Package 'DTWUMI'

January 20, 2025

Type Package

Title Imputation of Multivariate Time Series Based on Dynamic Time Warping

Version 1.0

Date 2018-06-12

Author DEZECACHE Camille, PHAN Thi Thu Hong, POISSON-CAILLAULT Emilie **Maintainer** POISSON-CAILLAULT Emilie emilie.poisson@univ-littoral.fr

Description

Functions to impute large gaps within multivariate time series based on Dynamic Time Warping methods. Gaps of size 1 or inferior to a defined threshold are filled using simple average and weighted moving average respectively. Larger gaps are filled using the methodology provided by Phan et al. (2017) <DOI:10.1109/MLSP.2017.8168165>: a query is built immediately before/after a gap and a moving window is used to find the most similar sequence to this query using Dynamic Time Warping. To lower the calculation time, similar sequences are pre-selected using global features. Contrary to the univariate method (package 'DTWBI'), these global features are not estimated over the sequence containing the gap(s), but a feature matrix is built to summarize general features of the whole multivariate signal. Once the most similar sequence to the query has been identified, the adjacent sequence to this window is used to fill the gap considered. This function can deal with multiple gaps over all the sequences componing the input multivariate signal. However, for better consistency, large gaps at the same location over all sequences should be avoided.

Depends R (>= 3.0.0)

Imports dtw, rlist, stats, e1071, entropy, lsa, DTWBI

License GPL (>= 2) **RoxygenNote** 6.0.1

URL http://mawenzi.univ-littoral.fr/DTWUMI/

NeedsCompilation no

Repository CRAN

Date/Publication 2018-07-13 14:30:09 UTC

2 DTWUMI-package

Contents

DTWUM	MI-package Imputation of I	Multiv	ario	ate	Tin	ne S	Ser	ies	B	ase	ed o	on	$D_{\mathcal{I}}$	vno	am	ic	Tir	ne	W	'ar _l	p-
Index																					8
	Indexes_size_missing_multi				•				•		•	•		•	•			•	•		7
	imp_1NA																				
	DTWUMI_imputation																				5
	DTWUMI_1gap_imputation																				4
	dataDTWUMI																				3
	DTWUMI-package																				2

Description

Functions to impute large gaps within multivariate time series based on Dynamic Time Warping methods. Gaps of size 1 or inferior to a defined threshold are filled using simple average and weighted moving average respectively. Larger gaps are filled using the methodology provided by Phan et al. (2017) <DOI:10.1109/MLSP.2017.8168165>: a query is built immediately before/after a gap and a moving window is used to find the most similar sequence to this query using Dynamic Time Warping. To lower the calculation time, similar sequences are pre-selected using global features. Contrary to the univariate method (package 'DTWBI'), these global features are not estimated over the sequence containing the gap(s), but a feature matrix is built to summarize general features of the whole multivariate signal. Once the most similar sequence to the query has been identified, the adjacent sequence to this window is used to fill the gap considered. This function can deal with multiple gaps over all the sequences componing the input multivariate signal. However, for better consistency, large gaps at the same location over all sequences should be avoided.

Details

Index of help topics:

DTWUMI-package Imputation of Multivariate Time Series Based on

Dynamic Time Warping

DTWUMI_1gap_imputation

Imputation of a large gap based on DTW for

multivariate signals

multivariate signals

 $Indexes_size_missing_multi$

Indexing gaps size

dataDTWUMI A multivariate times series consisting of three

signals as example for DTWUMI package

dataDTWUMI 3

Author(s)

DEZECACHE Camille, PHAN Thi Thu Hong, POISSON-CAILLAULT Emilie

Maintainer: POISSON-CAILLAULT Emilie <emilie.poisson@univ-littoral.fr>

References

Thi-Thu-Hong Phan, Emilie Poisson-Caillault, Alain Lefebvre, Andre Bigand. Dynamic time warping-based imputation for univariate time series data. Pattern Recognition Letters, Elsevier, 2017, <DOI:10.1016/j.patrec.2017.08.019>. <hal-01609256>

Examples

```
data(dataDTWUMI)
dataDTWUMI_gap <- dataDTWUMI[["incomplete_signal"]]
imputation <- DTWUMI_imputation(dataDTWUMI_gap, gap_size_threshold = 10, DTW_method = "DTW")
plot(dataDTWUMI_gap[, 1], type = "1", lwd = 2)
lines(imputation$output[, 1], col = "red")
plot(dataDTWUMI_gap[, 2], type = "1", lwd = 2)
lines(imputation$output[, 2], col = "red")
plot(dataDTWUMI_gap[, 3], type = "1", lwd = 2)
lines(imputation$output[, 3], col = "red")</pre>
```

dataDTWUMI

A multivariate times series consisting of three signals as example for DTWUMI package

Description

A multivariate times series consisting of three signals as example for DTWUMI package

Usage

dataDTWUMI

Format

A list storing two data frames with three columns each. The first table contains the original complete simulated data. The second table contains the same simulated data with one large gap added within each signal.

```
DTWUMI_1gap_imputation
```

Imputation of a large gap based on DTW for multivariate signals

Description

Fills a gap of size 'gap_size' begining at the position 'begin_gap' within a multivariate signal using DTW.

Usage

```
DTWUMI_1gap_imputation(data, id_sequence, begin_gap, gap_size,
   DTW_method = "DTW", threshold_cos = 0.995, thresh_cos_stop = 0.8,
   step_threshold = 2, ...)
```

Arguments

data	a multivariate signals containing gaps				
id_sequence	id of the sequence containing the gap to fill (corresponding to the column number)				
begin_gap	id of the begining of the gap to fill				
gap_size	size of the gap to fill				
DTW_method	DTW method used for imputation ("DTW", "DDTW", "AFBDTW"). By default "DTW" $$				
threshold_cos	threshold used to define similar sequences to the query				
thresh_cos_stop					
	Define the lowest cosine threshold acceptable to find a similar window to the query				
step_threshold	step used within the loops determining the threshold and the most similar sequence to the query				
	additional arguments from dtw() function				

Value

returns a list containing the following elements:

- imputed_values: output vector containing the imputation proposal
- id_imputation: a vector containing the position of the imputed values extracted
- id_sim_win: a vector containing the position of the similar window to the query
- id_gap: a vector containing the position gap considered
- id_query: a vector containing the position of the query

Author(s)

DEZECACHE Camille, PHAN Thi Thu Hong, POISSON-CAILLAULT Emilie

DTWUMI_imputation 5

Examples

```
data(dataDTWUMI)
dataDTWUMI_gap <- dataDTWUMI[["incomplete_signal"]]
t <- 207 ; T <- 40
imputation <- DTWUMI_1gap_imputation(dataDTWUMI_gap, id_sequence=1, t, T)
plot(dataDTWUMI_gap[, 1], type = "1", lwd = 2)
lines(y = imputation$imputed_values, x = imputation$id_gap, col = "red")
lines(y = dataDTWUMI_gap[imputation$id_query, 1], x = imputation$id_query, col = "green")
lines(y = dataDTWUMI_gap[imputation$id_sim_win, 1], x = imputation$id_sim_win, col = "blue")
lines(y = dataDTWUMI_gap[imputation$id_imputation, 1], x = imputation$id_imputation, col = "orange")</pre>
```

DTWUMI_imputation

Large gaps imputation based on DTW for multivariate signals

Description

Fills all gaps within a multivariate signal. Gaps of size 1 are filled using the average values of nearest neighbours. Gaps of size >1 and <gap_size_threshold are filled using weighted moving average. Larger gaps are filled using DTW.

Usage

```
DTWUMI_imputation(data, gap_size_threshold, DTW_method = "DTW",
    threshold_cos = 0.995, thresh_cos_stop = 0.8, step_threshold = 2, ...)
```

Arguments

```
data
                  a multivariate signals containing gaps
gap_size_threshold
                  threshold above which dtw based imputation is computed. Below this threshold,
                  a weighted moving average is calculated
DTW_method
                  DTW method used for imputation ("DTW", "DDTW", "AFBDTW"). By default
                  "DTW"
threshold_cos
                 threshold used to define similar sequences to the query
thresh_cos_stop
                 Define the lowest cosine threshold acceptable to find a similar window to the
                  query
step_threshold step used within the loops determining the threshold and the most similar se-
                  quence to the query
                  additional arguments from dtw() function
```

Value

returns a list containing a dataframe of completed signals

6 imp_1NA

Author(s)

DEZECACHE Camille, PHAN Thi Thu Hong, POISSON-CAILLAULT Emilie

Examples

```
data(dataDTWUMI)
dataDTWUMI_gap <- dataDTWUMI[["incomplete_signal"]]
imputation <- DTWUMI_imputation(dataDTWUMI_gap, gap_size_threshold = 10)
plot(dataDTWUMI_gap[, 1], type = "1", lwd = 2)
lines(imputation$output[, 1], col = "red")
plot(dataDTWUMI_gap[, 2], type = "1", lwd = 2)
lines(imputation$output[, 2], col = "red")
plot(dataDTWUMI_gap[, 3], type = "1", lwd = 2)
lines(imputation$output[, 3], col = "red")</pre>
```

imp_1NA

Imputing gaps of size 1

Description

Imputes isolated missing values based on the average of nearest neighbours.

Usage

```
imp_1NA(data, pos1)
```

Arguments

data a univariate signal

pos1 the position of the begining of gaps of size 1, as obtained using Indexes_size_missing_multi()

function

Value

returns a new vector of same size with imputed values

Author(s)

DEZECACHE Camille, PHAN Thi Thu Hong, POISSON-CAILLAULT Emilie

Indexes_size_missing_multi

Indexing gaps size

Description

Stores the position of the begining of each gap and their respective size within a multivariate signal.

Usage

```
Indexes_size_missing_multi(data)
```

Arguments

data

multivariate signal

Value

returns a list with one element per signal. Within each element of this list, the first column gives the position of the beginning of each gap and the second column its size.

Author(s)

DEZECACHE Camille, PHAN Thi Thu Hong, POISSON-CAILLAULT Emilie

Examples

```
data(dataDTWUMI)
id_NA <- Indexes_size_missing_multi(dataDTWUMI$incomplete_signal)</pre>
```

Index

```
* DTW
    DTWUMI-package, 2
* datasets
    dataDTWUMI, 3
* imputation
    DTWUMI-package, 2
* package
    DTWUMI-package, 2
\ast times series
    DTWUMI-package, 2
dataDTWUMI, 3
DTWUMI (DTWUMI-package), 2
DTWUMI-package, 2
DTWUMI_1gap_imputation, 4
DTWUMI_imputation, 5
imp_1NA, 6
{\tt Indexes\_size\_missing\_multi, 7}
```