
Package ‘OTBsegm’
May 6, 2025

Type Package

Title Apply Unsupervised Segmentation Algorithms from 'OTB'

Version 0.1.0

Description
Apply unsupervised segmentation algorithms included in 'Orfeo ToolBox' software (<https:
//www.orfeo-toolbox.org/>), such as mean shift or watershed segmentation.

Encoding UTF-8

Imports cli, terra, link2GI

RoxygenNote 7.3.2

License MIT + file LICENSE

URL https://cidree.github.io/OTBsegm/

Suggests testthat (>= 3.0.0)

Config/testthat/edition 3

NeedsCompilation no

Author Adrián Cidre González [aut, cre]

Maintainer Adrián Cidre González <adrian.cidre@gmail.com>

Repository CRAN

Date/Publication 2025-05-06 09:00:05 UTC

Contents

segm_lsms . 2
segm_meanshift . 4
segm_mprofiles . 6
segm_watershed . 8

Index 11

1

https://www.orfeo-toolbox.org/
https://www.orfeo-toolbox.org/
https://cidree.github.io/OTBsegm/

2 segm_lsms

segm_lsms Large-scale segmentation using Mean-Shift

Description

Applies the Mean-Shift segmentation algorithm to an image file or a SpatRaster. Suitable for large
images

Usage

segm_lsms(
image,
otb,
spatialr = 5L,
ranger = 15,
minsize = 100L,
tilesize = 500L,
mode = "vector",
mask = NULL,
ram = 256L

)

Arguments

image path to raster, or SpatRaster

otb output of link2GI::linkOTB()

spatialr integer. Spatial radius of the neighborhood

ranger range radius defining the radius (expressed in radiometry unit) in the multispec-
tral space

minsize integer. Minimum size of a region (in pixel unit) in segmentation. Smaller
clusters will be merged to the neighboring cluster with the closest radiometry. If
set to 0 no pruning is done

tilesize integer. Size of the tiles during the tile-wise processing

mode processing mode, either ’vector’ or ’raster’. See details

mask an optional raster used for masking the segmentation. Only pixels whose mask
is strictly positive will be segmented

ram integer. Available memory for processing (in MB)

Details

Mean-Shift is a region-based segmentation algorithm that groups pixels with similar characteristics.
It’s a non-parametric clustering technique that groups pixels based on spatial proximity and feature
similarity (color, intensity). This method is particularly effective for preserving edges and defailt
while simplifying textures in high-resolution images. Steps:

segm_lsms 3

1. Initialization: Each pixel is treated as a point in a multi-dimensional space (combining spatial
and color features).

2. Mean Shift Iterations: For each pixel, a search window moves toward the region with the
highest data density (local maxima) by calculating the mean of neighboring pixels within the
window.

3. Convergence: The process repeats until the movement of the window becomes negligible,
indicating convergence.

4. Label Assignment: Pixels that converge to the same mode (local maxima) are grouped into
the same region.

The most important parameters are:

• spatialr: defines the size of the neighborhood

• ranger: determines similarity in the feature space

• maxiter: limits the number of iterations for convergence

• thresh: defines the convergence criterion based on pixel movement

The processing mode ’vector’ will output a vector file, and process the input image piecewise. This
allows performing segmentation of very large images. IN contrast, ’raster’ mode will output a
labeled raster, and it cannot handle large data. If mode is ’raster’, all the ’vector_*’ arguments are
ignored.

Value

sf or SpatRaster

Examples

Not run:
load packages
library(link2GI)
library(OTBsegm)
library(terra)

load sample image
image_sr <- rast(system.file("raster/pnoa.tiff", package = "OTBsegm"))

connect to OTB (change to your directory)
otblink <- link2GI::linkOTB(searchLocation = "C:/OTB/")

apply segmentation
results_ms_sf <- segm_lsms(

image = image_sr,
otb = otblink,
spatialr = 5,
ranger = 25,
minsize = 10

)

plotRGB(image_sr)

4 segm_meanshift

plot(st_geometry(results_ms_sf), add = TRUE)

End(Not run)

segm_meanshift Mean-Shift Segmentation

Description

Applies the mean-shift segmentation algorithm to an image file or a SpatRaster

Usage

segm_meanshift(
image,
otb,
spatialr = 5L,
ranger = 15,
thresh = 0.1,
maxiter = 100L,
minsize = 100L,
mode = "vector",
vector_neighbor = FALSE,
vector_stitch = TRUE,
vector_minsize = 1L,
vector_simplify = 0.1,
vector_tilesize = 1024L,
mask = NULL

)

Arguments

image path or SpatRaster

otb output of link2GI::linkOTB()

spatialr integer. Spatial radius of the neighborhood

ranger range radius defining the radius (expressed in radiometry unit) in the multispec-
tral space

thresh algorithm iterative scheme will stop if mean-shift vector is below this threshold
or if iteration number reached maximum number of iterations

maxiter integer. Algorithm iterative scheme will stop if convergence hasn’t been reached
after the maximum number of iterations

minsize integer. Minimum size of a region (in pixel unit) in segmentation. Smaller
clusters will be merged to the neighboring cluster with the closest radiometry. If
set to 0 no pruning is done

mode processing mode, either ’vector’ or ’raster’. See details

segm_meanshift 5

vector_neighbor

logical. If FALSE (the default) a 4-neighborhood connectivity is activated. If
TRUE, a 8-neighborhood connectivity is used

vector_stitch logical. If TRUE (the default), scans polygons on each side of tiles and stitch
polygons which connect by more than one pixel

vector_minsize integer. Objects whose size in pixels is below the minimum object size will be
ignored during vectorization

vector_simplify

simplify polygons according to a given tolerance (in pixel). This option allows
reducing the size of the output file or database.

vector_tilesize

integer. User defined tiles size for tile-based segmentation. Optimal tile size is
selected according to available RAM if NULL

mask an optional raster used for masking the segmentation. Only pixels whose mask
is strictly positive will be segmented

Details

Mean-Shift is a region-based segmentation algorithm that groups pixels with similar characteristics.
It’s a non-parametric clustering technique that groups pixels based on spatial proximity and feature
similarity (color, intensity). This method is particularly effective for preserving edges and defailt
while simplifying textures in high-resolution images. Steps:

1. Initialization: Each pixel is treated as a point in a multi-dimensional space (combining spatial
and color features).

2. Mean Shift Iterations: For each pixel, a search window moves toward the region with the
highest data density (local maxima) by calculating the mean of neighboring pixels within the
window.

3. Convergence: The process repeats until the movement of the window becomes negligible,
indicating convergence.

4. Label Assignment: Pixels that converge to the same mode (local maxima) are grouped into
the same region.

The most important parameters are:

• spatialr: defines the size of the neighborhood

• ranger: determines similarity in the feature space

• maxiter: limits the number of iterations for convergence

• thresh: defines the convergence criterion based on pixel movement

The processing mode ’vector’ will output a vector file, and process the input image piecewise. This
allows performing segmentation of very large images. IN contrast, ’raster’ mode will output a
labeled raster, and it cannot handle large data. If mode is ’raster’, all the ’vector_*’ arguments are
ignored.

Value

sf or SpatRaster

6 segm_mprofiles

Examples

Not run:
load packages
library(link2GI)
library(OTBsegm)
library(terra)

load sample image
image_sr <- rast(system.file("raster/pnoa.tiff", package = "OTBsegm"))

connect to OTB (change to your directory)
otblink <- link2GI::linkOTB(searchLocation = "C:/OTB/")

apply segmentation
results_ms_sf <- segm_meanshift(

image = image_sr,
otb = otblink,
spatialr = 5,
ranger = 25,
maxiter = 10,
minsize = 10

)

End(Not run)

segm_mprofiles Morphological profiles segmentation

Description

Applies the morphological profiles segmentation algorithm to an image file or a SpatRaster

Usage

segm_mprofiles(
image,
otb,
size = 5L,
start = 1L,
step = 1L,
sigma = 1,
mode = "vector",
vector_neighbor = FALSE,
vector_stitch = TRUE,
vector_minsize = 1L,
vector_simplify = 0.1,
vector_tilesize = 1024L,
mask = NULL

)

segm_mprofiles 7

Arguments

image path or SpatRaster

otb output of link2GI::linkOTB()

size integer. Size of the profiles

start integer. Initial radius of the structuring element in pixels

step integer. Radius step in pixels along the profile

sigma profiles values under the threshold will be ignored

mode processing mode, either ’vector’ or ’raster’. See details
vector_neighbor

logical. If FALSE (the default) a 4-neighborhood connectivity is activated. If
TRUE, a 8-neighborhood connectivity is used

vector_stitch logical. If TRUE (the default), scans polygons on each side of tiles and stitch
polygons which connect by more than one pixel

vector_minsize integer. Objects whose size in pixels is below the minimum object size will be
ignored during vectorization

vector_simplify

simplify polygons according to a given tolerance (in pixel). This option allows
reducing the size of the output file or database.

vector_tilesize

integer. User defined tiles size for tile-based segmentation. Optimal tile size is
selected according to available RAM if NULL

mask an optional raster used for masking the segmentation. Only pixels whose mask
is strictly positive will be segmented

Details

The morphological profiles segmentation algorithm is a region-based image segmentation technique
that applies a series of morphological operations using structuring elements of increasing size to
capture spatial patterns and textures within the image. Steps:

1. Morphological Filtering: The algorithm applies a sequence of openings (removing small
bright structures) and closings (removing small dark structures) to the input image using struc-
turing elements (e.g., disks, rectangles).

2. Profile Generation: It generates a profile for each pixel by recording the response of the mor-
phological operations at different scales.

3. Feature Extraction: These profiles help capture both fine and coarse structures within the
image, creating a set of features that can be used for classification or segmentation.

4. Segmentation (Optional): The extracted profiles can be input into a classifier or segmentation
algorithm to differentiate between regions with distinct spatial characteristics.

The processing mode ’vector’ will output a vector file, and process the input image piecewise. This
allows performing segmentation of very large images. IN contrast, ’raster’ mode will output a
labeled raster, and it cannot handle large data. If mode is ’raster’, all the ’vector_*’ arguments are
ignored.

8 segm_watershed

Value

sf or SpatRaster

Examples

Not run:
load packages
library(link2GI)
library(OTBsegm)
library(terra)

load sample image
image_sr <- rast(system.file("raster/pnoa.tiff", package = "OTBsegm"))

connect to OTB (change to your directory)
otblink <- link2GI::linkOTB(searchLocation = "C:/OTB/")

apply segmentation
results_ms_sf <- segm_mprofiles(

image = image_sr,
otb = otblink,
size = 5,
start = 3,
step = 20,
sigma = 1

)

End(Not run)

segm_watershed Watershed segmentation

Description

Applies the watershed segmentation algorithm to an image file or a SpatRaster

Usage

segm_watershed(
image,
otb,
thresh = 0.01,
level = 0.1,
mode = "vector",
vector_neighbor = FALSE,
vector_stitch = TRUE,
vector_minsize = 1L,
vector_simplify = 0.1,
vector_tilesize = 1024L,

segm_watershed 9

mask = NULL
)

Arguments

image path or SpatRaster

otb output of link2GI::linkOTB()

thresh depth threshold units in percentage of the maximum depth in the image

level flood level for generating the merge tree from the initial segmentation (from 0
to 1)

mode processing mode, either ’vector’ or ’raster’. See details
vector_neighbor

logical. If FALSE (the default) a 4-neighborhood connectivity is activated. If
TRUE, a 8-neighborhood connectivity is used

vector_stitch logical. If TRUE (the default), scans polygons on each side of tiles and stitch
polygons which connect by more than one pixel

vector_minsize integer. Objects whose size in pixels is below the minimum object size will be
ignored during vectorization

vector_simplify

simplify polygons according to a given tolerance (in pixel). This option allows
reducing the size of the output file or database.

vector_tilesize

integer. User defined tiles size for tile-based segmentation. Optimal tile size is
selected according to available RAM if NULL

mask an optional raster used for masking the segmentation. Only pixels whose mask
is strictly positive will be segmented

Details

The watershed segmentation algorithm is a region-based image segmentation technique inspired by
topography. It treats the grayscale intensity of an image as a topographic surface, where brighter
pixels represent peaks and darker pixels represent valleys. The algorithm simulates flooding of this
surface to separate distinct regions. Steps:

1. Topographic Interpretation: The input image is treated as a 3D landscape, where pixel inten-
sity corresponds to elevation.

2. Flooding Process: Starting from local minima, the algorithm simulates water flooding the
surface. As the water rises, distinct regions (basins) are formed.

3. Watershed Lines: When two basins meet, a boundary (watershed line) is formed to prevent
merging.

4. Region Labeling: Each basin is assigned a unique label, producing a segmented image where
boundaries are clearly defined.

The processing mode ’vector’ will output a vector file, and process the input image piecewise. This
allows performing segmentation of very large images. IN contrast, ’raster’ mode will output a
labeled raster, and it cannot handle large data. If mode is ’raster’, all the ’vector_*’ arguments are
ignored.

10 segm_watershed

Value

sf or SpatRaster

Examples

Not run:
load packages
library(link2GI)
library(OTBsegm)
library(terra)

load sample image
image_sr <- rast(system.file("raster/pnoa.tiff", package = "OTBsegm"))

connect to OTB (change to your directory)
otblink <- link2GI::linkOTB(searchLocation = "C:/OTB/")

apply segmentation
results_ms_sf <- segm_watershed(

image = image_sr,
otb = otblink,
thresh = .1,
level = .2

)

End(Not run)

Index

link2GI::linkOTB(), 2, 4, 7, 9

segm_lsms, 2
segm_meanshift, 4
segm_mprofiles, 6
segm_watershed, 8

11

	segm_lsms
	segm_meanshift
	segm_mprofiles
	segm_watershed
	Index

