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Bum-class Class "Bum"

Description

The Bum class is used to fit a beta-uniform mixture model to a set of p-values.

Usage

Bum(pvals, ...)
## S4 method for signature 'Bum'
summary(object, tau=0.01, ...)
## S4 method for signature 'Bum'
hist(x, res=100, xlab='P Values', main='', ...)
## S4 method for signature 'Bum'
image(x, ...)
## S4 method for signature 'Bum'
cutoffSignificant(object, alpha, by='FDR', ...)
## S4 method for signature 'Bum'
selectSignificant(object, alpha, by='FDR', ...)
## S4 method for signature 'Bum'
countSignificant(object, alpha, by='FDR', ...)
likelihoodBum(object)

Arguments

pvals numeric vector containing values between 0 and 1

object object of class Bum

tau numeric scalar between 0 and 1, representing a cutoff on the p-values

x object of class Bum

res positive integer scalar specifying the resolution at which to plot the fitted distri-
bution curve

xlab character string specifying the label for the x axis

main character string specifying the graph title
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alpha Either the false discovery rate (if by = 'FDR') or the posterior probability (if by
= 'EmpiricalBayes')

by character string denoting the method to use for determining cutoffs. Valid values
are:

• FDR
• FalseDiscovery
• EmpiricalBayes

... extra arguments for generic or plotting routines

Details

The BUM method was introduced by Stan Pounds and Steve Morris, although it was simultaneously
discovered by several other researchers. It is generally applicable to any analysis of microarray or
proteomics data that performs a separate statistical hypothesis test for each gene or protein, where
each test produces a p-value that would be valid if the analyst were only performing one statistical
test. When performing thousands of statistical tests, however, those p-values no longer have the
same interpretation as Type I error rates. The idea behind BUM is that, under the null hypothesis
that none of the genes or proteins is interesting, the expected distribution of the set of p-values is
uniform. By contrast, if some of the genes are interesting, then we should see an overabundance
of small p-values (or a spike in the histogram near zero). We can model the alternative hypothesis
with a beta distribution, and view the set of all p-values as a mixture distribution.

Fitting the BUM model is straightforward, using a nonlinear optimizer to compute the maximum
likelihood parameters. After the model has been fit, one can easily determine cutoffs on the p-values
that correspond to desired false discovery rates. Alternatively, the original Pounds and Morris paper
shows that their results can be reinterpreted to recover the empirical Bayes method introduced
by Efron and Tibshirani. Thus, one can also determine cutoffs by specifying a desired posterior
probability of significance.

Value

Graphical functions (hist and image) invisibly return the object on which they were invoked.

The cutoffSignificant method returns a real number between zero and one. P-values below this
cutoff are considered statistically significant at either the specified false discovery rate or at the
specified posterior probability.

The selectSignificant method returns a vector of logical values whose length is equal to the
length of the vector of p-values that was used to construct the Bum object. True values in the return
vector mark the statistically significant p-values.

The countSignificant method returns an integer, the number of statistically significant p-values.

The summary method returns an object of class BumSummary.

Creating Objects

Although objects can be created directly using new, the most common usage will be to pass a vector
of p-values to the Bum function.
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Slots

pvals: numeric vector of p-values used to construct the object.

ahat: Model parameter

lhat: Model parameter

pihat: Model parameter

Methods

summary(object, tau=0.01, . . . ) For each value of the p-value cutoff tau, computes estimates of
the fraction of true positives (TP), false negatives (FN), false positives (FP), and true negatives
(TN).

hist(x, res=100, xlab=’P Values’, main=”, . . . ) Plots a histogram of the object, and overlays (1)
a straight line to indicate the contribution of the uniform component and (2) the fitted beta-
uniform distribution from the observed values. Colors in the plot are controlled by oompaColor$EXPECTED
and oompaColor$OBSERVED.

image(x, . . . ) Produces four plots in a 2x2 layout: (1) the histogram produced by hist; (2) a plot
of cutoffs against the desired false discovery rate; (3) a plot of cutoffs against the posterior
probability of coming from the beta component; and (4) an ROC curve.

cutoffSignificant(object, alpha, by=’FDR’, . . . ) Computes the cutoff needed for significance, which
in this case means arising from the beta component rather than the uniform component of the
mixture. Significance is specified either by the false discovery rate (when by = 'FDR' or by =
'FalseDiscovery') or by the posterior probability (when by = 'EmpiricalBayes')

selectSignificant(object, alpha, by=’FDR’, . . . ) Uses cutoffSignificant to determine a logical
vector that indicates which of the p-values are significant.

countSignificant(object, alpha, by=’FDR’, . . . ) Uses selectSignificant to count the number
of significant p-values.

Author(s)

Kevin R. Coombes <krc@silicovore.com>

References

Pounds S, Morris SW.
Estimating the occurrence of false positives and false negatives in microarray studies by approxi-
mating and partitioning the empirical distribution of p-values.
Bioinformatics. 2003 Jul 1;19(10):1236-42.

Benjamini Y, Hochberg Y.
Controlling the false discovery rate: a practical and powerful approach to multiple testing.
J Roy Statist Soc B, 1995; 57: 289-300.

Efron B, Tibshirani R.
Empirical bayes methods and false discovery rates for microarrays.
Genet Epidemiol 2002, 23: 70-86.
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See Also

Two classes that produce lists of p-values that can (and often should) be analyzed using BUM are
MultiTtest and MultiLinearModel. Also see BumSummary.

Examples

showClass("Bum")
fake.data <- c(runif(700), rbeta(300, 0.3, 1))
a <- Bum(fake.data)
hist(a, res=200)

alpha <- (1:25)/100
plot(alpha, cutoffSignificant(a, alpha, by='FDR'),

xlab='Desired False Discovery Rate', type='l',
main='FDR Control', ylab='Significant P Value')

GAMMA <- 5*(10:19)/100
plot(GAMMA, cutoffSignificant(a, GAMMA, by='EmpiricalBayes'),

ylab='Significant P Value', type='l',
main='Empirical Bayes', xlab='Posterior Probability')

b <- summary(a, (0:100)/100)
be <- b@estimates
sens <- be$TP/(be$TP+be$FN)
spec <- be$TN/(be$TN+be$FP)
plot(1-spec, sens, type='l', xlim=c(0,1), ylim=c(0,1), main='ROC Curve')
points(1-spec, sens)
abline(0,1)

image(a)

countSignificant(a, 0.05, by='FDR')
countSignificant(a, 0.99, by='Emp')

BumSummary-class Class "BumSummary"

Description

An implementation class. Users are not expected to create these objects directly; they are produced
as return objects from the summary method for Bum.

Slots

bum: object of class Bum

estimates: data.frame

Fhat: numeric
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Methods

show signature(object = "BumSummary"): Print the object, which contains a summary of the
underlying Bum object. The summary contains a data frame with estimates of the fraction of
true positives (TP), false positives (FP), true negatives (TN) and false negatives (FN) at the set
of p-value cutoffs specified in the call to the summary method.

Author(s)

Kevin R. Coombes <krc@silicovore.com>

See Also

Bum

Examples

showClass("BumSummary")

Dudoit-class Class "Dudoit"

Description

An implementation of the method of Dudoit and colleagues to apply the Westfall-Young adjustment
to p-values to control the family-wise error rate when analyzing microarray data.

Usage

Dudoit(data, classes, nPerm=1000, verbose=TRUE)
## S4 method for signature 'Dudoit,missing'
plot(x, y, xlab='T-Statistic', ylab='P-Value', ...)
## S4 method for signature 'Dudoit'
cutoffSignificant(object, alpha, ...)
## S4 method for signature 'Dudoit'
selectSignificant(object, alpha, ...)
## S4 method for signature 'Dudoit'
countSignificant(object, alpha, ...)

Arguments

data either a data frame or matrix with numeric values, or an ExpressionSet as
defined in the BioConductor tools for analyzing microarray data.

classes If data is a data frame or matrix, then classes must be either a logical vector or
a factor. If data is an ExpressionSet, then classes can be a character string
that names one of the factor columns in the associated phenoData subobject.

nPerm integer scalar specifying the number of permutations to perform

verbose logical scalar. If TRUE, prints additional output
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object object of class Dudoit

alpha numeric scalar specifying the target family-wise error rate

x object of class Dudoit

y Nothing, since it is supposed to be missing. Changes to the Rd processor require
documenting the missing entry.

xlab character string specifying label for the x axis

ylab character string specifying label for the y axis

... extra arguments for generic or plotting routines

Details

In 2002, Dudoit and colleagues introduced a method to adjust the p-values when performing gene-
by-gene tests for differential expression. The adjustment was based on the method of Westfall and
Young, with the goal of controlling the family-wise error rate.

Value

The standard method for plot returns what you would expect.

The cutoffSignificant method returns a real number (its input value alpha). The selectSignificant
method returns a vector of logical values identifying the significant test results, and countSignificant
returns an integer counting the number of significant test results.

Objects from the Class

As usual, objects can be created by new, but better methods are available in the form of the Dudoit
function. The basic inputs to this function are the same as those used for row-by-row statistical tests
throughout the ClassComparison package; a detailed description can be found in the MultiTtest
class.

The additional input determines the number, nPerm, of permutations to perform. The accuracy of
the p-value adjustment depends on this value. Since the implementation is in R (and does not call
out to something compiled like C or FORTRAN), however, the computations are slow. The default
value of 1000 can take a long time with modern microarrays that contain 40,000 spots.

Slots

adjusted.p: numeric vector of adjusted p-values.

t.statistics: Object of class numeric containing the computed t-statistics.

p.values: Object of class numeric containing the computed p-values.

groups: Object of class character containing the names of the classes being compared.

call: Object of class call containing the function call that created the object.

Extends

Class MultiTtest, directly. In particular, objects of this class inherit methods for summary, hist,
and plot from the base class.
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Methods

cutoffSignificant(object, alpha, . . . ) Determine cutoffs on the adjusted p-values at the desired sig-
nificance level. In other words, this function simply returns alpha.

selectSignificant(object, alpha, . . . ) Compute a logical vector for selecting significant test results.

countSignificant(object, alpha, . . . ) Count the number of significant test results.

plot signature(x=Dudoit, y=missing): ...

Author(s)

Kevin R. Coombes <krc@silicovore.com>

References

Dudoit S, Yang YH, Callow MJ, Speed TP.
Statistical Methods for Identifying Differentially Expressed Genes in Replicated cDNA Microarray
Experiments.
Statistica Sinica (2002), 12(1): 111-139.

Westfall PH, Young SS.
Resampling-based multiple testing: examples and methods for p-value adjustment.
Wiley series in probability and mathematics statistics. John Wiley and Sons, 1993.

See Also

Bum, MultiTtest, SmoothTtest

Examples

showClass("Dudoit")
ng <- 10000
ns <- 15
nd <- 200
fake.class <- factor(rep(c('A', 'B'), each=ns))
fake.data <- matrix(rnorm(ng*ns*2), nrow=ng, ncol=2*ns)
fake.data[1:nd, 1:ns] <- fake.data[1:nd, 1:ns] + 2
fake.data[(nd+1):(2*nd), 1:ns] <- fake.data[(nd+1):(2*nd), 1:ns] - 2

# the permutation test is slow. it really needs many more
# than 10 permutations, but this is just an example...
dud <- Dudoit(fake.data, fake.class, nPerm=10)
summary(dud)
plot(dud)
countSignificant(dud, 0.05)
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dwil Wilcoxon Density Function

Description

Computes the density function for the Wilcoxon rank-sum distribution without centering.

Usage

dwil(q, m, n)

Arguments

q vector of quantiles

m number of observations in the first sample

n number of observations in the second sample

Details

Computes the density function for the Wilcoxon rank-sum distribution, using exact values when
both groups have fewer than 50 items and switching to a normal approximation otherwise. It was
originally written for S-Plus, which still perversely insists that m and n must be less than 50. The
function was retained when the OOMPA library was ported to R, since S-Plus keeps the actual
rank-sum but R centers the distribution at zero. This function encapsulated the difference, allowing
everything else to continue to work as it had worked previously.

Value

A vector of the same length as q containing (approximate or exact) values of the density function.

Author(s)

Kevin R. Coombes <krc@silicovore.com>

See Also

MultiWilcoxonTest

Examples

dwil(51:60, 9, 3)
dwil(51:60, 9, 51)
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MultiLinearModel-class

Class "MultiLinearModel"

Description

Class to fit multiple (row-by-row) linear (fixed-effects) models on microarray or proteomics data.

Usage

MultiLinearModel(form, clindata, arraydata)
## S4 method for signature 'MultiLinearModel'
summary(object, ...)
## S4 method for signature 'MultiLinearModel'
as.data.frame(x, row.names=NULL, optional=FALSE, ...)
## S4 method for signature 'MultiLinearModel'
hist(x, xlab='F Statistics', main=NULL, ...)
## S4 method for signature 'MultiLinearModel,missing'
plot(x, y, ylab='F Statistics', ...)
## S4 method for signature 'MultiLinearModel,ANY'
plot(x, y, xlab='F Statistics',
ylab=deparse(substitute(y)), ...)

## S4 method for signature 'MultiLinearModel'
anova(object, ob2, ...)
multiTukey(object, alpha)

Arguments

form formula object specifying the linear model
clindata either a data frame of "clinical" or other covariates, or an ExpressionSet.
arraydata matrix or data frame of values to be explained by the model. If clindata is an

ExpressionSet, then arraydata can be omitted, since it is assumed to be part
of the ExpressionSet.

object object of class MultiLinearModel
ob2 object of class MultiLinearModel
x object of class MultiLinearModel
y optional numeric vector
xlab character string specifying label for the x-axis
ylab character string specifying label for the y-axis
main character string specifying graph title
... extra arguments for generic or plotting functions
row.names see the base version
optional see the base version
alpha numeric scalar between 0 and 1 specifying the significance level for the Tukey

test.
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Value

The anova method returns a data frame. The rows in the data frame corresponds to the rows in
the arraydata object that was used to construct the MultiLinearModel objects. The first column
contains the F-statistics and the second column contains the p-values.

The multiTukey function returns a vector whose length equals the number of rows in the arraydata
object used to construct the MultiLinearModel. Assuming that the overall F-test was significant,
differences in group means (in each data row) larger than this value are significant by Tukey’s test
for honestly significant difference. (Of course, that statement is incorrect, since we haven’t fully
corrected for multiple testing. Our standard practice is to take the p-values from the row-by-row
F-tests and evaluate them using the beta-uniform mixture model (see Bum). For the rows that cor-
respond to models whose p-values are smaller than the Bum cutoff, we simply use the Tukey HSD
values without further modification.)

Creating Objects

Objects should be created by calling the MultiLinearModel function. The first argument is a
formula specifying the linear model, in the same manner that it would be passed to lm. We will fit
the linear model separately for each row in the arraydata matrix. Rows of arraydata are attached
to the clindata data frame and are always referred to as "Y" in the formulas. In particular, this
implies that clindata can not include a column already called "Y". Further, the implementation
only works if "Y" is the response variable in the model.

Multiple linear models with "ExpressionSet" objects

The BioConductor packages uses an ExpressionSet to combine microarray data and clinical
covariates (known in their context as phenoData objects) into a single structure. You can call
MultiLinearModel using an ExpressionSet object for the clindata argument. In this case, the
function extracts the phenoData slot of the ExpressionSet to use for the clinical covariates, and
extracts the exprs slot of the ExpressionSet object to use for the array data.

Slots

call: A call object describing how the object was constructed.

model: The formula object specifying the linear model.

F.statistics: A numeric vector of F-statistics comparing the linear model to the null model.

p.values: A numeric vector containing the p-values associated to the F-statistics.

coefficients: A matrix of the coefficients in the linear models.

predictions: A matrix of the (Y-hat) values predicted by the models.

sse: A numeric vector of the sum of squared error terms from fitting the models.

ssr: A numeric vector of the sum of squared regression terms from the model.

df: A numeric vector (of length two) containing the degrees of freedom for the F-tests.

Methods

summary(object, . . . ) Write out a summary of the object.

hist(x, xlab=’F Statistics’, main=NULL, . . . ) Create a histogram of the F-statistics.
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plot(x, ylab=’F Statistics’, . . . ) Plot the F-statistics as a function of the row index.

plot(x, y, xlab=’F Statistics’, ylab=deparse(substitute(y)), . . . ) Plot the F-statistics against the nu-
meric vector y.

anova(object, ob2, . . . ) Perform row-by-row F-tests comparing two different linear models.

Details

The MultiLinearModel constructor computes row-by-row F-tests comparing each linear model to
the null model Y ~ 1. In many instances, one wishes to use an F-test to compare two different
linear models. For instance, many standard applications of analysis of variance (ANOVA) can be
described using such a comparison between two different linear models. The anova method for the
MultiLinearModel class performs row-by-row F-tests comparing two competing linear models.

The implementation of MultiLinearModel does not take the naive approach of using either apply
or a for-loop to attach rows one at a time and fit separate linear models. All the models are actually
fit simultaneously by a series of matrix operations, which greatly reduces the amount of time needed
to compute the models. The constraint on the column names in clindata still holds, since one row
is attached to allow model.matrix to determine the contrasts matrix.

Author(s)

Kevin R. Coombes <krc@silicovore.com>

See Also

anova, lm, Bum, MultiTtest, MultiWilcoxonTest

Examples

showClass("MultiLinearModel")
ng <- 10000
ns <- 50
dat <- matrix(rnorm(ng*ns), ncol=ns)
cla <- factor(rep(c('A', 'B'), 25))
cla2 <- factor(rep(c('X', 'Y', 'Z'), times=c(15, 20, 15)))
covars <- data.frame(Grade=cla, Stage=cla2)
res <- MultiLinearModel(Y ~ Grade + Stage, covars, dat)
summary(res)
hist(res, breaks=101)
plot(res)
plot(res, res@p.values)

graded <- MultiLinearModel(Y ~ Grade, covars, dat)
summary(graded)

hist(graded@p.values, breaks=101)
hist(res@p.values, breaks=101)

oop <- anova(res, graded)
hist(oop$p.values, breaks=101)
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MultiTtest-class Class "MultiTtest"

Description

Class to perform row-by-row t-tests on microarray or proteomics data.

Usage

MultiTtest(data, classes, na.rm=TRUE)
## S4 method for signature 'MultiTtest'
summary(object, ...)
## S4 method for signature 'MultiTtest'
as.data.frame(x, row.names=NULL, optional=FALSE, ...)
## S4 method for signature 'MultiTtest'
hist(x, xlab='T Statistics', main=NULL, ...)
## S4 method for signature 'MultiTtest,missing'
plot(x, y, ylab='T Statistics', ...)
## S4 method for signature 'MultiTtest,ANY'
plot(x, y, xlab='T Statistics', ylab=deparse(substitute(y)), ...)

Arguments

data either a data frame or matrix with numeric values, or an ExpressionSet as
defined in the BioConductor tools for analyzing microarray data

classes If data is a data frame or matrix, then classes must be either a logical vector or
a factor. If data is an ExpressionSet, then classes can be a character string
that names one of the factor columns in the associated phenoData subobject.

na.rm logical scalar. If TRUE, compute t-statistics after omitting NA values from indi-
vidual rows of the data matrix

object object of class MultiTtest

x object of class MultiTtest

y numeric vector

xlab character string specifying the label for the x axis

ylab character string specifying the label for the y axis

main character string specifying the plot title

row.names see the base version

optional see the base version

... extra arguments for generic or plotting routines

Value

The graphical routines invisibly return the object against which they were invoked.
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Creating objects

Although objects can be created using new, the preferred method is to use the MultiTtest generator.
In the simplest case, you simply pass in a data matrix and a logical vector assigning classes to the
columns, and the constructor performs row-by-row two-sample t-tests and computes the associated
(single test) p-values. To adjust for multiple testing, you can pass the p-values on to the Bum class.

If you use a factor instead of a logical vector, then the t-test compares the first level of the factor to
everything else. To handle the case of multiple classes, see the MultiLinearModel class.

As with other class comparison functions that are part of the OOMPA, we can also perform statis-
tical tests on ExpressionSet objects from the BioConductor libraries. In this case, we pass in an
ExpressionSet object along with the name of a factor to use for splitting the data.

Slots

t.statistics: Object of class numeric containing the computed t-statistics.

p.values: Object of class numeric containing the computed p-values.

df: Numeric vector of the degrees of freedom per gene. Introduced to allow for missing data.

groups: Object of class character containing the names of the classes being compared.

call: Object of class call containing the function call that created the object.

Methods

summary(object, . . . ) Write out a summary of the object.

hist(x, xlab=’T Statistics’, main=NULL, . . . ) Produce a histogram of the t-statistics.

plot(x) Produces a scatter plot of the t-statistics against their index.

plot(x,y) Produces a scatter plot of the t-statistics in the object x against the numeric vector y.

Author(s)

Kevin R. Coombes <krc@silicovore.com>

See Also

matrixT, Bum, Dudoit, MultiLinearModel

Examples

showClass("MultiTtest")
ng <- 10000
ns <- 50
dat <- matrix(rnorm(ng*ns), ncol=ns)
cla <- factor(rep(c('A', 'B'), each=25))
res <- MultiTtest(dat, cla)
summary(res)
hist(res, breaks=101)
plot(res)
plot(res, res@p.values)
hist(res@p.values, breaks=101)
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dat[1,1] <- NA
mm <- matrixMean(dat, na.rm=TRUE)
vv <- matrixVar(dat, mm, na.rm=TRUE)
tt <- matrixT(dat, cla, na.rm=TRUE)
mtt <- MultiTtest(dat,cla)

MultiWilcoxonTest-class

Class "MultiWilcoxonTest"

Description

The MultiWilcoxonTest class is used to perform row-by-row Wilcoxon rank-sum tests on a data
matrix. Significance cutoffs are determined by the empirical Bayes method of Efron and Tibshirani.

Usage

MultiWilcoxonTest(data, classes, histsize=NULL)
## S4 method for signature 'MultiWilcoxonTest'
summary(object, prior=1, significance=0.9, ...)
## S4 method for signature 'MultiWilcoxonTest'
hist(x, xlab='Rank Sum',
ylab='Prob(Different | Y)', main='', ...)

## S4 method for signature 'MultiWilcoxonTest,missing'
plot(x, prior=1, significance=0.9,
ylim=c(-0.5, 1), xlab='Rank Sum', ylab='Prob(Different | Y)', ...)

## S4 method for signature 'MultiWilcoxonTest'
cutoffSignificant(object, prior, significance, ...)
## S4 method for signature 'MultiWilcoxonTest'
selectSignificant(object, prior, significance, ...)
## S4 method for signature 'MultiWilcoxonTest'
countSignificant(object, prior, significance, ...)
## S4 method for signature 'MultiWilcoxonTest'
probDiff(object, p0, ...)

Arguments

data either a data frame or matrix with numeric values, or an ExpressionSet as
defined in the BioConductor tools for analyzing microarray data.

classes If data is a data frame or matrix, then classes must be either a logical vector or
a factor. If data is an ExpressionSet, then classes can be a character string
that names one of the factor columns in the associated phenoData subobject.

histsize An integer; the number of bins used for the histogram summarizing the Wilcoxon
statistics. When NULL, each discrete rank-sum value gets its own bin.

object an object of the MultiWilcoxonTest class.

x an object of the MultiWilcoxonTest class.
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xlab character string specifying label for the x axis

ylab character string specifying label for the y axis

ylim Plotting limits on the y-axis

main character string specifying graph title

p0 see prior.

prior Prior probability that an arbitrary gene is not differentially expressed, or that an
arbitrary row does not yield a significant Wilcoxon rank-sum statistic.

significance Desired level of posterior probability

... extra arguments for generic or plotting routines

Details

See the paper by Efron and Tibshirani.

Value

The standard methods summary, hist, and plot return what you would expect.

The cutoffSignificant method returns a list of two integers. Rank-sum values smaller than
the first value or larger than the second value are statistically significant in the sense that their
posterior probability exceeds the specified significance level given the assumptions about the
prior probability of not being significant.

The selectSignificant method returns a vector of logical values identifying the significant test
results, and countSignificant returns an integer counting the number of significant test results.

Creating Objects

As usual, objects can be created by new, but better methods are available in the form of the
MultiWilcoxonTest function. The inputs to this function are the same as those used for row-by-
row statistical tests throughout the ClassComparison package; a detailed description can be found
in the MultiTtest class.

The constructor computes row-by-row Wilcoxon rank-sum statistics on the input data, comparing
the two groups defined by the classes argument. It also estimates the observed and theoretical
(expected) density functions for the collection of rank-sum statistics.

The additional input argument, histsize is usually best left to its default value. In certain patho-
logical cases, we have found it necessary to use fewer bins; one suspects that the underlying model
does not adequately capture the complexity of those situations.

Slots

statistics: numeric vector containing the computed rank-sum statistics.

xvals: numeric vector, best thought of as the vector of possible rank-sum statistics given the sizes
of the two groups.

theoretical.pdf: numeric vector containing the theoretical density function evaluated at the
points of xvals.

pdf: numeric vector containing the empirical density function computed at the points of xvals.
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unravel: numeric vector containing a smoothed estimate (by Poisson regression using B-splines)
of the empirical density function evaluated at xvals.

groups: A vector containing the names of the groups defined by classes.

call: object of class call representing the function call that created the object.

Methods

summary(object, prior=1, significance=0.9, . . . ) Write out a summary of the object. For a given
value of the prior probability of not being differentially expressed and a given significance
cutoff on the posterior probability, reports the cutoffs and number of items in both tails of the
distribution.

hist(x, xlab=’Rank Sum’, ylab=’Prob(Different|Y)’, main=”, . . . ) Plot a histogram of the rank-
sum statistics, with overlaid curves representing the expected and observed distributions. Col-
ors of the curves are controlled by oompaColor$EXPECTED and oompaColor$OBSERVED.

plot(x, prior=1, significance=0.9, ylim=c(-0.5, 1), xlab=’Rank Sum’, ylab=’Prob(Different | Y)’, . . . )
Plots the posterior probability of being differentially expressed for given values of the prior.
Horizontal lines are added at each specified significance level for the posterior probability.

cutoffSignificant(object, prior, significance, . . . ) Determine cutoffs on the rank-sum statistic at
the desired significance level.

selectSignificant(object, prior, significance, . . . ) Compute a logical vector for selecting signifi-
cant test results.

countSignificant(object, prior, significance, . . . ) Count the number of significant test results.

probDiff(object, p0, . . . ) Compute the probabilty that an observed value comes from the "unusual"
part of the mixture distribution. Only exported so it can be inherited by other classes....

Author(s)

Kevin R. Coombes <krc@silicovore.com>

References

Efron B, Tibshirani R.
Empirical bayes methods and false discovery rates for microarrays.
Genet Epidemiol 2002, 23: 70-86.

Pounds S, Morris SW.
Estimating the occurrence of false positives and false negatives in microarray studies by approxi-
mating and partitioning the empirical distribution of p-values.
Bioinformatics. 2003 Jul 1;19(10):1236-42.

See Also

Implementation is handled in part by the functions dwil and rankSum. The empirical Bayes results
for alternative tests (such as MultiTtest) can be obtained using the beta-uniform mixture model in
the Bum class.
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Examples

showClass("MultiWilcoxonTest")
ng <- 10000
ns <- 15
nd <- 200
fake.class <- factor(rep(c('A', 'B'), each=ns))
fake.data <- matrix(rnorm(ng*ns*2), nrow=ng, ncol=2*ns)
fake.data[1:nd, 1:ns] <- fake.data[1:nd, 1:ns] + 2
fake.data[(nd+1):(2*nd), 1:ns] <- fake.data[(nd+1):(2*nd), 1:ns] - 2

a <- MultiWilcoxonTest(fake.data, fake.class)
hist(a)
plot(a)
plot(a, prior=0.85)
abline(h=0)

cutoffSignificant(a, prior=0.85, signif=0.95)
countSignificant(a, prior=0.85, signif=0.95)

rankSum Wilcoxon Rank-Sum Statistic

Description

Compute the Wilcoxon rank-sum statistic.

Usage

rankSum(data, selector)

Arguments

data numeric vector

selector logical vector the same length as data

Details

This is an efficient function to compute the value of the Wilcoxon rank-sum statistic without the
extra overhead of the full wilcox.test function. It is used internally by the MultiWilcoxonTest
class to perform row-by-row Wilcoxon tests.

Value

Returns an integer, the rank-sum of the subset of the data for which the selector is true.

Author(s)

Kevin R. Coombes <krc@silicovore.com>
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See Also

dwil, MultiWilcoxonTest

Examples

dd <- rnorm(100)
cc <- rep(c(TRUE, FALSE), each=50)
rankSum(dd, cc)

Sam-class Class "Sam"

Description

Implements the "Significance Analysis of Microarrays" approach to detecting differentially ex-
pressed genes.

Usage

Sam(data, classes, nPerm=100, verbose=TRUE)
## S4 method for signature 'Sam,missing'
plot(x, y, tracks=NULL, xlab='Expected T Statistics (Empirical)',
ylab='Observed T Statistics', ...)

## S4 method for signature 'Sam'
summary(object, cutoff=1, ...)
## S4 method for signature 'Sam'
selectSignificant(object, cutoff=1, ...)
## S4 method for signature 'Sam'
countSignificant(object, cutoff=1, ...)

Arguments

data Either a data frame or matrix with numeric values or an ExpressionSet as
defined in the BioConductor tools for analyzing microarray data.

classes If data is a data frame or matrix, then classes must be either a logical vector or
a factor. If data is an ExpressionSet, then classes can be a character string
that names one of the factor columns in the associated phenoData subobject.

nPerm An integer; the number of permutations

verbose A logical flag

x A Sam object

y Nothing, since it is supposed to be missing. Changes to the Rd processor require
documenting the missing entry.

tracks a numeric vector

xlab Label for the x axis

ylab Label for the y axis
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object A Sam object

cutoff A numeric value

... The usual extra arguments to generic functions

Details

The SAM approach to analyzing microarray data was developed by Tusher and colleagues; their
implementation is widely available. This is an independent implementation based on the description
in their original paper, customized to use the same interface (and thus work with ExpressionSet
objects) used by the rest of the ClassComparison package. The fundamental idea behind SAM
is that the observed distribution of row-by-row two-sample t-tests should be compared not to the
theoretical null distribution but to a null distribution estimated by a permutation test. The Sam
constructor performs the permutation test.

Value

summary returns an object of class SamSummary.

selectSignificant returns a vector of logical values.

countSignificant returns an integer.

Creating Objects

As usual, objects can be created by new, but better methods are available in the form of the Sam
function. The inputs to this function are the same as those used for row-by-row statistical tests
throughout the ClassComparison package; a detailed description can be found in the MultiTtest
class.

Slots

t.statistics: numeric vector containing the observed t-statistics.

observed: numeric vector containing the sorted observed t-statistics.

expected: numeric vector of the expected distribution of t-statistics based on a permutation test.

sim.data: numeric matrix containing all the t-statistics from all the permutations.

call: object of class call specifying the function call that was used to create this object.

Methods

summary(object, cutoff=1, . . . ) Compute a summary of the object.

plot(x, tracks=NULL, xlab=’Expected T Statistics (Empirical)’, ylab=’Observed t Statistics’, . . . )
Plot the observed and expected t-statistics. The tracks argument causes parallel lines to be
drawn on either side of the quantile-quantile central line, at the specified offsets. Colors in the
plot are controlled by the current values of oompaColor$CENTRAL.LINE and oompaColor$CONFIDENCE.CURVE

selectSignificant(object, cutoff=1, . . . ) Compute a vector that selects significant values

countSignificant(object, cutoff=1, . . . ) Count the number of significant values
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Author(s)

Kevin R. Coombes <krc@silicovore.com>

References

Tusher VG, Tibshirani R, Chu G.
Significance analysis of microarrays applied to the ionizing radiation response.
Proc Natl Acad Sci U S A (2001) 98, 5116-5121.

See Also

Bum, MultiTtest

Examples

showClass("Sam")
ng <- 10000
ns <- 50
nd <- 100
dat <- matrix(rnorm(ng*ns), ncol=ns)
dat[1:nd, 1:(ns/2)] <- dat[1:nd, 1:(ns/2)] + 2
dat[(nd+1):(2*nd), 1:(ns/2)] <- dat[(nd+1):(2*nd), 1:(ns/2)] - 2
cla <- factor(rep(c('A', 'B'), each=25))

res <- Sam(dat, cla)
plot(res)

plot(res, tracks=1:3)

summary(res)
summary(res, cutoff=2)

a <- summary(res)
plot(a@significant.calls)
plot(a@significant.calls[1:300])

countSignificant(res, 1)

SamSummary-class Class "SamSummary"

Description

An implementation class. Users are not expected to create these objects directly; they are produced
as return objects from the summary method for Sam.
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Slots

fdr: numeric scalar between 0 and 1 specifying the expected false discovery rate

hi: Upper threshold for significance

lo: Lower threshold for significance

cutoff: numeric scalar specified in the call to the Sam summary method.

significant.calls: vector of logical values

average.false.count: The average number of false positives in the permuted data at this cutoff
level.

Methods

show signature(object = SamSummary): Print the object, which contains a summary of the un-
derlying Sam object.

Author(s)

Kevin R. Coombes <krc@silicovore.com>

See Also

Sam

Examples

showClass("SamSummary")

significant Generic Methods for Significance

Description

In the world of multiple testing that is inhabited by most microarray or protein profiling experiments,
analysts frequently perform separate statistical tests for each gene or protein in the experiment.
Determining cutoffs that achieve statistical significance (in a meaningful way) is an inherent part
of the procedure. It is then common to select the significant items for further processing or for
preparing reports, or at least to count the number of significant items. These generic functions
provide a standard set of tools for selecting and counting the significant items, which can be used
with various statistical tests and various ways to account for multiple testing.
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Usage

## S4 method for signature 'ANY'
cutoffSignificant(object, ...)
## S4 method for signature 'ANY'
selectSignificant(object, ...)
## S4 method for signature 'ANY'
countSignificant(object, ...)
## S4 method for signature 'ANY'
probDiff(object, p0, ...)

Arguments

object an object that performs multiple statistical tests on microarray or proteomics
data

p0 Prior probability that an observed value comes from the lnown distribution.

... additional arguments affecting these generic methods

Value

cutoffSignificant returns appropriate cutoff values that achieve specified significance criteria.

selectSignificant returns a logical vector, with TRUE values indicating items that satisfy the
cutoff making them statistically significant.

countSignificant returns an integer, representing the number of significant items.

Author(s)

Kevin R. Coombes <krc@silicovore.com>

SingleGroup-class Class "SingleGroup"

Description

Preliminary analysis of one group of samples for use in the SmoothTtest class. A key feature is the
standard quality control plot.

Usage

SingleGroup(avg, sd, span=0.5, name='')
## S4 method for signature 'SingleGroup'
as.data.frame(x, row.names=NULL, optional=FALSE)
## S4 method for signature 'SingleGroup'
summary(object, ...)
## S4 method for signature 'SingleGroup'
print(x, ...)
## S4 method for signature 'SingleGroup'
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show(object)
## S4 method for signature 'SingleGroup,missing'
plot(x, multiple=3, ccl=0, main=x@name,
xlab='Mean', ylab='Std Dev', xlim=0, ylim=0, ...)

Arguments

avg numeric vector of mean values

sd numeric vector of standard deviations

span parameter is passed onto loess

name character string specifying the name of this object

object object of class SingleGroup

x object of class SingleGroup

multiple numeric scalar specifying the multiple of the smoothed standard deviation to
call significant

ccl list containing objects of the ColorCoding class. If left at its default value of
zero, colors are chosen automatically.

main character string specifying plot title

xlab character string specifying label for the x axis

ylab character string specifying label for the y axis

xlim Plotting limits for the x axis. If left at the default value of zero, then the limits
are automatically generated

ylim Plotting limits for the y axis. If left at the default value of zero, then the limits
are automatically generated

row.names See the base version of as.data.frame.default

optional See the base version of as.data.frame.default

... extra arguments for generic or plotting routines

Details

In 2001 and 2002, Baggerly and Coombes developed the smooth t-test for finding differentially
expressed genes in microarray data. Along with many others, they began by log-transforming the
data as a reasonable step in the direction of variance stabilization. They observed, however, that the
gene-by-gene standard deviations still seemed to vary in a systematic way as a function of the mean
log intensity. By borrowing strength across genes and using loess to fit the observed standard
deviations as a function of the mean, one presumably got a better estimate of the true standard
deviation.

Creating Objects

Objects can be created by calls to the SingleGroup constructor. Users rarely have need to create
these objects directly; they are usually created as a consequence of the construction of an object of
the SmoothTtest class.
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Slots

name: character string specifying the name of this object

avg: numeric vector of mean values

sd: numeric vector of standard deviations

span: parameter used in the loess function to fit sd as a function of avg.

fit: list containing components x and y resulting from the loess fit

score: numeric vector specifying the ratio of the pointwise standard deviations to their smooth
(loess) estimates

Methods

as.data.frame(x, row.names=NULL, optional=FALSE) Combine the slots containing numeric
vectors into a data frame, suitable for printing or exporting.

summary(object, . . . ) Write out a summary of the object.

print(x, . . . ) Print the entire object. You never want to do this.

show(object) Print the entire object. You never want to do this.

plot(x, multiple=3, ccl=0, main=x@name, xlab=’Mean’, ylab=’Std Dev’, xlim=0, ylim=0, . . . )
Produce a scatter plot of the standard deviations (x@sd) as a function of the means (x@avg).
The appropriate multiple of the loess fit is overlaid, and points that exceed this multiple
are flagged in a different color. Colors in the plot are controlled by the current values of
oompaColor$CENTRAL.LINE, oompaColor$CONFIDENCE.CURVE, oompaColor$BORING, oompaColor$BAD.REPLICATE,
and oompaColor$WORST.REPLICATE.

Author(s)

Kevin R. Coombes <krc@silicovore.com>

References

Baggerly KA, Coombes KR, Hess KR, Stivers DN, Abruzzo LV, Zhang W.
Identifying differentially expressed genes in cDNA microarray experiments.
J Comp Biol. 8:639-659, 2001.

Coombes KR, Highsmith WE, Krogmann TA, Baggerly KA, Stivers DN, Abruzzo LV.
Identifying and quantifying sources of variation in microarray data using high-density cDNA mem-
brane arrays.
J Comp Biol. 9:655-669, 2002.

See Also

SmoothTtest
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Examples

showClass("SingleGroup")
m <- rnorm(1000, 8, 2.5)
v <- rnorm(1000, 0.7)
plot(m, v)

x <- SingleGroup(m, v, name='bogus')

summary(x)

plot(x)
plot(x, multiple=2)

SmoothTtest-class Class "SmoothTtest"

Description

Implements the smooth t-test for differential expression as developed by Baggerly and Coombes.

Usage

SmoothTtest(stats, aname='Group One', bname='Group Two',
name=paste(aname, 'vs.', bname))
## S4 method for signature 'SmoothTtest'
as.data.frame(x, row.names=NULL, optional=FALSE)
## S4 method for signature 'SmoothTtest'
summary(object, ...)
## S4 method for signature 'SmoothTtest,missing'
plot(x, folddiff=3, goodflag=2, badch=4, ccl=0,
name=x@name, pch='.', xlab='log intensity', ylab='log ratio', ...)

Arguments

stats object of class TwoGroupStats

aname character string specifying the name of the first group

bname character string specifying the name of the second group

name character string specifying the name of this object

object object of class SmoothTtest

x object of class SmoothTtest

row.names See the base version of as.data.frame.default

optional See the base version of as.data.frame.default

folddiff numeric scalar specifying the level of fold difference considered large enough
to be indicated in the plots
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goodflag numeric scalar specifying the level (in standard deviation units) of the smooth
t-statistic considered large enough to be indicated in the plot

badch numeric scalar specifying the level of variability in single groups considered
large enough to be worrisome. See the multiple argument to the plot method
in the SingleGroup class.

ccl list containing objects of class ColorCoding. If left at its default value of zero,
colors are chosen automatically.

pch default plotting character

xlab character string specifying label for the x axis

ylab character string specifying label for the y axis

... extra arguments for generic or plotting routines

Details

In 2001 and 2002, Baggerly and Coombes developed the smooth t-test for finding differentially
expressed genes in microarray data. Along with many others, they began by log-transforming the
data as a reasonable step in the direction of variance stabilization. They observed, however, that the
gene-by-gene standard deviations still seemed to vary in a systematic way as a function of the mean
log intensity. By borrowing strength across genes and using loess to fit the observed standard
deviations as a function of the mean, one presumably got a better estimate of the true standard
deviation.

These smooth estimates are computed for each of two groups of samples being compared. They
are then combined (gene-by-gene using the usual univariate formulas) to compute pooled "smooth"
estimates of the standard deviation. These smooth estimates are then used in gene-by-gene t-tests.

The interesting question then arises of how to compute and interpret p-values associated to these
individual tests. The liberal argument asserts that, because smoothing uses data from hundreds of
measurements to estimate the standard deviation, it can effectively be treated as "known" in the
t-tests, which should thus be compared against the normal distribution. A conservative argument
claims that the null distribution should still be the t-distribution with the degrees of freedom deter-
mined in the usual way by the number of samples. The truth probably lies somewhere in between,
and is probably best approximated by some kind of permutation test. In this implementation, we
take the coward’s way out and don’t provide any of those alternatives. You have to extract the t-
statistics (from the smooth.t.statistics slot of the object) and compute your own p-values in
your favorite way. If you base the computations on a theoretical model rather than a permutation
test, then the Bum class provides a convenient way to account for multiple testing.

Creating Objects

In practice, users will first use a data frame and a classification vector (or an ExpressionSet) to
construct an object of the TwoGroupStats object. This object can then be handed directly to the
SmoothTtest function to perform the smooth t-test.

Slots

one: object of class SingleGroup representing a loess smooth of standard deviation as a function
of the mean in the first group of samples
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two: object of class SingleGroup representing a loess smooth of standard deviation as a function
of the mean in the second group of samples

smooth.t.statistics: numeric vector containing the smooth t-statistics
fit: data.frame with two columns, x and y, containing the smooth estimates of the pooled standard

deviation
dif: numeric vector of the differences in mean values between the two groups
avg: numeric vector of the overall mean value
aname: character string specifying the name of the first group
bname: character string specifying the name of the second group
name: character string specifying the name of this object
stats: object of class TwoGroupStats that was used to create this object

Methods

as.data.frame(x, row.names=NULL, optional=FALSE) Convert the object into a data frame suit-
able for printing or exporting.

summary(object, . . . ) Write out a summary of the object.
plot(x, folddiff=3, goodflag=2, badch=4, ccl=0, name=x@name, pch=’.’, xlab=’log intensity’, ylab=’log ratio’, . . . )

Create a set of six plots. The first two plots are the QC plots from the SingleGroup objects rep-
resenting the two groups of samples. The third plot is a scatter plot comparing the means in the
two groups. The fourth plot is Bland-Altman plot of the overall mean against the difference in
means (also known colloquially as an M-vs-A plot). The fifth plot is a histogram of the smooth
t-statistics. The final plot is a scatter plot of the smooth t-statistics as a function of the mean
intensity. Colors in the plots are controlled by the current values of oompaColor$BORING,
oompaColor$SIGNIFICANT, oompaColor$BAD.REPLICATE, oompaColor$WORST.REPLICATE,
oompaColor$FOLD.DIFFERENCE, oompaColor$CENTRAL.LINE, and oompaColor$CONFIDENCE.CURVE.

Author(s)

Kevin R. Coombes <krc@silicovore.com>

References

Baggerly KA, Coombes KR, Hess KR, Stivers DN, Abruzzo LV, Zhang W.
Identifying differentially expressed genes in cDNA microarray experiments.
J Comp Biol. 8:639-659, 2001.

Coombes KR, Highsmith WE, Krogmann TA, Baggerly KA, Stivers DN, Abruzzo LV.
Identifying and quantifying sources of variation in microarray data using high-density cDNA mem-
brane arrays.
J Comp Biol. 9:655-669, 2002.

Altman DG, Bland JM.
Measurement in Medicine: the Analysis of Method Comparison Studies.
The Statistician, 1983; 32: 307-317.

See Also

Bum, MultiTtest, SingleGroup, TwoGroupStats
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Examples

showClass("SmoothTtest")
bogus <- matrix(rnorm(30*1000, 8, 3), ncol=30, nrow=1000)
splitter <- rep(FALSE, 30)
splitter[16:30] <- TRUE
x <- TwoGroupStats(bogus, splitter)
y <- SmoothTtest(x)

opar <- par(mfrow=c(2, 3), pch='.')
plot(y, badch=2, goodflag=1)
par(opar)

TNoM-class Classes "TNoM" and "fullTNoM"

Description

Implements the "Total Number of Misclassifications" method for finding differentially expressed
genes.

Usage

TNoM(data, classes, verbose=TRUE)
## S4 method for signature 'TNoM'
summary(object, ...)
## S4 method for signature 'TNoM'
update(object, nPerm, verbose=FALSE, ...)
## S4 method for signature 'TNoM'
selectSignificant(object, cutoff, ...)
## S4 method for signature 'TNoM'
countSignificant(object, cutoff, ...)
## S4 method for signature 'fullTNoM,missing'
plot(x, y, ...)
## S4 method for signature 'fullTNoM'
hist(x, ...)

Arguments

data Either a data frame or matrix with numeric values or an ExpressionSet as
defined in the BioConductor tools for analyzing microarray data.

classes If data is a data frame or matrix, then classes must be either a logical vector or
a factor. If data is an ExpressionSet, then classes can be a character string
that names one of the factor columns in the associated phenoData subobject.

verbose logical scalar. If TRUE, print out intermediate results

object object of class TNoM

nPerm integer scalar specifying the number of permutations to perform
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cutoff integer scalar

x object of class fullTNoM

y Nothing, since it is supposed to be missing. Changes to the Rd processor require
documenting the missing entry.

... extra arguments to generic or plotting routines

Details

The TNoM method was developed by Yakhini and Ben-Dor and first applied in the melanoma mi-
croarray study by Bittner and colleagues (see references). The goal of the method is to detect genes
that are differentially expressed between two groups of samples. The idea is that each gene serves as
a potential classifier to distinguish the two groups. One starts by determining an optimal cutoff on
the expression of each gene and counting the number of misclassifications that gene makes. Next,
we bin genes based on the total number of misclassifications. This distribution can be compared
with the expected value (by simulating normal data sets of the same size). Alternatively, one can
estimate the null distribution directly by scrambling the sample labels to perform a permutation test.

The TNoM constructor computes the optimal cutoffs and the misclassification rates. The update
method performs the simulations and permutation tests, producing an object of the fullTNoM class.

Value

summary returns a TNoMSummary object.

update returns a fullTNoM object.

selectSignificant returns a vector of logical values.

countSignificant returns an integer.

Creating Objects

Although objects of the class can be created by a direct call to new, the preferred method is to
use the TNoM generator. The inputs to this function are the same as those used for row-by-row
statistical tests throughout the ClassComparison package; a detailed description can be found in
the MultiTtest class.

Slots

Objects of the TNoM class have the following slots:

data: The data matrix used to construct the object

tnomData: numeric vector, whose length is the number of rows in data, recording the minimum
number of misclassification achieved using this data row.

nCol: The number of columns in data

nRow: The number of rows in data

classifier: The classification vector used to create the object.

call: The function call that created the object

Objects of the fullTNoM class have the following slots:
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dex: Numeric vector of the different possible numbers of misclassifications

fakir: Numeric vector of expected values based on simulations

obs: Numeric vector of observed values

scr: Numeric vector of values based on a permutation test

name: A character string with a name for the object

Methods

Objects of the TNoM class have the following methods:

summary(object, . . . ) Write out a summary of the object, including the number of genes achieving
each possible number of misclassifications.

countSignificant(object, cutoff, . . . ) Count the number of significant genes at the given cutoff.

selectSignificant(object, cutoff, . . . ) Get a vector for selecting the number of significant genes at
the given cutoff.

update(object, nPerm, verbose=FALSE, . . . ) Perform simulation and permutation tests on the
TNoM object.

Objects of the fullTNoM class have the following methods:

plot(x, . . . ) Plot a summary of the TNoM object. This consists of three curves: the observed cumu-
lative number of genes at each misclassification level, along with the corresponding numbers
expected based on simulations or permutation tests. The colors of the curves are controlled by
the values of oompaColor$OBSERVED, oompaColor$EXPECTED, and oompaColor$PERMTEST

hist(x, . . . ) Plot a not terribly useful nor informative histogram of the results.

Author(s)

Kevin R. Coombes <krc@silicovore.com>

References

Bittner M, Meltzer P, Chen Y, Jiang Y, Seftor E, Hendrix M, Radmacher M, Simon R, Yakhini Z,
Ben-Dor A, Sampas N, Dougherty E, Wang E, Marincola F, Gooden C, Lueders J, Glatfelter A,
Pollock P, Carpten J, Gillanders E, Leja D, Dietrich K, Beaudry C, Berens M, Alberts D, Sondak V.
Molecular classification of cutaneous malignant melanoma by gene expression profiling.
Nature. 2000 Aug 3;406(6795):536-40.

See Also

Bum, MultiTtest, MultiWilcoxonTest

Examples

showClass("TNoM")
showClass("fullTNoM")
n.genes <- 200
n.samples <- 10
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bogus <- matrix(rnorm(n.samples*n.genes, 0, 3), ncol=n.samples)
splitter <- rep(FALSE, n.samples)
splitter[sample(1:n.samples, trunc(n.samples/2))] <- TRUE

tn <- TNoM(bogus, splitter)
summary(tn)

tnf <- update(tn)
plot(tnf)
hist(tnf)

TNoMSummary-class Class "TNoMSummary"

Description

An implementation class. Users are not expected to create these objects directly; they are produced
as return objects from the summary method for TNoM.

Slots

TNoM: object of class TNoM ~~

counts: object of class numeric ~~

Methods

show signature(object = TNoMSummary): Print the object, which contains a summary of the
underlying TNoM object. In particular, the summary reports the number of genes achieving
each possible number of misclassifications.

Author(s)

Kevin R. Coombes <krc@silicovore.com>

See Also

TNoM

Examples

showClass("TNoMSummary")



TwoGroupStats-class 33

TwoGroupStats-class Class "TwoGroupStats"

Description

Compute row-by-row means and variances for a data matrix whose columns belong to two different
groups of interest.

Usage

TwoGroupStats(data, classes, name=comparison, name1=A, name2=B)
## S4 method for signature 'TwoGroupStats'
as.data.frame(x, row.names=NULL, optional=FALSE)
## S4 method for signature 'TwoGroupStats'
summary(object, ...)
## S4 method for signature 'TwoGroupStats'
print(x, ...)
## S4 method for signature 'TwoGroupStats'
show(object)
## S4 method for signature 'TwoGroupStats,missing'
plot(x, main=x@name, useLog=FALSE, ...)

Arguments

data Either a data frame or matrix with numeric values or an ExpressionSet as
defined in the BioConductor tools for analyzing microarray data.

classes If data is a data frame or matrix, then classes must be either a logical vector or
a factor. If data is an ExpressionSet, then classes can be a character string
that names one of the factor columns in the associated phenoData subobject.

name A character string; the name of this object
name1 A character string; the name of the first group
name2 A character string; the name of the second group
x A TwoGroupStats object
row.names See the base version of as.data.frame.default
optional See the base version of as.data.frame.default
object A TwoGroupStats object
main Plot title
useLog a logical flag; should the values be log-transformed before plotting?
... The usual extra arguments to generic functions

Details

This class was one of the earliest developments in our suite of tools to analyze microarrays. Its
main purpose is to segregate out the preliminary computation of summary statistics on a row-by-
row basis, along with a set of plots that could be generated automatically and used for quality
control.
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Creating Objects

Although objects of the class can be created by a direct call to new, the preferred method is to use
the TwoGroupStats generator. The inputs to this function are the same as those used for row-by-
row statistical tests throughout the ClassComparison package; a detailed description can be found
in the MultiTtest class.
One should note that this class serves as the front end to the SmoothTtest class, providing it with
an interface that accepts ExpressionSet objects compatible with the other statistical tests in the
ClassComparison package.

Slots

mean1: numeric vector of means in the first group
mean2: numeric vector of means in the second group
overallMean: numeric vector of overall row means
var1: numeric vector of variances in the first group
var2: numeric vector of variances in the second group
overallVar: numeric vector of variances assuming the two groups have the same mean
pooledVar: numeric vector of row-by-row pooled variances, assuming the two groups have the

same variance but different means
n1: numeric scalar specifying number of items in the first group
n2: numeric scalar specifying number of items in the second group
name1: character string specifying name of the first group
name2: character string specifying name of the second group
name: character string specifying name of the object

Methods

as.data.frame(x, row.names=NULL, optional=FALSE) Collect the numeric vectors from the ob-
ject into a single dat fame, suitable for printing or exporting.

summary(object, . . . ) Write out a summary of the object.
print(x, . . . ) Print the object. (Actually, it only prints a summary, since the whole object is al-

most always more than you really want to see. If you insist on printing everything, use
as.data.frame.)

show(object) Print the object (same as print method).)
plot(x, main=x@name, useLog=FALSE, . . . ) This function actually produces six different plots

of the data, so it is usually wrapped by a graphical layout command like par(mfrow=c(2,3)).
The first two plots show the relation between the mean and standard deviation for the two
groups separately; the third plot does the same for the overall mean and variance. The fourth
plot is a Bland-Altman plot of the difference between the means against the overall mean. (In
the microarray world, this is usually called an M-vs-A plot.) A loess fit is overlaid on the
scatter plot, and points outside confidence bounds based on the fit are printed in a different
color to flag them as highly variable. The fifth plot shows a loess fit (with confidence bounds)
of the difference as a function of the row index (which often is related to the geometric position
of spots on a microarray). Thus, this plot gives a possible indication of regions of an array
where unusual things happen. The final plot compares the overall variances to the pooled
variances.
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Author(s)

Kevin R. Coombes <krc@silicovore.com>

References

Altman DG, Bland JM.
Measurement in Medicine: the Analysis of Method Comparison Studies.
The Statistician, 1983; 32: 307-317.

See Also

MultiTtest, SmoothTtest

Examples

showClass("TwoGroupStats")
bogus <- matrix(rnorm(30*1000, 8, 3), ncol=30, nrow=1000)
splitter <- rep(FALSE, 30)
splitter[16:30] <- TRUE

x <- TwoGroupStats(bogus, splitter)
summary(x)

opar<-par(mfrow=c(2,3), pch='.')
plot(x)
par(opar)

variantT Classes for Variant T-tests

Description

Classes to perform row-by-row paired or unequal variance t-tests on microarray or proteomics data.

Usage

MultiTtestPaired(data, classes, pairing)
MultiTtestUnequal(data, classes)
## S4 method for signature 'MultiTtestPaired'
summary(object, ...)
## S4 method for signature 'MultiTtestUnequal'
summary(object, ...)
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Arguments

data Either a data frame or matrix with numeric values or an ExpressionSet as
defined in the BioConductor tools for analyzing microarray data.

classes If data is a data frame or matrix, then classes must be either a logical vector or
a factor. If data is an ExpressionSet, then classes can be a character string
that names one of the factor columns in the associated phenoData subobject.

pairing A numerical vector indicating which samples are paired.

object A MultiTtest object

... Unused; optional extra parameters for summary.

Creating objects

Although objects can be created using new, the better method is to use the MultiTtestPaired
or MultiTtestUnequal functions. In the simplest case, you simply pass in a data matrix and a
logical vector assigning classes to the columns (and, in the case of a paired t-test, a numeric vector
describing the pairing), and the constructor performs row-by-row two-sample t-tests and computes
the associated (single test) p-values. To adjust for multiple testing, you can pass the p-values on to
the Bum class.

If you use a factor instead of a logical vector, then the t-test compares the first level of the factor to
everything else. To handle the case of multiple classes, see the MultiLinearModel class.

As with other class comparison functions that are part of the OOMPA, we can also perform statis-
tical tests on ExpressionSet objects from the BioConductor libraries. In this case, we pass in an
ExpressionSet object along with the name of a factor to use for splitting the data.

Extends

Both classes extend class MultiTtest, directly. See that class for descriptions of the inherited
methods and slots.

Slots

df: The MultiTtestUnequal class adds a slot to record e gene-by-gene degrees of freedom, which
can change along with the variances.

Methods

summary signature(object = MultiTtestPaired): Write out a summary of the object.

summary signature(object = MultiTtestUnequal): Write out a summary of the object.

Author(s)

Kevin R. Coombes <krc@silicovore.com>

References

OOMPA
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See Also

Bum, MultiTtest

Examples

showClass("MultiTtestPaired")
showClass("MultiTtestUnequal")
ng <- 10000
ns <- 50
dat <- matrix(rnorm(ng*ns), ncol=ns)
cla <- factor(rep(c('A', 'B'), each=25))
res <- MultiTtestUnequal(dat, cla)
summary(res)
hist(res, breaks=101)
plot(res, res@p.values)

pairing <- rep(1:25, 2)
res <- MultiTtestPaired(dat, cla, pairing)
summary(res)
plot(res)
hist(res@p.values, breaks=101)
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