fisher a list including:

loglik The maximum log-likelihood value.

mu The mean direction.

kappa The concentration parameter.

For the multi von Mises-Fisher a list including:

loglik A vector with the maximum log-likelihood values if ell is set to TRUE. Other-
wise NULL is returned.

mi A matrix with the group mean directions.

ki A vector with the group concentration parameters.

For the angular central Gaussian a list including:

iter The number if iterations required by the algorithm to converge to the solution.

cova The estimated covariance matrix.

For the spherical projected normal a list including:

iters The number of iteration required by the Newton-Raphson.

mesi A matrix with two rows. The first row is the mean direction and the second is
the mean vector. The first comes from the second by normalising to have unit
length.
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param A vector with the elements, the norm of mean vector, the log-likelihood and the
log-likelihood of the spherical uniform distribution. The third value helps in
case you want to do a log-likelihood ratio test for uniformity.

For the spherical Cauchy and the PKBD a list including:

mesos The mean in Rd+1. See Tsagris and Alenazy (2023) for a re-parametrization
that applies in the spherical Cauchy also.

mu The mean direction.

gamma The norm of the mean in Rd+1. See Tsagris and Alenazy (2023) for a re-
parametrization that applies in the spherical Cauchy also.

rho The concetration parameter, this takes values in [0, 1).

loglik The log-likelihood value.

For the SIPC a list including:

mu The mean direction.

loglik The log-likelihood value.

For the angular central Gaussian a list including:

iter The number of iterations performed.

cova The covariance matrix.

Author(s)

Michail Tsagris and Zehao Yu.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Zehao Yu <zehaoy@email.sc.edu>.

References

Mardia K. V. and Jupp P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

Sra S. (2012). A short note on parameter approximation for von Mises-Fisher distributions: and a
fast implementation of Is(x). Computational Statistics, 27(1): 177–190.
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See Also

racg, rvmf

Examples

m <- c(0, 0, 0, 0)
s <- cov(iris[, 1:4])
x <- racg(100, s)
mod <- acg.mle(x)
mod
cov2cor(mod$cova) ## estimated covariance matrix turned into a correlation matrix
cov2cor(s) ## true covariance matrix turned into a correlation matrix
vmf.mle(x)
x <- rbind( rvmf(100,rnorm(4), 10), rvmf(100,rnorm(4), 20) )
a <- multivmf.mle(x, rep(1:2, each = 100) )

MLE of some circular distributions

MLE of some circular distributions

Description

MLE of some circular distributions.

Usage

spml.mle(x, rads = FALSE, tol = 1e-07)
wrapcauchy.mle(x, rads = FALSE, tol = 1e-07)
wrapnormal.mle(x, rads = FALSE)
circexp.mle(x, rads = FALSE, tol = 1e-06)
circbeta.mle(x, rads = FALSE)
cardio.mle(x, rads = FALSE)
ggvm.mle(phi, rads = FALSE)
cipc.mle(x, rads = FALSE, tol = 1e-6)
gcpc.mle(x, rads = FALSE)
mmvm.mle(x, N, rads = FALSE)

Arguments

x A numerical vector with the circular data. They can either be expressed in radi-
ans or in degrees.
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phi A numerical vector with the circular data. They can either be expressed in radi-
ans or in degrees.

N The number of modes to consider in the multi-modal von Mises distribution.

rads If the data are in radians set this to TRUE.

tol The tolerance level to stop the iterative process of finding the MLEs.

Details

The parameters of the bivariate angular Gaussian (spml.mle), wrapped Cauchy, circular exponential,
cardioid, circular beta, geometrically generalised von Mises, CIPC (reparametrised version of the
wrapped Cauchy), GCPC (generalisation of the CIPC) and multi-modal von Mises distributions are
estimated. For the Wrapped Cauchy, the iterative procedure described by Kent and Tyler (1988)
is used. The Newton-Raphson algortihm for the angular Gaussian is described in the regression
setting in Presnell et al. (1998). The circular exponential is also known as wrapped exponential
distribution.

Value

A list including:

iters The iterations required until convergence.

loglik The value of the maximised log-likelihood.

param A vector consisting of the estimates of the two parameters, the mean direction
for both distributions and the concentration parameter κ and the ρ for the von
Mises (and the multi-modal von Mises) and the wrapped Cauchy and normal
respectively. For the circular beta this contains the mean angle and the α and β
parameters. For the cardioid distribution this contains the µ and ρ parameters.
For the generalised von Mises this is a vector consisting of the ζ, κ, µ and α
parameters of the generalised von Mises distribution as described in Equation
(2.7) of Dietrich and Richter (2017).

gamma The norm of the mean vector of the angular Gaussian, the CIPC and the GCPC
distributions.

mu The mean vector of the angular Gaussian, the CIPC and the GCPC distributions.

mumu In the case of "angular Gaussian distribution this is the mean angle in radians.

circmu In the case of the CIPC and the GCPC this is the mean angle in radians.

rho For the GCPC distribution this is the eigenvalue of the covariance matrix, or the
covariance determinant.

lambda The lambda parameter of the circular exponential distribution.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.
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See Also

circ.summary, purka.mle, rvonmises, vmf.mle, rvmf

Examples

x <- rvonmises(1000, 3, 9)
spml.mle(x, rads = TRUE)
wrapcauchy.mle(x, rads = TRUE)
circexp.mle(x, rads = TRUE)
ggvm.mle(x, rads = TRUE)

MLE of some circular distributions with multiple samples

MLE of some circular distributions with multiple samples

Description

MLE of some circular distributions with multiple samples.
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Usage

multivm.mle(x, ina, tol = 1e-07, ell = FALSE)
multispml.mle(x, ina, tol = 1e-07, ell = FALSE)

Arguments

x A numerical vector with the circular data. They must be expressed in radians.
For the "spml.mle" this can also be a matrix with two columns, the cosinus and
the sinus of the circular data.

ina A numerical vector with discrete numbers starting from 1, i.e. 1, 2, 3, 4,... or
a factor variable. Each number denotes a sample or group. If you supply a
continuous valued vector the function will obviously provide wrong results.

tol The tolerance level to stop the iterative process of finding the MLEs.
ell Do you want the log-likelihood returned? The default value is FALSE.

Details

The parameters of the von Mises and of the bivariate angular Gaussian distributions are estimated
for multiple samples.

Value

A list including:

iters The iterations required until convergence. This is returned in the wrapped Cauchy
distribution only.

loglik A vector with the value of the maximised log-likelihood for each sample.
mi For the von Mises, this is a vector with the means of each sample. For the

angular Gaussian (spml), a matrix with the mean vector of each sample
ki A vector with the concentration parameter of the von Mises distribution at each

sample.
gi A vector with the norm of the mean vector of the angular Gaussian distribution

at each sample.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Mardia K. V. and Jupp P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.
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See Also

colspml.mle, purka.mle

Examples

y <- rcauchy(100, 3, 1)
x <- y
ina <- rep(1:2, 50)
multivm.mle(x, ina)
multispml.mle(x, ina)

MLE of the ESAG distribution in arbitrary dimensions

MLE of the ESAG distribution

Description

MLE of the ESAG distribution.

Usage

esag.mle(y, full = FALSE, tol = 1e-06)
ESAGd.mle(y, full = FALSE)

Arguments

y A matrix with the data expressed in Euclidean coordinates, i.e. unit vectors.
The function esag.mle() works for spherical data, whereas ESAGd.mle() is for
spherical and hyper-spherical data.

full If you want some extra information, the inverse of the covariance matrix, the
rho parameter (smallest eigenvalue of the covariance matrix) and the angle of
rotation ψ, set this equal to TRUE. Otherwise leave it FALSE.

tol A tolerance value to stop performing successive optimizations.

Details

MLE of the MLE of the ESAG distributiontribution, on the sphere, is implemented. ESAG stands
for Elliptically Symmetric Angular Gaussian and it was suugested by Paine et al. (2018). Unlike
the projected normal distribution this is rotationally symmetric and is a competitor of the spherical
Kent distribution (which is also elliptically symmetric). ESAG was then generalized to arbitrary
dimensions by Yu and Huang (2024).
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Value

A list including:

mu The mean vector.

gam The γ parameters.

loglik The log-likelihood value.

vinv The inverse of the covariance matrix. It is returned if the argument "full" is
TRUE.

rho The ρ parameter (smallest eigenvalue of the covariance matrix). It is returned if
the argument "full" is TRUE in the esag.mle().

psi The angle of rotation ψ set this equal to TRUE. It is returned if the argument
"full" is TRUE in esag.mle().

lambda The d−1 eigenvalues of the covariance matrix of the ESAG distribution in arbi-
trary dimensions. This is returned if "full" is set to TRUE in the ESAGd.mle().

iag.loglik The log-likelihood value of the isotropic angular Gaussian distribution in the
esag.mle(). That is, the projected normal distribution which is rotationally sym-
metric.

Author(s)

Michail Tsagris and Zehao Yu.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Zehao Yu <zehaoy@email.sc.edu>.

References

Zehao Yu and Xianzheng Huang (2024). A new parameterization for elliptically symmetric angular
Gaussian distributions of arbitrary dimension. Electronic Journal of Statististics, 18(1): 301–334.

Paine P.J., Preston S.P., Tsagris M. and Wood A.T.A. (2018). An Elliptically Symmetric Angular
Gaussian Distribution. Statistics and Computing, 28(3):689–697.

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

See Also

desag, resag, iag.mle, kent.mle, acg.mle, circ.summary, sphereplot

Examples

m <- colMeans( as.matrix( iris[, 1:3] ) )
y <- resag(1000, m, c(1, 0.5) )
esag.mle(y)

m <- colMeans( as.matrix( iris[, 1:4] ) )
y <- rESAGd(1000, m, c(1, 0.5, -1, 1, -0.5) )
ESAGd.mle(y)
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MLE of the Kent distribution

MLe of the Kent distribution

Description

It estimates the concentration and the ovalness parameter of some directional data assuming the
Kent distribution. The mean direction and major and minor axes are also estimated.

Usage

kent.mle(x)

Arguments

x A matrix containing spherical data in Euclidean coordinates.

Details

The Kent distribution is fitted to some data and its parameters are estimated.

Value

A list including:

runtime The run time of the procedure.

G A 3 x 3 matrix whose first column is the mean direction. The second and third
columns are the major and minor axes respectively.

param A vector with the concentration κ and ovalness β parameters and the angle ψ
used to rotate H and hence estimate G as in Kent (1982).

logcon The logarithm of the normalising constant, using the third type approximation
(Kume and Wood, 2005).

loglik The value of the log-likelihood.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>.

References

Kent John (1982). The Fisher-Bingham distribution on the sphere. Journal of the Royal Statistical
Society, Series B, 44(1): 71–80.

Kume Alfred and Wood Andrew T.A. (2005). Saddlepoint approximations for the Bingham and
Fisher-Bingham normalizing constants. Biometrika, 92(2):465–476
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See Also

kent.mle, fb.saddle, vmf.mle, wood.mle, sphereplot

Examples

x <- rvmf(200, rnorm(3), 15)
kent.mle(x)
vmf.mle(x)
A <- diag( c(-5, 0, 5) )
x <- rfb(200, 15, rnorm(3), A)
kent.mle(x)
vmf.mle(x)

MLE of the Matrix Fisher distribution on SO(3)

MLE of the Matrix Fisher distribution on SO(3)

Description

It returns the maximum likelihood estimate of the Matrix Fisher parameter F(3x3).

Usage

matrixfisher.mle(X)

Arguments

X An array containing rotation matrices in SO(3).

Value

The components of svd(X̄).

Author(s)

Anamul Sajib and Chris Fallaize.

R implementation and documentation: Anamul Sajib <sajibstat@du.ac.bd> and Chris Fallaize.

References

Prentice M. J. (1986). Orientation statistics without parametric assumptions. Journal of the Royal
Statistical Society. Series B: Methodological 48(2): 214–222.

See Also

rmatrixfisher
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Examples

F <- 10^(-1) * matrix( c(85, 11, 41, 78, 39, 60, 43, 64, 48), ncol = 3 ) ### An arbitrary F matrix
X <- rmatrixfisher(5000, F)
matrixfisher.mle(X)
svd(F)

MLE of the Purkayashta distribution

MLE of the Purkayashta distribution

Description

MLE of the Purkayashta distribution.

Usage

purka.mle(x, tol = 1e-07)

Arguments

x A numerical vector with data expressed in radians or a matrix with spherical
data.

tol The tolerance value to terminate the Brent algorithm.

Details

MLE of the Purkayastha distribution is performed.

Value

A list including:

theta The median direction.

circtheta In case of circular data the circular mean is also returned.

alpha The concentration parameter.

loglik The log-likelihood.

alpha.sd The standard error of the concentration parameter.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.
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References

Purkayastha S. (1991). A Rotationally Symmetric Directional Distribution: Obtained through Max-
imum Likelihood Characterization. The Indian Journal of Statistics, Series A, 53(1): 70–83.

Cabrera J. and Watson G. S. (1990). On a spherical median related distribution. Communications
in Statistics-Theory and Methods, 19(6): 1973–1986.

See Also

circ.cor1

Examples

x <- cbind( rnorm(100,1,1), rnorm(100, 2, 1) )
x <- x / sqrt(rowSums(x^2))
purka.mle(x)

MLE of the SESPC distribution

MLE of the SESPC distribution

Description

MLE of the SESPC distribution.

Usage

sespc.mle(y, full = FALSE, tol = 1e-06)

Arguments

y A matrix with the data expressed in Euclidean coordinates, i.e. unit vectors.

full If you want some extra information, the inverse of the covariance matrix, set this
equal to TRUE. Otherwise leave it FALSE.

tol A tolerance value to stop performing successive optimizations.

Details

MLE of the SESPC distribution is implemented. SESPC stands for Spherical Elliptically Symmet-
ric Projected Cauchy and it was suugested by Tsagris and Alzeley (2024). Unlike the spherical
independent projected Cauchy distribution this is rotationally symmetric and is a competitor of the
spherical ESAG and Kent distributions (which are also ellitpically symmetric).
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Value

A list including:

mu The mean vector in R3.

theta The two θ parameters.

loglik The log-likelihood value.

vinv The inverse of the covariance matrix. It is returned if the argument "full" is
TRUE.

lambda The λ2 parameter (smallest eigenvalue of the covariance matrix). It is returned
if the argument "full" is TRUE.

psi The angle of rotation ψ set this equal to TRUE. It is returned if the argument
"full" is TRUE.

sipc.loglik The log-likelihood value of the isotropic prohected Cuchy distribution, which is
rotationally symmetric.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Tsagris M. and Alzeley O. (2024). Circular and spherical projected Cauchy distributions: A Novel
Framework for Circular and Directional Data Modeling. Australian & New Zealand Journal of
Statistics (accepted for publication). https://arxiv.org/pdf/2302.02468.pdf

Mardia K. V. and Jupp P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

See Also

dsespc, rsespc, sipc.mle, esag.mle, spher.sespc.contour

Examples

m <- colMeans( as.matrix( iris[,1:3] ) )
y <- rsespc(1000, m, c(1,0.5) )
sespc.mle(y)
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MLE of the Wood bimodal distribution on the sphere

MLE of the Wood bimodal distribution on the sphere

Description

It estimates the parameters of the Wood bimodal distribution.

Usage

wood.mle(y)

Arguments

y A matrix containing two columns. The first one is the latitude and the second is
the longitude, both expressed in degrees.

Details

The Wood distribution is fitted to some data and its parameters are estimated. It is a bimodal
distribution which contains 5 parameters, just like the Kent distribution.

Value

A list including:

info A 5 x 3 matrix containing the 5 parameters, γ, δ, α, β and κ along with their
corresponding 95% confidence intervals all expressed in degrees.

modes The two axis of the modes of the distribution expressed in degrees.

unitvectors A 3 x 3 matrix with the 3 unit vectors associated with the γ and δ parameters.

loglik The value of the log-likelihood.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>.

References

Wood A.T.A. (1982). A bimodal distribution on the sphere. Journal of the Royal Statistical Society,
Series C, 31(1): 52–58.

See Also

kent.mle, esag.mle, vmf.mle, sphereplot
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Examples

x <- rvmf(100, rnorm(3), 15)
x <- euclid.inv(x)
wood.mle(x)

Naive Bayes classifiers for circular data

Naive Bayes classifiers for directional data

Description

Naive Bayes classifiers for directional data.

Usage

vm.nb(xnew = NULL, x, ina, tol = 1e-07)
spml.nb(xnew = NULL, x, ina, tol = 1e-07)

Arguments

xnew A numerical matrix with new predictor variables whose group is to be predicted.
Each column refers to an angular variable.

x A numerical matrix with observed predictor variables. Each column refers to an
angular variable.

ina A numerical vector with strictly positive numbers, i.e. 1,2,3 indicating the
groups of the dataset. Alternatively this can be a factor variable.

tol The tolerance value to terminate the Newton-Raphson algorithm.

Details

Each column is supposed to contain angular measurements. Thus, for each column a von Mises
distribution or an circular angular Gaussian distribution is fitted. The product of the densities is the
joint multivariate distribution.

Value

A list including:

mu A matrix with the mean vectors expressed in radians.
mu1 A matrix with the first set of mean vectors.
mu2 A matrix with the second set of mean vectors.
kappa A matrix with the kappa parameters for the vonMises distribution or with the

norm of the mean vectors for the circular angular Gaussian distribution.
ni The sample size of each group in the dataset.
est The estimated group of the xnew observations. It returns a numerical value back

regardless of the target variable being numerical as well or factor. Hence, it is
suggested that you do \"as.numeric(ina)\" in order to see what is the predicted
class of the new data.
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Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

See Also

vmnb.pred

Examples

x <- matrix( runif( 100, 0, 1 ), ncol = 2 )
ina <- rbinom(50, 1, 0.5) + 1
a <- vm.nb(x, x, ina)

Normalised spatial median for directional data

Normalised spatial median for directional data

Description

Normalised spatial median for directional data.

Usage

nsmedian(x, tol = 1e-07)

Arguments

x A matrix with Euclidean data, continuous variables.

tol A tolerance level to terminate the process.

Details

The spatial median, using a fixed point iterative algorithm, for Euclidean data is calculated. It is
a robust location estimate. Then it is normalised to become a unit vector. Generally speaking this
might be a better alternative than then mediandir.

Value

A vector with the spatial median.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.
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References

Ducharme G. R. and Milasevic P. (1987). Spatial median and directional data. Biometrika, 74(1),
212-215.

Jyrki Mottonen, Klaus Nordhausen and Hannu Oja (2010). Asymptotic theory of the spatial median.
In Nonparametrics and Robustness in Modern Statistical Inference and Time Series Analysis: A
Festschrift in honor of Professor Jana Jureckova.

T. Karkkaminen and S. Ayramo (2005). On computation of spatial median for robust data mining.
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G. Bugeda (Eds) FLM, Munich. http://users.jyu.fi/~samiayr/pdf/ayramo_eurogen05.pdf

See Also

mediandir

Examples

m <- rnorm(3)
m <- m / sqrt( sum(m^2) )
x <- rvmf(100, m, 10)
nsmedian(x)
mediandir(x)

Permutation based 2-sample mean test for (hyper-)spherical data

Permutation based 2-sample mean test for (hyper-)spherical data

Description

Permutation based 2-sample mean test for (hyper-)spherical data.

Usage

hcf.perm(x1, x2, B = 999)
lr.perm(x1, x2, B = 999)
hclr.perm(x1, x2, B = 999)
embed.perm(x1, x2, B = 999)
het.perm(x1, x2, B = 999)

Arguments

x1 A matrix with the data in Euclidean coordinates, i.e. unit vectors.

x2 A matrix with the data in Euclidean coordinates, i.e. unit vectors.

B The number of permutations to perform.
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Details

The high concentration (hcf.perm), log-likelihood ratio (lr.perm), high concentration log-likelihood
ratio (hclr.perm), embedding approach (embed.perm) or the non equal concentration parameters
approach (het.perm) is used.

Value

This is an "htest"class object. Thus it returns a list including:

statistic The test statistic value.

parameter The degrees of freedom of the test. Since these are permutation based tests this
is "NA".

p.value The p-value of the test.

alternative A character with the alternative hypothesis.

method A character with the test used.

data.name A character vector with two elements.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Mardia K. V. and Jupp P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

Rumcheva P. and Presnell B. (2017). An improved test of equality of mean directions for the
Langevin-von Mises-Fisher distribution. Australian & New Zealand Journal of Statistics, 59(1),
119–135.

Tsagris M. and Alenazi A. (2024). An investigation of hypothesis testing procedures for circular
and spherical mean vectors. Communications in Statistics-Simulation and Computation, 53(3):
1387–1408.

See Also

hcf.boot, hcf.aov, spherconc.test, conc.test

Examples

x <- rvmf(60, rnorm(3), 15)
ina <- rep(1:2, each = 30)
x1 <- x[ina == 1, ]
x2 <- x[ina == 2, ]
hcf.perm(x1, x2)
lr.perm(x1, x2)
het.boot(x1, x2)
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Permutation based 2-sample mean test for circular data

Permutation based 2-sample mean test for circular data

Description

Permutation based 2-sample mean test for circular data.

Usage

hcfcirc.perm(u1, u2, rads = TRUE, B = 999)
hetcirc.perm(u1, u2, rads = TRUE, B = 999)
lrcirc.perm(u1, u2, rads = TRUE, B = 999)
hclrcirc.perm(u1, u2, rads = TRUE, B = 999)
embedcirc.perm(u1, u2, rads = TRUE, B = 999)

Arguments

u1 A numeric vector containing the data of the first sample.

u2 A numeric vector containing the data of the first sample.

rads If the data are in radians, this should be TRUE and FALSE otherwise.

B The number of permutations to perform.

Details

The high concentration (hcfcirc.perm), log-likelihood ratio (lrcirc.perm), high concentration log-
likelihood ratio (hclrcirc.perm), embedding approach (embedcirc.perm) or the non equal concen-
tration parameters approach (hetcirc.perm) is used.

Value

This is an "htest"class object. Thus it returns a list including:

statistic The test statistic value.

parameter The degrees of freedom of the test. Since these are permutation based tests this
is "NA".

p.value The p-value of the test.

alternative A character with the alternative hypothesis.

method A character with the test used.

data.name A character vector with two elements.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.
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References

Mardia K. V. and Jupp P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

Rumcheva P. and Presnell B. (2017). An improved test of equality of mean directions for the
Langevin-von Mises-Fisher distribution. Australian & New Zealand Journal of Statistics, 59(1):
119–135.

Tsagris M. and Alenazi A. (2024). An investigation of hypothesis testing procedures for circular
and spherical mean vectors. Communications in Statistics-Simulation and Computation, 53(3):
1387–1408.

See Also

hcf.circaov, het.aov

Examples

u1 <- rvonmises(20, 2.4, 5)
u2 <- rvonmises(20, 2.4, 10)
hcfcirc.perm(u1, u2)
lrcirc.perm(u1, u2)

Prediction in discriminant analysis based on some distributions

Prediction of a new observation using discriminant analysis based on
some distributions

Description

Prediction of a new observation using discriminant analysis based on some distributions.

Usage

dirda(xnew, x, ina, type = c("vmf", "iag", "esag", "kent", "sc", "pkbd", "purka") )

Arguments

xnew The new observation(s) (unit vector(s)) whose group is to be predicted.

x A data matrix with unit vectors, i.e. spherical directional data.

ina A vector indicating the groups of the data y.

type The type of classifier to use. The avaliable options are "vmf" (von Mises-
Fisher distribution), "iag" (IAG distribution), "esag" (ESAG distribution), "kent"
(Kent distribution), "sc" and "sc2" (spherical Cauchy distribution), "pkbd" and
"pkbd2" (Poisson kernel-based distribution), and "purka" (Purkayastha distribu-
tion). The difference between "sc" and "sc2" and between "pkbd" and "pkbd2"
is that the first uses the Newton-Raphson algorithm and it is faster, whereas the
second uses a hybrid algorithm that does not require the Hessian matrix, but in
large dimensions the second will be faster. You can chose any of them or all of
them. Note that "kent" works only with spherical data.
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Details

Prediction of the class of a new (hyper-)spherical vector assuming some distributions.

Value

A vector with the predicted group of each new observation.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Tsagris M. and Alenazi A. (2019). Comparison of discriminant analysis methods on the sphere.
Communications in Statistics: Case Studies, Data Analysis and Applications, 5(4): 467–491.

Tsagris M., Papastamoulis P. and Kato S. (2024). Directional data analysis using the spherical
Cauchy and the Poisson kernel-based distribution. https://arxiv.org/pdf/2409.03292.

Morris J. E. and Laycock P. J. (1974). Discriminant analysis of directional data. Biometrika, 61(2):
335–341.

Mardia K. V. and Jupp P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

See Also

dirda.cv, vm.nb, dirknn, knn.reg

Examples

m1 <- rnorm(3)
m2 <- rnorm(3) + 0.5
x <- rbind( rvmf(100, m1, 3), rvmf(80, m2, 5) )
ina <- c( rep(1,100), rep(2, 80) )
xnew <- rbind(rvmf(10, m1, 10), rvmf(10, m2, 5))
id <- rep(1:2, each = 10)
g <- dirda(xnew, x, ina, type = "vmf")
table(id, g[, 1])

Prediction with some naive Bayes classifiers for circular data

Prediction with some naive Bayes classifiers for circular data

Description

Prediction with some naive Bayes classifiers for circular data.
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Usage

vmnb.pred(xnew, mu, kappa, ni)
spmlnb.pred(xnew, mu1, mu2, ni)

Arguments

xnew A numerical matrix with new predictor variables whose group is to be predicted.
Each column refers to an angular variable.

mu A matrix with the mean vectors expressed in radians.

mu1 A matrix with the first set of mean vectors.

mu2 A matrix with the second set of mean vectors.

kappa A matrix with the kappa parameters for the vonMises distribution or with the
norm of the mean vectors for the circular angular Gaussian distribution.

ni The sample size of each group in the dataset.

Details

Each column is supposed to contain angular measurements. Thus, for each column a von Mises
distribution or an circular angular Gaussian distribution is fitted. The product of the densities is the
joint multivariate distribution.

Value

A numerical vector with 1, 2, ... denoting the predicted group.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

See Also

vm.nb

Examples

x <- matrix( runif( 100, 0, 1 ), ncol = 2 )
ina <- rbinom(50, 1, 0.5) + 1
a <- vm.nb(x, x, ina)
a2 <- vmnb.pred(x, a$mu, a$kappa, a$ni)



106 Projections based test of uniformity

Projections based test of uniformity

Projections based test of uniformity

Description

It checkes whether the data are uniformly distributed on the circle or the (hyper-)sphere.

Usage

ptest(x, B = 100)

Arguments

x A matrix containing the data, unit vectors.
B The number of random uniform projections to use.

Details

For more details see Cuesta-Albertos, Cuevas and Fraiman (2009).

Value

A list including:

pvalues The p-values of the Kolmogorov-Smirnov tests.
pvalue The p-value of the test based on the Benjamini and Heller (2008) procedure.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Cuesta-Albertos J. A., Cuevas A. and Fraiman, R. (2009). On projection-based tests for directional
and compositional data. Statistics and Computing, 19: 367–380.

Benjamini Y. and Heller R. (2008). Screening for partial conjunction hypotheses. Biometrics,
64(4): 1215–1222.

See Also

rayleigh, kuiper

Examples

x <- rvmf(100, rnorm(5), 1) ## Fisher distribution with low concentration
ptest(x)
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Random sample of matrices in SO(p)

Random sample of matrices in SO(p)

Description

Random sample of matrices in SO(p).

Usage

rsop(n, p)

Arguments

n The sample size, the number of matrices you want to generate.

p The dimensionality of the matrices.

Details

The idea is very simple. Start with a unit vector pointing at the north pole (1,0,...,0). Then generate
random numbers from a standard normal and scale them so that they have a unit length. To put
it differently, a sample of n values from the uniform distribution on the sphere is generated. Then
calculate the rotation matrix required to go from the north pole to each of a generated vector.

Value

If n = 1 one matrix is returned. If n is greater than 1, an array with n matrices inside.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>.

References

Amaral G.J.A., Dryden I.L. and Wood A.T.A. (2007). Pivotal Bootstrap Methods for k-Sample
Problems in Directional Statistics and Shape Analysis. Journal of the American Statistical Associ-
ation, 102(478): 695–707.

See Also

rotation, Arotation, rot.matrix
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Examples

x1 <- rsop(1, 3)
x2 <- rsop(10, 3)
x3 <- rsop(100, 10)

Rayleigh’s test of uniformity

Rayleigh’s test of uniformity

Description

It checkes whether the data are uniformly distributed on the circle or the (hyper-)sphere.

Usage

rayleigh(x, modif = TRUE, B = 999)

Arguments

x A matrix containing the data, unit vectors.

modif If modif is TRUE, the modification as suggested by Jupp (2001) is used.

B If B is greater than 1, bootstap calibation os performed. If it is equal to 1,
classical theory is used.

Details

The Rayleigh test of uniformity is not the best, when there are two antipodal mean directions. In
this case it will fail. It is good to test whether there is one mean direction or not. To put it differently,
it tests whether the concentration parameter of the Fisher distribution is zero or not.

Value

This is an "htest"class object. Thus it returns a list including:

statistic The test statistic value.

parameter The degrees of freedom of the test. If bootstrap was employed this is "NA".

p.value The p-value of the test.

alternative A character with the alternative hypothesis.

method A character with the test used.

data.name A character vector with two elements.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>.
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References

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

Jupp, P. E. (2001). Modifications of the Rayleigh and Bingham tests for uniformity of directions.
Journal of Multivariate Analysis, 77(2): 1-20.

Rayleigh, L. (1919). On the problem of random vibrations, and of random flights in one, two,
or three dimensions. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science, 37(220): 321–347.

See Also

ptest, kuiper, iagesag

Examples

x <- rvmf(100, rnorm(5), 1) ## Fisher distribution with low concentration
rayleigh(x)

Read a file as a Filebacked Big Matrix

Read a file as a Filebacked Big Matrix

Description

Read a file as a Filebacked Big Matrix.

Usage

read.fbm(file, select)

Arguments

file The File to read.

select Indices of columns to read (sorted). The length of select will be the number of
columns of the resulting FBM.

Details

The functions read a file as a Filebacked Big Matrix object. For more information see the "bigstatsr"
package.

Value

A Filebacked Big Matrix object.
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Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

See Also

vmf.mle, kent.mle

Examples

x <- matrix( runif(50 * 20, 0, 2*pi), ncol = 20 )

Rotation axis and angle of rotation given a rotation matrix

Rotation axis and angle of rotation given a rotation matrix

Description

Given a 3 x 3 rotation matrix, the angle and the axis of rotation are calculated.

Usage

Arotation(A)

Arguments

A A 3 x 3 rotation matrix.

Details

If the user does not supply a rotation matrix a message will appear.

Value

A list including:

angle The angle of rotation expressed in degrees.

axis The axis of rotation. A vector of two components, latitude and longitude, ex-
pressed in degrees.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>.
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References

Course webpage of Howard E. Haber. http://scipp.ucsc.edu/~haber/ph216/rotation_12.pdf

Ted Chang (1986). Spherical Regression. Annals of Statistics, 14(3): 907–924.

See Also

rot.matrix, rotation, rsop

Examples

ksi <- c(25.31, 24.29)
theta <- 2.38
A <- rot.matrix(ksi, theta, rads = FALSE)
A
Arotation(A)

Rotation matrix from a rotation axis and angle of rotation

Rotation matrix from a rotation axis and angle of rotation

Description

It calculates a rotation matrix from a rotation axis and angle of rotation.

Usage

rot.matrix(ksi, theta, rads = FALSE)

Arguments

ksi The rotation axis, a vector with two elements, the first is the latitude and the
second is the longitude.

theta The angle of rotation.

rads If both the ksi and theta are in rads, this should be TRUE. If both the ksi and
theta are in degrees, this should be FALSE.

Details

The function accepts as arguments the rotation axis and the angle of rotation and it calcualtes the
requested rotation matrix.

Value

A 3 x 3 rotation matrix.
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Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>.

References

Course webpage of Howard E. Haber. http://scipp.ucsc.edu/~haber/ph216/rotation_12.pdf

Ted Chang (1986). Spherical Regression. Annals of Statistics, 14(3): 907–924.

See Also

Arotation, rotation, rsop

Examples

ksi <- c(25.31, 24.29)
theta <- 2.38
A <- rot.matrix(ksi, theta, rads = FALSE)
A
Arotation(A)

Rotation matrix on SO(3) from three Euler angles

Construct a rotation matrix on SO(3) from the Euler angles.

Description

It forms a rotation matrix X on SO(3) by using three Euler angles (θ12, θ13, θ23), where X is defined
as X = Rz(θ12)× Ry(θ13)× Rx(θ23). Here Rx(θ23) means a rotation of θ23 radians about the x
axis.

Usage

eul2rot(theta.12, theta.23, theta.13)

Arguments

theta.12 An Euler angle, a number which must lie in (−π, π).
theta.23 An Euler angle, a number which must lie in (−π, π).
theta.13 An Euler angle, a number which must lie in (−π/2, π/2).

Details

Given three euler angles a rotation matrix X on SO(3) is formed using the transformation according
to Green and Mardia (2006) which is defined above.
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Value

A roation matrix.

Author(s)

Anamul Sajib <sajibstat@du.ac.bd>.

R implementation and documentation: Anamul Sajib <sajibstat@du.ac.bd>.

References

Green, P. J. and Mardia, K. V. (2006). Bayesian alignment using hierarchical models, with applica-
tions in proteins bioinformatics. Biometrika, 93(2):235–254.

See Also

rot2eul

Examples

# three euler angles

theta.12 <- sample( seq(-3, 3, 0.3), 1 )
theta.23 <- sample( seq(-3, 3, 0.3), 1 )
theta.13 <- sample( seq(-1.4, 1.4, 0.3), 1 )

theta.12 ; theta.23 ; theta.13

X <- eul2rot(theta.12, theta.23, theta.13)
X # A rotation matrix
det(X)

e <- rot2eul(X)$v1

theta.12 <- e[3]
theta.23 <- e[2]
theta.13 <- e[1]

theta.12 ; theta.23 ; theta.13

Rotation matrix to rotate a spherical vector along the direction of
another

Rotation matrix to rotate a spherical vector along the direction of an-
other

Description

A rotation matrix is calculated to rotate a unit vector along the direction of another.
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Usage

rotation(a, b)

Arguments

a The initial unit vector.

b The target unit vector.

Details

The function calcualtes a rotation matrix given two vectors. This rotation matrix is the connection
between the two spherical only, vectors.

Value

A rotation matrix whose dimension is equal to the length of the unit vectors.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>.

References

Amaral G.J.A., Dryden I.L. and Wood A.T.A. (2007). Pivotal Bootstrap Methods for k-Sample
Problems in Directional Statistics and Shape Analysis. Journal of the American Statistical Associ-
ation, 102(478): 695–707.

See Also

Arotation, rot.matrix, lambert, lambert.inv, rsop

Examples

a <- rnorm(3)
a <- a/sqrt(sum(a^2))
b <- rnorm(3)
b <- b/sqrt(sum(b^2))
A <- rotation(a, b)
A
a ; b
a %*% t(A)

a <- rnorm(7)
a <- a/sqrt(sum(a^2))
b <- rnorm(7)
b <- b/sqrt(sum(b^2))
A <- rotation(a, b)
A



Saddlepoint approximations of the Fisher-Bingham distributions 115

a ; b
a %*% t(A)

Saddlepoint approximations of the Fisher-Bingham distributions

Saddlepoint approximations of the Fisher-Bingham distributions

Description

It calculates the logarithm of the normalising constant of the Fisher-Bingham distribution.

Usage

fb.saddle(gam, lam)

Arguments

gam A numeric vector containing the parameters of the Fisher part.

lam All the eigenvalues of the Bingham part. Not just the non zero ones.

Details

It calculate the three approximations given by Kume and Wood (2005) and it uses the Fisher-
Bingham parametrization of that paper.

Value

A list including:

first oder The first order approximation

second oder The second order approximation

third oder The third order approximation

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>.

References

Kume Alfred and Wood Andrew T.A. (2005). Saddlepoint approximations for the Bingham and
Fisher-Bingham normalizing constants. Biometrika, 92(2):465-476

See Also

kent.logcon, rfb, kent.mle, rbingham
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Examples

p <- 3 ; k <- 1
0.5 * p * log(2 * pi) - (p/2 - 1) * log(k) + log( besselI(k, p/2 - 1, expon.scaled = TRUE) ) + k
## normalising constant of the
## von Mises-Fisher distribution
fb.saddle( c(0, k, 0), c(0, 0, 0) ) ## saddlepoint approximation

## Normalising constant of the Kent distribution
fb.saddle( c(0, 10, 0), c(0, -2, 2) )
kent.logcon(10, 2)

Score test for many simple CIPC and SMPL regressions

Score test for many simple CIPC and SPML regressions

Description

Score test for many simple CIPC and SPML regressions.

Usage

score.cipc(y, X, rads = TRUE, tol = 1e-06)
score.spml(y, X, rads = TRUE, tol = 1e-06)

Arguments

y The dependent variable, a numerical vector, it can be in radians or degrees.
X A matrix with many numerical independent variables.
rads If the dependent variable is expressed in rads, this should be TRUE and FALSE

otherwise.
tol The tolerance value to terminate the Newton-Raphson algorithm in the null

model (CIPC without covariates).

Details

The score test uses the first derivative (score function) of the regression log-likelihood and it is
asymptotically correct. So, this function requires sample sizes or at least 1,000 observations. The
CIPC is basically the Wrapped Cauchy distribution (Tsagris and Alzeley, 2024) and SPML is the
bivariate projected normal (Presnell et al., 1998).

Value

A matrix with two columns, the test statistic and its associated p-value.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.
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References

Tsagris M. and Alzeley O. (2024). Circular and spherical projected Cauchy distributions: A Novel
Framework for Circular and Directional Data Modeling. Australian & New Zealand Journal of
Statistics (accepted for publication). https://arxiv.org/pdf/2302.02468.pdf

Presnell B., Morrison S. P. and Littell R. C. (1998). Projected multivariate linear models for direc-
tional data. Journal of the American Statistical Association, 93(443): 1068–1077.

See Also

cipc.reg, spml.reg, cipc.mle, spml.mle,

Examples

y <- rcipc(500, omega = 2, g = 5)
x <- matrix( rnorm(500 * 10), ncol = 10 )
a <- score.cipc(y, x)

Simulation from a Bingham distribution using any symmetric matrix A

Simulation from a Bingham distribution using any symmetric matrix A

Description

It simulates random values from a Bingham distribution with any given symmetric matrix.

Usage

rbingham(n, A)

Arguments

n The sample size.

A A symmetric matrix.

Details

The eigenvalues are fist calcualted and then Chris Fallaize and Theo Kypraio’s code (f.rbing) is
used. The resulting simulated data anre then right multiplied by the eigenvectors of the matrix A.

Value

A matrix with the siumlated data.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.
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References

Kent J. T., Ganeiber A. M. and Mardia K. V. (2018). A new unified approach for the simulation of
a wide class of directional distributions. Journal of Computational and Graphical Statistics, 27(2):
291–301.

Kent J.T., Ganeiber A.M. and Mardia K.V. (2013). A new method to simulate the Bingham and re-
lated distributions in directional data analysis with applications. http://arxiv.org/pdf/1310.8110v1.pdf

Fallaize C. J. and Kypraios T. (2016). Exact bayesian inference for the Bingham distribution. Statis-
tics and Computing, 26(1): 349–360. http://arxiv.org/pdf/1401.2894v1.pdf

See Also

f.rbing, rfb, rvmf, rkent

Examples

A <- cov(iris[, 1:3])
x <- rbingham(100, A)

Simulation from a Matrix Fisher distribution on SO(3)

Simulation from a Matrix Fisher distribution on SO(3)

Description

It simulates random samples (rotation matrices) from a Matrix Fisher distribution with any given
parameter matrix, F (3x3).

Usage

rmatrixfisher(n, F)

Arguments

n the sample size.

F An arbitrary 3x3 matrix.

Details

Firstly corresponding Bingham parameter A is determined for a given Matrix Fisher parameter F
using John Kent et al.’s (2013) algorithm and then Bingham samples for parameter A are generated
using rbingham code. Finally convert Bingham samples to Matrix Fisher samples according to the
Kent (2013) transformation.

Value

An array with simulated rotation matrices.
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Author(s)

Anamul Sajib and Chris Fallaize.

R implementation and documentation: Anamul Sajib <sajibstat@du.ac.bd> and Chris Fallaize.

References

Kent J. T., Ganeiber A. M. and Mardia K. V. (2018). A new unified approach for the simulation of
a wide class of directional distributions. Journal of Computational and Graphical Statistics, 27(2):
291–301.

Kent J.T., Ganeiber A.M. and Mardia K.V. (2013). A new method to simulate the Bingham and re-
lated distributions in directional data analysis with applications. http://arxiv.org/pdf/1310.8110v1.pdf

See Also

matrixfisher.mle

Examples

F <- matrix( c(85, 11, 41, 78, 39, 60, 43, 64, 48), ncol = 3) / 10 ### An arbitrary F matrix
a <- rmatrixfisher(10, F)

Simulation of random values from a Bingham distribution

Simulating from a Bingham distribution

Description

It simulates from a Bingham distribution using the code suggested by Kent et al. (2013).

Usage

f.rbing(n, lam, fast = FALSE)

Arguments

n Sample size.

lam Eigenvalues of the diagonal symmetric matrix of the Bingham distribution.

fast If you want a fast, efficient simulation set this to TRUE.

Details

The user must have calculated the eigenvalues of the diagonal symmetric matrix of the Bingham
distribution. The function accepts the q-1 eigenvalues only. This means, that the user must have
subtracted the lowest eigenvalue from the rest and give the non zero ones. The function uses rejec-
tion sampling and it was written by Chris Fallaize and Theo Kypraios (University of Nottingham)
and kindly offered. Any questions on the code can be addressed to one of the two aforementioned
people. It is slightly different than the one Kent et al. (2013) suggests.
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Value

A list including:

X The simulated data.

avtry The estimate of M in the rejection sampling. The average number of simulated
values before a value is accepted. If the argument fast is set to TRUE this infor-
mation will not appear.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>.

References

Kent J. T., Ganeiber A. M. and Mardia K. V. (2018). A new unified approach for the simulation of
a wide class of directional distributions. Journal of Computational and Graphical Statistics, 27(2):
291–301.

Kent J.T., Ganeiber A.M. and Mardia K.V. (2013). A new method to simulate the Bingham and re-
lated distributions in directional data analysis with applications. http://arxiv.org/pdf/1310.8110v1.pdf

Fallaize C. J. and Kypraios T. (2016). Exact bayesian inference for the Bingham distribution. Statis-
tics and Computing, 26(1): 349–360. http://arxiv.org/pdf/1401.2894v1.pdf

See Also

rfb, rvmf, rbingham, rkent, link{rsop}

Examples

x <- f.rbing( 100, c(1, 0.6, 0.1) )
x

Simulation of random values from a mixture of rotationally symmetric
distributions

Simulation of random values from a mixture of rotationally symmetric
distributions

Description

The function simulates random values simulation from a given mixture of rotationally symmetric
distributions.
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Usage

rmixvmf(n, probs, mu, k)
rmixspcauchy(n, probs, mu, k)
rmixpkbd(n, probs, mu, k)

Arguments

n The sample size.

probs This is avector with the mixing probability of each group.

mu A matrix with the mean direction of each group.

k A vector with the concentration parameter of each group.

Details

The function simulates random values simulation from a given mixture of von Mises-Fisher, spher-
ical Cauchy or Poisson kernel-based distributions.

Value

A list including:

id An indicator of the group of each simulated vector.

x A matrix with the simulated data.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Kurt Hornik and Bettina Grun (2014). movMF: An R Package for Fitting Mixtures of von Mises-
Fisher Distributions http://cran.r-project.org/web/packages/movMF/vignettes/movMF.pdf

Tsagris M., Papastamoulis P. and Kato S. (2024). Directional data analysis using the spherical
Cauchy and the Poisson kernel-based distribution. https://arxiv.org/pdf/2409.03292.

See Also

mixvmf.mle, rvmf, bic.mixvmf

Examples

k <- runif(3, 4, 20)
probs <- c(0.2, 0.5, 0.3)
mu <- matrix(rnorm(9), ncol = 3)
mu <- mu / sqrt( rowSums(mu^2) )
x <- rmixvmf(200, probs, mu, k)$x
bic.mixvmf(x, 5)
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Simulation of random values from a spherical Fisher-Bingham
distribution

Simulation of random values from a spherical Fisher-Bingham distri-
bution

Description

Simulation of random values from a spherical Fisher-Bingham distribution.

Usage

rfb(n, k, m, A)

Arguments

n The sample size.

k The concentraion parameter (Fisher part). It has to be greater than 0.

m The mean direction (Fisher part).

A A symmetric matrix (Bingham part).

Details

Random values from a spherical Fisher-Bingham distribution are generated. This functions included
the option of simulating from a Kent distribution also.

Value

A matrix with the simulated data.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>.

References

Kent J. T., Ganeiber A. M. and Mardia K. V. (2018). A new unified approach for the simulation of
a wide class of directional distributions. Journal of Computational and Graphical Statistics, 27(2):
291–301.

Kent J.T., Ganeiber A.M. and Mardia K.V. (2013). A new method to simulate the Bingham and re-
lated distributions in directional data analysis with applications. http://arxiv.org/pdf/1310.8110v1.pdf

Fallaize C. J. and Kypraios T. (2016). Exact bayesian inference for the Bingham distribution. Statis-
tics and Computing, 26(1): 349–360. http://arxiv.org/pdf/1401.2894v1.pdf
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See Also

rbingham, rvmf, rkent, f.rbing

Examples

k <- 15
mu <- rnorm(3)
mu <- mu / sqrt( sum(mu^2) )
A <- cov(iris[, 1:3])
x <- rfb(50, k, mu, A)
vmf.mle(x) ## fits a von Mises-Fisher distribution to the simulated data
## Next we simulate from a Kent distribution
A <- diag( c(-5, 0, 5) )
n <- 100
x <- rfb(n, k, mu, A) ## data follow a Kent distribution
kent.mle(x) ## fits a Kent distribution
vmf.mle(x) ## fits a von Mises-Fisher distribution
A <- diag( c(5, 0, -5) )
n <- 100
x <- rfb(n, k, mu, A) ## data follow a Kent distribution
kent.mle(x) ## fits a Kent distribution
vmf.mle(x) ## fits a von Mises-Fisher distribution

Simulation of random values from a spherical Kent distribution

Simulation of random values from a spherical Kent distribution

Description

Simulation of random values from a spherical Kent distribution.

Usage

rkent(n, k, m, b)

Arguments

n The sample size.

k The concentraion parameter κ. It has to be greater than 0.

m The mean direction (Fisher part).

b The ovalness parameter, β.

Details

Random values from a Kent distribution on the sphere are generated. The function generates from
a spherical Kent distribution using rfb with an arbitrary mean direction and then rotates the data to
have the desired mean direction.
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Value

A matrix with the simulated data.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Kent J. T., Ganeiber A. M. and Mardia K. V. (2018). A new unified approach for the simulation of
a wide class of directional distributions. Journal of Computational and Graphical Statistics, 27(2):
291–301.

Kent J.T., Ganeiber A.M. and Mardia K.V. (2013). A new method to simulate the Bingham and re-
lated distributions in directional data analysis with applications. http://arxiv.org/pdf/1310.8110v1.pdf

See Also

rfb, rbingham, rvmf, f.rbing

Examples

k <- 15
mu <- rnorm(3)
mu <- mu / sqrt( sum(mu^2) )
A <- diag( c(-5, 0, 5) )
x <- rfb(500, k, mu, A)
kent.mle(x)
y <- rkent(500, k, mu, A[3, 3])
kent.mle(y)

Simulation of random values from rotationally symmetric
distributions

Simulation of random values from rotationally symmetric distributions

Description

Simulation of random values from rotationally symmetric distributions. The data can be spherical
or hyper-spherical.

Usage

rvmf(n, mu, k)
riag(n, mu)
rspcauchy(n, mu, rho)
rpkbd(n, mu, rho)
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Arguments

n The sample size.

mu A unit vector showing the mean direction for the von Mises-Fisher or the spher-
ical Cauchy distribution. The mean vector of the Independent Angular Gaussian
distribution does not have to be a unit vector.

k The concentration parameter (κ) of the von Mises-Fisher distribution. If κ = 0,
random values from the spherical uniform will be drwan.

rho The ρ parameter of the spherical Cauchy or the Poisson kernel-based distribu-
tion.

Details

The von Mises-Fisher uses the rejection smapling suggested by Wood (1994). For the Independent
Angular Gaussian, values are generated from a multivariate normal distribution with the given mean
vector and the identity matrix as the covariance matrix. Then each vector becomes a unit vector.
For the spherical Cauchy distribution the algortihm is described in Kato and McCullagh (2020) and
for the Poisson kernel-based distribution, it is described in Sablica, Hornik and Leydold (2023).

Value

A matrix with the simulated data.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>.

References

Wood A.T.A. (1994). Simulation of the von Mises Fisher distribution. Communications in Statistics-
Simulation and Computation, 23(1): 157–164.

Dhillon I. S. and Sra S. (2003). Modeling data using directional distributions. Technical Report TR-
03-06, Department of Computer Sciences, The University of Texas at Austin. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.75.4122&rep=rep1&type=pdf

Kato S. and McCullagh P. (2020). Some properties of a Cauchy family on the sphere derived from
the Mobius transformations. Bernoulli, 26(4): 3224–3248. https://arxiv.org/pdf/1510.07679.pdf

Sablica L., Hornik K. and Leydold J. (2023). Efficient sampling from the PKBD distribution.
Electronic Journal of Statistics, 17(2): 2180–2209.

See Also

vmf.mle, iag.mle rfb, racg, rvonmises, rmixvmf
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Examples

m <- rnorm(4)
m <- m/sqrt(sum(m^2))
x <- rvmf(100, m, 25)
m
vmf.mle(x)

Simulation of random values from some circular distributions

Simulation of random values from some circular distributions

Description

Simulation of random values from some circular distributions.

Usage

rvonmises(n, m, k, rads = TRUE)
rwrapcauchy(n, m, rho, rads = TRUE)
rspml(n, mu, rads = TRUE)
rcircbeta(n, m, a, b, rads = TRUE)
rcircpurka(n, m, a, rads = TRUE)
rcircexp(n, lambda, rads = TRUE)
rcipc(n, mu = NULL, omega, g, rads = TRUE)
rgcpc(n, mu = NULL, omega, g, rho, rads = TRUE)

Arguments

n The sample size.
m The mean angle expressed in radians or degrees.
mu The mean vector of the SPML, CIPC and GCPC inR2. For the CIPC and GCPC,

if this argument is not given, then the omega and g must be given.
omega The location parameter for the CIPC and the GCPC expressed in radians or

degrees.
k The concentration parameter of the von Mises distribution. If k is zero the sam-

ple will be generated from the uniform distribution over (0, 2π).
g The norm of the mean vector for the CIPC and GCPC, if omega is given instead

of mu.
rho For the wrapped Cauchy distribution, this is the ρ parameter. For the GCPC

distribution this is the eigenvalue parameter, or covariance determinant.
a The α parameter of the beta distribution.
b The β parameter of the beta distribution.
lambda The λ parameter of the circular (wrapped) exponential distribution.
rads If the mean angle is expressed in radians, this should be TRUE and FALSE

otherwise. The simulated data will be expressed in radians or degrees depending
on what the mean angle is expressed.
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Details

For the von Mises distribution, the mean direction is transformed to the Euclidean coordinates (i.e.
unit vector) and then the rvmf function is employed. It uses a rejection smapling as suggested
by Andrew Wood in 1994. We have mentioned the description of the algorithm as we found it in
Dhillon and Sra in 2003. Finally, the data are transformed to radians or degrees.

For the wrapped Cauchy and wrapped exponential distributions the function generates Cauchy or
exponential values x and then wrapps them around the circle x = x(mod2π). For the circular beta
the function has some extra steps (see Zheng Sun’s master thesis).

For the CIPC and GCPC distributions, data are generated from the bivariate Cauchy distribution,
normalized to have unit norm and then transformed to angles.

Value

A vector with the simulated data.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>.

References

Wood A.T.A. (1994). Simulation of the von Mises Fisher distribution. Communications in Statistics-
Simulation and Computation, 23(1): 157-164.

Dhillon I.S. and Sra S. (2003). Modeling data using directional distributions. Technical Report TR-
03-06, Department of Computer Sciences, The University of Texas at Austin. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.75.4122&rep=rep1&type=pdf

Zheng Sun (2006). Comparing measures of fit for circular distributions. Master thesis, University of
Victoria. https://dspace.library.uvic.ca/bitstream/handle/1828/2698/zhengsun_master_thesis.pdf;sequence=1

Lai M. (1994). Some results in the statistical analysis of directional data. Master thesis, University
of Hong Kong.

Presnell B., Morrison S.P. and Littell R.C. (1998). Projected multivariate linear models for direc-
tional data. Journal of the American Statistical Association, 93(443): 1068–1077.

Purkayastha S. (1991). A Rotationally Symmetric Directional Distribution: Obtained through Max-
imum Likelihood Characterization. The Indian Journal of Statistics, Series A, 53(1): 70–83

Jammalamadaka S.R. and Kozubowski T.J. (2003). A new family of circular models: The wrapped
Laplace distributions. Advances and Applications in Statistics, 3(1): 77–103.

See Also

circ.summary, rvmf, racg

Examples

x <- rvonmises(100, 2, 25, rads = TRUE)
circ.summary(x, rads = TRUE)
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Simulation of random values from the ESAG distribution

Simulation of random values from the ESAG distribution

Description

Simulation of random values from the ESAG distribution.

Usage

resag(n, mu, gam)
rESAGd(n, mu, gam)

Arguments

n A number; how many vectors you want to generate.

mu The mean vector the ESAG distribution.

gam The γ parameters of the ESAG distribution. For the rESAGd this may be NULL
in case you want to simulate from the IAG in arbitrady dimensions.

Details

A random sample from the ESAG distribution is generated. In case the γs are zero (or null for the
rESAGd), the sample is drawn from the Independent Angular Gaussian (or projected normal). The
resag() is designed for the sphere, whereas the rESAGd is designed for the sphere and hyper-sphere.

Value

An n× d matrix with the simulated unit vectors.

Author(s)

Michail Tsagris and Zehao Yu.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Zehao Yu <zehaoy@email.sc.edu>.

References

Zehao Yu and Xianzheng Huang (2024). A new parameterization for elliptically symmetric angular
Gaussian distributions of arbitrary dimension. Electronic Journal of Statististics, 18(1): 301–334.

Paine P.J., Preston S.P., Tsagris M. and Wood A.T.A. (2018). An Elliptically Symmetric Angular
Gaussian Distribution. Statistics and Computing, 28(3):689–697.

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

See Also

esag.mle, desag, spml.mle, acg.mle, circ.summary
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Examples

m <- colMeans( as.matrix( iris[, 1:3] ) )
y <- resag(1000, m, c(1, 0.5) )
esag.mle(y)

Simulation of random values from the SESPC distribution

Simulation of random values from the SESPC distribution

Description

Simulation of random values from the SESPC distribution

Usage

rsespc(n, mu, theta)

Arguments

n A number; how many vectors you want to generate.

mu The mean vector the SESPC distribution, a vector in R3.

theta The two θ parameters of the SESPC distribution.

Details

A random sample from the SESPC distribution is generated. In case the θs are zero, the sample is
drawn from the SIPC (spherical independent projected Cauchy) distribution.

Value

An n× 3 matrix with the simulated unit vectors.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Tsagris M. and Alzeley O. (2024). Circular and spherical projected Cauchy distributions: A Novel
Framework for Circular and Directional Data Modeling. Australian & New Zealand Journal of
Statistics (accepted for publication). https://arxiv.org/pdf/2302.02468.pdf

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

See Also

sespc.mle, dsespc
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Examples

m <- colMeans( as.matrix( iris[,1:3] ) )
y <- rsespc(1000, m, c(1, 0.5) )
sespc.mle(y)

Spherical and hyper-spherical distance correlation

Spherical and hyper-spherical distance correlation

Description

Spherical and hyper-spherical distance correlation.

Usage

spher.dcor(x, y)

Arguments

x A matrix with directional data, i.e. unit vectors.

y A matrix with directional data, i.e. unit vectors.

Details

The distance correlation between two spherical or hyper-spherical variables is computed.

Value

A list including:

dcov The distance covariance.

dvarX The distance variance of x.

dvarY The distance variance of Y.

dcor The distance correlation.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

G.J. Szekely, M.L. Rizzo and N. K. Bakirov (2007). Measuring and Testing Independence by
Correlation of Distances. Annals of Statistics, 35(6):2769-2794.
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See Also

circ.dcor

Examples

y <- rvmf(50, rnorm(3), 4)
x <- rvmf(50, rnorm(3), 4)
spher.dcor(x, y)

Spherical and hyperspherical median

Fast calculation of the spherical and hyperspherical median

Description

It calculates, very fast, the (hyper-)spherical median of a sample.

Usage

mediandir(x)
mediandir_2(x)

Arguments

x The data, a numeric matrix with unit vectors.

Details

The "mediandir" employes a fixed poit iterative algorithm stemming from the first derivative (Cabr-
era and Watson, 1990) to find the median direction as described by Fisher (1985) and Fisher, Lewis
and Embleton (1987). In the big samples this is much much faster than "mediandir_2", since the
search is based on iterations.

Value

The median direction.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>.
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References

Fisher N. I. (1985). Spherical medians. Journal of the Royal Statistical Society. Series B, 47(2):
342–348.

Fisher N. I., Lewis T. and Embleton B. J. (1987). Statistical analysis of spherical data. Cambridge
university press.

Cabrera J. and Watson G. S. (1990). On a spherical median related distribution. Communications
in Statistics-Theory and Methods, 19(6): 1973–1986.

See Also

nsmedian, vmf.mle, kent.mle

Examples

m <- rnorm(3)
m <- m / sqrt( sum(m^2) )
x <- rvmf(100, m, 10)
mediandir(x)
mediandir_2(x)
nsmedian(x)

Spherical regression using rotationally symmetric distributions

Spherical regression using rotationally symmetric distributions

Description

Spherical regression using rotationally symmetric distributions.

Usage

iag.reg(y, x, con = TRUE, xnew = NULL, tol = 1e-06)
vmf.reg(y, x, con = TRUE, xnew = NULL, tol = 1e-06)
sipc.reg(y, x, con = TRUE, xnew = NULL, tol = 1e-06)

Arguments

y A matrix with 3 columns containing the (unit vector) spherical data.

x The predictor variable(s), they can be continnuous, spherical, categorical or a
mix of them.

con Do you want the constant term in the regression?

xnew If you have new data use it, otherwise leave it NULL.

tol A tolerance value to decide when to stop the successive optimaizations.
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Details

The second parametrization of the projected normal and of the von Mises-Fisher regression (Paine
et al., 2020) is applied. The same is true for the SIPC distribution. For more information see the
paper by Paine et al. (2020).

Value

A list including:

loglik The log-likelihood of the regression model.

fit This is a measure of fit of the estimated values, defined as
∑n

i=1 y
T
i ŷi. This

appears if the argument "xnew" is NULL.

beta The beta coefficients.

seb The standard error of the beta coefficients.

ki The norm of the fitted values. In the von Mises-Fisher regression this is the
concentration parameter of each observation. In the projected normal this are
the norms of the fitted values before being projected onto the sphere. This is
returned if the argument "xnew" is NULL.

est The fitted values of xnew if "xnew" is NULL. If it is not NULL, the fitted values
for the "xnew" you supplied will be returned.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

P. J. Paine, S. P. Preston, M. Tsagris and Andrew T. A. Wood (2020). Spherical regression mod-
els with general covariates and anisotropic errors. Statistics and Computing, 30(1): 153–165.
https://link.springer.com/content/pdf/10.1007

Tsagris M. and Alzeley O. (2024). Circular and spherical projected Cauchy distributions: A Novel
Framework for Circular and Directional Data Modeling. https://arxiv.org/pdf/2302.02468.pdf

See Also

esag.reg, vmfreg, spml.reg

Examples

y <- rvmf(150, rnorm(3), 5)
a1 <- iag.reg(y, iris[, 4])
a2 <- iag.reg(y, iris[, 4:5])

b1 <- vmf.reg(y, iris[, 4])
b2 <- vmf.reg(y, iris[, 4:5])
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Spherical regression using the ESAG distribution

Spherical regression using the ESAG distribution

Description

Spherical regression using the ESAG distribution.

Usage

esag.reg(y, x, con = TRUE, xnew = NULL, lati = 10, longi = 10, tol = 1e-06)

Arguments

y A matrix with 3 columns containing the (unit vector) spherical data.

x The predictor variable(s), they can be continnuous, spherical, categorical or a
mix of them.

con Do you want the constant term in the regression?

xnew If you have new data use it, otherwise leave it NULL.

lati A positive number determing the range of degrees to move left and right from
the latitude center. This number and the next determine the grid of points to
search for the Q matrix described in Paine et al. (2020).

longi A positive number determing the range of degrees to move up and down from
the longitude center. This number and the previous determine the grid of points
to search for the Q matrix described in Paine et al. (2020).

tol A tolerance value to decide when to stop the successive optimizations.

Details

The second parametrization of the ESAG regression (Paine et al., 2020) is applied.

Value

A list including:

loglik The log-likelihood of the regression model.

param A vector with three numbers. A measure of fit of the estimated values, defined
as

∑n
i=1 y

T
i ŷi. This appears if the argument "xnew" is NULL. The ρ ∈ (0, 1]

(smallest eigenvalue of the covariance matrix)), and the angle of rotation psi.

gam The two γ parameters.

beta The beta coefficients.

seb The standard error of the beta coefficients.

est The fitted values of xnew if "xnew" is NULL. If it is not NULL, the fitted values
for the "xnew" you supplied will be returned.
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Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

P. J. Paine, S. P. Preston, M. Tsagris and Andrew T. A. Wood (2020). Spherical regression mod-
els with general covariates and anisotropic errors. Statistics and Computing, 30(1): 153–165.
https://link.springer.com/content/pdf/10.1007

See Also

esag.mle, iag.reg, spml.reg

Examples

y <- resag( 25, rnorm(3), c(1, 1) )
## this is a small example to pass CRAN's check because the default argument values
## of lati and longi require many seconds
a <- esag.reg(y, iris[1:25, 4], lati = 2, longi = 2)

Spherical regression using the SESPC distribution

Spherical regression using the SESPC distribution

Description

Spherical regression using the SESPC distribution.

Usage

sespc.reg(y, x, con = TRUE, xnew = NULL, lati = 10, longi = 10, tol = 1e-06)

Arguments

y A matrix with 3 columns containing the (unit vector) spherical data.
x The predictor variable(s), they can be continnuous, spherical, categorical or a

mix of them.
con Do you want the constant term in the regression?
xnew If you have new data use it, otherwise leave it NULL.
lati A positive number determing the range of degrees to move left and right from

the latitude center. This number and the next determine the grid of points to
search for the Q matrix described in Tsagris and Alzeley (2024).

longi A positive number determing the range of degrees to move up and down from
the longitude center. This number and the previous determine the grid of points
to search for the Q matrix described in Tsagris and Alzeley (2024).

tol A tolerance value to decide when to stop the successive optimizations.
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Details

Regression based on the SESPC distribution (Tsagris and Alzeley, 2024) is applied.

Value

A list including:

loglik The log-likelihood of the regression model.

param A vector with three numbers. A measure of fit of the estimated values, defined
as

∑n
i=1 y

T
i ŷi. This appears if the argument "xnew" is NULL. The ρ ∈ (0, 1]

(smallest eigenvalue of the covariance matrix)), and the angle of rotation psi.

theta The two θ parameters.

beta The beta coefficients.

seb The standard error of the beta coefficients.

est The fitted values of xnew if "xnew" is NULL. If it is not NULL, the fitted values
for the "xnew" you supplied will be returned.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Tsagris M. and Alzeley O. (2024). Circular and spherical projected Cauchy distributions: A Novel
Framework for Circular and Directional Data Modeling. Australian & New Zealand Journal of
Statistics (accepted for publication). https://arxiv.org/pdf/2302.02468.pdf

See Also

esag.mle, iag.reg, spml.reg

Examples

y <- rsespc( 150, rnorm(3), c(1, 1) )
## this is a small example to pass CRAN's check because the default argument values
## of lati and longi require many seconds
a <- sespc.reg(y, iris[, 4], lati = 2, longi = 2)



Spherical-spherical correlation 137

Spherical-spherical correlation

Spherical-spherical correlation

Description

Correlation between two spherical variables.

Usage

spher.cor(x, y)

Arguments

x A spherical variable. A matrix with thre columns, each row is a unit vector.
y A spherical variable. A matrix with thre columns, each row is a unit vector.

Details

A very similar to the classical correlation is calcualted. In addition, a hypothesis test for no correla-
tion is performed. Note, that this is a squared correlation actually, so negative values will never be
returned.

Value

A vector including:

R-squared The value of the squared correlation.
p-value The p-value of the no correlation hypothesis testing.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>.

References

Kanti V. Mardia and Peter E. Jupp. Directional statistics, pg. 254–255.

See Also

spher.reg, vmf.mle, circ.cor1, circ.cor2

Examples

x <- rvmf(100, rnorm(3), 10)
y <- rvmf(100, rnorm(3), 10)
spher.cor(x, y)
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Spherical-spherical regression

Spherical-Spherical regression

Description

Regression when both the dependent and independent variables are spherical.

Usage

spher.reg(y, x, rads = FALSE, xnew = NULL)

Arguments

y The dependent variable; a matrix with either two columns, latitude and lon-
gitude, either in radians or in degrees. Alternatively it is a matrix with three
columns, unit vectors.

x The dependent variable; a matrix with either two columns, latitude and lon-
gitude, either in radians or in degrees. Alternatively it is a matrix with three
columns, unit vectors. The two matrices must agree in the scale and dimen-
sions.

rads If the data are expressed in latitude and longitude then it matter to know if they
are in radians or degrees. If they are in radians, then this should be TRUE and
FALSE otherwise. If the previous argument, euclidean, is TRUE, this one does
not matter what its value is.

xnew The new values of some spherical independent variable(s) whose spherical re-
sponse values you want to predict. If you have no new x values, leave it NULL
(default).

Details

Spherical regression as proposed by Chang (1986) is implemented. If the estimated rotation matrix
has a determinant equal to -1, singular value decomposition is performed and the third unit vector
is multiplied by -1.

Value

A list including:

A The estimated rotation matrix.

est The fitted values in unit vectors, if the argument xnew is not NULL.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>.
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References

Ted Chang (1986). Spherical Regression. Annals of Statistics, 14(3): 907–924.

See Also

hspher.reg, spher.cor, spml.reg

Examples

mx <- rnorm(3)
mx <- mx/sqrt( sum(mx^2) )
my <- rnorm(3)
my <- my/sqrt( sum(my^2) )
x <- rvmf(100, mx, 15)
A <- rotation(mx, my)
y <- x %*% t(A)
mod <- spher.reg(y, x)
A
mod$A ## exact match, no noise
y <- x %*% t(A)
y <- y + rvmf(100, colMeans(y), 40)
mod <- spher.reg(y, x)
A
mod$A ## noise added, more relistic example

Summary statistics for circular data

Summary statistics for circular data

Description

It produces a few summary measures for circular data.

Usage

circ.summary(u, rads = FALSE, fast = FALSE, tol = 1e-07, plot = FALSE)

Arguments

u A vector with circular data.

rads If the data are in rads, then this should be TRUE, otherwise FALSE.

fast A boolean variable to do a faster implementation.

tol The tolerance level to stop the Newton-Raphson algorithm for finding kappa.

plot If you want to see the data plotted on a cicrle make this TRUE.
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Details

It returns the circular mean, mean resultant length, variance, standard deviation and concentration
parameter. So, basically it returns the estimated values of the parameters of the von Mises distribu-
tion.

Value

If fast = FALSE a list including all the following. If fast = TRUE less items are returned.

mesos The circular mean direction.

confint The 95% confidence interval for the circular mean direction.

kappa The concentration parameter.

MRL The mean resultant length.

circvariance The circular variance.

circstd The circular standard deviation.

loglik The log-likelihood of the fitted von Mises distribution.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>.

References

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

See Also

spml.mle, rvonmises, vm.kde, vmf.mle, group.vm, hcf.circaov

Examples

x <- rvonmises(50, 2.5, 15, rads = TRUE)
circ.summary(x, rads = TRUE, plot = TRUE)

Summary statistics for grouped circular data

Summary statistics for grouped circular data

Description

It produces a few summary measures for grouped circular data.
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Usage

group.vm(group, fi, rads = FALSE)

Arguments

group A matrix denoting the classes. Each row consists of two numbers, the lower and
upper points of each class.

fi The frequency of each class of data.

rads If the data are in rads, then this should be TRUE, otherwise FALSE.

Details

It returns the circular mean, mean resultant length, variance, standard deviation and concentration
parameter. So, basically it returns the estimated values of the parameters of the von Mises distribu-
tion. The mena resultant length though is group corrected.

Value

A list including:

mesos The circular mean direction.

confint The 95% confidence interval for the circular mean direction.

kappa The concentration parameter.

MRL The mean resultant length.

circvariance The circular variance.

circstd The circular standard deviation.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Pewsey Arthur, Markus Neuhauser and Graeme D. Ruxton (2013). Circular statistics in R. Oxford
University Press.

Mardia K. V. and Jupp P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

See Also

circ.summary, rvonmises, vm.kde
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Examples

x <- rvonmises(200, 3, 10)
a <- circ.summary(x, rads = TRUE, plot = FALSE)
group <- seq(min(x) - 0.1, max(x) + 0.1, length = 6)
y <- cut(x, breaks = group, length = 6)
group <- matrix( c( group[1], rep(group[2:5], each = 2), group[6]), ncol = 2, byrow = TRUE)
fi <- as.vector( table(y) )
b <- group.vm(group, fi, rads = TRUE)
a
b

Test for a given mean direction

Test for a given mean direction

Description

A log-likelihood ratio test for testing whether the sample mena direction is equal to some predefined
one.

Usage

meandir.test(x, mu, B = 999)

Arguments

x A matrix with the data, unit vectors.

mu A unit vector with the hypothesized mean direction.

B A number either 1, so no bootstrap calibration is performed or more than 1, so
bootstrap calibration is performed.

Details

The log-likelihood ratio test is employed.

Value

This is an "htest"class object. Thus it returns a list including:

statistic The test statistic value.

parameter The degrees of freedom of the test. If bootstrap was employed this is "NA".

p.value The p-value of the test.

alternative A character with the alternative hypothesis.

method A character with the test used.

data.name A character vector with two elements.
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Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>.

References

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

See Also

vmf.mle, kent.mle, rayleigh

Examples

mu <- rnorm(5)
mu <- mu / sqrt( sum(mu^2) )
x <- rvmf(100, mu, 10)
meandir.test(x, mu, 1)
meandir.test(x, mu, 499)

Test for equality of concentration parameters for spherical data

Test for equality of concentration parameters for spherical data

Description

This tests the equality of concentration parameters for spherical data only.

Usage

spherconc.test(x, ina)

Arguments

x A matrix with the data in Euclidean coordinates, i.e. unit vectors
ina A variable indicating the groupings of the observations.

Details

The test is designed for spherical data only.

Value

A list including:

mess A message stating the value of the mean resultant and which test statistic was
used, U1, U2 or U3.

res A vector containing the test statistic and its p-value.
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Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>.

References

Kanti V. Mardia and Peter E. Jupp. Directional statistics, pg. 226–227.

See Also

het.aov, lr.aov, embed.aov, hcf.aov, conc.test, sphereplot

Examples

x <- rvmf(100, rnorm(3), 15)
ina <- rep(1:4, each = 25)
spherconc.test(x, ina)

Test of equality of the concentration parameters for circular data

A test for testing the equality of the concentration parameter among g
samples, where g >= 2 for ciruclar data

Description

A test for testing the equality of the concentration parameter among g samples, where g >= 2 for
ciruclar data.

Usage

conc.test(u, ina, rads = FALSE)

Arguments

u A numeric vector containing the values of all samples.

ina A numerical variable or factor indicating the groups of each value.

rads If the data are in radians this should be TRUE and FALSE otherwise.

Details

This test works for circular data.
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Value

A list including:

mess A message informing the use of the test statistic used.
res A numeric vector containing the value of the test statistic and its associated p-

value.

Author(s)

Michail Tsagris.
R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>.

References

Mardia, K. V. and Jupp, P. E. (2000). Directional statistics. Chicester: John Wiley & Sons.

See Also

embed.circaov, hcf.circaov, lr.circaov, het.circaov

Examples

x <- rvonmises(100, 2.4, 15)
ina <- rep(1:4,each = 25)
conc.test(x, ina, rads = TRUE)

The k-nearest neighbours using the cosinus distance

The k-nearest neighbours using the cosinus distance

Description

The k-nearest neighbours using the cosinus distance.

Usage

cosnn(xnew, x, k = 5, index = FALSE, rann = FALSE)

Arguments

xnew The new data whose k-nearest neighbours are to be found.
x The data, a numeric matrix with unit vectors.
k The number of nearest neighbours, set to 5 by default. It can also be a vector

with many values.
index If you want the indices of the closest observations set this equal to TRUE.
rann If you have large scale datasets and want a faster k-NN search, you can use kd-

trees implemented in the R package "RANN". In this case you must set this
argument equal to TRUE.
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Details

The shortest distances or the indices of the k-nearest neighbours using the cosinus distance are
returned.

Value

A matrix with the shortest distance of each xnew from x, if index is FALSE, or the indices of the
nearest neighbours of each xnew from x, if index is TRUE.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Tsagris M. and Alenazi A. (2019). Comparison of discriminant analysis methods on the sphere.
Communications in Statistics: Case Studies, Data Analysis and Applications, 5(4): 467–491.

See Also

dirknn, dirknn.tune

Examples

xnew <- rvmf(10, rnorm(3), 5)
x <- rvmf(50, rnorm(3), 5)
a <- cosnn(xnew, x, k = 5)
b <- cosnn(xnew, x, k = 5, index = TRUE)

Transform unit vectors to angular data

Transform unit vectors to angular data

Description

Transform unit vectors to angular data.

Usage

etoa(x)

Arguments

x A numerical matrix with directional data, i.e. unit verctors.
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Details

from the Euclidean coordinates the data are mapped to angles, expressed in rads.

Value

A list including:

mu A matrix with angles. The number of columns is one less than that of the original
matrix.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

https://en.wikipedia.org/wiki/N-sphere#Spherical_coordinates

See Also

vmnb.pred

Examples

x <- rvmf(10, rnorm(3), 5)
y <- etoa(x)

Tuning of the bandwidth parameter in the von Mises kernel

Tuning of the bandwidth parameter in the von Mises kernel for circular
data

Description

Tuning of the bandwidth parameter in the von Mises kernel for circular data. Cross validation is
used.

Usage

vmkde.tune(u, low = 0.1, up = 1, rads = TRUE)

Arguments

u The data, a numerical vector.

low The lower value of h to search.

up The lower value of h to search.

rads If the data are in radians this should be TRUE and FALSE otherwise.



148 Tuning of the bandwidth parameter in the von Mises-Fisher kernel

Details

Tuning of the bandwidth parameter in the von Mises kernel for circula data via cross validation.
The procedure is fast because an optimiser is used.

Value

A vector including two elements:

Optimal h The best H found.

cv The value of the maximised pseudo-likelihood.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>.

References

Taylor C.C. (2008). Automatic bandwidth selection for circular density estimation. Computational
Statistics & Data Analysis, 52(7), 3493–3500.

Wand M.P. and Jones M.C. (1994). Kernel smoothing. CrC Press.

See Also

vm.kde, vmfkde.tune, vmf.kde

Examples

u <- rvonmises(100, 2.4, 10, rads = TRUE)
vmkde.tune(u)

Tuning of the bandwidth parameter in the von Mises-Fisher kernel

Tuning of the bandwidth parameter in the von Mises-Fisher kernel for
(hyper-)spherical data

Description

Tuning of the bandwidth parameter in the von Mises-Fisher kernel for (hyper-)spherical data whit
cross validation.

Usage

vmfkde.tune(x, low = 0.1, up = 1)
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Arguments

x A matrix with the data in Euclidean cordinates, i.e. unit vectors.

low The lower value of the bandwdith to search.

up The upper value of the bandwdith to search.

Details

Fast tuning of the bandwidth parameter in the von Mises-Fisher kernel for (hyper-)spherical data
via cross validation.

Value

A vector including two elements:

Optimal h The best H found.

cv The value of the maximised pseudo-likelihood.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>.

References

Garcia P.E. (2013). Exact risk improvement of bandwidth selectors for kernel density estimation
with directional data. Electronic Journal of Statistics, 7, 1655–1685.

Wand M.P. and Jones M.C. (1994). Kernel smoothing. Crc Press.

See Also

vmf.kde,vmf.kerncontour, vm.kde, vmkde.tune

Examples

x <- rvmf(100, rnorm(3), 15)
vmfkde.tune(x)
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Tuning of the k-NN algorithm using the arc cosinus distance

k-NN algorithm using the arc cosinus distance. Tuning the k neigbours

Description

It estimates the percentage of correct classification via an m-fold cross validation.

Usage

dirknn.tune(ina, x, k = 2:10, mesos = TRUE, nfolds = 10, folds = NULL,
parallel = FALSE, stratified = TRUE, seed = NULL, rann = FALSE, graph = FALSE)

Arguments

x The data, a numeric matrix with unit vectors.
ina A variable indicating the groups of the data x.
nfolds How many folds to create?
k A vector with the number of nearest neighbours to consider.
mesos A boolean variable used only in the case of the non standard algorithm (type="NS").

Should the average of the distances be calculated (TRUE) or not (FALSE)? If it
is FALSE, the harmonic mean is calculated.

folds Do you already have a list with the folds? If not, leave this NULL.
parallel If you want the standard -NN algorithm to take place in parallel set this equal to

TRUE.
stratified Should the folds be created in a stratified way? i.e. keeping the distribution of

the groups similar through all folds?
seed If seed is TRUE, the results will always be the same.
rann If you have large scale datasets and want a faster k-NN search, you can use kd-

trees implemented in the R package "RANN". In this case you must set this
argument equal to TRUE.

graph If this is TRUE a graph with the results will appear.

Details

The standard algorithm is to keep the k nearest observations and see the groups of these observa-
tions. The new observation is allocated to the most frequent seen group. The non standard algorithm
is to calculate the classical mean or the harmonic mean of the k nearest observations for each group.
The new observation is allocated to the group with the smallest mean distance.

We have made an eficient (not very much efficient though) memory allocation. Even if you have
hundreds of thousands of observations, the computer will not clush, it will only take longer. Instead
of calculate the distance matrix once in the beginning we calcualte the distances of the out-of-sample
observations from the rest. If we calculated the distance matrix in the beginning, once, the resulting
matrix could have dimensions thousands by thousands. This would not fit into the memory. If you
have a few hundres of observations, the runtime is about the same (maybe less, maybe more) as
calculating the distance matrix in the first place.
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Value

A list including:

per The average percent of correct classification across the neighbours.

percent The estimated (optimal) percent of correct classification.

runtime The run time of the algorithm. A numeric vector. The first element is the user
time, the second element is the system time and the third element is the elapsed
time.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

References

Tsagris M. and Alenazi A. (2019). Comparison of discriminant analysis methods on the sphere.
Communications in Statistics: Case Studies, Data Analysis and Applications, 5(4), 467–491.

See Also

dirknn, dirda, mixvmf.mle

Examples

k <- runif(4, 4, 20)
prob <- c(0.2, 0.4, 0.3, 0.1)
mu <- matrix(rnorm(16), ncol = 4)
mu <- mu / sqrt( rowSums(mu^2) )
da <- rmixvmf(200, prob, mu, k)
x <- da$x
ina <- da$id
dirknn.tune(ina, x, k = 2:6, nfolds = 5, mesos = TRUE)
dirknn.tune(ina, x, k = 2:6, nfolds = 10, mesos = TRUE)

Tuning of the k-NN regression

Tuning of the k-NN regression with Euclidean or (hyper-)spherical re-
sponse and or predictor variables

Description

Tuning of the k-NN regression with Euclidean or (hyper-)spherical response and or predictor vari-
ables. It estimates the percentage of correct classification via an m-fold cross valdiation. The bias
is estimated as well using the algorithm suggested by Tibshirani and Tibshirani (2009) and is sub-
tracted.
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Usage

knnreg.tune(y, x, nfolds = 10, A = 10, ncores = 1, res = "eucl",
estim = "arithmetic", folds = NULL, seed = NULL, graph = FALSE)

Arguments

y The currently available data, the response variables values. A matrix with either
euclidean (univariate or multivariate) or (hyper-)spherical data. If you have a
circular response, say u, transform it to a unit vector via (cos(u), sin(u)).

x The currently available data, the predictor variables values. A matrix with either
euclidean (univariate or multivariate) or (hyper-)spherical data. If you have a
circular response, say u, transform it to a unit vector via (cos(u), sin(u)).

nfolds How many folds to create?
A The maximum number of nearest neighbours, set to 10 by default, starting from

the 2nd nearest neighbor.
ncores How many cores to use. This is taken into account only when the predictor

variables are spherical.
res The type of the response variable. If it is Euclidean, set this argument equal to

"res". If it is a unit vector set it to res="spher".
estim Once the k observations whith the smallest distance are discovered, what should

the prediction be? The arithmetic average of the corresponding y values be used
estim="arithmetic" or their harmonic average estim="harmonic".

folds Do you already have a list with the folds? If not, leave this NULL.
seed You can specify your own seed number here or leave it NULL.
graph If this is TRUE a graph with the results will appear.

Details

Tuning of the k-NN regression with Euclidean or (hyper-)spherical response and or predictor vari-
ables. It estimates the percentage of correct classification via an m-fold cross valdiation. The bias
is estimated as well using the algorithm suggested by Tibshirani and Tibshirani (2009) and is sub-
tracted. The sum of squares of prediction is used in the case of Euclidean responses. In the case of
spherical responses the

∑
i ŷ

T
i yi is calculated.

Value

A list including:

crit The value of the criterion to minimise/maximise for all values of the nearest
neighbours.

best_k The best value of the nearest neighbours.
performance The bias corrected optimal value of the criterion, along wit the estimated bias.

For the case of Euclidean reponse this will be higher than the crit and for the
case or spherical responses it will be lower than crit.

runtime The run time of the algorithm. A numeric vector. The first element is the user
time, the second element is the system time and the third element is the elapsed
time.
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Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.

See Also

knn.reg, spher.reg, dirknn.tune

Examples

y <- iris[, 1]
x <- iris[, 2:4]
x <- x/ sqrt( rowSums(x^2) ) ## Euclidean response and spherical predictors
knnreg.tune(y, x, A = 5, res = "eucl", estim = "arithmetic")

y <- iris[, 1:3]
y <- y/ sqrt( rowSums(y^2) ) ## Spherical response and Euclidean predictor
x <- iris[, 2]
knnreg.tune(y, x, A = 5, res = "spher", estim = "arithmetic")

Two sample location test for (hyper-)spherical data

Two sample location test for (hyper-)spherical data

Description

Two sample location test for (hyper-)spherical data.

Usage

spcauchy2test(y1, y2, B = 1)
pkbd2test(y1, y2, B = 1)
vmf2test(y1, y2, B = 1)
sp2(y1, y2, tol = 1e-6)
pk2(y1, y2, tol = 1e-6)
vmf2(y1, y2, tol = 1e-6)

Arguments

y1 A matrix with the data in Euclidean coordinates, i.e. unit vectors.

y2 A matrix with the data in Euclidean coordinates, i.e. unit vectors.

B The number of bootstraps to perform.

tol The tolerance value at which to terminate the iterations.
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Details

A log-likelihood ratio based test for the equality of two location parameters, assuming that the data
in each group follow the spherical Cauchy of the Poisson kernel-based distribution. Bootstrap is
also offered.

For the von Mises-Fisher distribution we do the same, but for the mean direction.

The functions sp2() and pk2() estimate the common location of the two groups assuming unequal
concentration parameters. These functions are used the compute the log-likelihood under the null
hypothesis. So does the function vmf2(), but the mean direction.

Value

The result of the spcauchy2test(), pkbd2test() and vmf2test() functions is an "htest"class object.
Thus it returns a list including:

statistic The test statistic value.

parameter The degree(s) of freedom of the test.

p.value The p-value of the test.

alternative A character with the alternative hypothesis.

method A character with the test used.

data.name A character vector with two elements.

The result of the sp2(), pk2() and vmf2 functions is a list including:

mu The common location parameter, for both samples, under the null hypothesis.

rho1 The concentration parameter of the first group, asusming a common location
parameter.

rho2 The concentration parameter of the second group, asusming a common location
parameter.

kappa11 The concentration parameter (assuming the von Mises-Fisher distribution) of
the first group, asusming a common location parameter.

kappa2 The concentration parameter (assuming the von Mises-Fisher distribution) of
the second group, asusming a common location parameter.

loglik The log-likelihood of the whole sample, asusming a common location (or mean
direction) parameter.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr>.
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References

Kato S. and McCullagh P. (2020). Some properties of a Cauchy family on the sphere derived from
the Mobius transformations. Bernoulli, 26(4): 3224–3248.

Golzy M. and Markatou M. (2020). Poisson kernel-based clustering on the sphere: convergence
properties, identifiability, and a method of sampling. Journal of Computational and Graphical
Statistics, 29(4): 758–770.

Tsagris M., Papastamoulis P. and Kato S. (2024). Directional data analysis using the spherical
Cauchy and the Poisson kernel-based distribution. https://arxiv.org/pdf/2409.03292.

See Also

het.boot, het.aov

Examples

mu <- rvmf(2, rnorm(5), 3)
y1 <- rspcauchy(60, mu[1, ], 0.4)
y2 <- rspcauchy(30, mu[2, ], 0.8)
spcauchy2test(y1, y2)

Uniformity test for circular data

Uniformity tests for circular data.

Description

Hypothesis tests of uniformity for circular data.

Usage

kuiper(u, rads = FALSE, R = 1)
watson(u, rads = FALSE, R = 1)

Arguments

u A numeric vector containing the circular data, which cna be expressed in degrees
or radians.

rads A boolean variable. If the data are in radians, put this TRUE. If the data are
expressed in degrees make this FALSE.

R If R = 1 the asymptotic p-value will be calcualted. If R is greater than 1 the
bootstrap p-value is returned.

Details

The high concentration (hcf.circaov), log-likelihood ratio (lr.circaov), embedding approach (em-
bed.circaov) or the non equal concentration parameters approach (het.circaov) is used.
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Value

This is an "htest"class object. Thus it returns a list including:

statistic The test statistic value.

parameter This is usually the degrees of freedom of the test, but here this is "NA" because
the asymptotic based p-value is computed in a different way or because bootstrap
was employed.

p.value The p-value of the test.

alternative A character with the alternative hypothesis.

method A character with the test used.

data.name A character vector with two elements.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>.

References

Jammalamadaka, S. Rao and SenGupta, A. (2001). Topics in Circular Statistics, pg. 153–55
(Kuiper’s test) and pg. 156–157 (Watson’s test).

See Also

rayleigh, ptest, vmf.mle, rvonmises

Examples

x <- rvonmises(n = 40, m = 2, k = 10)
kuiper(x, rads = TRUE)
watson(x, rads = TRUE)
x <- rvonmises(40, m = 2, k = 0)
kuiper(x, rads = TRUE)
watson(x, rads = TRUE)

von Mises kernel density estimation

Kernel density estimation of circular data with a von Mises kernel

Description

Kernel density estimation of circular data with a von Mises kernel.

Usage

vm.kde(u, h, thumb = "none", rads = TRUE)
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Arguments

u A numeric vector containing the data.

h The bandwidth.

thumb It can be either "none", so the bandwidth the user has set will be used, "tay" for
the method of Taylor (2008) or "rot" for the method of Garcia-Portugues (2013).

rads If the data are in radians, this should be TRUE and FALSE otherwise.

Details

The user has the option to use a bandwidth he/she has found in some way (cross-validation) or
estimate it as Taylor (2008) or Garcia-Portugues (2013).

Value

A list including:

h The bandwidth. If the user chose one of "tay" or "rot" the estimated bandwidth
will be returned.

f The kernel density estimate at the observed points.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athi-
neou<gioathineou@gmail.com>.

References

Taylor, C. C. (2008). Automatic bandwidth selection for circular density estimation. Computational
Statistics & Data Analysis, 52(7): 3493-3500.

Garcia Portugues, E. (2013). Exact risk improvement of bandwidth selectors for kernel density
estimation with directional data. Electronic Journal of Statistics, 7, 1655-1685.

See Also

vmkde.tune, vmfkde.tune, vmf.kde

Examples

x <- rvonmises(100, 2.4, 10, rads = TRUE)
hist(x, freq = FALSE)
f1 <- vm.kde(x, h = 0.1, thumb = "rot", rads = TRUE)$f
f2 <- vm.kde(x, h = 0.1, thumb = "tay", rads = TRUE)$f
h <- vmkde.tune(x)[1]
f3 <- vm.kde(x, h = h, thumb = "none", rads = TRUE)$f
points(x, f1, col = 1)
points(x, f2, col = 2)
points(x, f3, col = 3)
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von Mises-Fisher kernel density estimation for (hyper-)spherical
data

Kernel density estimation for (hyper-)spherical data using a von
Mises-Fisher kernel

Description

A von Mises-Fisher kernel is used for the non parametric density estimation.

Usage

vmf.kde(x, h, thumb = "none")

Arguments

x A matrix with unit vectors, i.e. the data being expressed in Euclidean cordinates.

h The bandwidth to be used.

thumb If this is "none", the given bandwidth is used. If it is "rot" the rule of thumb
suggested by Garcia-Portugues (2013) is used.

Details

A von Mises-Fisher kernel is used for the non parametric density estimation.

Value

A list including:

h The bandwidth used.

f A vector with the kernel density estimate calculated for each of the data points.

Author(s)

Michail Tsagris.

R implementation and documentation: Michail Tsagris <mtsagris@uoc.gr> and Giorgos Athineou
<gioathineou@gmail.com>.

References

Garcia Portugues, E. (2013). Exact risk improvement of bandwidth selectors for kernel density
estimation with directional data. Electronic Journal of Statistics, 7, 1655–1685.

See Also

vmfkde.tune, vm.kde, vmf.mle, vmkde.tune
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Examples

x <- rvmf(100, rnorm(5), 15)
h <- vmfkde.tune(x)[1]
f1 <- vmf.kde(x, h = h, thumb = "none")
f2 <- vmf.kde(x, h = h, thumb = "rot")
f1$h ; f2$h
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Tuning of the k-NN regression, 151

∗ Directional data
Directional-package, 5

∗ Directional k-NN algorithm
Tuning of the k-NN algorithm using

the arc cosinus distance, 150
∗ Discriminant analysis

Directional-package, 5
Prediction in discriminant

analysis based on some
distributions, 103

160
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∗ ESAG distribution
Contour plot (on the sphere) of

the ESAG and Kent
distributions, 35

Hypothesis test for IAG
distribution over the ESAG
distribution, 67

Simulation of random values from
the ESAG distribution, 128

Simulation of random values from
the SESPC distribution, 129

∗ Equality of concentrations
A test for testing the equality of

the concentration parameters
for ciruclar data, 8

Test of equality of the
concentration parameters for
circular data, 144

∗ Euclidean coordinates
Euclidean transformation, 57
Inverse of the Euclidean

transformation, 73
∗ Euclidean data

k-NN regression, 76
Tuning of the k-NN regression, 151

∗ Fisher-Bingham distribution
Saddlepoint approximations of the

Fisher-Bingham distributions,
115

Simulation of random values from a
spherical Fisher-Bingham
distribution, 122

∗ Goodness of fit test
Hypothesis test for IAG

distribution over the ESAG
distribution, 67

Hypothesis test for von
Mises-Fisher distribution
over Kent distribution, 70

∗ Graphs
Directional-package, 5

∗ Grouped data
Summary statistics for grouped

circular data, 140
∗ Hypothesis testing

A test for testing the equality of
the concentration parameters
for ciruclar data, 8

Test for equality of concentration
parameters for spherical data,
143

Test of equality of the
concentration parameters for
circular data, 144

Uniformity test for circular data,
155

∗ IAG distribution
Hypothesis test for IAG

distribution over the ESAG
distribution, 67

∗ Inverse transformation
Inverse of Lambert’s equal area

projection, 72
∗ Kent distribution

Contour plot (on the plane) of the
ESAG and Kent distributions
without any data, 31

Contour plot (on the sphere) of
the ESAG and Kent
distributions, 35

Hypothesis test for von
Mises-Fisher distribution
over Kent distribution, 70

Logarithm of the Kent distribution
normalizing constant, 78

MLE of the Kent distribution, 92
Simulation of random values from a

spherical Fisher-Bingham
distribution, 122

Simulation of random values from a
spherical Kent distribution,
123

∗ Kernel density estimate
Tuning of the bandwidth parameter

in the von Mises kernel, 147
Tuning of the bandwidth parameter

in the von Mises-Fisher
kernel, 148

von Mises-Fisher kernel density
estimation for
(hyper-)spherical data, 158

∗ Kernel density
von Mises kernel density

estimation, 156
∗ Lambert’s equal area projection

Inverse of Lambert’s equal area
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projection, 72
Lambert’s equal area projection, 77

∗ Matrix Fisher distribution
MLE of the Matrix Fisher

distribution on SO(3), 93
∗ Maximum likelihood estimation

MLE of the Matrix Fisher
distribution on SO(3), 93

∗ Median direction
Spherical and hyperspherical

median, 131
∗ Mixtures of von Mises-Fisher distributions

Contour plot of a mixture of von
Mises-Fisher distributions
model, 38

∗ Normalising constant
Logarithm of the Kent distribution

normalizing constant, 78
Saddlepoint approximations of the

Fisher-Bingham distributions,
115

∗ Random values simulation
Simulation of random values from a

Bingham distribution, 119
Simulation of random values from

rotationally symmetric
distributions, 124

Simulation of random values from
some circular distributions,
126

∗ Regression
Directional-package, 5

∗ Rejection sampling
Simulation of random values from a

Bingham distribution, 119
∗ Rotation matrix

Random sample of matrices in
SO(p), 107

Rotation matrix from a rotation
axis and angle of rotation, 111

Rotation matrix to rotate a
spherical vector along the
direction of another, 113

∗ SESPC distribution
Contour plot (on the sphere) of

the SESPC distribution, 37
MLE of the SESPC distribution, 95

∗ SO(p)

Random sample of matrices in
SO(p), 107

∗ Saddlepoint approximation
Logarithm of the Kent distribution

normalizing constant, 78
Saddlepoint approximations of the

Fisher-Bingham distributions,
115

∗ Simulated data
Simulation of random values from a

spherical Fisher-Bingham
distribution, 122

Simulation of random values from a
spherical Kent distribution,
123

∗ Simulation of random values
Simulation from a Bingham

distribution using any
symmetric matrix A, 117

∗ Simulation
Directional-package, 5

∗ Spherical coordinates
Euclidean transformation, 57
Inverse of the Euclidean

transformation, 73
∗ Spherical data

Directional-package, 5
k-NN regression, 76
Lambert’s equal area projection, 77
Spherical-spherical correlation,

137
Test for equality of concentration

parameters for spherical data,
143

Tuning of the k-NN regression, 151
∗ Squared correlation

Spherical-spherical correlation,
137

∗ Summary statistics
Summary statistics for circular

data, 139
Summary statistics for grouped

circular data, 140
∗ Supervised classification

Tuning of the k-NN algorithm using
the arc cosinus distance, 150

∗ Tuning of the bandwidth
Tuning of the bandwidth parameter
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in the von Mises-Fisher
kernel, 148

∗ Tuning the bandwidth
Tuning of the bandwidth parameter

in the von Mises kernel, 147
∗ Uniformity test

Uniformity test for circular data,
155

∗ Von Mises distribution
Summary statistics for circular

data, 139
Summary statistics for grouped

circular data, 140
∗ Von Mises-Fisher distributions

Prediction in discriminant
analysis based on some
distributions, 103

∗ Wood distribution
Density of the Wood bimodal

distribution on the sphere, 56
MLE of the Wood bimodal

distribution on the sphere, 97
∗ bivariate angular Gaussian

MLE of some circular
distributions, 86

∗ circular data
Directional-package, 5
MLE of some circular

distributions, 86
∗ directional data

Angular central Gaussian random
values simulation, 10

Conversion of cosines to azimuth
and plunge, 42

∗ k-NN regression
k-NN regression, 76
Tuning of the k-NN regression, 151

∗ maximum likelihood estimation
MLE of the Kent distribution, 92
MLE of the SESPC distribution, 95

∗ random values simulation
Angular central Gaussian random

values simulation, 10
∗ simulation

Simulation of random values from
the ESAG distribution, 128

Simulation of random values from
the SESPC distribution, 129

∗ spherical data
MLE of the SESPC distribution, 95
Simulation of random values from

the ESAG distribution, 128
Simulation of random values from

the SESPC distribution, 129
∗ unit vectors

Generation of unit vector(s) with
a given angle, 62

∗ von Mises distribution
Tuning of the bandwidth parameter

in the von Mises kernel, 147
∗ von Mises kernel

von Mises kernel density
estimation, 156

∗ von Mises-Fisher distribution
Contour plots of some rotationally

symmetric distributions, 41
Hypothesis test for von

Mises-Fisher distribution
over Kent distribution, 70

Simulation of random values from
rotationally symmetric
distributions, 124

Simulation of random values from
some circular distributions,
126

Tuning of the bandwidth parameter
in the von Mises-Fisher
kernel, 148

∗ von Mises-Fisher kernel
Contour plot of spherical data

using a von Mises-Fisher
kernel density estimate, 39

∗ von Mises-Fisher
von Mises-Fisher kernel density

estimation for
(hyper-)spherical data, 158

∗ wrapped Cauchy distribution
MLE of some circular

distributions, 86
(Hyper-)spherical regression using

rotational symmetric
distributions, 6

A test for testing the equality of the
concentration parameters for
ciruclar data, 8

acg.mle, 10, 91, 128
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acg.mle (MLE of (hyper-)spherical
rotationally symmetric
distributions), 83

africa (Maps of the world and the
continents), 80

Angular central Gaussian random values
simulation, 10

Anova for (hyper-)spherical data, 11
Anova for circular data, 12
Arotation, 44, 45, 58, 74, 107, 112, 114
Arotation (Rotation axis and angle of

rotation given a rotation
matrix), 110

asia (Maps of the world and the
continents), 80

BIC for the model based clustering
using mixtures of rotationally
symmetric distributions, 14

bic.mixpkbd (BIC for the model based
clustering using mixtures of
rotationally symmetric
distributions), 14

bic.mixspcauchy (BIC for the model
based clustering using
mixtures of rotationally
symmetric distributions), 14

bic.mixvmf, 50, 82, 121
bic.mixvmf (BIC for the model based

clustering using mixtures of
rotationally symmetric
distributions), 14

Bootstrap 2-sample mean test for
(hyper-)spherical data, 15

Bootstrap 2-sample mean test for
circular data, 17

Bootstrap ANOVA for (hyper-)spherical
data, 18

Bootstrap ANOVA for circular data, 19

cardio.mle (MLE of some circular
distributions), 86

Check visually whether matrix Fisher
samples is correctly generated
or not, 21

cipc.mle, 117
cipc.mle (MLE of some circular

distributions), 86
cipc.reg, 117

cipc.reg (Circular or angular
regression), 25

circ.cor1, 27, 28, 95, 137
circ.cor1 (Circular correlations

between two circular
variables), 23

circ.cor2, 24, 25, 27, 28, 137
circ.cor2 (Circular correlations

between two circular
variables), 23

circ.cors1 (Circular correlations
between one and many circular
variables), 22

circ.cors2 (Circular correlations
between one and many circular
variables), 22

circ.dcor, 131
circ.dcor (Circular distance

correlation between two
circular variables), 24

circ.summary, 6, 64, 88, 91, 127, 128, 141
circ.summary (Summary statistics for

circular data), 139
circbeta.mle (MLE of some circular

distributions), 86
circexp.mle (MLE of some circular

distributions), 86
circlin.cor, 24, 25, 27
circlin.cor (Circular-linear

correlation), 27
circpurka.reg (Circular or angular

regression), 25
Circular correlations between one and

many circular variables, 22
Circular correlations between two

circular variables, 23
Circular distance correlation between

two circular variables, 24
Circular or angular regression, 25
Circular-linear correlation, 27
colspml.mle, 90
colspml.mle (Column-wise MLE of the

angular Gaussian and the von
Mises Fisher distributions), 28

Column-wise MLE of the angular
Gaussian and the von Mises
Fisher distributions, 28

Column-wise uniformity Watson test for
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circular data, 30
colvm.mle (Column-wise MLE of the

angular Gaussian and the von
Mises Fisher distributions), 28

colwatsons (Column-wise uniformity
Watson test for circular
data), 30

conc.test, 6, 9, 101, 144
conc.test (Test of equality of the

concentration parameters for
circular data), 144

Contour plot (on the plane) of the
ESAG and Kent distributions
without any data, 31

Contour plot (on the sphere) of a
mixture of von Mises-Fisher
distributions, 32

Contour plot (on the sphere) of some
spherical rotationally
symmetric distributions, 33

Contour plot (on the sphere) of the
ESAG and Kent distributions, 35

Contour plot (on the sphere) of the
SESPC distribution, 37

Contour plot of a mixture of von
Mises-Fisher distributions
model, 38

Contour plot of spherical data using a
von Mises-Fisher kernel
density estimate, 39

Contour plots of some rotationally
symmetric distributions, 41

Conversion of cosines to azimuth and
plunge, 42

Converting a rotation matrix on SO(3)
to an unsigned unit
quaternion, 43

Converting an unsigned unit quaternion
to rotation matrix on SO(3), 44

cosap (Conversion of cosines to
azimuth and plunge), 42

cosnn, 66
cosnn (The k-nearest neighbours using

the cosinus distance), 145
Cross validation for estimating the

classification rate, 45
Cumulative distribution function of

circular distributions, 47

dcardio (Density of some circular
distributions), 52

dcipc (Density of some circular
distributions), 52

dcircbeta (Density of some circular
distributions), 52

dcircexp, 49
dcircexp (Density of some circular

distributions), 52
dcircpurka, 49
dcircpurka (Density of some circular

distributions), 52
Density of a mixture of rotationally

symmetric distributions, 49
Density of some (hyper-)spherical

distributions, 50
Density of some circular

distributions, 52
Density of the SESPC distribution, 54
Density of the spherical ESAG and Kent

distributions and of the ESAG
distribution in arbitrary
dimensions, 55

Density of the Wood bimodal
distribution on the sphere, 56

desag, 6, 53, 54, 57, 91, 128
desag (Density of the spherical ESAG

and Kent distributions and of
the ESAG distribution in
arbitrary dimensions), 55

dESAGd (Density of the spherical ESAG
and Kent distributions and of
the ESAG distribution in
arbitrary dimensions), 55

dgcpc (Density of some circular
distributions), 52

dggvm (Density of some circular
distributions), 52

dirda, 47, 75, 151
dirda (Prediction in discriminant

analysis based on some
distributions), 103

dirda.cv, 61, 104
dirda.cv (Cross validation for

estimating the classification
rate), 45

Directional-package, 5
dirknn, 47, 66, 104, 146, 151
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dirknn (k-NN algorithm using the arc
cosinus distance), 74

dirknn.tune, 75, 146, 153
dirknn.tune (Tuning of the k-NN

algorithm using the arc
cosinus distance), 150

dkent, 53, 57
dkent (Density of the spherical ESAG

and Kent distributions and of
the ESAG distribution in
arbitrary dimensions), 55

dmixpkbd (Density of a mixture of
rotationally symmetric
distributions), 49

dmixspcauchy (Density of a mixture of
rotationally symmetric
distributions), 49

dmixvmf (Density of a mixture of
rotationally symmetric
distributions), 49

dmmvm, 49
dmmvm (Density of some circular

distributions), 52
dpkbd (Density of some

(hyper-)spherical
distributions), 50

dpurka (Density of some
(hyper-)spherical
distributions), 50

dsespc, 96, 129
dsespc (Density of the SESPC

distribution), 54
dspcauchy (Density of some

(hyper-)spherical
distributions), 50

dspml (Density of some circular
distributions), 52

dvm, 49
dvm (Density of some circular

distributions), 52
dvmf (Density of some (hyper-)spherical

distributions), 50
dwood (Density of the Wood bimodal

distribution on the sphere), 56
dwrapcauchy (Density of some circular

distributions), 52
dwrapnormal (Density of some circular

distributions), 52

embed.aov, 144
embed.aov (Anova for (hyper-)spherical

data), 11
embed.boot (Bootstrap 2-sample mean

test for (hyper-)spherical
data), 15

embed.circaov, 9, 145
embed.circaov (Anova for circular

data), 12
embed.perm (Permutation based 2-sample

mean test for
(hyper-)spherical data), 100

embedcirc.boot (Bootstrap 2-sample
mean test for circular data),
17

embedcirc.perm (Permutation based
2-sample mean test for
circular data), 102

esag.contour, 36
esag.contour (Contour plot (on the

plane) of the ESAG and Kent
distributions without any
data), 31

esag.mle, 51, 56, 68, 96, 97, 128, 135, 136
esag.mle (MLE of the ESAG distribution

in arbitrary dimensions), 90
esag.reg, 8, 133
esag.reg (Spherical regression using

the ESAG distribution), 134
ESAGd.mle (MLE of the ESAG distribution

in arbitrary dimensions), 90
etoa (Transform unit vectors to

angular data), 146
euclid, 43, 72, 74, 78
euclid (Euclidean transformation), 57
euclid.inv, 43, 58
euclid.inv (Inverse of the Euclidean

transformation), 73
Euclidean transformation, 57
eul2rot, 43, 59
eul2rot (Rotation matrix on SO(3) from

three Euler angles), 112
Euler angles from a rotation matrix on

SO(3), 58
europe (Maps of the world and the

continents), 80

f.rbing, 118, 123, 124
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f.rbing (Simulation of random values
from a Bingham distribution),
119

fb.saddle, 79, 93
fb.saddle (Saddlepoint approximations

of the Fisher-Bingham
distributions), 115

fishkent, 30, 68, 70
fishkent (Hypothesis test for von

Mises-Fisher distribution
over Kent distribution), 70

Forward Backward Early Dropping
selection for circular data
using the SPML regression, 59

gcpc.mle (MLE of some circular
distributions), 86

gcpc.reg (Circular or angular
regression), 25

Generate random folds for
cross-validation, 61

Generation of unit vector(s) with a
given angle, 62

ggvm.mle, 52
ggvm.mle (MLE of some circular

distributions), 86
Goodness of fit test for grouped data,

63
group.gof, 49
group.gof (Goodness of fit test for

grouped data), 63
group.vm, 140
group.vm (Summary statistics for

grouped circular data), 140

Habeck’s rotation matrix generation, 64
habeck.rot (Habeck’s rotation matrix

generation), 64
Haversine distance matrix, 65
haversine.dist (Haversine distance

matrix), 65
hcf.aov, 16, 19, 101, 144
hcf.aov (Anova for (hyper-)spherical

data), 11
hcf.boot, 12, 19, 101
hcf.boot (Bootstrap 2-sample mean test

for (hyper-)spherical data), 15
hcf.circaov, 9, 18, 20, 103, 140, 145

hcf.circaov (Anova for circular data),
12

hcf.perm, 16
hcf.perm (Permutation based 2-sample

mean test for
(hyper-)spherical data), 100

hcfboot, 12, 16
hcfboot (Bootstrap ANOVA for

(hyper-)spherical data), 18
hcfcirc.boot, 13
hcfcirc.boot (Bootstrap 2-sample mean

test for circular data), 17
hcfcirc.perm (Permutation based

2-sample mean test for
circular data), 102

hcfcircboot, 13, 18
hcfcircboot (Bootstrap ANOVA for

circular data), 19
hclr.aov, 13
hclr.aov (Anova for (hyper-)spherical

data), 11
hclr.boot (Bootstrap 2-sample mean test

for (hyper-)spherical data), 15
hclr.circaov, 12
hclr.circaov (Anova for circular data),

12
hclr.perm (Permutation based 2-sample

mean test for
(hyper-)spherical data), 100

hclrcirc.boot (Bootstrap 2-sample mean
test for circular data), 17

hclrcirc.perm (Permutation based
2-sample mean test for
circular data), 102

het.aov, 18, 20, 103, 144, 155
het.aov (Anova for (hyper-)spherical

data), 11
het.boot, 155
het.boot (Bootstrap 2-sample mean test

for (hyper-)spherical data), 15
het.circaov, 9, 145
het.circaov (Anova for circular data),

12
het.perm (Permutation based 2-sample

mean test for
(hyper-)spherical data), 100

hetboot (Bootstrap ANOVA for
(hyper-)spherical data), 18
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hetcirc.boot (Bootstrap 2-sample mean
test for circular data), 17

hetcirc.perm (Permutation based
2-sample mean test for
circular data), 102

hetcircboot (Bootstrap ANOVA for
circular data), 19

hspher.reg, 139
hspher.reg (Hyper spherical-spherical

regression), 66
Hyper spherical-spherical regression,

66
Hypothesis test for IAG distribution

over the ESAG distribution, 67
Hypothesis test for SIPC distribution

over the SESPC distribution, 69
Hypothesis test for von Mises-Fisher

distribution over Kent
distribution, 70

iag.mle, 80, 91, 125
iag.mle (MLE of (hyper-)spherical

rotationally symmetric
distributions), 83

iag.reg, 135, 136
iag.reg (Spherical regression using

rotationally symmetric
distributions), 132

iagd (Density of some (hyper-)spherical
distributions), 50

iagesag, 68, 70, 71, 109
iagesag (Hypothesis test for IAG

distribution over the ESAG
distribution), 67

Interactive 3D plot of spherical data,
71

Inverse of Lambert’s equal area
projection, 72

Inverse of the Euclidean
transformation, 73

k-NN algorithm using the arc cosinus
distance, 74

k-NN regression, 76
kent.contour, 35, 36, 42
kent.contour (Contour plot (on the

plane) of the ESAG and Kent
distributions without any
data), 31

kent.logcon, 115
kent.logcon (Logarithm of the Kent

distribution normalizing
constant), 78

kent.mle, 51, 56, 68, 71, 79, 91, 93, 97, 110,
115, 132, 143

kent.mle (MLE of the Kent
distribution), 92

kmeans, 14, 82
knn.reg, 47, 104, 153
knn.reg (k-NN regression), 76
knnreg.tune, 77
knnreg.tune (Tuning of the k-NN

regression), 151
kuiper, 30, 106, 109
kuiper (Uniformity test for circular

data), 155

lambert, 58, 72–74, 114
lambert (Lambert’s equal area

projection), 77
Lambert’s equal area projection, 77
lambert.inv, 78, 114
lambert.inv (Inverse of Lambert’s

equal area projection), 72
Logarithm of the Kent distribution

normalizing constant, 78
lr.aov, 144
lr.aov (Anova for (hyper-)spherical

data), 11
lr.boot (Bootstrap 2-sample mean test

for (hyper-)spherical data), 15
lr.circaov, 9, 145
lr.circaov (Anova for circular data), 12
lr.perm (Permutation based 2-sample

mean test for
(hyper-)spherical data), 100

lrcirc.boot (Bootstrap 2-sample mean
test for circular data), 17

lrcirc.perm (Permutation based
2-sample mean test for
circular data), 102

makefolds, 46
makefolds (Generate random folds for

cross-validation), 61
Many simple circular or angular

regressions, 79
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Maps of the world and the continents,
80

matrixfisher.mle, 119
matrixfisher.mle (MLE of the Matrix

Fisher distribution on SO(3)),
93

meandir.test (Test for a given mean
direction), 142

mediandir, 99, 100
mediandir (Spherical and

hyperspherical median), 131
mediandir_2 (Spherical and

hyperspherical median), 131
mixpkbd.mle (Mixtures of rotationally

symmetric distributions), 81
mixspcauchy.mle (Mixtures of

rotationally symmetric
distributions), 81

Mixtures of rotationally symmetric
distributions, 81

mixvmf.contour, 15, 82
mixvmf.contour (Contour plot of a

mixture of von Mises-Fisher
distributions model), 38

mixvmf.mle, 6, 15, 33, 39, 50, 121, 151
mixvmf.mle (Mixtures of rotationally

symmetric distributions), 81
MLE of (hyper-)spherical rotationally

symmetric distributions, 83
MLE of some circular distributions, 86
MLE of some circular distributions

with multiple samples, 88
MLE of the ESAG distribution in

arbitrary dimensions, 90
MLE of the Kent distribution, 92
MLE of the Matrix Fisher distribution

on SO(3), 93
MLE of the Purkayashta distribution, 94
MLE of the SESPC distribution, 95
MLE of the Wood bimodal distribution

on the sphere, 97
mmvm.mle (MLE of some circular

distributions), 86
multispml.mle (MLE of some circular

distributions with multiple
samples), 88

multivm.mle (MLE of some circular
distributions with multiple

samples), 88
multivmf.mle (MLE of (hyper-)spherical

rotationally symmetric
distributions), 83

Naive Bayes classifiers for circular
data, 98

Normalised spatial median for
directional data, 99

north.america (Maps of the world and
the continents), 80

nsmedian, 132
nsmedian (Normalised spatial median

for directional data), 99

oceania (Maps of the world and the
continents), 80

optim, 7

pc.test, 68, 71
pc.test (Hypothesis test for SIPC

distribution over the SESPC
distribution), 69

pcardio (Cumulative distribution
function of circular
distributions), 47

pcipc (Cumulative distribution
function of circular
distributions), 47

pcircbeta (Cumulative distribution
function of circular
distributions), 47

pcircexp (Cumulative distribution
function of circular
distributions), 47

pcircpurka (Cumulative distribution
function of circular
distributions), 47

Permutation based 2-sample mean test
for (hyper-)spherical data, 100

Permutation based 2-sample mean test
for circular data, 102

pgcpc (Cumulative distribution
function of circular
distributions), 47

pk2 (Two sample location test for
(hyper-)spherical data), 153

pkbd.contour (Contour plots of some
rotationally symmetric
distributions), 41
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pkbd.mle (MLE of (hyper-)spherical
rotationally symmetric
distributions), 83

pkbd.mle2 (MLE of (hyper-)spherical
rotationally symmetric
distributions), 83

pkbd.reg ((Hyper-)spherical regression
using rotational symmetric
distributions), 6

pkbd.reg2 ((Hyper-)spherical
regression using rotational
symmetric distributions), 6

pkbd2test (Two sample location test for
(hyper-)spherical data), 153

pmmvm (Cumulative distribution
function of circular
distributions), 47

Prediction in discriminant analysis
based on some distributions,
103

Prediction with some naive Bayes
classifiers for circular data,
104

Projections based test of uniformity,
106

pspml (Cumulative distribution
function of circular
distributions), 47

ptest, 109, 156
ptest (Projections based test of

uniformity), 106
purka.contour (Contour plots of some

rotationally symmetric
distributions), 41

purka.mle, 49, 88, 90
purka.mle (MLE of the Purkayashta

distribution), 94
pvm, 64
pvm (Cumulative distribution function

of circular distributions), 47
pwrapcauchy (Cumulative distribution

function of circular
distributions), 47

quat2rot, 44
quat2rot (Converting an unsigned unit

quaternion to rotation matrix
on SO(3)), 44

racg, 86, 125, 127
racg (Angular central Gaussian random

values simulation), 10
Random sample of matrices in SO(p), 107
rayleigh, 106, 143, 156
rayleigh (Rayleigh’s test of

uniformity), 108
Rayleigh’s test of uniformity, 108
rbingham, 63, 115, 120, 123, 124
rbingham (Simulation from a Bingham

distribution using any
symmetric matrix A), 117

rcipc (Simulation of random values
from some circular
distributions), 126

rcircbeta (Simulation of random values
from some circular
distributions), 126

rcircexp (Simulation of random values
from some circular
distributions), 126

rcircpurka (Simulation of random
values from some circular
distributions), 126

Read a file as a Filebacked Big
Matrix, 109

read.fbm (Read a file as a Filebacked
Big Matrix), 109

resag, 91
resag (Simulation of random values from

the ESAG distribution), 128
rESAGd (Simulation of random values

from the ESAG distribution),
128

rfb, 6, 63, 115, 118, 120, 123–125
rfb (Simulation of random values from

a spherical Fisher-Bingham
distribution), 122

rgcpc (Simulation of random values
from some circular
distributions), 126

riag (Simulation of random values from
rotationally symmetric
distributions), 124

rkent, 51, 56, 118, 120, 123
rkent (Simulation of random values

from a spherical Kent
distribution), 123
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rmatrixfisher, 93
rmatrixfisher (Simulation from a

Matrix Fisher distribution on
SO(3)), 118

rmixpkbd (Simulation of random values
from a mixture of rotationally
symmetric distributions), 120

rmixspcauchy (Simulation of random
values from a mixture of
rotationally symmetric
distributions), 120

rmixvmf, 15, 82, 125
rmixvmf (Simulation of random values

from a mixture of rotationally
symmetric distributions), 120

rot.matrix, 45, 107, 111, 114
rot.matrix (Rotation matrix from a

rotation axis and angle of
rotation), 111

rot2eul, 113
rot2eul (Euler angles from a rotation

matrix on SO(3)), 58
rot2quat, 45
rot2quat (Converting a rotation matrix

on SO(3) to an unsigned unit
quaternion), 43

rotation, 44, 45, 107, 111, 112
rotation (Rotation matrix to rotate a

spherical vector along the
direction of another), 113

Rotation axis and angle of rotation
given a rotation matrix, 110

Rotation matrix from a rotation axis
and angle of rotation, 111

Rotation matrix on SO(3) from three
Euler angles, 112

Rotation matrix to rotate a spherical
vector along the direction of
another, 113

rpkbd (Simulation of random values
from rotationally symmetric
distributions), 124

rsespc, 96
rsespc (Simulation of random values
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