ClusterGVis: One-Step to Cluster and Visualize Gene Expression Data
Streamlining the clustering and visualization of time-series gene expression data from RNA-Seq experiments, this tool supports fuzzy c-means and k-means clustering algorithms. It is compatible with outputs from widely-used packages such as 'Seurat', 'Monocle', and 'WGCNA', enabling seamless downstream visualization and analysis. See Lokesh Kumar and Matthias E Futschik (2007) <doi:10.6026/97320630002005> for more details.
Version: |
0.1.2 |
Depends: |
R (≥ 2.10) |
Imports: |
Biobase, circlize, clusterProfiler, colorRamps, ComplexHeatmap, dplyr, e1071, factoextra, ggplot2, grDevices, grid, magrittr, Matrix, methods, Mfuzz, purrr, reshape2, scales, SingleCellExperiment, stats, SummarizedExperiment, TCseq, tibble |
Suggests: |
igraph, monocle, pheatmap, Seurat, WGCNA |
Published: |
2025-02-14 |
DOI: |
10.32614/CRAN.package.ClusterGVis |
Author: |
Jun Zhang [aut,
cre] |
Maintainer: |
Jun Zhang <3219030654 at stu.cpu.edu.cn> |
BugReports: |
https://github.com/junjunlab/ClusterGVis/issues |
License: |
MIT + file LICENSE |
NeedsCompilation: |
no |
Citation: |
ClusterGVis citation info |
Materials: |
README |
CRAN checks: |
ClusterGVis results |
Documentation:
Downloads:
Linking:
Please use the canonical form
https://CRAN.R-project.org/package=ClusterGVis
to link to this page.