library(slopes)
library(bench)
library(raster)
#> Loading required package: spA benchmark can reveal how many route gradients can be calculated per second:
e = dem_lisbon_raster
r = lisbon_road_network
et = terra::rast(e)
res = bench::mark(check = FALSE,
slope_raster = slope_raster(r, e),
slope_terra = slope_raster(r, et)
)res
#> # A tibble: 2 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 slope_raster 18.5ms 18.7ms 52.0 16.2MB 24.5
#> 2 slope_terra 17.5ms 18.4ms 54.2 1.96MB 13.5That is approximately
round(res$`itr/sec` * nrow(r))
#> [1] 14104 14680routes per second using the raster and terra (the default if installed, using RasterLayer and native SpatRaster objects) packages to extract elevation estimates from the raster datasets, respectively.
The message: use the terra package to read-in DEM data for slope extraction if speed is important.
To go faster, you can chose the simple method to gain some speed at the expense of accuracy:
e = dem_lisbon_raster
r = lisbon_road_network
res = bench::mark(check = FALSE,
bilinear1 = slope_raster(r, e),
bilinear2 = slope_raster(r, et),
simple1 = slope_raster(r, e, method = "simple"),
simple2 = slope_raster(r, et, method = "simple")
)res
#> # A tibble: 4 × 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 bilinear1 18.4ms 18.7ms 53.0 5.28MB 9.64
#> 2 bilinear2 18ms 18.5ms 53.7 1.86MB 12.8
#> 3 simple1 15ms 15.2ms 65.7 1.97MB 12.2
#> 4 simple2 15.2ms 15.4ms 64.7 1.92MB 12.0round(res$`itr/sec` * nrow(r))
#> [1] 14364 14541 17791 17544