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VGAM-package Vector Generalized Linear and Additive Models and Other Associated
Models
Description

VGAM provides functions for fitting vector generalized linear and additive models (VGLMs and
VGAMs), and associated models (Reduced-rank VGLMs or RR-VGLMs, Doubly constrained RR-
VGLMs (DRR-VGLMs), Quadratic RR-VGLMs, Reduced-rank VGAMs). This package fits many
models and distributions by maximum likelihood estimation (MLE) or penalized MLE, under this
statistical framework. Also fits constrained ordination models in ecology such as constrained
quadratic ordination (CQO).

Details

This package centers on the iteratively reweighted least squares (IRLS) algorithm. Other key words
include Fisher scoring, additive models, reduced-rank regression, penalized likelihood, and con-
strained ordination. The central modelling functions are vglm, vgam, rrvglm, rcim, cqo, cao.
Function vglm operates very similarly to glm but is much more general, and many methods func-
tions such as coef and predict are available. The package uses S4 (see methods-package).

Some notable companion packages: (1) VGAMdata mainly contains data sets useful for illustrating
VGAM. Some of the big ones were initially from VGAM. Recently, some older VGAM family
functions have been shifted into this package. (2) VGAMextra written by Victor Miranda has
some additional VGAM family and link functions, with a bent towards time series models. (3)
svyVGAM provides design-based inference, e.g., to survey sampling settings. This is because the
weights argument of vglm can be assigned any positive values including survey weights.

Compared to other similar packages, such as gamlss and mgev, VGAM has more models imple-
mented (150+ of them) and they are not restricted to a location-scale-shape framework or (largely)
the 1-parameter exponential family. The general statistical framework behind it all, once grasped,
makes regression modelling unified. Some features of the package are: (i) many family functions
handle multiple responses; (ii) reduced-rank regression is available by operating on latent variables
(optimal linear combinations of the explanatory variables); (iii) basic automatic smoothing parame-
ter selection is implemented for VGAMSs (sm. os and sm. ps with a call to magic), although it has to
be refined; (iv) smart prediction allows correct prediction of nested terms in the formula provided
smart functions are used.
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The GLM and GAM classes are special cases of VGLMs and VGAMs. The VGLM/VGAM frame-
work is intended to be very general so that it encompasses as many distributions and models as
possible. VGLMs are limited only by the assumption that the regression coefficients enter through
a set of linear predictors. The VGLM class is very large and encompasses a wide range of multivari-
ate response types and models, e.g., it includes univariate and multivariate distributions, categorical
data analysis, extreme values, correlated binary data, quantile and expectile regression, time series
problems. Potentially, it can handle generalized estimating equations, survival analysis, bioassay
data and nonlinear least-squares problems.

Crudely, VGAMs are to VGLMs what GAMs are to GLMs. Two types of VGAMs are implemented:
Ist-generation VGAMs with s use vector backfitting, while 2nd-generation VGAMs with sm. os
and sm. ps use O-splines and P-splines so have a direct solution (hence avoids backfitting) and have
automatic smoothing parameter selection. The former is older and is based on Yee and Wild (1996).
The latter is more modern (Yee, Somchit and Wild, 2024) but it requires a reasonably large number
of observations to work well because it is based on optimizing over a predictive criterion rather than
using a Bayesian approach.

An important feature of the framework is that of constraint matrices. They apportion the regression
coefficients according to each explanatory variable. For example, since each parameter has a link
function applied to it to turn it into a linear or additive predictor, does a covariate have an equal
effect on each parameter? Or no effect? Arguments such as zero, parallel and exchangeable,
are merely easy ways to have them constructed internally. Users may input them explicitly using
the constraint argument, and CM. symm@ etc. can make this easier.

Another important feature is implemented by xij. It allows different linear/additive predictors to
have a different values of the same explanatory variable, e.g., multinomial for the conditional logit
model and the like.

VGLMs with dimension reduction form the class of RR-VGLMs. This is achieved by reduced rank
regression. Here, a subset of the constraint matrices are estimated rather than being known and
prespecified. Optimal linear combinations of the explanatory variables are taken (creating latent
variables) which are used for fitting a VGLM. Thus the regression can be thought of as being in two
stages. The class of DRR-VGLM:s provides further structure to RR-VGLMs by allowing constraint
matrices to be specified for each column of A and row of C. Thus the reduced rank regression can
be fitted with greater control.

This package is the first to check for the Hauck-Donner effect (HDE) in regression models; see
hdeff. This is an aberration of the Wald statistics when the parameter estimates are too close to
the boundary of the parameter space. When present the p-value of a regression coefficient is biased
upwards so that a highly significant variable might be deemed nonsignificant. Thus the HDE can
create havoc for variable selection! The WSDM is an extension of the HDE (wsdm).

Somewhat related to the previous paragraph, hypothesis testing using the likelihood ratio test, Rao’s
score test (Lagrange multiplier test) and (modified) Wald’s test are all available; see summaryvglm.
For all regression coefficients of a model, taken one at a time, all three methods require further
IRLS iterations to obtain new values of the other regression coefficients after one of the coefficients
has had its value set (usually to 0). Hence the computation load is overall significant.

For a complete list of this package, use library(help = "VGAM"). New VGAM family functions
are continually being written and added to the package.
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Warning

This package is undergoing continual development and improvement, therefore users should treat
many things as subject to change. This includes the family function names, argument names, many
of the internals, moving some functions to VGAMdata, the use of link functions, and slot names.
For example, many link functions were renamed in 2019 so that they all end in "link", e.g.,
loglink() instead of loge (). Some future pain can be avoided by using good programming tech-
niques, e.g., using extractor functions such as coef (), weights(), vcov(), predict(). Although
changes are now less frequent, please expect changes in all aspects of the package. See the NEWS
file for a list of changes from version to version.

Author(s)
Thomas W. Yee, <t.yee@auckland.ac.nz>, with contributions from Victor Miranda and several
graduate students over the years, especially Xiangjie (Albert) Xue and Chanatda Somchit.

Maintainer: Thomas Yee <t.yee@auckland.ac.nz>.
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Modelling, 3, 15-41.

Yee, T. W. and Stephenson, A. G. (2007). Vector generalized linear and additive extreme value
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The website for the VGAM package and book is https://www.stat.auckland.ac.nz/~yee/.
There are some resources there, especially as relating to my book and new features added to VGAM.

Some useful background reference for the package include:
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Chambers, J. and Hastie, T. (1991). Statistical Models in S. Wadsworth & Brooks/Cole.

Green, P. J. and Silverman, B. W. (1994). Nonparametric Regression and Generalized Linear Mod-
els: A Roughness Penalty Approach. Chapman and Hall.

Hastie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models. Chapman and Hall.

See Also

vglm, vgam, rrvglm, rcim, cqo, TypicalVGAMfamilyFunction, CommonVGAMffArguments, Links,
wsdm, hdeff, glm, Im, https://CRAN.R-project.org/package=VGAM.

Examples

# Example 1; proportional odds model

pneumo <- transform(pneumo, let = log(exposure.time))

(fit1 <- vglm(cbind(normal, mild, severe) ~ let, propodds, data = pneumo))
depvar(fit1) # Better than using fitl1@y; dependent variable (response)

weights(fit1, type = "prior”) # Number of observations
coef(fitl, matrix = TRUE) # p.179, in McCullagh and Nelder (1989)
constraints(fitl) # Constraint matrices

summary(fit1) # HDE could affect these results
summary (fit1, 1lrt@ = TRUE, score@ = TRUE, wald® = TRUE) # No HDE
hdeff(fit1) # Check for any Hauck-Donner effect

# Example 2; zero-inflated Poisson model

zdata <- data.frame(x2 = runif(nn <- 2000))

zdata <- transform(zdata, pstr@ = logitlink(-0.5 + 1%x2, inverse = TRUE),
lambda = loglink( ©.5 + 2*x2, inverse = TRUE))

zdata <- transform(zdata, y = rzipois(nn, lambda, pstr@ = pstro))

with(zdata, table(y))

fit2 <- vglm(y ~ x2, zipoisson, data = zdata, trace = TRUE)

coef(fit2, matrix = TRUE) # These should agree with the above values

# Example 3; fit a two species GAM simultaneously

fit3 <- vgam(cbind(agaaus, kniexc) ~ s(altitude, df = c(2, 3)),
binomialff(multiple.responses = TRUE), data = hunua)

coef(fit3, matrix = TRUE) # Not really interpretable

## Not run: plot(fit3, se = TRUE, overlay = TRUE, lcol = 3:4, scol = 3:4)

000 <- with(hunua, order(altitude))

with(hunua, matplot(altitude[ooo], fitted(fit3)[ooco, 1, type = "1",
lwd = 2, col = 3:4,
xlab = "Altitude (m)"”, ylab = "Probability of presence”, las = 1,
main = "Two plant species' response curves”, ylim = c(0, 0.8)))

with(hunua, rug(altitude))

## End(Not run)

# Example 4; LMS quantile regression

fit4 <- vgam(BMI ~ s(age, df = c(4, 2)), lms.bcn(zero = 1),
data = bmi.nz, trace = TRUE)

head(predict(fit4))
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head(fitted(fit4)
head(bmi.nz) # P
head(cdf (fit4))

## Not run: par(
gtplot(fit4, perc
xlim = c(1

ygrid <- seq(15,
par(mfrow = c(1,
aa <- deplot(fit4
main = "Densi
aa
aa <- deplot(fit4
aa <- deplot(fit4
Attac
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)

erson 1 is near the lower quartile among people his age

mfrow = c(1,1), bty = "1", mar = c(5,4,4,3)+0.1, xpd=TRUE)
entiles = ¢(5,50,90,99), main = "Quantiles”, las = 1,
5, 90), ylab = "BMI", 1lwd=2, lcol=4) # Quantile plot

43, len = 100) # BMI ranges

1), lwd = 2) # Density plot

, X0 = 20, y = ygrid, xlab = "BMI", col = "black”,

ty functions at Age=20 (black), 42 (red) and 55 (blue)")

, X0 = 42, y = ygrid, add = TRUE, 1lty
, X0 =55, y = ygrid, add = TRUE, 1lty
h = TRUE)

2, col = "red")
4, col "blue”,

aa@post$deplot # Contains density function values

## End(Not run)

# Example 5; GEV
(fit5 <- vglm(max
head(fitted(fit5)
coef (fit5, matrix
Coef (fith)

veov(fith)

vecov(fit5, untran
sqrt(diag(vcov(fi

distribution for extremes
temp ~ 1, gevff, data = oxtemp, trace = TRUE))

)
= TRUE)

sform = TRUE)
t5))) # Approximate standard errors

## Not run: rlplot(fit5)

ATA2A3

The A1A2A3 Blood Group System

Description

Estimates the three

Usage

independent parameters of the the A1A2A3 blood group system.

ATA2A3(link = "logitlink"”, inbreeding = FALSE, ip1 = NULL, ip2 = NULL, iF = NULL)

Arguments
link
inbreeding

ip1, ip2, iF

Link function applied to p1, p2 and f. See Links for more choices.
Logical. Is there inbreeding?

Optional initial value for p1, p2 and f.
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Details

The parameters p1 and p2 are probabilities, so that p3=1-p1-p2 is the third probability. The param-
eter f is the third independent parameter if inbreeding = TRUE. If inbreeding = FALSE then f = 0
and Hardy-Weinberg Equilibrium (HWE) is assumed.

Value

An object of class "vglmff"” (see vglmff-class). The object is used by modelling functions such
as vglmand vgam.

Note

The input can be a 6-column matrix of counts, with columns corresponding to AT1A1, ATA2, ATA3,
A2A2, A2A3, A3A3 (in order). Alternatively, the input can be a 6-column matrix of proportions (so
each row adds to 1) and the weights argument is used to specify the total number of counts for each
TOW.

Author(s)

T. W. Yee

References

Lange, K. (2002). Mathematical and Statistical Methods for Genetic Analysis, 2nd ed. New York:
Springer-Verlag.

See Also

AA.Aa.aa, AB.Ab.aB. ab, ABO, MNSs.

Examples

## Not run:

ymat <- cbind(108, 196, 429, 143, 513, 559)

fit <- vglm(ymat ~ 1, A1A2A3(link = probitlink), trace = TRUE, crit = "coef")

fit <- vglm(ymat ~ 1, ATA2A3(link = logitlink, ip1 = 0.3, ip2 = 0.3, iF = 0.02),
trace = TRUE, crit = "coef")

Coef(fit) # Estimated p1 and p2

rbind(ymat, sum(ymat) x fitted(fit))

sqrt(diag(vcov(fit)))

## End(Not run)
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AA.Aa.aa The AA-Aa-aa Blood Group System

Description
Estimates the parameter of the AA-Aa-aa blood group system, with or without Hardy Weinberg
equilibrium.

Usage

"logitlink"”, linkf = "logitlink"”, inbreeding = FALSE,

AA.Aa.aa(linkp =
= NULL, ifp = NULL, zero = NULL)

ipA
Arguments
linkp, linkf Link functions applied to pA and f. See Links for more choices.
ipA, ifp Optional initial values for pA and f.
inbreeding Logical. Is there inbreeding?
zero See CommonVGAMffArguments for information.
Details

This one or two parameter model involves a probability called pA. The probability of getting a
count in the first column of the input (an AA) is pA*pA. When inbreeding = TRUE, an additional
parameter f is used. If inbreeding = FALSE then f = 0 and Hardy-Weinberg Equilibrium (HWE)
is assumed. The EIM is used if inbreeding = FALSE.

Value
An object of class "vglmff"” (see vglmff-class). The object is used by modelling functions such
as vglmand vgam.

Warning
Setting inbreeding = FALSE makes estimation difficult with non-intercept-only models. Currently,
this code seems to work with intercept-only models.

Note

The input can be a 3-column matrix of counts, where the columns are AA, Ab and aa (in order).
Alternatively, the input can be a 3-column matrix of proportions (so each row adds to 1) and the
weights argument is used to specify the total number of counts for each row.

Author(s)
T. W. Yee
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References

Weir, B. S. (1996). Genetic Data Analysis II: Methods for Discrete Population Genetic Data,
Sunderland, MA: Sinauer Associates, Inc.

See Also

AB.Ab.aB.ab, ABO, ATA2A3, MNSs.

Examples

y <- cbind(53, 95, 38)

fitl <- vglm(y ~ 1, AA.Aa.aa, trace = TRUE)

fit2 <- vglm(y ~ 1, AA.Aa.aa(inbreeding = TRUE), trace = TRUE)
rbind(y, sum(y) * fitted(fit1))

Coef(fit1) # Estimated pA

Coef (fit2) # Estimated pA and f

summary (fit1)

AB.Ab.aB.ab The AB-Ab-aB-ab Blood Group System

Description

Estimates the parameter of the AB-Ab-aB-ab blood group system.

Usage
AB.Ab.aB.ab(link = "logitlink”, init.p = NULL)

Arguments
link Link function applied to p. See Links for more choices.
init.p Optional initial value for p.

Details

This one parameter model involves a probability called p.

Value
An object of class "vglmff"” (see vglmff-class). The object is used by modelling functions such
as vglmand vgam.

Note

The input can be a 4-column matrix of counts, where the columns are AB, Ab, aB and ab (in order).
Alternatively, the input can be a 4-column matrix of proportions (so each row adds to 1) and the
weights argument is used to specify the total number of counts for each row.
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Author(s)
T. W. Yee

References

Lange, K. (2002). Mathematical and Statistical Methods for Genetic Analysis, 2nd ed. New York:
Springer-Verlag.

See Also

AA.Aa.aa, ABO, ATA2A3, MNSs.

Examples

ymat <- cbind(AB=1997, Ab=906, aB=904, ab=32) # Data from Fisher (1925)
fit <- vglm(ymat ~ 1, AB.Ab.aB.ab(link = "identitylink”), trace = TRUE)
fit <- vglm(ymat ~ 1, AB.Ab.aB.ab, trace = TRUE)

rbind(ymat, sum(ymat)*fitted(fit))

Coef(fit) # Estimated p

p <- sqrt(4x(fitted(fit)[, 41))

p*p

summary (fit)

ABO The ABO Blood Group System

Description

Estimates the two independent parameters of the the ABO blood group system.

Usage

ABO(link.pA = "logitlink"”, link.pB = "logitlink"”, ipA = NULL, ipB = NULL,
ipO = NULL, zero = NULL)

Arguments
link.pA, link.pB
Link functions applied to pA and pB. See Links for more choices.

ipA, ipB, ip0 Optional initial value for pA and pB and p0. A NULL value means values are
computed internally.

zero Details at CommonVGAMf fArguments.

Details

The parameters pA and pB are probabilities, so that pO=1-pA-pB is the third probability. The proba-
bilities pA and pB correspond to A and B respectively, so that pO is the probability for O. It is easier
to make use of initial values for pO than for pB. In documentation elsewhere I sometimes use pA=p,
pB=qg, pO=r.
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Value

An object of class "vglmff"” (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Note

The input can be a 4-column matrix of counts, where the columns are A, B, AB, O (in order).
Alternatively, the input can be a 4-column matrix of proportions (so each row adds to 1) and the
weights argument is used to specify the total number of counts for each row.

Author(s)
T. W. Yee

References

Lange, K. (2002). Mathematical and Statistical Methods for Genetic Analysis, 2nd ed. New York:
Springer-Verlag.

See Also

AA.Aa.aa, AB.Ab.aB.ab, ATA2A3, MNSs.

Examples

ymat <- cbind(A = 725, B = 258, AB = 72, 0 = 1073) # Order matters, not the name
fit <- vglm(ymat ~ 1, ABO(link.pA = "identitylink”,
link.pB = "identitylink"”), trace = TRUE,

crit = "coef")
coef(fit, matrix = TRUE)
Coef(fit) # Estimated pA and pB
rbind(ymat, sum(ymat) * fitted(fit))
sqrt(diag(vcov(fit)))

acat Ordinal Regression with Adjacent Categories Probabilities

Description

Fits an adjacent categories regression model to an ordered (preferably) factor response.

Usage
acat(link = "loglink", parallel = FALSE, reverse = FALSE,
zero = NULL, ynames = FALSE, Thresh = NULL, Trev = reverse,
Tref = if (Trev) "M" else 1, whitespace = FALSE)
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Arguments

link Link function applied to the ratios of the adjacent categories probabilities. See
Links for more choices.

parallel A logical, or formula specifying which terms have equal/unequal coefficients.

reverse Logical. By default, the linear/additive predictors used are 1; = log(P[Y =
j+1]/PlY =j])forj=1,..., M. If reverse is TRUE then n; = log(P[Y =
jl/P[Y = j + 1]) will be used.

ynames See multinomial for information.

zero An integer-valued vector specifying which linear/additive predictors are mod-

elled as intercepts only. The values must be from the set {1,2,...,M}. See
CommonVGAMffArguments for more information.
Thresh, Trev, Tref

See cumulative for information. These arguments apply to ordinal categorical
regression models.

whitespace See CommonVGAMffArguments for information.
Details
In this help file the response Y is assumed to be a factor with ordered values 1,2,..., M + 1, so

that M is the number of linear/additive predictors 7;. By default, the log link is used because the
ratio of two probabilities is positive.

Internally, deriv3 is called to perform symbolic differentiation and consequently this family func-
tion will struggle if M becomes too large. If this occurs, try combining levels so that M is effec-
tively reduced. One idea is to aggregate levels with the fewest observations in them first.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, rrvglm and vgam.

Warning

No check is made to verify that the response is ordinal if the response is a matrix; see ordered.

Note

The response should be either a matrix of counts (with row sums that are all positive), or an ordered
factor. In both cases, the y slot returned by vglm/vgam/rrvglm is the matrix of counts.

For a nominal (unordered) factor response, the multinomial logit model (multinomial) is more
appropriate.

Here is an example of the usage of the parallel argument. If there are covariates x1, x2 and
x3, then parallel = TRUE ~ x1 + x2 -1 and parallel = FALSE ~ x3 are equivalent. This would
constrain the regression coefficients for x1 and x2 to be equal; those of the intercepts and x3 would
be different.
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Author(s)
Thomas W. Yee

References

Agresti, A. (2013). Categorical Data Analysis, 3rd ed. Hoboken, NJ, USA: Wiley.

Tutz, G. (2012). Regression for Categorical Data, Cambridge: Cambridge University Press.

Yee, T. W. (2010). The VGAM package for categorical data analysis. Journal of Statistical Soft-
ware, 32, 1-34. doi:10.18637/jss.v032.i10.

See Also

cumulative, cratio, sratio,multinomial, CM.equid, CommonVGAMffArguments, margeff, pneumo,
budworm, deriv3.

Examples

pneumo <- transform(pneumo, let = log(exposure.time))

(fit <- vglm(cbind(normal, mild, severe) ~ let, acat, pneumo))
coef(fit, matrix = TRUE)

constraints(fit)

model .matrix(fit)

add1.vglm Add or Drop All Possible Single Terms to/from a Model

Description

Compute all the single terms in the scope argument that can be added to or dropped from the model,
fit those models and compute a table of the changes in fit.

Usage

## S3 method for class 'vglm'

add1(object, scope, test = c("none”, "LRT"), k =2, ...)

## S3 method for class 'vglm'

dropl1(object, scope, test = c("none”, "LRT"), k =2, ...)
Arguments

object a fitted vglm model object.

scope, k See drop1.glm.

test Same as drop1.glm but with fewer choices.

further arguments passed to or from other methods.
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Details

These functions are a direct adaptation of add1.glm and drop1.glm for vglm-class objects. For
drop1 methods, a missing scope is taken to be all terms in the model. The hierarchy is respected
when considering terms to be added or dropped: all main effects contained in a second-order inter-
action must remain, and so on. In a scope formula . means ‘what is already there’.

Compared to add1.glm and drop1.glm these functions are simpler, e.g., there is no Cp, F and Rao
(score) tests, x and scale arguments. Most models do not have a deviance, however twice the
log-likelihood differences are used to test the significance of terms.

The default output table gives AIC, defined as minus twice log likelihood plus 2p where p is the rank
of the model (the number of effective parameters). This is only defined up to an additive constant
(like log-likelihoods).

Value

An object of class "anova" summarizing the differences in fit between the models.

Warning

In general, the same warnings in add1.glmand drop1.glmapply here. Furthermore, these functions
have not been rigorously tested for all models, so treat the results cautiously and please report any
bugs.

Care is needed to check that the constraint matrices of added terms are correct. Also, if object is of
the form vglm(..., constraints = list(x1 =cml, x2 = cm2)) then add1.vglm may fail because
the constraints argument needs to have the constaint matrices for all terms.

Note

Most VGAM family functions do not compute a deviance, but instead the likelihood function is
evaluated at the MLE. Hence a column name "Deviance” only appears for a few models; and
almost always there is a column labelled "logLik".

See Also

stepdvglm, vglm, extractAIC.vglm, trim.constraints, anova.vglm, backPain2, update.

Examples

data("backPain2", package = "VGAM")

summary (backPain2)

fitl <- vglm(pain ~ x2 + x3 + x4, propodds, data = backPain2)
coef(fit1)

add1(fit1, scope = ~ x2 * x3 * x4, test = "LRT")

drop1(fit1, test = "LRT")
fit2 <- vglm(pain ~ x2 * x3 * x4, propodds, data = backPain2)
drop1(fit2)
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AICv1m Akaike’s Information Criterion

Description

Calculates the Akaike information criterion for a fitted model object for which a log-likelihood
value has been obtained.

Usage
AICvlm(object, ..., corrected = FALSE, k = 2)
AICvgam(object, ..., k = 2)
AICrrvglm(object, ..., k = 2)
AICdrrvglm(object, ..., k = 2)
AICqrrvglm(object, ..., k = 2)
AICrrvgam(object, ..., k = 2)
Arguments
object Some VGAM object, for example, having class vglm-class.
Other possible arguments fed into logl ik in order to compute the log-likelihood.
corrected Logical, perform the finite sample correction?
k Numeric, the penalty per parameter to be used; the default is the classical AIC.
Details

The following formula is used for VGLMs: —2log-likelihood + knpq., Where nyq, represents the
number of parameters in the fitted model, and & = 2 for the usual AIC. One could assign k = log(n)
(n the number of observations) for the so-called BIC or SBC (Schwarz’s Bayesian criterion). This
is the function AICv1im().

This code relies on the log-likelihood being defined, and computed, for the object. When comparing
fitted objects, the smaller the AIC, the better the fit. The log-likelihood and hence the AIC is only
defined up to an additive constant.

Any estimated scale parameter (in GLM parlance) is used as one parameter.

For VGAMs and CAO the nonlinear effective degrees of freedom for each smoothed component is
used. This formula is heuristic. These are the functions AICvgam() and AICcao().

The finite sample correction is usually recommended when the sample size is small or when the
number of parameters is large. When the sample size is large their difference tends to be negligible.
The correction is described in Hurvich and Tsai (1989), and is based on a (univariate) linear model
with normally distributed errors.

Value

Returns a numeric value with the corresponding AIC (or BIC, or ..., depending on k).
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Warning

This code has not been double-checked. The general applicability of AIC for the VGLM/VGAM
classes has not been developed fully. In particular, AIC should not be run on some VGAM family
functions because of violation of certain regularity conditions, etc.

Note

AIC has not been defined for QRR-VGLMs, yet.

Using AIC to compare posbinomial models with, e.g., posbernoulli. tb models, requires posbinomial (omit.constant
= TRUE). See posbinomial for an example. A warning is given if it suspects a wrong omit.constant
value was used.

Where defined, AICc(. . .) is the same as AIC(..., corrected = TRUE).

Author(s)

T. W. Yee.

References

Hurvich, C. M. and Tsai, C.-L. (1989). Regression and time series model selection in small samples,
Biometrika, 76, 297-307.

See Also

VGLMs are described in vglm-class; VGAMs are described in vgam-class; RR-VGLMs are
described in rrvglm-class; AIC, BICvlm, TICvlm, drop1.vglm, extractAIC.vglm.

Examples

pneumo <- transform(pneumo, let = log(exposure.time))
(fit1 <- vglm(cbind(normal, mild, severe) ~ let,
cumulative(parallel = TRUE, reverse = TRUE), data = pneumo))
coef (fitl, matrix = TRUE)
AIC(fit1)
AICc(fit1) # Quick way
AIC(fit1, corrected = TRUE) # Slow way
(fit2 <- vglm(cbind(normal, mild, severe) ~ let,
cumulative(parallel = FALSE, reverse = TRUE), data = pneumo))
coef (fit2, matrix = TRUE)
AIC(fit2)
AICc(fit2)
AIC(fit2, corrected = TRUE)
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alogitlink Arcsine—Logit Link Mixtures

Description

Computes some arcsine—logit mixture link transformations, including their inverse and the first few
derivatives.

Usage

alogitlink(theta, bvalue = NULL, taumix.logit =1,
tol = 1e-13, nmax = 99, inverse = FALSE, deriv = 0,
short = TRUE, tag = FALSE, c10 = c(4, -pi))
lcalogitlink(theta, bvalue = NULL, pmix.logit = 0.01,
tol = 1e-13, nmax = 99, inverse = FALSE, deriv = 0,
short = TRUE, tag = FALSE, c10 = c(4, -pi))

Arguments
theta Numeric or character. See below for further details.
bvalue See Links.

taumix.logit  Numeric, of length 1. Mixing parameter assigned to logitlink. Then 1 -
exp(-taumix.log * theta) is used to weight asinlink. Thus a O value will
result in logitlink and a very large numeric such as 1e4 should be roughly
equivalent to asinlink over almost all of the parameter space.

pmix.logit Numeric, of length 1. Mixing probability assigned to logitlink. Then 1 -
pmix.logit isused to weight asinlink. Thus a 0 value will resultin asinlink.
and 1 is equivalent to logitlink.

tol, nmax Arguments fed into a function implementing a vectorized bisection method.

inverse, deriv, short, tag
Details at Links.

clo See asinlink and logitlink.

Details

lcalogitlink is a linear combination (LC) of asinlink and logitlink.

Value

The following holds for the LC variant. For deriv >=0, (1 - pmix.logit) * asinlink(p, deriv
=deriv) + pmix.logit * logitlink(p, deriv =deriv) when inverse = FALSE, and if inverse
= TRUE then a nonlinear equation is solved for the probability, given eta. For deriv =1, then the
function returns d eta / d theta as a function of theta if inverse = FALSE, else if inverse = TRUE
then it returns the reciprocal.
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Warning

The default values for taumix.logit and pmix.logit may change in the future. The name and
order of the arguments may change too.

Author(s)
Thomas W. Yee

References

Hauck, J. W. W. and A. Donner (1977). Wald’s test as applied to hypotheses in logit analysis.
Journal of the American Statistical Association, 72, 851-853.

See Also

asinlink, logitlink, Links, probitlink, clogloglink, cauchitlink, binomialff, sloglink,
hdeff, https://www.cia.gov/index.html.

Examples

p <- seq(0.01, 0.99, length= 10)
alogitlink(p)
max (abs(alogitlink(alogitlink(p), inv = TRUE) - p)) # @2

## Not run:

par(mfrow = c(2, 2), lwd = (mylwd <- 2))
y <- seq(-4, 4, length = 100)

p <- seq(0.01, 0.99, by = 0.01)

for (d in 0:1) {
matplot(p, cbind(logitlink(p, deriv = d), probitlink(p, deriv = d)),
type = "n", col = "blue”, ylab = "transformation”,
las = 1, main = if (d == @) "Some probability link functions”
else "First derivative")
lines(p, logitlink(p, deriv = d), col = "green")
lines(p, probitlink(p, deriv = d), col = "blue")
lines(p, clogloglink(p, deriv = d), col = "tan")
lines(p, alogitlink(p, deriv = d), col = "red3")
if (d ==0) {
abline(v = 0.5, h = @0, 1ty = "dashed")
legend(@, 4.5, c("logitlink"”, "probitlink"”, "clogloglink",
"alogitlink"), lwd = mylwd,
col = c("green”, "blue", "tan", "red3"))

} else
abline(v = 0.5, 1wd = 0.5, col = "gray")
3

for (d in 9) {
matplot(y, cbind( logitlink(y, deriv = d, inverse = TRUE),
probitlink(y, deriv = d, inverse = TRUE)),

type = "n", col = "blue”, xlab = "transformation”, ylab = "p",
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main = if (d == @) "Some inverse probability link functions”
else "First derivative”, las=1)
lines(y, logitlink(y, deriv = d, inverse = TRUE), col = "green")

lines(y, probitlink(y, deriv = d, inverse = TRUE), col = "blue")
lines(y, clogloglink(y, deriv = d, inverse = TRUE), col = "tan")
lines(y, alogitlink(y, deriv = d, inverse = TRUE), col = "red3")

if (d ==0) {
abline(h = 0.5, v = @, 1wd = 0.5, col = "gray")
legend(-4, 1, c("logitlink”, "probitlink"”, "clogloglink”,
"alogitlink"), lwd = mylwd,
col = c("green”, "blue", "tan", "red3"))
}

}
par(lwd = 1)

## End(Not run)

altered Altered, Inflated, Truncated and Deflated Values in GAITD Regression

Description

Return the altered, inflated, truncated and deflated values in a GAITD regression object, else test
whether the model is altered, inflated, truncated or deflated.

Usage
altered(object, ...)
inflated(object, ...)
truncated(object, ...)
is.altered(object, ...)
is.deflated(object, ...)
is.inflated(object, ...)
is.truncated(object, ...)
Arguments
object an object of class "vglm". Currently only a GAITD regression object returns
valid results of these functions.
any additional arguments, to future-proof this function.
Details

Yee and Ma (2023) propose GAITD regression where values from four (or seven since there are
parametric and nonparametric forms) disjoint sets are referred to as special. These extractor func-

tions return one set each; they are the alter, inflate, truncate, deflate (and sometimes max. support)

arguments from the family function.
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Value

Returns one type of ‘special’ sets associated with GAITD regression. This is a vector, else a list for
truncation. All three sets are returned by specialsvglm.

Warning

Some of these functions are subject to change. Only family functions beginning with "gaitd” will
work with these functions, hence zipoisson fits will return FALSE or empty values.

References

Yee, T. W. and Ma, C. (2024). Generally altered, inflated, truncated and deflated regression. Statis-
tical Science, 39, 568—588.

See Also

vglm, vglm-class, specialsvglm, gaitdpoisson, gaitdlog, gaitdzeta, Gaitdpois.

Examples

## Not run:
abdata <- data.frame(y = 0:7, w = c(182, 41, 12, 2, 2, @, @, 1))
fitl <- vglm(y ~ 1, gaitdpoisson(a.mix = @),
data = abdata, weight = w, subset = w > 0)
specials(fitl) # All three sets
altered(fit1) # Subject to change
inflated(fit1) # Subject to change
truncated(fit1) # Subject to change
is.altered(fit1)
is.inflated(fit1)
is.truncated(fit1)
## End(Not run)

amlbinomial Binomial Logistic Regression by Asymmetric Maximum Likelihood
Estimation

Description

Binomial quantile regression estimated by maximizing an asymmetric likelihood function.

Usage

amlbinomial(w.aml = 1, parallel = FALSE, digw = 4, link = "logitlink")
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Arguments
w.aml Numeric, a vector of positive constants controlling the percentiles. The larger
the value the larger the fitted percentile value (the proportion of points below
the “w-regression plane”). The default value of unity results in the ordinary
maximum likelihood (MLE) solution.
parallel If w. aml has more than one value then this argument allows the quantile curves
to differ by the same amount as a function of the covariates. Setting this to be
TRUE should force the quantile curves to not cross (although they may not cross
anyway). See CommonVGAMffArguments for more information.
digw Passed into Round as the digits argument for the w.aml values; used cosmeti-
cally for labelling.
link See binomialff.
Details

The general methodology behind this VGAM family function is given in Efron (1992) and full
details can be obtained there. This model is essentially a logistic regression model (see binomialff)
but the usual deviance is replaced by an asymmetric squared error loss function; it is multiplied by
w.aml for positive residuals. The solution is the set of regression coefficients that minimize the
sum of these deviance-type values over the data set, weighted by the weights argument (so that it
can contain frequencies). Newton-Raphson estimation is used here.

Value

An object of class "vglmff"” (see vglmff-class). The object is used by modelling functions such
as vglmand vgam.

Warning

If w.aml has more than one value then the value returned by deviance is the sum of all the
(weighted) deviances taken over all the w.aml values. See Equation (1.6) of Efron (1992).

Note

On fitting, the extra slot has list components "w.aml" and "percentile”. The latter is the percent
of observations below the “w-regression plane”, which is the fitted values. Also, the individual
deviance values corresponding to each element of the argument w. aml is stored in the extra slot.

For amlbinomial objects, methods functions for the generic functions qtplot and cdf have not
been written yet.

See amlpoisson about comments on the jargon, e.g., expectiles etc.

In this documentation the word quantile can often be interchangeably replaced by expectile (things
are informal here).

Author(s)

Thomas W. Yee
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References

Efron, B. (1992). Poisson overdispersion estimates based on the method of asymmetric maximum
likelihood. Journal of the American Statistical Association, 87, 98—107.

See Also

amlpoisson, amlexponential, amlnormal, extlogF1, alaplacel, denorm.

Examples

# Example: binomial data with lots of trials per observation
set.seed(1234)
sizevec <- rep(100, length = (nn <- 200))
mydat <- data.frame(x = sort(runif(nn)))
mydat <- transform(mydat,
prob = logitlink(-0 + 2.5%x + x*2, inverse = TRUE))

mydat <- transform(mydat, y = rbinom(nn, size = sizevec, prob = prob))
(fit <- vgam(cbind(y, sizevec - y) ~ s(x, df = 3),

amlbinomial(w = c(0.01, 0.2, 1, 5, 60)),

mydat, trace = TRUE))
fit@extra

## Not run:
par(mfrow = c(1,2))
# Quantile plot
with(mydat, plot(x, jitter(y), col = "blue”, las = 1, main =
paste(paste(round(fit@extra$percentile, digits = 1), collapse = ", "),
"percentile-expectile curves”)))
with(mydat, matlines(x, 100 * fitted(fit), lwd = 2, col = "blue”, lty=1))

# Compare the fitted expectiles with the quantiles
with(mydat, plot(x, jitter(y), col = "blue"”, las = 1, main =
paste(paste(round(fit@extra$percentile, digits = 1), collapse = ", "),
"percentile curves are red"”)))
with(mydat, matlines(x, 100 * fitted(fit), lwd = 2, col = "blue”, 1ty = 1))

for (ii in fit@extra$percentile)
with(mydat, matlines(x, 100 =*
gbinom(p = ii/100, size = sizevec, prob = prob) / sizevec,
col = "red”, lwd = 2, 1ty = 1))

## End(Not run)

amlexponential Exponential Regression by Asymmetric Maximum Likelihood Estima-
tion

Description

Exponential expectile regression estimated by maximizing an asymmetric likelihood function.
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Usage

amlexponential(w.aml = 1, parallel = FALSE, imethod = 1, digw = 4,
link = "loglink")

Arguments
w.aml Numeric, a vector of positive constants controlling the expectiles. The larger the
value the larger the fitted expectile value (the proportion of points below the “w-
regression plane”). The default value of unity results in the ordinary maximum
likelihood (MLE) solution.
parallel If w. aml has more than one value then this argument allows the quantile curves
to differ by the same amount as a function of the covariates. Setting this to be
TRUE should force the quantile curves to not cross (although they may not cross
anyway). See CommonVGAMffArguments for more information.
imethod Integer, either 1 or 2 or 3. Initialization method. Choose another value if con-
vergence fails.
digw Passed into Round as the digits argument for the w.aml values; used cosmeti-
cally for labelling.
link See exponential and the warning below.
Details

The general methodology behind this VGAM family function is given in Efron (1992) and full
details can be obtained there. This model is essentially an exponential regression model (see
exponential) but the usual deviance is replaced by an asymmetric squared error loss function;
it is multiplied by w.aml for positive residuals. The solution is the set of regression coefficients
that minimize the sum of these deviance-type values over the data set, weighted by the weights
argument (so that it can contain frequencies). Newton-Raphson estimation is used here.

Value
An object of class "vglmff"” (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Warning

Note that the 1ink argument of exponential and amlexponential are currently different: one is
the rate parameter and the other is the mean (expectile) parameter.

If w.aml has more than one value then the value returned by deviance is the sum of all the
(weighted) deviances taken over all the w.aml values. See Equation (1.6) of Efron (1992).

Note

On fitting, the extra slot has list components "w.aml"” and "percentile”. The latter is the percent
of observations below the “w-regression plane”, which is the fitted values. Also, the individual
deviance values corresponding to each element of the argument w. aml is stored in the extra slot.
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For amlexponential objects, methods functions for the generic functions qtplot and cdf have not
been written yet.

See amlpoisson about comments on the jargon, e.g., expectiles etc.

In this documentation the word quantile can often be interchangeably replaced by expectile (things
are informal here).

Author(s)
Thomas W. Yee

References

Efron, B. (1992). Poisson overdispersion estimates based on the method of asymmetric maximum
likelihood. Journal of the American Statistical Association, 87, 98—107.

See Also

exponential, amlbinomial, amlpoisson, amlnormal, extlogF1, alaplacel, lms.bcg, deexp.

Examples

nn <- 2000
mydat <- data.frame(x = seq(@, 1, length = nn))
mydat <- transform(mydat,

mu = loglink(-@ + 1.5%x + 0.2%x*2, inverse = TRUE))
mydat <- transform(mydat, mu = loglink(@ - sin(8*x), inverse = TRUE))
mydat <- transform(mydat, y = rexp(nn, rate = 1/mu))
(fit <- vgam(y ~ s(x, df=5), amlexponential(w=c(@.001, 0.1, 0.5, 5, 60)),

mydat, trace = TRUE))

fit@extra

## Not run: # These plots are against the sqrt scale (to increase clarity)
par(mfrow = c(1,2))
# Quantile plot
with(mydat, plot(x, sqrt(y), col = "blue", las = 1, main =
paste(paste(round(fit@extra$percentile, digits = 1), collapse=", "),
"percentile-expectile curves”)))
with(mydat, matlines(x, sqrt(fitted(fit)), lwd = 2, col = "blue”, 1lty=1))

# Compare the fitted expectiles with the quantiles
with(mydat, plot(x, sqrt(y), col = "blue", las = 1, main =
paste(paste(round(fit@extra$percentile, digits = 1), collapse=", "),
"percentile curves are orange")))
with(mydat, matlines(x, sqrt(fitted(fit)), lwd = 2, col = "blue”, lty=1))

for (ii in fit@extra$percentile)
with(mydat, matlines(x, sqrt(gexp(p = ii/100, rate = 1/mu)),
col = "orange"))
## End(Not run)
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amlnormal Asymmetric Least Squares Quantile Regression

Description

Asymmetric least squares, a special case of maximizing an asymmetric likelihood function of a
normal distribution. This allows for expectile/quantile regression using asymmetric least squares
error loss.

Usage

amlnormal(w.aml = 1, parallel = FALSE, lexpectile = "identitylink”,
iexpectile = NULL, imethod = 1, digw = 4)

Arguments
w.aml Numeric, a vector of positive constants controlling the percentiles. The larger
the value the larger the fitted percentile value (the proportion of points below
the “w-regression plane”). The default value of unity results in the ordinary
least squares (OLS) solution.
parallel If w. aml has more than one value then this argument allows the quantile curves

to differ by the same amount as a function of the covariates. Setting this to be
TRUE should force the quantile curves to not cross (although they may not cross
anyway). See CommonVGAMffArguments for more information.

lexpectile, iexpectile
See CommonVGAMffArguments for more information.

imethod Integer, either 1 or 2 or 3. Initialization method. Choose another value if con-
vergence fails.

digw Passed into Round as the digits argument for the w.aml values; used cosmeti-
cally for labelling.

Details

This is an implementation of Efron (1991) and full details can be obtained there. Equation numbers
below refer to that article. The model is essentially a linear model (see 1m), however, the asymmetric
squared error loss function for a residual r is 72 if » < 0 and wr? if 7 > 0. The solution is the set of
regression coefficients that minimize the sum of these over the data set, weighted by the weights
argument (so that it can contain frequencies). Newton-Raphson estimation is used here.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglmand vgam.
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Note

On fitting, the extra slot has list components "w.aml"” and "percentile”. The latter is the percent
of observations below the “w-regression plane”, which is the fitted values.

One difficulty is finding the w.aml value giving a specified percentile. One solution is to fit the
model within a root finding function such as uniroot; see the example below.

For amlnormal objects, methods functions for the generic functions qtplot and cdf have not been
written yet.

See the note in amlpoisson on the jargon, including expectiles and regression quantiles.

The deviance slot computes the total asymmetric squared error loss (2.5). If w. aml has more than
one value then the value returned by the slot is the sum taken over all the w.aml values.

This VGAM family function could well be renamed amlnormal () instead, given the other function
names amlpoisson, amlbinomial, etc.

In this documentation the word guantile can often be interchangeably replaced by expectile (things
are informal here).

Author(s)
Thomas W. Yee

References

Efron, B. (1991). Regression percentiles using asymmetric squared error loss. Statistica Sinica, 1,
93-125.

See Also

amlpoisson, amlbinomial, amlexponential, bmi.nz, extlogF1, alaplacel, denorm, 1ms.bcn
and similar variants are alternative methods for quantile regression.

Examples

## Not run:

# Example 1

000 <- with(bmi.nz, order(age))

bmi.nz <- bmi.nz[ooo, ] # Sort by age

(fit <- vglm(BMI ~ sm.bs(age), amlnormal(w.aml = @.1), bmi.nz))
fit@extra # Gives the w value and the percentile

coef(fit, matrix = TRUE)

# Quantile plot
with(bmi.nz, plot(age, BMI, col = "blue”, main =
paste(round(fit@extra$percentile, digits = 1),
"expectile-percentile curve”)))
with(bmi.nz, lines(age, c(fitted(fit)), col = "black"))

# Example 2
# Find the w values that give the 25, 50 and 75 percentiles
find.w <- function(w, percentile = 50) {
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fit2 <- vglm(BMI ~ sm.bs(age), amlnormal(w = w), data = bmi.nz)
fit2@extra$percentile - percentile

3

# Quantile plot

with(bmi.nz, plot(age, BMI, col = "blue”, las = 1, main =

"25, 50 and 75 expectile-percentile curves”))

for (myp in c(25, 50, 75)) {

# Note: uniroot() can only find one root at a time
bestw <- uniroot(f = find.w, interval = c(1/10%4, 10%4),

percentile = myp)

fit2 <- vglm(BMI ~ sm.bs(age), amlnormal(w = bestw$root), bmi.nz)
with(bmi.nz, lines(age, c(fitted(fit2)), col = "orange"))

# Example 3; this is Example 1 but with smoothing splines and

# a vector w and a parallelism assumption.

000 <- with(bmi.nz, order(age))

bmi.nz <- bmi.nz[ooo, ] # Sort by age

fit3 <- vgam(BMI ~ s(age, df = 4), data = bmi.nz, trace = TRUE,
amlnormal(w = c(@.1, 1, 10), parallel = TRUE))

fit3@extra # The w values, percentiles and weighted deviances

# The linear components of the fit; not for human consumption:
coef (fit3, matrix = TRUE)

# Quantile plot
with(bmi.nz, plot(age, BMI, col="blue"”, main =
paste(paste(round(fit3@extra$percentile, digits = 1), collapse = ", "),
"expectile-percentile curves”)))
with(bmi.nz, matlines(age, fitted(fit3), col = 1:fit3@extras$M, lwd = 2))
with(bmi.nz, lines(age, c(fitted(fit )), col "black")) # For comparison

## End(Not run)

amlpoisson Poisson Regression by Asymmetric Maximum Likelihood Estimation

Description

Poisson quantile regression estimated by maximizing an asymmetric likelihood function.

Usage

amlpoisson(w.aml = 1, parallel = FALSE, imethod = 1, digw = 4,
link = "loglink")

Arguments

w.aml Numeric, a vector of positive constants controlling the percentiles. The larger
the value the larger the fitted percentile value (the proportion of points below
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the “w-regression plane”). The default value of unity results in the ordinary
maximum likelihood (MLE) solution.

parallel If w. aml has more than one value then this argument allows the quantile curves
to differ by the same amount as a function of the covariates. Setting this to be
TRUE should force the quantile curves to not cross (although they may not cross
anyway). See CommonVGAMffArguments for more information.

imethod Integer, either 1 or 2 or 3. Initialization method. Choose another value if con-
vergence fails.
digw Passed into Round as the digits argument for the w.aml values; used cosmeti-
cally for labelling.
link See poissonff.
Details

This method was proposed by Efron (1992) and full details can be obtained there. The model
is essentially a Poisson regression model (see poissonff) but the usual deviance is replaced by
an asymmetric squared error loss function; it is multiplied by w.aml for positive residuals. The
solution is the set of regression coefficients that minimize the sum of these deviance-type values
over the data set, weighted by the weights argument (so that it can contain frequencies). Newton-
Raphson estimation is used here.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglmand vgam.

Warning

If w.aml has more than one value then the value returned by deviance is the sum of all the
(weighted) deviances taken over all the w.aml values. See Equation (1.6) of Efron (1992).

Note

On fitting, the extra slot has list components "w.aml" and "percentile”. The latter is the percent
of observations below the “w-regression plane”, which is the fitted values. Also, the individual
deviance values corresponding to each element of the argument w. aml is stored in the extra slot.

For amlpoisson objects, methods functions for the generic functions gtplot and cdf have not been
written yet.

About the jargon, Newey and Powell (1987) used the name expectiles for regression surfaces ob-
tained by asymmetric least squares. This was deliberate so as to distinguish them from the original
regression quantiles of Koenker and Bassett (1978). Efron (1991) and Efron (1992) use the general
name regression percentile to apply to all forms of asymmetric fitting. Although the asymmetric
maximum likelihood method very nearly gives regression percentiles in the strictest sense for the
normal and Poisson cases, the phrase quantile regression is used loosely in this VGAM documen-
tation.

In this documentation the word quantile can often be interchangeably replaced by expectile (things
are informal here).
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Author(s)
Thomas W. Yee

References

Efron, B. (1991). Regression percentiles using asymmetric squared error loss. Statistica Sinica, 1,
93-125.

Efron, B. (1992). Poisson overdispersion estimates based on the method of asymmetric maximum
likelihood. Journal of the American Statistical Association, 87, 98—107.

Koenker, R. and Bassett, G. (1978). Regression quantiles. Econometrica, 46, 33-50.

Newey, W. K. and Powell, J. L. (1987). Asymmetric least squares estimation and testing. Econo-
metrica, 55, 819-847.

See Also

amlnormal, amlbinomial, extlogF1, alaplacel.

Examples

set.seed(1234)

mydat <- data.frame(x = sort(runif(nn <- 200)))

mydat <- transform(mydat, y = rpois(nn, exp(@ - sin(8+*x))))

(fit <- vgam(y ~ s(x), fam = amlpoisson(w.aml = c(0.02, 0.2, 1, 5, 50)),
mydat, trace = TRUE))

fit@extra

## Not run:
# Quantile plot
with(mydat, plot(x, jitter(y), col = "blue”, las = 1, main =
paste(paste(round(fit@extra$percentile, digits = 1), collapse = ", "),
"percentile-expectile curves”)))
with(mydat, matlines(x, fitted(fit), lwd = 2))
## End(Not run)

anova.vglm Analysis of Deviance for Vector Generalized Linear Model Fits

Description

Compute an analysis of deviance table for one or more vector generalized linear model fits.

Usage

## S3 method for class 'vglm'
anova(object, ..., type = c("I11", "I1", "IILI", 2, 1, 3),
test = c("LRT", "none"), trydev = TRUE, silent = TRUE)
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Arguments

object, ... objects of class vglm, typically the result of a call to vglm, or a list of objects
for the "vglmlist” method. Each model must have an intercept term. If
"vglmlist” is used then type = 1 or type = "I" must be specified.

type character or numeric; any one of the (effectively three) choices given. Note that
anova.glmhas 1 or "I" as its default; and that Anova.glm() in car (that is, the
car package) has 2 or "II" as its default (and allows for type = "III"), so one
can think of this function as a combination of anova.glm and Anova.glm() in
car, but with the default of the latter. See Details below for more information.

test a character string, (partially) matching one of "LRT" and "none”. In the future
it is hoped that "Rao” be also supported, to conduct score tests. The first value
is the default.

trydev logical; if TRUE then the deviance is used if possible. Note that only a few
VGAM family functions have a deviance that is defined and implemented. Set-
ting it FALSE means the log-likelihood will be used.

silent logical; if TRUE then any warnings will be suppressed. These may arise by IRLS
iterations not converging during the fitting of submodels. Setting it FALSE means
that any warnings are given.

Details

anova.vglmis intended to be similar to anova. glm so specifying a single object and type = 1 gives
a sequential analysis of deviance table for that fit. By analysis of deviance, it is meant loosely that
if the deviance of the model is not defined or implemented, then twice the difference between the
log-likelihoods of two nested models remains asymptotically chi-squared distributed with degrees
of freedom equal to the difference in the number of parameters of the two models. Of course, the
usual regularity conditions are assumed to hold. For Type I, the analysis of deviance table has the
reductions in the residual deviance as each term of the formula is added in turn are given in as the
rows of a table, plus the residual deviances themselves. Type I or sequential tests (as in anova.glm).
are computationally the easiest of the three methods. For this, the order of the terms is important,
and the each term is added sequentially from first to last.

The Anova() function in car allows for testing Type Il and Type III (SAS jargon) hypothesis tests,
although the definitions used are not precisely that of SAS. As car notes, Type I rarely test interest-
ing hypotheses in unbalanced designs. Type III enter each term /ast, keeping all the other terms in
the model.

Type 1II tests, according to SAS, add the term after all other terms have been added to the model
except terms that contain the effect being tested; an effect is contained in another effect if it can be
derived by deleting variables from the latter effect. Type II tests are currently the default.

As in anova.glm, but not as Anova.glm() in car, if more than one object is specified, then the
table has a row for the residual degrees of freedom and deviance for each model. For all but the first
model, the change in degrees of freedom and deviance is also given. (This only makes statistical
sense if the models are nested.) It is conventional to list the models from smallest to largest, but this
is up to the user. It is necessary to have type = 1 with more than one objects are specified.

See anova. glm for more details and warnings. The VGAM package now implements full likelihood
models only, therefore no dispersion parameters are estimated.
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Value

An object of class "anova" inheriting from class "data.frame".

Warning

See anova.glm. Several VGAM family functions implement distributions which do not satisfying
the usual regularity conditions needed for the LRT to work. No checking or warning is given for
these.

As car says, be careful of Type III tests because they violate marginality. Type II tests (the default)
do not have this problem.

Note

It is possible for this function to stop when type = 2 or 3, e.g., anova(vglm(cans ~ myfactor,
poissonff, data =boxcar)) where myfactor is a factor.

The code was adapted directly from anova.glm and Anova.glm() in car by T. W. Yee. Hence the
Type II and Type III tests do not correspond precisely with the SAS definition.

See Also

anova.glm, stat.anova, stats:::print.anova, Anova.glm() in car if car is installed, vglm,
lrtest, add1.vglm,dropl.vglm, 1Irt.stat.vlm, score.stat.vlim,wald.stat.vlm, backPain2,
update.

Examples

# Example 1: a proportional odds model fitted to pneumo.

set.seed(1)

pneumo <- transform(pneumo, let = log(exposure.time), x3 = runif(8))
fitl <- vglm(cbind(normal, mild, severe) ~ let , propodds, pneumo)
fit2 <- vglm(cbind(normal, mild, severe) ~ let + x3, propodds, pneumo)
fit3 <- vglm(cbind(normal, mild, severe) ~ let + x3, cumulative, pneumo)
anova(fit1, fit2, fit3, type = 1) # Remember to specify 'type'!!
anova(fit2)

anova(fit2, type = "I")

anova(fit2, type = "III")

# Example 2: a proportional odds model fitted to backPain2.
data("backPain2", package = "VGAM")

summary (backPain2)

fitlogit <- vglm(pain ~ x2 * x3 * x4, propodds, data = backPain2)
coef(fitlogit)

anova(fitlogit)

anova(fitlogit, type = "I")

anova(fitlogit, type = "III")
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AR1 Autoregressive Process with Order-1 Family Function

Description

Maximum likelihood estimation of the three-parameter AR-1 model

Usage

AR1(ldrift = "identitylink”, 1sd = "loglink"”, lvar = "loglink", 1lrho = "rhobitlink”,
idrift = NULL, isd = NULL, ivar = NULL, irho = NULL, imethod = 1,
ishrinkage = 0.95, type.likelihood = c("exact”, "conditional"”),
type.EIM = c("exact”, "approximate"), var.arg = FALSE, nodrift = FALSE,
print.EIM = FALSE, zero = c(if (var.arg) "var" else "sd”, "rho"))

Arguments

ldrift, 1sd, 1var, 1rho
Link functions applied to the scaled mean, standard deviation or variance, and
correlation parameters. The parameter drift is known as the drift, and it is a
scaled mean. See Links for more choices.

idrift, isd, ivar, irho
Optional initial values for the parameters. If failure to converge occurs then
try different values and monitor convergence by using trace = TRUE. For a S-
column response, these arguments can be of length S, and they are recycled
by the columns first. A value NULL means an initial value for each response is
computed internally.

ishrinkage, imethod, zero
See CommonVGAMffArguments for more information. The default for zero as-
sumes there is a drift parameter to be estimated (the default for that argument),
so if a drift parameter is suppressed and there are covariates, then zero will need
to be assigned the value 1 or 2 or NULL.

var.arg Same meaning as uninormal.

nodrift Logical, for determining whether to estimate the drift parameter. The default is
to estimate it. If TRUE, the drift parameter is set to 0 and not estimated.

type.EIM What type of expected information matrix (EIM) is used in Fisher scoring. By
default, this family function calls ARTEIM, which recursively computes the exact
EIM for the AR process with Gaussian white noise. See Porat and Friedlander
(1986) for further details on the exact EIM.
If type.EIM = "approximate” then approximate expression for the EIM of Au-
toregressive processes is used; this approach holds when the number of observa-
tions is large enough. Succinct details about the approximate EIM are delineated
at Porat and Friedlander (1987).

print.EIM Logical. If TRUE, then the first few EIMs are printed. Here, the result shown is
the sum of each EIM.
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type.likelihood
What type of likelihood function is maximized. The first choice (default) is
the sum of the marginal likelihood and the conditional likelihood. Choosing
the conditional likelihood means that the first observation is effectively ignored
(this is handled internally by setting the value of the first prior weight to be some
small positive number, e.g., 1.0e-6). See the note below.

Details
The AR-1 model implemented here has
Y1~ N(u,0?/(1 = p%),
and
Yi=p'+pYioq +ei,
where the e; are i.i.d. Normal(0, sd = ¢) random variates.

Here are a few notes: (1). A test for weak stationarity might be to verify whether 1/p lies outside the
unit circle. (2). The mean of all the Y; is u* /(1 — p) and these are returned as the fitted values. (3).
The correlation of all the Y; with Y;_1 is p. (4). The default link function ensures that —1 < p < 1.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Warning

Monitoring convergence is urged, i.e., set trace = TRUE.

Moreover, if the exact EIMs are used, set print.EIM = TRUE to compare the computed exact to the
approximate EIM.

Under the VGLM/VGAM approach, parameters can be modelled in terms of covariates. Particu-
larly, if the standard deviation of the white noise is modelled in this way, then type.EIM = "exact”
may certainly lead to unstable results. The reason is that white noise is a stationary process, and
consequently, its variance must remain as a constant. Consequently, the use of variates to model
this parameter contradicts the assumption of stationary random components to compute the exact
EIMs proposed by Porat and Friedlander (1987).

To prevent convergence issues in such cases, this family function internally verifies whether the
variance of the white noise remains as a constant at each Fisher scoring iteration. If this as-
sumption is violated and type.EIM = "exact" is set, then AR1 automatically shifts to type.EIM
= "approximate”. Also, a warning is accordingly displayed.

Note

Multiple responses are handled. The mean is returned as the fitted values.

Author(s)

Victor Miranda (exact method) and Thomas W. Yee (approximate method).
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References
Porat, B. and Friedlander, B. (1987). The Exact Cramer-Rao Bond for Gaussian Autoregressive
Processes. IEEE Transactions on Aerospace and Electronic Systems, AES-23(4), 537-542.

See Also

ARTEIM, vglm.control, dAR1, arima.sim.

Examples
## Not run:
#i## Example 1: using arima.sim() to generate a ©@-mean stationary time series.
nn <- 500
tsdata <- data.frame(x2 = runif(nn))

ar.coef.1 <- rhobitlink(-1.55, inverse = TRUE) # Approx -0.65
ar.coef.2 <- rhobitlink( 1.0, inverse = TRUE) # Approx 0.50
set.seed(1)
tsdata <- transform(tsdata,
index = 1:nn,
TS1 = arima.sim(nn, model = list(ar = ar.coef.1),
sd = exp(1.5)),
TS2 = arima.sim(nn, model = list(ar = ar.coef.2),
sd = exp(1.0 + 1.5 * x2)))

### An autoregressive intercept--only model. #iH
### Using the exact EIM, and "nodrift = TRUE" #i##
fitla <- vglm(TS1 ~ 1, data = tsdata, trace = TRUE,
AR1(var.arg = FALSE, nodrift = TRUE,
type.EIM = "exact”,
print.EIM = FALSE),
crit = "coefficients”)
Coef(fitla)
summary(fitla)

### Two responses. Here, the white noise standard deviation of TS2  #i#
### is modelled in terms of 'x2'. Also, 'type.EIM = exact'. #i#
fitlb <- vglm(cbind(TS1, TS2) ~ x2,
AR1(zero = NULL, nodrift = TRUE,
var.arg = FALSE,
type.EIM = "exact"),
constraints = list("(Intercept)” = diag(4),
"x2" = rbind(@, 0, 1, 0)),
data = tsdata, trace = TRUE, crit = "coefficients")
coef (fitlb, matrix = TRUE)
summary (fitl1b)

#i## Example 2: another stationary time series

nn <- 500

my.rho <- rhobitlink(1.0, inverse = TRUE)

my.mu <- 1.0

my.sd <- exp(1)

tsdata <- data.frame(index = 1:nn, TS3 = runif(nn))
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set.seed(2)
for (ii in 2:nn)
tsdata$TS3[ii] <- my.mu/(1 - my.rho) +
my.rho * tsdata$TS3[ii-1] + rnorm(1, sd = my.sd)
tsdata <- tsdatal-(1:ceiling(nn/5)), 1 # Remove the burn-in data:

### Fitting an AR(1). The exact EIMs are used.
fit2a <- vglm(TS3 ~ 1, AR1(type.likelihood = "exact”, # "conditional”,
type.EIM = "exact"),
data = tsdata, trace = TRUE, crit = "coefficients")

Coef(fit2a)
summary (fit2a) # SEs are useful to know

Coef(fit2a)["rho"] # Estimate of rho, for intercept-only models
my.rho # The 'truth' (rho)

Coef(fit2a)["drift"] # Estimate of drift, for intercept-only models
my.mu /(1 - my.rho) # The 'truth' (drift)

## End(Not run)

ARTEIM Computation of the Exact EIM of an Order-1 Autoregressive Process

Description

Computation of the exact Expected Information Matrix of the Autoregressive process of order-1
(AR(1)) with Gaussian white noise and stationary random components.

Usage

ARTEIM(x = NULL, var.arg = NULL, p.drift = NULL,
WNsd = NULL, ARcoeff1 = NULL, eps.porat = le-2)

Arguments

X A vector of quantiles. The gaussian time series for which the EIMs are com-
puted.
If multiple time series are being analyzed, then x must be a matrix where each
column allocates a response. That is, the number of columns (denoted as NO.5)
must match the number of responses.

var.arg Logical. Same as with AR1.

p.drift A numeric vector with the scaled mean(s) (commonly referred as drift) of the

AR process(es) in turn. Its length matches the number of responses.
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WNsd, ARcoeff1  Matrices. The standard deviation of the white noise, and the correlation (coeffi-
cient) of the AR(1) model, for each observation.

That is, the dimension for each matrix is N x NOS, where N is the number of
observations and NOS is the number of responses. Else, these arguments are
recycled.

eps.porat A very small positive number to test whether the standar deviation (WNsd) is
close enough to its value estimated in this function.

See below for further details.

Details

This function implements the algorithm of Porat and Friedlander (1986) to recursively compute the
exact expected information matrix (EIM) of Gaussian time series with stationary random compo-
nents.

By default, when the VGLM/VGAM family function AR1 is used to fit an AR(1) model via vglm,
Fisher scoring is executed using the approximate EIM for the AR process. However, this model
can also be fitted using the exact EIMs computed by ARTEIM.

Given N consecutive data points, yo, Y1, - .,yn—1 With probability density f(y), the Porat and
Friedlander algorithm calculates the EIMs [J,,—1(0)], for all 1 < n < N. This is done based on
the Levinson-Durbin algorithm for computing the orthogonal polynomials of a Toeplitz matrix. In
particular, for the AR(1) model, the vector of parameters to be estimated under the VGAM/VGLM
approach is

n = (u*,log(0?), rhobit(p)),

where o2 is the variance of the white noise and mu* is the drift parameter (See AR1 for further
details on this).

Consequently, for each observationn = 1, ..., N, the EIM, J,(0), has dimension 3 x 3, where the
diagonal elements are:

Jin,1,1) = E[-0%log f(y)/0(1*)?],

J[n,272] = E[_82 IOg f(y)/8(02)2]a

and

Jin,3.3) = E[-07log f(y)/0(p)?].

As for the off-diagonal elements, one has the usual entries, i.e.,

J[n,l,Q] = J[n,Q,l] = E[782 log f(y)/8028p],

etc.

If var.arg = FALSE, then o instead of o2 is estimated. Therefore, Jn,2,2)> Jin,1,2]> €tC., are corre-
spondingly replaced.

Once these expected values are internally computed, they are returned in an array of dimension
N x 1 x 6, of the form
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JLL =T T2 J13.30 J11,2)s J1,2.305 31

AR1EIM handles multiple time series, say NO.S. If this happens, then it accordingly returns an array
of dimension N x NOS x 6. Here, J[, k,], fork = 1,..., NOS, is a matrix of dimension N X 6,
which stores the EIMs for the kt"th response, as above, i.e.,

JLk = 2.2 I3 o)

the bandwith form, as per required by ART.

Value

An array of dimension N x NOS' x 6, as above.

This array stores the EIMs calculated from the joint density as a function of
6= (u*,0% p).

Nevertheless, note that, under the VGAM/VGLM approach, the EIMs must be correspondingly
calculated in terms of the linear predictors, 7.

Asymptotic behaviour of the algorithm

For large enough n, the EIMs, J,,(8), become approximately linear in n. That is, for some ng,

Jn(0) = Jpy (0) + (n —ng)J(0),  (%%)
where J () is a constant matrix.

This relationsihip is internally considered if a proper value of ng is determined. Different ways can
be adopted to find ng. In AR1EIM, this is done by checking the difference between the internally
estimated variances and the entered ones at WNsd. If this difference is less than eps.porat at some
iteration, say at iteration ng, then ARTEIM takes .J () as the last computed increment of .J,, (@), and
extraplotates Jy(0), for all & > ng using (). Else, the algorithm will complete the iterations for
1<n<N.

Finally, note that the rate of convergence reasonably decreases if the asymptotic relationship () is
used to compute Jy(0), & > ng. Normally, the number of operations involved on this algorithm is
proportional to N2,

See Porat and Friedlander (1986) for full details on the asymptotic behaviour of the algorithm.

Warning
Arguments WNsd, and ARcoeff1 are matrices of dimension N x NOS. Else, these arguments are
accordingly recycled.

Note

For simplicity, one can assume that the time series analyzed has a 0-mean. Consequently, where the
family function AR1 calls ARTEIM to compute the EIMs, the argument p.drift is internally set to
zero-vector, whereas X is centered by subtracting its mean value.
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Author(s)
V. Miranda and T. W. Yee.

References

Porat, B. and Friedlander, B. (1986). Computation of the Exact Information Matrix of Gaussian
Time Series with Stationary Random Components. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 54(1), 118-130.

See Also

ART.

Examples

set.seed(1)

nn <- 500

ARcoeff1 <- c(0.3, 0.25) # Will be recycled.

WNsd <- c(exp(1), exp(1.5)) # Will be recycled.

p.drift <- c(0, 0) # Zero-mean gaussian time series.

### Generate two (zero-mean) AR(1) processes ###

ts1 <= p.drift[1]/(1 - ARcoeff1[1]) +
arima.sim(model = list(ar = ARcoeff1[1]), n
sd = WNsd[11)

ts2 <- p.drift[2]/(1 - ARcoeff1[2]) +
arima.sim(model = list(ar = ARcoeff1[2]), n = nn,
sd = WNsd[21)

nn,

ARdata <- matrix(cbind(ts1, ts2), ncol = 2)

### Compute the exact EIMs: TWO responses. #it#
ExactEIM <- AR1EIM(x = ARdata, var.arg = FALSE, p.drift = p.drift,
WNsd = WNsd, ARcoeff1l = ARcoeff1)

### For response 1:
head(ExactEIM[, 1 ,1) # NOTICE THAT THIS IS A (nn x 6) MATRIX!

### For response 2:

head(ExactEIML, 2 ,1) # NOTICE THAT THIS IS A (nn x 6) MATRIX!
asinlink Arcsine Link Function
Description

Computes the arcsine link, including its inverse and the first few derivatives.
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Usage

asinlink(theta, bvalue = NULL, inverse = FALSE,
deriv = @, short = TRUE, tag = FALSE, cl10 = c(4, -pi))

Arguments
theta Numeric or character. See below for further details.
bvalue See Links.

inverse, deriv, short, tag
Details at Links.

cl10o Similar to sqrtlink. The defaultis intended to match 1calogitlink for binomialff
at binomial probabilities (theta) equal to 0.5.

Details

Function alogitlink gives some motivation for this link. However, the problem with this link

is that it is bounded by default between (-pi, pi) so that it can be unsuitable for regression.
This link is a scaled and centred CDF of the arcsine distribution. The centring is chosen so that
asinlink(@.5) is 0, and the scaling is chosen so that asinlink(@.5, deriv = 1) and logitlink(®.5,
deriv = 1) are equal (the value 4 actually), hence this link will operate similar to the logitlink
when close to 0.5.

Value

Similar to logitlink but using different formulas.

Warning

It is possible that the scaling might change in the future.

Author(s)
Thomas W. Yee

See Also

logitlink, alogitlink, Links, probitlink, clogloglink, cauchitlink, binomialff, sloglink,
hdeff.

Examples

p <- seq(@.01, 0.99, length= 10)
asinlink(p)
max(abs(asinlink(asinlink(p), inv = TRUE) - p)) # 02

## Not run:

par(mfrow = c(2, 2), lwd = (mylwd <- 2))
y <- seq(-4, 4, length = 100)

p <- seq(@.01, ©.99, by = 0.01)
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for (d in @0:1) {
matplot(p, cbind(logitlink(p, deriv = d), probitlink(p, deriv = d)),
type = "n", col = "blue”, ylab = "transformation”,
log = ifelse(d == 1, "y", ""),
las = 1, main = if (d == @) "Some probability link functions”
else "First derivative"”)
lines(p, logitlink(p, deriv = d), col = "green")
lines(p, probitlink(p, deriv = d), col = "blue")
lines(p, clogloglink(p, deriv = d), col = "tan")
lines(p, asinlink(p, deriv = d), col = "red3")
if (d ==0) {
abline(v = 0.5, h = 0, 1ty = "dashed”)
legend(@, 4.5, c("logitlink”, "probitlink”, "clogloglink",
"asinlink"), lwd = mylwd,
col = c("green”, "blue”, "tan", "red3"))

} else
abline(v = 0.5, 1lwd = 0.5, col = "gray")
3

for (d in 0) {
matplot(y, cbind( logitlink(y, deriv = d, inverse = TRUE),
probitlink(y, deriv = d, inverse = TRUE)),
type = "n", col = "blue”, xlab = "transformation”, ylab = "p",
main = if (d == @) "Some inverse probability link functions”
else "First derivative”, las=1)
lines(y, logitlink(y, deriv = d, inverse = TRUE), col = "green")
lines(y, probitlink(y, deriv = d, inverse = TRUE), col = "blue")
lines(y, clogloglink(y, deriv = d, inverse = TRUE), col = "tan")
lines(y, asinlink(y, deriv = d, inverse = TRUE), col = "red3")
if (d ==0) {
abline(h = 0.5, v = @, 1lwd = 0.5, col = "gray")
legend(-4, 1, c("logitlink”, "probitlink"”, "clogloglink”,
"asinlink"), lwd = mylwd,
col = c("green", "blue”, "tan", "red3"))

3

3
par(lwd = 1)

## End(Not run)
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auuc Auckland University Undergraduate Counts Data

Description

Undergraduate student enrolments at the University of Auckland in 1990.

Usage

data(auuc)
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Format
A data frame with 4 observations on the following 5 variables.
Commerce a numeric vector of counts.
Arts a numeric vector of counts.
SciEng a numeric vector of counts.

Law a numeric vector of counts.

Medicine a numeric vector of counts.

Details
Each student is cross-classified by their colleges (Science and Engineering have been combined)
and the socio-economic status (SES) of their fathers (1 = highest, down to 4 = lowest).

Source

Dr Tony Motrison.

References

Wild, C. J. and Seber, G. A. E. (2000). Chance Encounters: A First Course in Data Analysis and
Inference, New York: Wiley.

Examples

auuc

## Not run:
round(fitted(grc(auuc)))
round(fitted(grc(auuc, Rank = 2)))

## End(Not run)

aux.posbernoulli.t Auxiliary Function for the Positive Bernoulli Family Function with
Time Effects

Description

Returns behavioural effects indicator variables from a capture history matrix.

Usage

aux.posbernoulli.t(y, check.y = FALSE, rename = TRUE, name = "bei")
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Arguments

y

check.y

rename, name

Details

53

Capture history matrix. Rows are animals, columns are sampling occasions, and
values should be Os and 1s only.

Logical, if TRUE then some basic checking is performed.

If rename = TRUE then the behavioural effects indicator are named using the
value of name as the prefix. If FALSE then use the same column names as y.

This function can help fit certain capture—recapture models (commonly known as My, or My, (no
prefix h means it is an intercept-only model) in the literature). See posbernoulli. t for details.

Value

A list with the following components.

cap.histl A matrix the same dimension as y. In any particular row there are Os up to the first
capture. Then there are 1s thereafter.

capl A vector specifying which time occasion the animal was first captured.

y0i Number of noncaptures before the first capture.

yr0i Number of noncaptures after the first capture.

yrli Number of recaptures after the first capture.

See Also

posbernoulli.t, deermice.

Examples

# Fit a M_tbh model to the deermice data:
(pdata <- aux.posbernoulli.t(with(deermice,

cbind(y1, y2, y3, y4, y5, y6))))

deermice <- data.frame(deermice,

bei = @, # Add this
pdata$cap.hist1) # Incorporate these

head(deermice) # Augmented with behavioural effect indicator variables

tail(deermice)



54 backPain

backPain Data on Back Pain Prognosis, from Anderson (1984)

Description

Data from a study of patients suffering from back pain. Prognostic variables were recorded at
presentation and progress was categorised three weeks after treatment.

Usage

data(backPain)

Format

A data frame with 101 observations on the following 4 variables.

x2 length of previous attack.
x3 pain change.
x4 lordosis.

pain an ordered factor describing the progress of each patient with levels worse < same < slight.improvement
< moderate.improvement < marked.improvement < complete.relief.

Source

http://ideas.repec.org/c/boc/bocode/s419001.html

The data set and this help file was copied from gnm so that a vignette in VGAM could be run; the
analysis is described in Yee (2010).

The data frame backPain2 is a modification of backPain where the variables have been renamed
(x1 becomes x2, x2 becomes x3, x3 becomes x4) and converted into factors.

References

Anderson, J. A. (1984). Regression and Ordered Categorical Variables. J. R. Statist. Soc. B, 46(1),
1-30.

Yee, T. W. (2010). The VGAM package for categorical data analysis. Journal of Statistical Soft-
ware, 32, 1-34. doi:10.18637/jss.v032.110.

Examples

summary (backPain)
summary (backPain2)


https://doi.org/10.18637/jss.v032.i10
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beggs Bacon and Eggs Data

Description

Purchasing of bacon and eggs.

Usage
data(beggs)

Format
Data frame of a two way table.

b0, b1, b2, b3, b4 The b refers to bacon. The number of times bacon was purchased was 0, 1, 2, 3,
or 4.

e0, el, e2, e3, e4 The e refers to eggs. The number of times eggs was purchased was 0, 1, 2, 3, or
4.

Details

The data is from Information Resources, Inc., a consumer panel based in a large US city [see
Bell and Lattin (1998) for further details]. Starting in June 1991, the purchases in the bacon and
fresh eggs product categories for a sample of 548 households over four consecutive store trips was
tracked. Only those grocery shopping trips with a total basket value of at least five dollars was
considered. For each household, the total number of bacon purchases in their four eligible shopping
trips and the total number of egg purchases (usually a package of eggs) for the same trips, were
counted.

Source
Bell, D. R. and Lattin, J. M. (1998) Shopping Behavior and Consumer Preference for Store Price
Format: Why ‘Large Basket” Shoppers Prefer EDLP. Marketing Science, 17, 66-88.

References
Danabher, P. J. and Hardie, B. G. S. (2005). Bacon with Your Eggs? Applications of a New Bivariate
Beta-Binomial Distribution. American Statistician, 59(4), 282-286.

See Also

rrvglm, rcim, grc.

Examples

beggs
colSums(beggs)
rowSums (beggs)
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bell The Bell Series of Integers

Description

Returns the values of the Bell series.

Usage
bell(n)
Arguments
n Vector of non-negative integers. Values greater than 218 return an Inf. Non-
integers or negative values return a NaN.
Details

The Bell numbers emerge from a series expansion of exp(e* — 1) for real x. The first few values
are Bp = 1, By = 1, By = 2, B3 = 5, By = 15. The series increases quickly so that overflow
occurs when its argument is more than 218.

Value

This function returns B,,.

Author(s)
T. W. Yee

References

Bell, E. T. (1934). Exponential polynomials. Ann. Math., 35, 258-277.
Bell, E. T. (1934). Exponential numbers. Amer. Math. Monthly, 41, 411-419.

See Also
bellff, rbell.

Examples

## Not run:
plot(@:10, bell(0:10), log = "y", type = "h", col = "blue”)

## End(Not run)
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Benford Benford’s Distribution

Description

Density, distribution function, quantile function, and random generation for Benford’s distribution.

Usage
dbenf(x, ndigits = 1, log = FALSE)
pbenf(q, ndigits = 1, lower.tail = TRUE, log.p = FALSE)
gbenf(p, ndigits = 1, lower.tail = TRUE, log.p = FALSE)
rbenf(n, ndigits = 1)
Arguments
X, q Vector of quantiles. See ndigits.
p vector of probabilities.
n number of observations. A single positive integer. Else if length(n) > 1 then
the length is taken to be the number required.
ndigits Number of leading digits, either 1 or 2. If 1 then the support of the distribution
is {1,...,9}, else {10,...,99}.
log, log.p Logical. If 1og.p = TRUE then all probabilities p are given as log(p).
lower.tail Same meaning as in pnorm or gnorm.
Details

Benford’s Law (aka the significant-digit law) is the empirical observation that in many naturally
occuring tables of numerical data, the leading significant (nonzero) digit is not uniformly distributed
in {1,2,...,9}. Instead, the leading significant digit (= D, say) obeys the law

1
P(D =d) =logy (1 + d)

ford = 1,...,9. This means the probability the first significant digit is 1 is approximately 0.301,
etc.

Benford’s Law was apparently first discovered in 1881 by astronomer/mathematician S. Newcombe.
It started by the observation that the pages of a book of logarithms were dirtiest at the beginning
and progressively cleaner throughout. In 1938, a General Electric physicist called F. Benford re-
discovered the law on this same observation. Over several years he collected data from different
sources as different as atomic weights, baseball statistics, numerical data from Reader’s Digest, and
drainage areas of rivers.

Applications of Benford’s Law has been as diverse as to the area of fraud detection in accounting
and the design computers.

Benford’s distribution has been called “a” logarithmic distribution; see logff.
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Value
dbenf gives the density, pbenf gives the distribution function, and gbenf gives the quantile func-
tion, and rbenf generates random deviates.

Author(s)
T. W. Yee and Kai Huang

References

Benford, F. (1938). The Law of Anomalous Numbers. Proceedings of the American Philosophical
Society, 78, 551-572.

Newcomb, S. (1881). Note on the Frequency of Use of the Different Digits in Natural Numbers.
American Journal of Mathematics, 4, 39—40.

Examples

dbenf(x <- c(@:10, NA, NaN, -Inf, Inf))

pbenf (x)

## Not run:

XX <= 1:9

barplot(dbenf(xx), col = "lightblue”, xlab = "Leading digit"”,
ylab = "Probability”, names.arg = as.character(xx),
main = "Benford's distribution”, las = 1)

hist(rbenf(1000), border = "blue"”, prob = TRUE,
main = "1000 random variates from Benford's distribution”,
xlab = "Leading digit"”, sub="Red is the true probability”,
breaks = 0:9 + 0.5, ylim = c(0, 0.35), xlim = c(@, 10.0))

lines(xx, dbenf(xx), col = "red”, type = "h")

points(xx, dbenf(xx), col = "red")

## End(Not run)

Benini The Benini Distribution

Description

Density, distribution function, quantile function and random generation for the Benini distribution
with parameter shape.

Usage
dbenini(x, y@, shape, log = FALSE)
pbenini(q, y@, shape, lower.tail = TRUE, log.p = FALSE)
gbenini(p, y@, shape, lower.tail = TRUE, log.p = FALSE)

rbenini(n, y@, shape)
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Arguments
X, q vector of quantiles.
p vector of probabilities.
n number of observations. Same as runif.
yo the scale parameter y.
shape the positive shape parameter b.
log Logical. If 1og = TRUE then the logarithm of the density is returned.

lower.tail, log.p
Same meaning as in pnorm or gnorm.

Details
See benini1, the VGAM family function for estimating the parameter s by maximum likelihood
estimation, for the formula of the probability density function and other details.

Value
dbenini gives the density, pbenini gives the distribution function, gbenini gives the quantile
function, and rbenini generates random deviates.

Author(s)
T. W. Yee and Kai Huang

References

Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences,
Hoboken, NJ, USA: Wiley-Interscience.

See Also

beninil.

Examples

## Not run:

yo0 <- 1; shape <- exp(1)

xx <- seq(0.0, 4, len = 101)

plot(xx, dbenini(xx, y@ = y@, shape = shape), col = "blue”,
main = "Blue is density, orange is the CDF"”, type = "1",

sub = "Purple lines are the 10,20,...,90 percentiles”,
ylim = @:1, las = 1, ylab = "", xlab = "x")

abline(h = @, col = "blue”, 1ty = 2)

lines(xx, pbenini(xx, y@ = y@, shape = shape), col = "orange")

probs <- seq(@.1, 0.9, by = 0.1)
Q <- gbenini(probs, y@ = y@, shape = shape)
lines(Q, dbenini(Q, y@ = y@, shape = shape),
col = "purple”, lty = 3, type = "h")
pbenini(Q, y@ = y@, shape = shape) - probs # Should be all zero
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## End(Not run)

benini1l Benini Distribution Family Function

Description

Estimating the 1-parameter Benini distribution by maximum likelihood estimation.

Usage

beninil(y@ = stop("argument 'y@' must be specified”),
lshape = "loglink"”, ishape = NULL, imethod = 1,
zero = NULL, parallel = FALSE,
type.fitted = c("percentiles”, "Qlink"),
percentiles = 50)

Arguments
yo Positive scale parameter.
1shape Parameter link function and extra argument of the parameter b, which is the
shape parameter. See Links for more choices. A log link is the default because
b is positive.
ishape Optional initial value for the shape parameter. The default is to compute the

value internally.
imethod, zero, parallel

Details at CommonVGAMf fArguments.
type.fitted, percentiles

See CommonVGAMffArguments for information. Using "Qlink" is for quantile-
links in VGAMextra.

Details

The Benini distribution has a probability density function that can be written

fy) = 2sexp(—s[(log(y/y0))]) log(y/yo) /y

for 0 < yg < y, and shape s > 0. The cumulative distribution function for Y is

F(y) =1 — exp(—s|(log(y/y0))?])-

Here, Newton-Raphson and Fisher scoring coincide. The median of Y is now returned as the fitted
values, by default. This VGAM family function can handle a multiple responses, which is inputted
as a matrix.

On fitting, the extra slot has a component called y@ which contains the value of the y@ argument.
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Value
An object of class "vglmff"” (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Note
Yet to do: the 2-parameter Benini distribution estimates another shape parameter a too. Hence, the
code may change in the future.

Author(s)
T. W. Yee

References

Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences,
Hoboken, NJ, USA: Wiley-Interscience.

See Also

Benini.

Examples

yo <- 1; nn <- 3000

bdata <- data.frame(y = rbenini(nn, y@ = y@, shape = exp(2)))

fit <- vglm(y ~ 1, beninil(y@ = y@), data = bdata, trace = TRUE)
coef (fit, matrix = TRUE)

Coef(fit)

fit@extras$yo

c(head(fitted(fit), 1), with(bdata, median(y))) # Should be equal

Betabinom The Beta-Binomial Distribution

Description

Density, distribution function, and random generation for the beta-binomial distribution and the
inflated beta-binomial distribution.

Usage

dbetabinom(x, size, prob, rho = @, log = FALSE)

pbetabinom(q, size, prob, rho = @, log.p = FALSE)

rbetabinom(n, size, prob, rho = 0)

dbetabinom.ab(x, size, shapel, shape2, log = FALSE,
Inf.shape = exp(20), limit.prob = 0.5)

pbetabinom.ab(q, size, shapel, shape2, limit.prob = 0.5,
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log.p = FALSE)
rbetabinom.ab(n, size, shapel, shape2, limit.prob = 0.5,
.dontuse.prob = NULL)
dzoibetabinom(x, size, prob, rho = @, pstr@ = @, pstrsize = 0,
log = FALSE)
pzoibetabinom(q, size, prob, rho, pstr@ = 0, pstrsize = 0,
lower.tail = TRUE, log.p = FALSE)
rzoibetabinom(n, size, prob, rho = @, pstr@ = 0, pstrsize = 0)
dzoibetabinom.ab(x, size, shapel, shape2, pstr@ = 0@, pstrsize = 0,
log = FALSE)
pzoibetabinom.ab(q, size, shapel, shape2, pstr@ = 0, pstrsize = 0,
lower.tail = TRUE, log.p = FALSE)
rzoibetabinom.ab(n, size, shapel, shape2, pstr@ = @, pstrsize = 0)
Arguments
X, q vector of quantiles.
size number of trials.
n number of observations. Same as runif.
prob the probability of success 1. Must be in the unit closed interval [0, 1].
rho the correlation parameter p, which should be in the interval [0, 1). The default

shapel, shape2

value of 0 corresponds to the usual binomial distribution with probability prob.
Setting rho = 1 would set both shape parameters equal to 0, and the ratio /0,
which is actually NaN, is interpreted by Beta as 0.5. See the warning below.

the two (positive) shape parameters of the standard beta distribution. They are
called a and b in beta respectively. Note that shapel = prob*(1-rho)/rho
and shape2 = (1-prob)*(1-rho)/rho is an important relationship between the
parameters, so that the shape parameters are infinite by default because rho = 9;
hence 1imit.prob = prob is used to obtain the behaviour of the usual binomial
distribution.

log, log.p, lower.tail

Inf.shape

limit.prob

Same meaning as runif.

Numeric. A large value such that, if shapel or shape2 exceeds this, then special
measures are taken, e.g., calling dbinom. Also, if shapel or shape?2 is less than
its reciprocal, then special measures are also taken. This feature/approximation
is needed to avoid numerical problem with catastrophic cancellation of multiple
lbeta calls.

Numerical vector; recycled if necessary. If either shape parameters are Inf then
the binomial limit is taken, with shapel / (shapel + shape2) as the probability
of success. In the case where both are Inf this probability will be a NaN =
Inf/Inf, however, the value 1imit.prob is used instead. Hence the default for
dbetabinom.ab() is to assume that both shape parameters are equal as the limit
is taken (indeed, Beta uses 0.5). Note that for [dpr]betabinom(), because rho
= @ by default, then 1limit.prob = prob so that the beta-binomial distribution
behaves like the ordinary binomial distribution with respect to arguments size
and prob.
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.dontuse.prob  An argument that should be ignored and not used.

pstro Probability of a structual zero (i.e., ignoring the beta-binomial distribution). The
default value of pstr@ corresponds to the response having a beta-binomial dis-
tribuion inflated only at size.

pstrsize Probability of a structual maximum value size. The default value of pstrsize
corresponds to the response having a beta-binomial distribution inflated only at
0.
Details

The beta-binomial distribution is a binomial distribution whose probability of success is not a con-
stant but it is generated from a beta distribution with parameters shapel and shape2. Note that the
mean of this beta distribution is mu = shapel1/(shapel+shape2), which therefore is the mean or
the probability of success.

See betabinomial and betabinomialff, the VGAM family functions for estimating the parame-
ters, for the formula of the probability density function and other details.

For the inflated beta-binomial distribution, the probability mass function is

P(Y =y) = (1 — pstr0 — pstrsize) x BB(y) + pstr0 x I[y = 0] 4+ pstrsize x Iy = size]

where BB(y) is the probability mass function of the beta-binomial distribution with the same shape
parameters (pbetabinom.ab), pstro is the inflated probability at O and pstrsize is the inflated
probability at 1. The default values of pstr@ and pstrsize mean that these functions behave like
the ordinary Betabinom when only the essential arguments are inputted.

Value

dbetabinom and dbetabinom.ab give the density, pbetabinom and pbetabinom.ab give the dis-
tribution function, and rbetabinom and rbetabinom. ab generate random deviates.

dzoibetabinomand dzoibetabinom. ab give the inflated density, pzoibetabinomand pzoibetabinom. ab
give the inflated distribution function, and rzoibetabinom and rzoibetabinom.ab generate ran-
dom inflated deviates.

Warning
Setting rho = 1 is not recommended, however the code may be modified in the future to handle this
special case.

Note

pzoibetabinom, pzoibetabinom.ab, pbetabinom and pbetabinom.ab can be particularly slow.
The functions here ending in .ab are called from those functions which don’t. The simple trans-
formations 11 = a/(a + ) and p = 1/(1 + a + ) are used, where « and 3 are the two shape
parameters.

Author(s)
T. W. Yee and Xiangjie Xue
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See Also

Extbetabinom, betabinomial, betabinomialff, Zoabeta, Beta.

Examples
set.seed(1); rbetabinom(10, 100, prob = 0.5)
set.seed(1); rbinom(10, 100, prob = 0.5) # The same as rho = @

## Not run: N <- 9; xx <= @:N; s1 <- 2; s2 <-3

dy <- dbetabinom.ab(xx, size = N, shapel = s1, shape2 = s2)

barplot(rbind(dy, dbinom(xx, size = N, prob = s1 / (s1+s2))),
beside = TRUE, col = c("blue”,"green"), las = 1,

main = paste(”"Beta-binomial (size=",N,"”, shapel=", s1,
", shape2=", s2, ") (blue) vs\n",
" Binomial(size=", N, ", prob=", s1/(s1+s2), ") (green)",
sep = "),

names.arg = as.character(xx), cex.main = 0.8)
sum(dy * xx) # Check expected values are equal
sum(dbinom(xx, size = N, prob = s1 / (s1+s2)) * xx)

# Should be all 0:
cumsum(dy) - pbetabinom.ab(xx, N, shapel = s1, shape2 = s2)

y <- rbetabinom.ab(n = 1e4, size = N, shapel = s1, shape2 = s2)
ty <- table(y)
barplot(rbind(dy, ty / sum(ty)),

beside = TRUE, col = c("blue”, "orange"), las =1,

main = paste("Beta-binomial (size=", N, ", shapel=", s1,
", shape2=", s2, ") (blue) vs\n",

" Random generated beta-binomial(size=", N, ", prob=",

s1/(s1+s2), ") (orange)"”, sep = ""), cex.main = 0.8,

names.arg = as.character(xx))

N <- 1eb; size <- 20; pstr@ <- 0.2; pstrsize <- 0.2

kk <- rzoibetabinom.ab(N, size, s1, s2, pstr@, pstrsize)

hist(kk, probability = TRUE, border = "blue”, ylim = c(@, 0.25),
main = "Blue/green = inflated; orange = ordinary beta-binomial”,
breaks = -0.5 : (size + 0.5))

sum(kk == @) / N # Proportion of @

sum(kk == size) / N # Proportion of size
lines(@ : size,

dbetabinom.ab(@ : size, size, s1, s2), col = "orange”)
lines(@ : size, col = "green”, type = "b",

dzoibetabinom.ab(@ : size, size, s1, s2, pstr@, pstrsize))

## End(Not run)

betabinomial Beta-binomial Distribution Family Function
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Description

Fits a beta-binomial distribution by maximum likelihood estimation. The two parameters here are
the mean and correlation coefficient.

Usage

betabinomial (Imu = "logitlink”, 1lrho = "logitlink”,
irho = NULL, imethod = 1,
ishrinkage = 0.95, nsimEIM = NULL, zero = "rho")

Arguments

1mu, Irho Link functions applied to the two parameters. See Links for more choices. The
defaults ensure the parameters remain in (0, 1), however, see the warning below.
For 1rho, log1plink (with an offset log(size - 1) for 72) and cloglink may
be very good choices.

irho Optional initial value for the correlation parameter. If given, it must be in (0, 1),
and is recyled to the necessary length. Assign this argument a value if a con-
vergence failure occurs. Having irho = NULL means an initial value is obtained
internally, though this can give unsatisfactory results.

imethod An integer with value 1 or 2 or ..., which specifies the initialization method for
. If failure to converge occurs try the another value and/or else specify a value
for irho.

zero Specifies which linear/additive predictor is to be modelled as an intercept only.
If assigned, the single value can be either 1 or 2. The default is to have a single
correlation parameter. To model both parameters as functions of the covariates
assign zero = NULL. See CommonVGAMffArguments for more information.

ishrinkage, nsimEIM
See CommonVGAMffArguments for more information. The argument ishrinkage
is used only if imethod = 2. Using the argument nsimEIM may offer large ad-
vantages for large values of NV and/or large data sets.

Details

There are several parameterizations of the beta-binomial distribution. This family function directly
models the mean and correlation parameter, i.e., the probability of success. The model can be
written T|P = p ~ Binomial(N, p) where P has a beta distribution with shape parameters « and
B. Here, N is the number of trials (e.g., litter size), T = NY is the number of successes, and p is
the probability of a success (e.g., a malformation). That is, Y is the proportion of successes. Like
binomialff, the fitted values are the estimated probability of success (i.e., E[Y] and not E[T"]) and
the prior weights [V are attached separately on the object in a slot.

The probability function is

N\ B t N —t
t Be(a, f)
where ¢t = 0,1,..., N, and Be is the beta function with shape parameters « and 5. Recall Y =

T'/N is the real response being modelled.



66 betabinomial

The default model is 11 = logit(u) and 1y = logit(p) because both parameters lie between 0 and 1.
The mean (of Y)is p = pu = o/ (a4 3) and the variance (of Y) is 1(1—pu)(1+ (N —1)p)/N. Here,
the correlation p is given by 1/(1+ a+ ) and is the correlation between the N individuals within a
litter. A litter effect is typically reflected by a positive value of p. It is known as the over-dispersion
parameter.

This family function uses Fisher scoring. Elements of the second-order expected derivatives with
respect to « and 8 are computed numerically, which may fail for large o, 5, N or else take a long
time.

Value

An object of class "vglmff"” (see vglmff-class). The object is used by modelling functions such
as vglm.

Suppose fit is a fitted beta-binomial model. Then depvar(fit) are the sample proportions v,
fitted(fit) returns estimates of F(Y'), and weights(fit, type = "prior") returns the number
of trials V.

Warning

If the estimated rho parameter is close to O then a good solution is to use extbetabinomial. Or
you could try 1rho = "rhobitlink".

This family function is prone to numerical difficulties due to the expected information matrices
not being positive-definite or ill-conditioned over some regions of the parameter space. If problems
occur try setting irho to some numerical value, nsimEIM = 1080, say, or else use etastart argument
of vglm, etc.

Note

This function processes the input in the same way as binomialff. But it does not handle the case
N =1 very well because there are two parameters to estimate, not one, for each row of the input.
Cases where N = 1 can be omitted via the subset argument of vglm.

The extended beta-binomial distribution of Prentice (1986) implemented by extbetabinomial is
the preferred VGAM family function for BBD regression.

Author(s)
T. W. Yee

References
Moore, D. F. and Tsiatis, A. (1991). Robust estimation of the variance in moment methods for
extra-binomial and extra-Poisson variation. Biometrics, 47, 383—401.

See Also

extbetabinomial, betabinomialff, betabinomial.rho, Betabinom, binomialff, betaff,dirmultinomial,
logiplink, cloglink, lirat, simulate.vlm.
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Examples

# Example 1
bdata <- data.frame(N = 10, mu = 0.5, rho = 0.8)
bdata <- transform(bdata,

y = rbetabinom(100, size = N, prob = mu, rho = rho))
fit <- vglm(cbind(y, N-y) ~ 1, betabinomial, bdata, trace = TRUE)
coef (fit, matrix = TRUE)

Coef(fit)
head(cbind(depvar(fit), weights(fit, type = "prior")))

# Example 2

fit <- vglm(cbind(R, N-R) ~ 1, betabinomial, lirat,
trace = TRUE, subset = N > 1)

coef(fit, matrix = TRUE)

Coef(fit)

t(fitted(fit))

t(depvar(fit))

t(weights(fit, type = "prior"))

# Example 3, which is more complicated
lirat <- transform(lirat, fgrp = factor(grp))
summary(lirat) # Only 5 litters in group 3
fit2 <- vglm(cbind(R, N-R) ~ fgrp + hb, betabinomial(zero = 2),
data = lirat, trace = TRUE, subset = N > 1)
coef (fit2, matrix = TRUE)
## Not run: with(lirat, plot(hb[N > 1], fit2@misc$rho,
xlab = "Hemoglobin”, ylab = "Estimated rho"”,
pch = as.character(grp[N > 11), col = grp[N > 11))
## End(Not run)
## Not run: # cf. Figure 3 of Moore and Tsiatis (1991)
with(lirat, plot(hb, R / N, pch = as.character(grp), col = grp,
xlab = "Hemoglobin level”, ylab = "Proportion Dead"”,
main = "Fitted values (lines)”, las = 1))
smalldf <- with(lirat, lirat[N > 1, 1)
for (gp in 1:4) {
xx <- with(smalldf, hb[grp == gpl)
yy <- with(smalldf, fitted(fit2)[grp == gpl)
000 <- order(xx)
lines(xx[ooo], yy[ooo]l, col = gp, lwd = 2)
3
## End(Not run)

betabinomial.rho Beta-binomial Distribution Family Function (with known rho)

Description

Fits a beta-binomial distribution by maximum likelihood estimation, where the correlation coeffi-
cient rho is inputted. The parameter estimated is the mean.
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betabinomial.rho(lmu = "logitlink"”, imethod = 1, ishrinkage = 0.95)

68
Usage
Arguments
Imu, imethod, ishrinkage
Same as betabinomial.
Details

This family function conducts a logistic-like regression where the correlation parameter p of a
betabinomial distribution is inputted by the user. The family function is somewhat like a simplified
betabinomial. The argument form2 (see vglm) is used to input the p values, which must lie in

[0,1].
The default model has 1y = logit(u).

Value

Same as betabinomial.

Author(s)
T. W. Yee

See Also

betabinomial, extbetabinomial, betabinomialff, Betabinom, vglm, binomialff, betaff.

Examples

## Not run:
# Example 1
nn <- 10000; NN <- 100

bdata <- data.frame(N = NN, x2 = rnorm(nn),

x3 = rnorm(nn))
bdata <-
transform(bdata,

mul = logitlink(-0.5,
rhol = logitlink( 0.5,
mu2 = logitlink(-0.5
rho2 = logitlink(-0.5

bdata <- transform(bdata,
y1 = rbetabinom(nn, size =
y2 = rbetabinom(nn, size =
fit1l <- vglm(cbind(y1l, N - y1) ~ 1,

form2 = ~ rhol, crit = "c",
coef (fitl, matrix = TRUE)
head(fit1@extra$rho)

inverse = TRUE),
inverse = TRUE),
+ x2, inverse = TRUE),
+ x3, inverse = TRUE))

rhol),
rho2))

N, prob = mul, rho
N, prob = mu2, rho
betabinomial.rho,

bdata, trace = TRUE)

max (abs(fitted(fit1) - with(bdata, mul))) # Should be @

# Example 2
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fit2 <- vglm(cbind(y2, N - y2) ~ x2, form2 = ~ rho2,
betabinomial.rho, crit = "c",
bdata, trace = TRUE)

coef(fit2, matrix = TRUE)

max (abs(fit2@extra$rho - with(bdata, rho2))) # Should be @

max(abs(fitted(fit2) - with(bdata, mu2))) # Should be @

## End(Not run)

betabinomialff Beta-binomial Distribution Family Function

Description

Fits a beta-binomial distribution by maximum likelihood estimation. The two parameters here are
the shape parameters of the underlying beta distribution.

Usage

betabinomialff(lshapel = "loglink”, lshape2 = "loglink",
ishapel = 1, ishape2 = NULL, imethod = 1, ishrinkage = 0.95,
nsimEIM = NULL, zero = NULL)

Arguments

1shape1l, 1shape?2
Link functions for the two (positive) shape parameters of the beta distribution.
See Links for more choices.

ishape1l, ishape2
Initial value for the shape parameters. The first must be positive, and is recyled
to the necessary length. The second is optional. If a failure to converge occurs,
try assigning a different value to ishapel and/or using ishape?2.

zero Can be an integer specifying which linear/additive predictor is to be modelled
as an intercept only. If assigned, the single value should be either 1 or 2. The
default is to model both shape parameters as functions of the covariates. If
a failure to converge occurs, try zero = 2. See CommonVGAMffArguments for
more information.

ishrinkage, nsimEIM, imethod
See CommonVGAMffArguments for more information. The argument ishrinkage
is used only if imethod = 2. Using the argument nsimEIM may offer large ad-
vantages for large values of N and/or large data sets.

Details

There are several parameterizations of the beta-binomial distribution. This family function directly
models the two shape parameters of the associated beta distribution rather than the probability of
success (however, see Note below). The model can be written T'|P = p ~ Binomial(N,p) where
P has a beta distribution with shape parameters o and 5. Here, N is the number of trials (e.g.,
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litter size), 7' = NY is the number of successes, and p is the probability of a success (e.g., a
malformation). That is, Y is the proportion of successes. Like binomialff, the fitted values are
the estimated probability of success (i.e., F[Y] and not E[T]) and the prior weights NV are attached
separately on the object in a slot.

The probability function is

P(T=1t) = <N>B(a+t,B+N—t)

t B(a, B)

wheret = 0,1,..., N, and B is the beta function with shape parameters o and 5. Recall Y = T'/N
is the real response being modelled.

The default model is 7; = log(«) and 12 = log(3) because both parameters are positive. The mean
(of Y)is p = u = a/(a + B) and the variance (of V) is p(1 — )(1 4+ (N — 1)p)/N. Here, the
correlation p is given by 1/(1 + « + ) and is the correlation between the N individuals within a
litter. A litter effect is typically reflected by a positive value of p. It is known as the over-dispersion
pammeter.

This family function uses Fisher scoring. The two diagonal elements of the second-order expected
derivatives with respect to v and 3 are computed numerically, which may fail for large «, 5, N or
else take a long time.

Value

An object of class "vglmff"” (see vglmff-class). The object is used by modelling functions such
as vglm.

Suppose fit is a fitted beta-binomial model. Then fit@y (better: depvar (fit)) contains the sam-
ple proportions y, fitted(fit) returns estimates of E(Y'), and weights(fit, type = "prior")
returns the number of trials V.

Warning

This family function is prone to numerical difficulties due to the expected information matrices not
being positive-definite or ill-conditioned over some regions of the parameter space. If problems
occur try setting ishapel to be some other positive value, using ishape2 and/or setting zero = 2.

This family function may be renamed in the future. See the warnings in betabinomial.

Note

This function processes the input in the same way as binomialff. But it does not handle the case
N =1 very well because there are two parameters to estimate, not one, for each row of the input.
Cases where N = 1 can be omitted via the subset argument of vglm.

Although the two linear/additive predictors given above are in terms of a and 3, basic algebra shows
that the default amounts to fitting a logit link to the probability of success; subtracting the second
linear/additive predictor from the first gives that logistic regression linear/additive predictor. That
is, logit(p) = m — 2. This is illustated in one of the examples below.

The extended beta-binomial distribution of Prentice (1986) implemented by extbetabinomial is
the preferred VGAM family function for BBD regression.
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Author(s)
T. W. Yee

References

Moore, D. F. and Tsiatis, A. (1991). Robust estimation of the variance in moment methods for
extra-binomial and extra-Poisson variation. Biometrics, 47, 383—401.

Prentice, R. L. (1986). Binary regression using an extended beta-binomial distribution, with discus-
sion of correlation induced by covariate measurement errors. Journal of the American Statistical
Association, 81, 321-327.

See Also

extbetabinomial, betabinomial, Betabinom, binomialff, betaff, dirmultinomial, lirat,
simulate.vlm.

Examples

# Example 1

N <- 10; s1 <- exp(1); s2 <- exp(2)

y <- rbetabinom.ab(n = 100, size = N, shapel = s1, shape2 = s2)
fit <- vglm(cbind(y, N-y) ~ 1, betabinomialff, trace = TRUE)
coef(fit, matrix = TRUE)

Coef(fit)

head(fit@misc$rho) # The correlation parameter
head(cbind(depvar(fit), weights(fit, type = "prior")))

# Example 2
fit <- vglm(cbind(R, N-R) ~ 1, betabinomialff, data = lirat,
trace = TRUE, subset = N > 1)
coef(fit, matrix = TRUE)
Coef (fit)
fit@misc$rho # The correlation parameter
t(fitted(fit))
t(depvar(fit))
t(weights(fit, type = "prior"))
# A "loglink” link for the 2 shape params is a logistic regression:
all.equal(c(fitted(fit)),
as.vector(logitlink(predict(fit)[, 1] -
predict(fit)[, 2], inverse = TRUE)))

# Example 3, which is more complicated

lirat <- transform(lirat, fgrp = factor(grp))

summary(lirat) # Only 5 litters in group 3

fit2 <- vglm(cbind(R, N-R) ~ fgrp + hb, betabinomialff(zero = 2),
data = lirat, trace = TRUE, subset = N > 1)

coef(fit2, matrix = TRUE)

coef(fit2, matrix = TRUE)[, 11 -

coef(fit2, matrix = TRUE)[, 2] # logitlink(p)
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## Not run: with(lirat, plot(hb[N > 1], fit2@misc$rho,
xlab = "Hemoglobin”, ylab = "Estimated rho",
pch = as.character(grp[N > 1]), col = grp[N > 1]))
## End(Not run)
## Not run: # cf. Figure 3 of Moore and Tsiatis (1991)
with(lirat, plot(hb, R / N, pch = as.character(grp), col = grp,
xlab = "Hemoglobin level”, ylab = "Proportion Dead”, las = 1,
main = "Fitted values (lines)"))

smalldf <- with(lirat, lirat[N > 1, 1)
for (gp in 1:4) {
xx <= with(smalldf, hb[grp == gpl)
yy <- with(smalldf, fitted(fit2)[grp == gpl)
000 <- order(xx)
lines(xx[ooo], yy[ooo], col = gp, lwd = 2)
}
## End(Not run)

betaff The Two-parameter Beta Distribution Family Function

Description

Estimation of the mean and precision parameters of the beta distribution.

Usage

betaff(A =0, B =1, 1lmu = "logitlink”, lphi = "loglink",
imu = NULL, iphi = NULL,
gprobs.y = ppoints(8), gphi = exp(-3:5)/4, zero = NULL)

Arguments
A,B Lower and upper limits of the distribution. The defaults correspond to the stan-
dard beta distribution where the response lies between 0 and 1.
1mu, 1phi Link function for the mean and precision parameters. The values A and B are
extracted from the min and max arguments of extlogitlink. Consequently,
only extlogitlink is allowed.
imu, iphi Optional initial value for the mean and precision parameters respectively. A

NULL value means a value is obtained in the initialize slot.
gprobs.y, gphi, zero
See CommonVGAMffArguments for more information.

Details

The two-parameter beta distribution can be written f(y) =

(y — A)127 < (B — )70 [beta(ung, (1 — pa)@) x (B — A)?7]
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for A < y < B, and beta(.,.) is the beta function (see beta). The parameter u; satisfies p1q =
(u—A)/(B—A) where p is the mean of Y. That s, y; is the mean of of a standard beta distribution:
E(Y)= A+ (B - A) x u1, and these are the fitted values of the object. Also, ¢ is positive and
A < p < B. Here, the limits A and B are known.

Another parameterization of the beta distribution involving the raw shape parameters is imple-
mented in betaR.

For general A and B, the variance of Y is (B — A)? x u; x (1 — u1)/(1 + ¢). Then ¢ can be
interpreted as a precision parameter in the sense that, for fixed u, the larger the value of ¢, the
smaller the variance of Y. Also, 1 = shapel/(shapel + shape2) and ¢ = shapel + shape2.
Fisher scoring is implemented.

Value

An object of class "vglmff"” (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Note

The response must have values in the interval (A, B). The user currently needs to manually choose
1mu to match the input of arguments A and B, e.g., with extlogitlink; see the example below.

Author(s)
Thomas W. Yee

References

Ferrari, S. L. P. and Francisco C.-N. (2004). Beta regression for modelling rates and proportions.
Journal of Applied Statistics, 31, 799-815.

See Also

betaR, Beta, dzoabeta, genbetall, betall, betabinomialff, betageometric, betaprime, rbetageom,
rbetanorm, kumar, extlogitlink, simulate.vlm.

Examples

bdata <- data.frame(y = rbeta(nn <- 1000, shapel = exp(90),
shape2 = exp(1)))

fitl <- vglm(y ~ 1, betaff, data = bdata, trace = TRUE)

coef(fit1, matrix = TRUE)

Coef (fit1) # Useful for intercept-only models

# General A and B, and with a covariate
bdata <- transform(bdata, x2 = runif(nn))
bdata <- transform(bdata, mu = logitlink(@.5 - x2, inverse = TRUE),
prec = exp(3.0 + x2)) # prec == phi
bdata <- transform(bdata, shape2 = prec x (1 - mu),
shapel = mu * prec)
bdata <- transform(bdata,
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y = rbeta(nn, shapel = shapel, shape2 = shape2))
bdata <- transform(bdata, Y =5+ 8 x y) # From 5--13, not 0--1
fit <- vglm(Y ~ x2, data = bdata, trace = TRUE,
betaff(A = 5, B = 13, 1Imu = "extlogitlink(min = 5, max = 13)"))
coef(fit, matrix = TRUE)

Betageom The Beta-Geometric Distribution

Description

Density, distribution function, and random generation for the beta-geometric distribution.

Usage

dbetageom(x, shapel, shape2, log = FALSE)
pbetageom(q, shapel, shape2, log.p = FALSE)
rbetageom(n, shapel, shape2)

Arguments
X, q vector of quantiles.
n number of observations. Same as runif.

shapel, shape2 the two (positive) shape parameters of the standard beta distribution. They are
called a and b in beta respectively.

log, log.p Logical. If TRUE then all probabilities p are given as log(p).

Details

The beta-geometric distribution is a geometric distribution whose probability of success is not a
constant but it is generated from a beta distribution with parameters shapel and shape2. Note that
the mean of this beta distribution is shape1/ (shapel+shape2), which therefore is the mean of the
probability of success.

Value

dbetageom gives the density, pbetageom gives the distribution function, and rbetageom generates
random deviates.

Note

pbetageom can be particularly slow.

Author(s)
T. W. Yee
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geometric, betaff, Beta.

Examples

## Not run:

shapel <- 1; shape2 <- 2; y <- 0:30

proby <- dbetageom(y, shapel, shape2, log = FALSE)

plot(y, proby, type = "h", col = "blue", ylab = "P[Y=y]", main = paste0(
"Y ~ Beta-geometric(shapel=", shapel,”, shape2=", shape2, ")"))

sum(proby)

## End(Not run)

betageometric

Beta-geometric Distribution Family Function

Description

Maximum likelihood estimation for the beta-geometric distribution.

Usage

betageometric(lprob = "logitlink”, lshape = "loglink",
iprob = NULL, ishape = 0.1,
moreSummation = c(2, 100), tolerance = 1.0e-10, zero = NULL)

Arguments

lprob, 1shape

iprob, ishape

moreSummation

tolerance

zero

Parameter link functions applied to the parameters p and ¢ (called prob and
shape below). The former lies in the unit interval and the latter is positive. See
Links for more choices.

Numeric. Initial values for the two parameters. A NULL means a value is com-
puted internally.

Integer, of length 2. When computing the expected information matrix a se-
ries summation from O to moreSummation[1]*max(y)+moreSummation[2] is
made, in which the upper limit is an approximation to infinity. Here, y is the
response.

Positive numeric. When all terms are less than this then the series is deemed to
have converged.

An integer-valued vector specifying which linear/additive predictors are mod-
elled as intercepts only. If used, the value must be from the set {1,2}. See
CommonVGAMffArguments for more information.
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Details

A random variable Y has a 2-parameter beta-geometric distribution if P(Y = y) = p(1 — p)¥
for y = 0,1,2,... where p are generated from a standard beta distribution with shape param-
eters shapel and shape2. The parameterization here is to focus on the parameters p and ¢ =
1/(shapel + shape2), where ¢ is shape. The default link functions for these ensure that the appro-
priate range of the parameters is maintained. The mean of Y is E(Y') = shape2/(shapel — 1) =
(1 —=p)/(p— @) if shapel > 1, and if so, then this is returned as the fitted values.

The geometric distribution is a special case of the beta-geometric distribution with ¢ = 0 (see
geometric). However, fitting data from a geometric distribution may result in numerical problems
because the estimate of log(¢) will *converge’ to -Inf.

Value
An object of class "vglmff"” (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Note

The first iteration may be very slow; if practical, it is best for the weights argument of vglm etc.
to be used rather than inputting a very long vector as the response, i.e., vglm(y ~ 1, ..., weights
=wts) is to be preferred over vglm(rep(y, wts) ~ 1, ...). If convergence problems occur try
inputting some values of argument ishape.

If an intercept-only model is fitted then the misc slot of the fitted object has list components shapeT
and shape?2.

Author(s)
T. W. Yee

References

Paul, S. R. (2005). Testing goodness of fit of the geometric distribution: an application to human
fecundability data. Journal of Modern Applied Statistical Methods, 4, 425-433.

See Also

geometric, betaff, rbetageom.

Examples

## Not run:
bdata <- data.frame(y = 0:11,

wts = c(227,123,72,42,21,31,11,14,6,4,7,28))
fitb <- vglm(y ~ 1, betageometric, bdata, weight = wts, trace = TRUE)

fitg <- vglm(y ~ 1, geometric, bdata, weight = wts, trace = TRUE)
coef(fitb, matrix = TRUE)
Coef (fitb)

sqgrt(diag(vcov(fitb, untransform = TRUE)))
fitb@misc$shapel
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fitb@misc$shape2
# Very strong evidence of a beta-geometric:
pchisq(2 * (logLik(fitb) - logLik(fitg)), df = 1, lower.tail = FALSE)

## End(Not run)

betall Beta Distribution of the Second Kind

Description

Maximum likelihood estimation of the 3-parameter beta II distribution.

Usage

betalI(lscale = "loglink"”, lshape2.p = "loglink",
lshape3.q = "loglink”, iscale = NULL, ishape2.p = NULL,
ishape3.q = NULL, imethod = 1,
gscale = exp(-5:5), gshape2.p = exp(-5:5),
gshape3.q = seq(0.75, 4, by = 0.25),
probs.y = c(0.25, 0.5, 0.75), zero = "shape")

Arguments

1scale, 1shape2.p, 1shape3.q
Parameter link functions applied to the (positive) parameters scale, p and g.

See Links for more choices.
iscale, ishape2.p, ishape3.q, imethod, zero

See CommonVGAMffArguments for information.
gscale, gshape2.p, gshape3.q
See CommonVGAMffArguments for information.

probs.y See CommonVGAMffArguments for information.

Details

The 3-parameter beta II is the 4-parameter generalized beta II distribution with shape parameter
a = 1. Itis also known as the Pearson VI distribution. Other distributions which are special cases
of the 3-parameter beta II include the Lomax (p = 1) and inverse Lomax (¢ = 1). More details can
be found in Kleiber and Kotz (2003).

The beta II distribution has density

fy) =y"~ /[’ Bp, ) {1+ y/b}*]

forb > 0,p > 0,q > 0,y > 0. Here, b is the scale parameter scale, and the others are shape
parameters. The mean is

E(Y)=bT(p+1)I'(¢—1)/(T(p)T(q))

provided ¢ > 1; these are returned as the fitted values. This family function handles multiple
responses.
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Value
An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, and vgam.

Note

See the notes in genbetall.

Author(s)
T. W. Yee

References

Kleiber, C. and Kotz, S. (2003). Statistical Size Distributions in Economics and Actuarial Sciences,
Hoboken, NJ, USA: Wiley-Interscience.

See Also

betaff, genbetall, dagum, sinmad, fisk, inv.lomax, lomax, paralogistic, inv.paralogistic.

Examples

bdata <- data.frame(y = rsinmad(2000, shapel.a =1,

shape3.q = exp(2), scale = exp(1))) # Not genuine data!
# fit <- vglm(y ~ 1, betall, data = bdata, trace = TRUE)
fit <- vglm(y ~ 1, betalI(ishape2.p = 0.7, ishape3.q = 0.7),

data = bdata, trace = TRUE)

coef(fit, matrix = TRUE)
Coef (fit)
summary (fit)

Betanorm The Beta-Normal Distribution

Description

Density, distribution function, quantile function and random generation for the univariate beta-
normal distribution.

Usage

dbetanorm(x, shapel, shape2, mean = @, sd = 1, log = FALSE)
pbetanorm(q, shapel, shape2, mean = @, sd = 1,
lower.tail = TRUE, log.p = FALSE)
gbetanorm(p, shapel, shape2, mean = @, sd = 1,
lower.tail = TRUE, log.p = FALSE)
rbetanorm(n, shapel, shape2, mean = @, sd = 1)
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Arguments

X’q
p
n

shape1, shape?2

mean, sd
log, log.p

lower.tail

Details

79

vector of quantiles.
vector of probabilities.
number of observations. Same as runif.

the two (positive) shape parameters of the standard beta distribution. They are
called a and b respectively in beta.

the mean and standard deviation of the univariate normal distribution (Normal).
Logical. If TRUE then all probabilities p are given as log(p).

Logical. If TRUE then the upper tail is returned, i.e., one minus the usual answer.

The function betauninormal, the VGAM family function for estimating the parameters, has not

yet been written.

Value

dbetanorm gives the density, pbetanorm gives the distribution function, gbetanorm gives the quan-
tile function, and rbetanorm generates random deviates.

Author(s)
T. W. Yee

References

Gupta, A. K. and Nadarajah, S. (2004). Handbook of Beta Distribution and Its Applications,
pp-146-152. New York: Marcel Dekker.

Examples

## Not run:

shapel <- 0.1; shape2 <- 4; m <- 1

x <- seq(-10, 2, len = 501)

plot(x, dbetanorm(x, shapel, shape2, m = m), type = "1",
ylim = @:1, las =1,

ylab = paste@("betanorm(”,shapel,”, ",shape2,”, m=",m, ", sd=1)"),

main = "Blue is density, orange is the CDF",

sub = "Gray lines are the 10,20,...,90 percentiles”, col = "blue”)
lines(x, pbetanorm(x, shapel, shape2, m = m), col = "orange")

abline(h = @, col = "black")
probs <- seq(@.1, 0.9, by = 0.1)

Q <- gbetanorm(probs, shapel, shape2,
lines(Q, dbetanorm(Q,
col = "gray50",
lines(Q, pbetanorm(Q,
col = "gray50",

m=m)
shapel, shape2, m = m),
1ty = 2, type = "h")
shapel, shape2, m = m),
1ty = 2, type = "h")

abline(h = probs, col = "gray5e"”, lty = 2)

pbetanorm(Q, shapel, shape2, m =

m) - probs # Should be all @
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## End(Not run)

betaprime The Beta-Prime Distribution

Description

Estimation of the two shape parameters of the beta-prime distribution by maximum likelihood esti-

mation.
Usage
betaprime(lshape = "loglink"”, ishapel = 2, ishape2 = NULL,
zero = NULL)
Arguments
1shape Parameter link function applied to the two (positive) shape parameters. See

Links for more choices.
ishapel, ishape2, zero
See CommonVGAMffArguments for more information.

Details
The beta-prime distribution is given by
F(y) = yhorel=1(1 4 y)~shapel=shape2 | B(shanel shape2)
for y > 0. The shape parameters are positive, and here, B is the beta function. The mean of Y is

shapel/(shape2 — 1) provided shape2 > 1; these are returned as the fitted values.

If Y has a Beta(shapel, shape2) distribution then Y/(1—Y") and (1-Y")/Y have a Betaprime(shapel, shape2)
and Betaprime(shape2, shapel) distribution respectively. Also, if Y7 has a gamma(shapel) dis-

tribution and Y5 has a gamma(shape2) distribution then Y; /Y has a Betaprime(shapel, shape2)

distribution.

Value
An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm, rrvglm and vgam.

Note

The response must have positive values only.

The beta-prime distribution is also known as the beta distribution of the second kind or the inverted
beta distribution.
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Author(s)
Thomas W. Yee

References

Johnson, N. L. and Kotz, S. and Balakrishnan, N. (1995). Chapter 25 of: Continuous Univariate
Distributions, 2nd edition, Volume 2, New York: Wiley.

See Also

betaff, Beta.

Examples

nn <- 1000
bdata <- data.frame(shapel = exp(1), shape2 = exp(3))
bdata <- transform(bdata, yb = rbeta(nn, shapel, shape2))

bdata <- transform(bdata, y1 = (1-yb) / yb,
y2 = yb / (1-yb),
y3 = rgamma(nn, exp(3)) / rgamma(nn, exp(2)))

fitl <- vglm(yl ~ 1, betaprime, data = bdata, trace = TRUE)
coef (fit1, matrix = TRUE)

fit2 <- vglm(y2 ~ 1, betaprime, data = bdata, trace = TRUE)
coef (fit2, matrix = TRUE)

fit3 <- vglm(y3 ~ 1, betaprime, data = bdata, trace = TRUE)
coef (fit3, matrix = TRUE)

# Compare the fitted values

with(bdata, mean(y3))

head(fitted(fit3))

Coef (fit3) # Useful for intercept-only models

betaR The Two-parameter Beta Distribution Family Function

Description

Estimation of the shape parameters of the two-parameter beta distribution.

Usage

betaR(lshapel = "loglink”, lshape2 = "loglink",
i1 = NULL, i2 = NULL, trim = 0.05,
A =0, B =1, parallel = FALSE, zero = NULL)
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Arguments

1shapel, 1shape2, i1, i2
Details at CommonVGAMffArguments. See Links for more choices.

trim An argument which is fed into mean (); it is the fraction (0 to 0.5) of observations
to be trimmed from each end of the response y before the mean is computed.
This is used when computing initial values, and guards against outliers.

A,B Lower and upper limits of the distribution. The defaults correspond to the stan-
dard beta distribution where the response lies between 0 and 1.

parallel, zero See CommonVGAMffArguments for more information.

Details

The two-parameter beta distribution is given by f(y) =
(y o A)shapelfl % (B o y)Shapd*l/[Beta(shapel, 5hape2) X (B o A)shapelJrshaplel}

for A < y < B, and Beta(.,.) is the beta function (see beta). The shape parameters are pos-
itive, and here, the limits A and B are known. The mean of YV is E(Y) = A+ (B — A) x
shapel/(shapel 4+ shape2), and these are the fitted values of the object.

For the standard beta distribution the variance of Y is shapel x shape2/[(1+ shapel + shape2) x
(shapel + shape2)?]. If 02 = 1/(1 + shapel + shape?2) then the variance of Y can be written
o?u(1 — p) where i = shapel/(shapel + shape2) is the mean of Y.

Another parameterization of the beta distribution involving the mean and a precision parameter is
implemented in betaff.

Value

An object of class "vglmff"” (see vglmff-class). The object is used by modelling functions such
as vglm, rrvglm and vgam.

Note

The response must have values in the interval (A, B). VGAM 0.7-4 and prior called this function
betaff.

Author(s)

Thomas W. Yee

References
Johnson, N. L. and Kotz, S. and Balakrishnan, N. (1995). Chapter 25 of: Continuous Univariate
Distributions, 2nd edition, Volume 2, New York: Wiley.

Gupta, A. K. and Nadarajah, S. (2004). Handbook of Beta Distribution and Its Applications, New
York: Marcel Dekker.
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See Also

betaff, Beta, genbetall, betall, betabinomialff, betageometric, betaprime, rbetageom,
rbetanorm, kumar, simulate.vlm.

Examples

bdata <- data.frame(y = rbeta(1000, shapel = exp(@), shape2 = exp(1)))
fit <- vglm(y ~ 1, betaR(lshapel = "identitylink”,

lshape2 = "identitylink”), bdata, trace = TRUE, crit = "coef")
fit <- vglm(y ~ 1, betaR, data = bdata, trace = TRUE, crit = "coef")
coef(fit, matrix = TRUE)
Coef (fit) # Useful for intercept-only models

bdata <- transform(bdata, Y =5+ 8 *xy) # From 5 to 13, not @ to 1
fit <- vglm(Y ~ 1, betaR(A = 5, B = 13), data = bdata, trace = TRUE)
Coef(fit)

c(meanY = with(bdata, mean(Y)), head(fitted(fit),2))

Biamhcop Ali-Mikhail-Haq Bivariate Distribution

Description

Density, distribution function, and random generation for the (one parameter) bivariate Ali-Mikhail-
Hagq distribution.

Usage

dbiamhcop(x1, x2, apar, log = FALSE)
pbiamhcop(ql, g2, apar)
rbiamhcop(n, apar)

Arguments

x1, x2,q1, g2 vector of quantiles.

n number of observations. Same as runif

apar the association parameter.

log Logical. If TRUE then the logarithm is returned.
Details

See biamhcop, the VGAM family functions for estimating the parameter by maximum likelihood
estimation, for the formula of the cumulative distribution function and other details.
Value

dbiamhcop gives the density, pbiamhcop gives the distribution function, and rbiamhcop generates
random deviates (a two-column matrix).
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Author(s)
T. W. Yee and C. S. Chee

See Also

biamhcop.

Examples

x <- seq(@, 1, len = (N <- 101)); apar <- 0.7
ox <- expand.grid(x, x)
zedd <- dbiamhcop(ox[, 1], ox[, 2], apar = apar)

## Not run:

contour(x, x, matrix(zedd, N, N), col = "blue")
zedd <- pbiamhcop(ox[, 1], ox[, 21, apar = apar)
contour(x, x, matrix(zedd, N, N), col = "blue")

plot(r <- rbiamhcop(n = 1000, apar = apar), col = "blue")
par(mfrow = c(1, 2))

hist(r[, 11) # Should be uniform

hist(r[, 2]) # Should be uniform

## End(Not run)

biamhcop Ali-Mikhail-Haq Distribution Family Function

Description

Estimate the association parameter of Ali-Mikhail-Haq’s bivariate distribution by maximum likeli-
hood estimation.

Usage

biamhcop(lapar = "rhobitlink"”, iapar = NULL, imethod = 1,
nsimEIM = 250)

Arguments
lapar Link function applied to the association parameter c, which is real and —1 <
o < 1. See Links for more choices.
iapar Numeric. Optional initial value for o.. By default, an initial value is chosen inter-
nally. If a convergence failure occurs try assigning a different value. Assigning
a value will override the argument imethod.
imethod An integer with value 1 or 2 which specifies the initialization method. If failure

to converge occurs try the other value, or else specify a value for iapar.

nsimEIM See CommonVGAMffArguments for more information.
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Details

The cumulative distribution function is

P(Y1 <y1,Y2 <y2) = y1y2/(1 —a(l —y1)(1 — y2))

for =1 < a < 1. The support of the function is the unit square. The marginal distributions are
the standard uniform distributions. When o = 0 the random variables are independent. This is an
Archimedean copula.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglm and vgam.

Note

The response must be a two-column matrix. Currently, the fitted value is a matrix with two columns
and values equal to 0.5. This is because each marginal distribution corresponds to a standard uni-
form distribution.

Author(s)

T. W. Yee and C. S. Chee

References

Balakrishnan, N. and Lai, C.-D. (2009). Continuous Bivariate Distributions, 2nd ed. New York:
Springer.

See Also

rbiamhcop, bifgmcop, bigumbellexp, rbilogis, simulate.vlm.

Examples

ymat <- rbiamhcop(1000, apar = rhobitlink(2, inverse = TRUE))
fit <- vglm(ymat ~ 1, biamhcop, trace = TRUE)

coef(fit, matrix = TRUE)

Coef (fit)
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Biclaytoncop Clayton Copula (Bivariate) Distribution

Description

Density and random generation for the (one parameter) bivariate Clayton copula distribution.

Usage

dbiclaytoncop(x1, x2, apar = @, log = FALSE)
rbiclaytoncop(n, apar = @)

Arguments
x1, x2 vector of quantiles. The x1 and x2 should both be in the interval (0, 1).
n number of observations. Same as rnorm.
apar the association parameter. Should be in the interval [0, 00). The default corre-
sponds to independence.
log Logical. If TRUE then the logarithm is returned.
Details

See biclaytoncop, the VGAM family functions for estimating the parameter by maximum likeli-
hood estimation, for the formula of the cumulative distribution function and other details.

Value
dbiclaytoncop gives the density at point (x1,x2), rbiclaytoncop generates random deviates (a
two-column matrix).

Note

dbiclaytoncop() does not yet handle x1 = @ and/or x2 = @.

Author(s)
R. Feyter and T. W. Yee

References
Clayton, D. (1982). A model for association in bivariate survival data. Journal of the Royal Statis-
tical Society, Series B, Methodological, 44, 414-422.

See Also

biclaytoncop, binormalcop, binormal.
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Examples

## Not run: edge <- 0.01 # A small positive value

N <- 101; x <- seq(edge, 1.0 - edge, len = N); Rho <- 0.7

ox <- expand.grid(x, x)

zedd <- dbiclaytoncop(ox[, 11, ox[, 2], apar = Rho, log = TRUE)
par(mfrow = c(1, 2))

contour(x, x, matrix(zedd, N, N), col = 4, labcex = 1.5, las = 1)
plot(rbiclaytoncop(1000, 2), col = 4, las = 1)

## End(Not run)

biclaytoncop Clayton Copula (Bivariate) Family Function

Description

Estimate the correlation parameter of the (bivariate) Clayton copula distribution by maximum like-
lihood estimation.

Usage

biclaytoncop(lapar = "loglink"”, iapar = NULL, imethod = 1,
parallel = FALSE, zero = NULL)

Arguments
lapar, iapar, imethod
Details at CommonVGAMffArguments. See Links for more link function choices.

parallel, zero Details at CommonVGAMffArguments. If parallel = TRUE then the constraint is
also applied to the intercept.

Details

The cumulative distribution function is
Pluy,ug; o) = (uy® +uy® — 1)1/

for 0 < a. Here, « is the association parameter. The support of the function is the interior of the
unit square; however, values of 0 and/or 1 are not allowed (currently). The marginal distributions
are the standard uniform distributions. When o« = 0 the random variables are independent.

This VGAM family function can handle multiple responses, for example, a six-column matrix
where the first 2 columns is the first out of three responses, the next 2 columns being the next
response, etc.

Value

An object of class "vglmff" (see vglmff-class). The object is used by modelling functions such
as vglmand vgam.
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Note

The response matrix must have a multiple of two-columns. Currently, the fitted value is a matrix
with the same number of columns and values equal to 0.5. This is because each marginal distribution
corresponds to a standard uniform distribution.

This VGAM family function is fragile; each response must be in the interior of the unit square.

Author(s)

R. Feyter and T. W. Yee

References

Clayton, D. (1982). A model for association in bivariate survival data. Journal of the Royal Statis-
tical Society, Series B, Methodological, 44, 414-422.

Schepsmeier, U. and Stober, J. (2014). Derivatives and Fisher information of bivariate copulas.
Statistical Papers 55, 525-542.

See Also

rbiclaytoncop, dbiclaytoncop, kendall. tau.

Examples

ymat <- rbiclaytoncop(n = (nn <- 1000), apar = exp(2))
bdata <- data.frame(yl = ymat[, 11, y2 = ymat[, 21,
y3 = ymat[, 11, y4 = ymat[, 2], x2 = runif(nn))

summary (bdata)
## Not run: plot(ymat, col = "blue")
fitl <-

vglm(cbind(y1, y2, y3, y4) ~ 1, # 2 responses, e.g., (yl,y2) is the 1st
biclaytoncop, data = bdata,

trace = TR