Holistic Multimodel Domain Analysis for Exploratory Machine Learning


[Up] [Top]

Documentation for package ‘HMDA’ version 0.1

Help Pages

best_of_family Select Best Models by Performance Metrics
check_efa Check Exploratory Factor Analysis Suitability
dictionary Dictionary of Variable Attributes
hmda.adjust.params Adjust Hyperparameter Combinations
hmda.autoEnsemble Build Stacked Ensemble Model Using autoEnsemble R package
hmda.best.models Select Best Models Across All Models in HMDA Grid
hmda.domain compute and plot weighted mean SHAP contributions at group level (factors or domains)
hmda.efa Perform Exploratory Factor Analysis with HMDA
hmda.feature.selection Feature Selection Based on Weighted SHAP Values
hmda.grid Tune Hyperparameter Grid for HMDA Framework
hmda.grid.analysis Analyze Hyperparameter Grid Performance
hmda.init Initialize or Restart H2O Cluster for HMDA Analysis
hmda.partition Partition Data for HMDA Analysis
hmda.search.param Search for Hyperparameters via Random Search
hmda.suggest.param Suggest Hyperparameters for tuning HMDA Grids
hmda.wmshap Compute Weighted Mean SHAP Values and Confidence Intervals via shapley algorithm
hmda.wmshap.table Create SHAP Summary Table Based on the Given Criterion
list_hyperparameter Create Hyperparameter List from a leaderboard dataset
suggest_mtries Suggest Alternative mtries Values