#Procedures for estimating environmental variables
In addition to functions for estimating parameters for genotype selection, the EstimateBreed package also offers functions for measuring and estimating environmental variables.
##Accumulated Thermal Sum
The calculation of thermal sum is crucial for understanding plant growth and development. It helps predict the onset of key growth stages, optimize planting schedules, and assess climate impacts on crop yields, ultimately enhancing agricultural planning and productivity.
The accumulated thermal sum during a given growing cycle can be
obtained with the atsum()
function.
library(EstimateBreed)
#> EstimateBreed package loaded.
data("clima")
clima <- get("clima")[1:150, ]
with(clima,atsum(TMED,crop="maize"))
#Adjusting lower basal temperature manually
with(clima,atsum(TMED,crop="maize",lbt=12))
The plastochron of soybean represents the time interval between leaf initiation. Understanding its influence on growth is key to optimizing crop management, improving yield prediction, and adapting practices to environmental conditions for better productivity.
The plast()
function estimates the air temperature
required for leaf expansion and node emission in soybean crops, as
described by Porta et al (2024).
#Predict ∆T to determine the ideal times to apply agricultural pesticides.
Delta T, the difference between air temperature and dew point, is
crucial for agrochemical application. The tdelta()
function
performs forecasting or retrospective analysis of climate data to
understand the best time for application.
# This function requires an internet connection to access the weather API.
library(EstimateBreed)
# Forecasting application conditions
forecast <- tdelta(-53.6969,-28.0638,type=1,days=10)
forecast
# Retrospective analysis of application conditions
retrosp <- tdelta(-53.6969,-28.0638,type=2,days=10,
dates=c("2023-01-01","2023-05-01"),
details=TRUE)
retrosp
##Stress indicators from agronomic traits
The stind()
function estimates several stress indicators
based on the productivity of a given crop subjected or not to stressful
conditions, as described by Ghazvini et al(2024).
library(EstimateBreed)
data("aveia")
#General
with(aveia,stind(GEN,MC,MG,index = "ALL",bygen=TRUE))
#> GEN STI YI GMP MP MH SSI YSI
#> 1 G1 0.6843575 0.6843575 1.233995 0.7613715 0.3747927 1.1866617 0.6843575
#> 2 G10 0.7628362 0.7628362 1.488428 1.1077083 0.2690707 0.7998926 0.7628362
#> 3 G11 0.7172237 0.7172237 1.372668 0.9421094 0.3293413 1.0143855 0.7172237
#> 4 G12 0.7589286 0.7589286 1.626175 1.3222222 0.2741117 0.8172584 0.7589286
#> 5 G13 0.6997519 0.6997519 1.404643 0.9865104 0.3532847 1.1039536 0.6997519
#> 6 G14 0.6722222 0.6722222 1.229837 0.7562500 0.3920266 1.2545304 0.6722222
#> 7 G2 0.7753623 0.7753623 1.518943 1.1535938 0.2530612 0.7454053 0.7753623
#> 8 G3 0.7288136 0.7288136 1.259216 0.7928125 0.3137255 0.9573397 0.7288136
#> 9 G4 0.7648579 0.7648579 1.410230 0.9943750 0.2664714 0.7909777 0.7648579
#> 10 G5 0.7218543 0.7218543 1.425474 1.0159877 0.3230769 0.9913736 0.7218543
#> 11 G6 0.6934673 0.6934673 1.380972 0.9535417 0.3620178 1.1372745 0.6934673
#> 12 G7 0.7043478 0.7043478 1.608571 1.2937500 0.3469388 1.0799619 0.7043478
#> 13 G8 0.6726058 0.6726058 1.534318 1.1770660 0.3914780 1.2523478 0.6726058
#> 14 G9 0.7193878 0.7193878 1.385340 0.9595833 0.3264095 1.0035942 0.7193878
#> RSI
#> 1 1.0522445
#> 2 0.9439922
#> 3 1.0040263
#> 4 0.9488527
#> 5 1.0290954
#> 6 1.0712401
#> 7 0.9287418
#> 8 0.9880599
#> 9 0.9414970
#> 10 0.9975856
#> 11 1.0384216
#> 12 1.0223804
#> 13 1.0706293
#> 14 1.0010060
#Only the desired index
with(aveia,stind(GEN,MC,MG,index = "STI",bygen=TRUE))
#> GEN STI
#> 1 G1 0.6843575
#> 2 G10 0.7628362
#> 3 G11 0.7172237
#> 4 G12 0.7589286
#> 5 G13 0.6997519
#> 6 G14 0.6722222
#> 7 G2 0.7753623
#> 8 G3 0.7288136
#> 9 G4 0.7648579
#> 10 G5 0.7218543
#> 11 G6 0.6934673
#> 12 G7 0.7043478
#> 13 G8 0.6726058
#> 14 G9 0.7193878
##Risk of Disease Occurrence in Soybeans
Predicting the occurrence of Asian soybean rust is critical for timely disease management. Early detection allows for targeted interventions, such as fungicide application, minimizing crop losses and reducing the spread of the disease.
This can be estimated with the risk
() function, based on
the methodology proposed by Engers et al. (2024), which uses temperature
and relative humidity to define the potential risk of the disease
occurring.
library(EstimateBreed)
# Rust Risk Prediction
data("clima")
with(clima, risk(DY, MO, TMED, RH, disease = "rust"))
#> Month RHrisk TEMPrisk TOTALrisk RELrisk
#> 1 1 12.706058 26.83114 340.91801 77.28258522
#> 2 2 13.377456 26.68142 356.92951 81.03100483
#> 3 3 16.307827 26.85558 437.95622 100.00000000
#> 4 4 4.674734 21.95465 102.63217 21.49798046
#> 5 5 1.003280 11.08089 11.11724 0.07361011
#> 6 6 6.195717 15.41482 95.50588 19.82966088
#> 7 7 1.000115 13.76856 13.77015 0.69467659
#> 8 8 1.000790 10.79428 10.80281 0.00000000
#> 9 9 1.138186 23.72200 27.00004 3.79189947
#> 10 10 2.132149 24.50724 52.25308 9.70383628
#> 11 11 1.010342 22.68888 22.92353 2.83755630
#> 12 12 5.045327 27.28285 137.65089 29.69614071