Package 'ORFID'

January 20, 2025

Type Package **Version** 1.0.2

```
Description Automates and standardizes the import of raw data from Oregon RFID (radio-
      frequency identification) ORMR (Oregon RFID Multi-Reader) and ORSR (Oregon RFID Sin-
      gle Reader) antenna readers. Compiled data can then be combined within multi-reader ar-
      rays for further analysis, including summarizing tag and reader detections, determining tag direc-
      tion, and calculating antenna efficiency.
Date 2022-12-06
Depends R (>= 4.0.0)
Imports magrittr, dplyr, readr, tidyr, ggplot2, stringr, rlang,
      openxlsx
License MIT + file LICENSE
URL https://github.com/hugo-marques/ORFID
BugReports https://github.com/hugo-marques/ORFID/issues
LazyData TRUE
Encoding UTF-8
RoxygenNote 7.2.1
Suggests knitr, rmarkdown, testthat (>= 2.1.0), devtools
VignetteBuilder knitr
NeedsCompilation no
Author Hugo Marques [aut] (<a href="https://orcid.org/0000-0002-9361-9341">https://orcid.org/0000-0002-9361-9341</a>),
      Annika Putt [aut, cre] (<a href="https://orcid.org/0000-0003-4164-5836">https://orcid.org/0000-0003-4164-5836</a>)
Maintainer Annika Putt <annika@instream.net>
Repository CRAN
Date/Publication 2022-12-15 10:50:02 UTC
```

Title Manage and Summarize Data from Oregon RFID ORMR and ORSR Antenna

2 ant_efficiency

Contents

ant_efficiency	2
direction_summary	3
export_ORFID	5
field_names	6
import_old_readers	
import_ORFID	7
import_ORFID_events	8
join_multireader_data	9
marker_tag	10
marker_tag_plot	11
reader_1	12
reader_2	13
reader_3	13
reader_ds	
reader_us	15
site_summary	
start_stop_plot	
tag_direction	18
tag_summary	19
	21

ant_efficiency

Detection efficiency for directional Oregon RFID antenna data

Description

Index

Determines detection efficiency for each antenna in systems where multiple antennas are used along a linear migration route.

Usage

```
ant_efficiency(x, LOC_vec)
```

Arguments

x data frame generated using join_multireader_data.

LOC_vec vector of antenna locations from first encountered to last encountered.

Details

ant_efficiency determines the detection efficiency of each antenna in a linear migration route. Direction is determined based on the order of locations from first encountered to last encountered, as specified in LOC_vec . Use site_summary to identify all locations present in the multi reader data, which must be included in LOC_vec .

direction_summary 3

Antenna efficiency is determined by identifying which tags were detected at antenna x and which tags were detected anywhere after/above antenna x. The efficiency of antenna x is then the number of shared tag detections divided by the total number of detections after x. Note that efficiency and shared detections cannot be determined for the final antenna as there are no subsequent detections. Reversing the order of LOC_vec can inform efficiency in systems with movement in multiple directions.

Value

Returns a tibble object.

Author(s)

Annika Putt <annika@instream.net>

See Also

import_ORFID for importing data files from Oregon RFID ORMR and ORSR antenna readers.
join_multireader_data for combining data from Oregon RFID ORMR and ORSR antenna readers into a multi-reader array.

site_summary for identifying all locations present in a multi-reader array.

Examples

```
# Create a list containing compiled reader data:
readers <- list(reader_us, reader_ds)

# Join data into a multi-reader array:
PIT_data <- join_multireader_data(readers)

# List readers:
unique(PIT_data$LOC)

# Determine antenna efficiency for animals moving from downstream to upstream:
ant_efficiency(PIT_data, c("downstream_A1", "upstream_A1"))

# Determine antenna efficiency for animals moving from upstream to downstream:
ant_efficiency(PIT_data, c("upstream_A1", "downstream_A1"))</pre>
```

 ${\tt direction_summary}$

Summary of movement direction for Oregon RFID antenna data

Description

Summarizes the time difference between the first and last movement directions for each unique tag ID. Input data are created by tag_direction, which determines the direction of movement for each detection event in join_multireader_data.

4 direction_summary

Usage

```
direction_summary(dir_df, include_stationary = FALSE)
```

Arguments

if *TRUE*, all detections are summarized. If FALSE, only detections with a known movement direction (up or down) are included in the summary.

Details

direction_summary isolates the first and last direction of movement from tag_direction and determines the time difference in seconds and days. Directions are U for upstream movement, D for downstream movement, and S for no movement, or consecutive detection at the same location.

It is common for a tag to be detected multiple times at the same antenna, which will result in a movement direction of S, or stationary. The user is encouraged to examine direction summaries for *include_stationary* = *TRUE* and *include_stationary* = *FALSE* to become familiar with their data. When *include_stationary* = *FALSE*, there may be fewer tag ids in the direction summary than in the full data set.

Value

Returns a tibble object.

Author(s)

Annika Putt <annika@instream.net>

See Also

import_ORFID for importing data files from Oregon RFID ORMR and ORSR antenna readers.

join_multireader_data for combining data from Oregon RFID ORMR and ORSR antenna readers into a multi-reader array.

tag_direction for determining movement direction of detections in systems with a linear migration route.

Examples

```
# Create a list containing compiled reader data:
readers <- list(reader_us, reader_ds)

# Join data into a multi-reader array:
PIT_data <- join_multireader_data(readers)

# List readers:
unique(PIT_data$LOC)

# Determine tag direction for animals moving from downstream to upstream:</pre>
```

export_ORFID 5

```
dir <- tag_direction(PIT_data, c("downstream_A1", "upstream_A1"))
# Determine the time difference between first and last detections:
dir_summary <- direction_summary(dir)</pre>
```

export_ORFID

Export compiled data from Oregon RFID antenna readers

Description

Data compiled using import_ORFID or join_multireader_data are exported to the working directory as either a .csv or .xlsx file

Usage

```
export_ORFID(x, name, extension)
```

Arguments

x data frame to be exported.

name file name.

extension file extension (".csv" or ".xlsx").

Details

Any data frame created using functions in the **ORFID** package can be exported using this function.

Value

A file is saved to the working directory.

Author(s)

Hugo Marques

diohmarques@gmail.com>

See Also

import_ORFID for importing data files from Oregon RFID ORMR and ORSR antenna readers.

join_multireader_data for combining data from Oregon RFID ORMR and ORSR antenna readers into a multi-reader array.

6 import_old_readers

field_names	View field names from Oregon RFID (radio-frequency identification) antenna readers

Description

Function to return field names and descriptions from Oregon RFID single readers (ORSR) and multi-readers (ORMR).

Usage

```
field_names()
```

Details

Returns the field/column names and its details from ORSR and ORMR data, which can be used to determine which field names should be included in data downloads.

Value

A data frame with two variables: name and details

Author(s)

Hugo Marques

diohmarques@gmail.com>

Examples

```
field_names()
```

import_old_readers

Import from previous generations of Oregon RFID antenna readers

Description

Only data collected using Oregon RFID (radio-frequency identification) ORMR (Oregon RFID Multi-Reader) and ORSR (Oregon RFID Single Reader) antenna readers can be imported using import_ORFID. Data from previous generations of readers must be imported using import_old_readers. Only detections are retained during compilation (events are removed).

This function will only work with raw data downloaded directly from Oregon RFID stationary readers. The files must be delimited (tab, comma, or semicolon) and unedited by the user.

Usage

```
import_old_readers(file, delim, verbose = FALSE)
```

import_ORFID 7

Arguments

file	.txt file generated by an Oregon RFID reade	er.
1110	the foliated by all oregon he in read	C1.

delim field/column delimiter, which must be tab ('\t'), comma (',') or semi-colon (';').

verbose If TRUE, a description of the compiled data is printed to the console.

Details

The field/column delimiter must be tab, comma or semi-colon for data compilation and further analysis. The function cannot be used for space delimited data.

Data compiled using import_ORFID and import_old_readers can be joined together using join_multireader_data.

Note that corruption may occur in reader data files. Check your data files and compiled data carefully to ensure accuracy.

Value

Returns a tibble object.

Author(s)

Hugo Marques

diohmarques@gmail.com>

Examples

```
# Import a single comma-deliminated data file from an old ORFID reader
import_old_readers(file = system.file("extdata/orfid_old_data_file.txt",
package = "ORFID"), delim = ",")
```

import_ORFID

Import data files from Oregon RFID antenna readers

Description

Imports files from Oregon RFID (radio-frequency identification) ORMR (Oregon RFID Multi-Reader) and ORSR (Oregon RFID Single Reader) antenna readers. Only detections are retained during compilation (events are removed).

This function will only work with raw data downloaded directly from Oregon RFID stationary readers. The files must be delimited (tab, comma, or semicolon) and unedited by the user.

Usage

```
import_ORFID(file, delim, verbose = FALSE)
```

Arguments

file	.txt file generated by an Oregon RFID reader.
delim	field/column delimiter, which must be tab ('\t'), comma (',') or semi-colon (';').
verbose	If TRUE, a description of the compiled data is printed to the console.

Details

The field/column delimiter must be tab, comma or semi-colon for data compilation and further analysis. The function cannot be used for space delimited data.

The tag number column (TAG) is required for subsequent analyses, and the function will return a warning if TAG is not included in the data file.

Note that corruption may occur in reader data files. Check your data files and compiled data carefully to ensure accuracy.

Value

Returns a tibble object of data compiled from a single ORFID data file.

Author(s)

Hugo Marques

biohmarques@gmail.com>, Annika Putt <annika@instream.net>

Examples

```
# Import a single tab-deliminated data file from an ORFID reader
import_ORFID(file = system.file("extdata/orfid_data_file.txt", package = "ORFID"), delim = "\t")
```

import_ORFID_events

Import event records from Oregon RFID antenna readers

Description

Imports files from Oregon RFID (radio-frequency identification) ORMR (Oregon RFID Multi-Reader) and ORSR (Oregon RFID Single Reader) antenna readers. Only event records are retained during compilation (detections are removed). The function will not work with older generations of Oregon RFID antenna readers.

This function will only work with raw data downloaded directly from Oregon RFID stationary readers. The files must be delimited (tab, comma, or semicolon) and unedited by the user.

Usage

```
import_ORFID_events(file, delim, verbose = FALSE)
```

join_multireader_data 9

Arguments

file .txt file generated by an Oregon RFID reader.

delim field/column delimiter, which must be tab ('\t'), comma (',') or semi-colon (';').

verbose If TRUE, a description of the compiled data is printed to the console.

Details

The field/column delimiter must be tab, comma or semi-colon for data compilation. The function cannot be used for space delimited data.

Value

Returns a tibble object.

Author(s)

Hugo Marques

diohmarques@gmail.com>

Examples

```
# Importing event records from a single ORFID reader
import_ORFID_events(file = system.file("extdata/orfid_data_file.txt",
package = "ORFID"), delim = "\t")
```

join_multireader_data Combine data from multiple antenna readers

Description

Function to combine data from unique readers into an array, using reader data compiled using import_ORFID.

Usage

```
join_multireader_data(x, verbose = FALSE)
```

Arguments

x A list object containing data frames compiled using import_ORFID. verbose If *TRUE*, a description of the compiled data is printed to the console.

Details

As in bind_rows, the output of join_multireader_data will contain a column if that column appears in any of the data inputs. The function creates a unique factor variable, *LOC* (location), which is a combination of *SCD* (site code) and *ANT* (antenna).

10 marker_tag

Value

Returns a tibble object of distinct detections from multiple antenna readers.

Author(s)

Hugo Marques

diohmarques@gmail.com>

See Also

import_ORFID for importing data files from Oregon RFID ORMR and ORSR antenna readers.

Examples

```
# Create a list containing compiled reader data:
readers <- list(reader_1, reader_2)

# Join data into a multi-reader array:
PIT_data <- join_multireader_data(readers)</pre>
```

marker_tag

Summarize marker tag detections from Oregon RFID antenna readers

Description

Creates a filtered dataset containing only detection data from a user-specified marker tag (unique tag number).

Usage

```
marker_tag(x, tag, gap)
```

Arguments

Χ	antenna data compiled using import_ORFID or join_multireader_data.
tag	marker tag identification (character object).
gap	minimum time gap in seconds between detections (optional).

Details

A column, *GAP*, is created that calculates the time gap (in seconds) between subsequent detections. If *GAP* is omitted, all detection from the marker tag are retained. If a minimum time gap is specified, only detections with a larger time gap than the specified minimum are retained. This allows the user to identify periods when marker tags were not being detected as frequently as expected.

Value

Returns a tibble object.

marker_tag_plot 11

Author(s)

Hugo Marques

diohmarques@gmail.com>

See Also

import_ORFID for importing data files from Oregon RFID ORMR and ORSR antenna readers.
join_multireader_data for combining data from Oregon RFID ORMR and ORSR antenna readers into a multi-reader array.

Examples

```
# Create a list containing compiled reader data:
readers <- list(reader_1, reader_2, reader_3)

# Join data into a multi-reader array:
PIT_data <- join_multireader_data(readers)

# Summarize marker tag data
marker_tag(PIT_data, "0000_000000004978")

# Summarize marker tag data when the time gap between detections was greater or equal to 10 minutes.
marker_tag(PIT_data, "0000_000000004978", gap = 600)</pre>
```

marker_tag_plot

Plot marker tag detections from Oregon RFID antenna readers

Description

Creates a time series plot containing only detection data from a user-specified marker tag (unique tag number).

Usage

```
marker_tag_plot(x, tag, gap)
```

Arguments

X	antenna data compiled using import_ORFID or join_multireader_data.
tag	marker tag identification (character object).
gap	minimum time gap in seconds between detections (optional).

Details

Creates a plot object displaying marker tag detections. If a minimum time gap is specified, time gaps greater than the minimum specified are highlighted in red. This allows the user to identify periods when marker tags were not being detected as frequently as expected.

12 reader_1

Value

Returns a **ggplot2** object. If the plot is saved as a named object, **ggplot2** functions, including theme commands can be used to customize plot aesthetics, including axis labels, grid lines, etc.

Author(s)

Hugo Marques

diohmarques@gmail.com>

See Also

import_ORFID for importing data files from Oregon RFID ORMR and ORSR antenna readers.
join_multireader_data for combining data from Oregon RFID ORMR and ORSR antenna readers into a multi-reader array.

Examples

```
# Create a list containing compiled reader data:
readers <- list(reader_1, reader_2, reader_3)

# Join data into a multi-reader array:
PIT_data <- join_multireader_data(readers)

# Plot marker tag data and highlight gaps greater than 10 minutes.
marker_tag_plot(PIT_data, "0000_000000004978", gap = 600)</pre>
```

reader_1

ORFID data samples

Description

Compiled data to illustrate functions from **ORFID**. The variables are as follows:

Usage

```
reader_1
```

Format

A data frame with 8590 rows and 9 variables:

```
DTY Detection type (S = summary, I = individual, E = event)
```

ARR Arrival date and time

TRF Time reference (G = GNSS, N = network, U = unreferenced)

DUR Duration of the period between the arrival and the departure from the detection zone

TTY Tag type A=Animal (R = Read only, W = Writeable, P = Phantom)

TAG Tag ID number

reader_2

SCD Site code

NCD Number of consecutive detections

EFA Effective amps

reader_2

ORFID data samples

Description

Compiled data to illustrate functions from **ORFID**. The variables are as follows:

Usage

reader_2

Format

A data frame with 8590 rows and 9 variables:

DTY Detection type (S = summary, I = individual, E = event)

ARR Arrival date and time

TRF Time reference (G = GNSS, N = network, U = unreferenced)

DUR Duration of the period between the arrival and the departure from the detection zone

TTY Tag type A=Animal (R = Read only, W = Writeable, P = Phantom)

TAG Tag ID number

SCD Site code

NCD Number of consecutive detections

EFA Effective amps

reader_3

ORFID data samples

Description

Compiled data to illustrate functions from **ORFID**. The variables are as follows:

Usage

reader_3

14 reader_ds

Format

A data frame with 1034 rows and 9 variables:

DTY Detection type (S = summary, I = individual, E = event)

ARR Arrival date and time

TRF Time reference (G = GNSS, N = network, U = unreferenced)

DUR Duration of the period between the arrival and the departure from the detection zone

TTY Tag type A=Animal (R = Read only, W = Writeable, P = Phantom)

TAG Tag ID number

SCD Site code

NCD Number of consecutive detections

EFA Effective amps

reader_ds

ORFID data samples

Description

Compiled data to illustrate directional functions from **ORFID**. The variables are as follows:

Usage

reader_ds

Format

A data frame with 824 rows and 16 variables:

DTY Detection type (S = summary, I = individual, E = event)

ARR Arrival date and time

TRF Time reference (G = GNSS, N = network, U = unreferenced)

DUR Duration of the period between the arrival and the departure from the detection zone

TTY Tag type A=Animal (R = Read only, W = Writeable, P = Phantom)

TAG Tag ID number

SCD Site code

NCD Number of consecutive detections

EFA Effective amps

TCH Tag technology (HDX, FDX, HF)

ANT Antenna number

EMP Number of empty scans preceding detection

TSS Tag signal strength

SPV Unknown

NOI Noise

CLS Tag class

reader_us 15

reader_us

ORFID data samples

Description

Compiled data to illustrate directional functions from **ORFID**. The variables are as follows:

Usage

reader_us

Format

A data frame with 781 rows and 16 variables:

DTY Detection type (S = summary, I = individual, E = event)

ARR Arrival date and time

TRF Time reference (G = GNSS, N = network, U = unreferenced)

DUR Duration of the period between the arrival and the departure from the detection zone

TTY Tag type A=Animal (R = Read only, W = Writeable, P = Phantom)

TAG Tag ID number

SCD Site code

NCD Number of consecutive detections

EFA Effective amps

TCH Tag technology (HDX, FDX, HF)

ANT Antenna number

EMP Number of empty scans preceding detection

TSS Tag signal strength

SPV Unknown

NOI Noise

CLS Tag class

16 site_summary

site_summary

Summarize site information from Oregon RFID antenna reader data

Description

Summarizes detection information for unique antenna sites within antenna reader data compiled using import_ORFID or join_multireader_data.

Usage

```
site_summary(x)
```

Arguments

Х

antenna data compiled using import_ORFID or join_multireader_data.

Details

Creates a tibble grouped by *SCD* (site code; one row per unique *SCD*). The data frame contains the site code (*SCD*), the total number of records detected (*REC*), the number of unique tags detected (*TAG_ID*), and the time at which the first (*FIR*) and last (*LAS*) detections occurred on the array.

Value

Returns a tibble object.

Author(s)

Hugo Marques

diohmarques@gmail.com>

See Also

import_ORFID for importing data files from Oregon RFID ORMR and ORSR antenna readers.
join_multireader_data for combining data from Oregon RFID ORMR and ORSR antenna readers into a multi-reader array.

Examples

```
# Create a list containing compiled reader data:
readers <- list(reader_1, reader_2)

# Join data into a multi-reader array:
PIT_data <- join_multireader_data(readers)

# Summarize detection information for each unique site:
site_summary(PIT_data)</pre>
```

start_stop_plot 17

start_stop_plot

Plot reader start and stop times from Oregon RFID antenna readers

Description

Creates a time series plot containing start and stop times from Oregon RFID (radio-frequency identification) ORMR (Oregon RFID multi-reader) and ORSR (Oregon RFID single reader) antenna readers.

Usage

```
start_stop_plot(x)
```

Arguments

Y

event data compiled using import_ORFID_events

Details

Creates a plot displaying reader start and stop times. Note that start and stop times can be very close together and difficult to distinguish depending on the period plotted. Filter event data to improve resolution.

Value

Returns a plot object.

Author(s)

Annika Putt <annika@instream.net>

See Also

import_ORFID_events for importing event data from Oregon RFID ORMR and ORSR antenna readers.

join_multireader_data for combining data from Oregon RFID ORMR and ORSR antenna readers into a multi-reader array.

18 tag_direction

tag_direction

Movement direction for Oregon RFID antenna data

Description

Determines direction of tag movement in systems where multiple antennas are used along a linear migration route.

Usage

```
tag_direction(x, LOC_vec)
```

Arguments

x data frame generated using join_multireader_data.

LOC vec vector of antenna locations from first encountered to last encountered.

Details

tag_direction determines the direction of movement for individual detection events in x. Direction is determined based on the order of locations from first encountered to last encountered, as specified in LOC_vec . Note that direction cannot be determined until the tag has been detected at multiple locations. Use site_summary to identify all locations present in the multi-reader data, which must be included in LOC_vec .

Value

Returns a tibble object. The column DIR displays direction, where U is upstream movement, D is downstream movement, and S is no movement, or a consecutive detection at the previous location.

Author(s)

Annika Putt <annika@instream.net>

See Also

import_ORFID for importing data files from Oregon RFID ORMR and ORSR antenna readers.

join_multireader_data for combining data from Oregon RFID ORMR and ORSR antenna readers into a multi-reader array.

site_summary for identifying all locations present in a multi reader array

tag_summary 19

Examples

```
# Create a list containing compiled reader data:
readers <- list(reader_us, reader_ds)

# Join data into a multi-reader array:
PIT_data <- join_multireader_data(readers)

# List readers:
unique(PIT_data$LOC)

# Determine tag direction for animals moving from downstream to upstream:
tag_direction(PIT_data, c("downstream_A1", "upstream_A1"))</pre>
```

tag_summary

Summarize tags detected by Oregon RFID antenna readers

Description

Summarizes detection information for unique tags within antenna reader data compiled using import_ORFID or join_multireader_data.

Usage

```
tag\_summary(x, verbose = TRUE)
```

Arguments

x antenna data compiled using import_ORFID or join_multireader_data. verbose If *TRUE*, a data frame describing output columns is printed to the console.

Details

Creates a tibble grouped by TAG (one row per unique TAG). A data frame describing the summarized data is printed to the console.

Value

Returns a tibble object.

Author(s)

Hugo Marques

diohmarques@gmail.com>

See Also

import_ORFID for importing data files from Oregon RFID ORMR and ORSR antenna readers.
join_multireader_data for combining data from Oregon RFID ORMR and ORSR antenna readers into a multi-reader array.

20 tag_summary

Examples

```
# Create a list containing compiled reader data:
readers <- list(reader_1, reader_2)

# Join data into a multi-reader array:
PIT_data <- join_multireader_data(readers)

# Summarize detection information for each unique tag:
tag_summary(PIT_data)</pre>
```

Index

```
* datasets
    reader_1, 12
    reader_2, 13
    reader_3, 13
    reader_ds, 14
    reader_us, 15
ant\_efficiency, 2
bind_rows, 9
direction_summary, 3
export_ORFID, 5
field_names, 6
import_old_readers, 6, 6, 7
import_ORFID, 3-7, 7, 9-12, 16, 18, 19
import_ORFID_events, 8, 17
join_multireader_data, 2-5, 7, 9, 9, 10-12,
        16–19
marker_tag, 10
marker_tag_plot, 11
reader_1, 12
reader_2, 13
reader_3, 13
reader_ds, 14
reader_us, 15
site_summary, 2, 3, 16, 18
start_stop_plot, 17
tag_direction, 3, 4, 18
tag\_summary, 19
theme, 12
```