
GnuTLS
Transport Layer Security Library for the GNU system

for version 3.0.11, 4 January 2012

Nikos Mavrogiannopoulos
Simon Josefsson (bug-gnutls@gnu.org)

mailto:bug-gnutls@gnu.org

This manual is last updated 4 January 2012 for version 3.0.11 of GnuTLS.

Copyright c© 2001-2011 Free Software Foundation, Inc.

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.3 or any later version
published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included
in the section entitled “GNU Free Documentation License”.

i

Table of Contents

1 Preface . 1

2 Introduction to GnuTLS . 2
2.1 Downloading and installing . 2
2.2 Overview . 3

3 Introduction to TLS and DTLS 4
3.1 TLS layers . 4
3.2 The transport layer . 4
3.3 The TLS record protocol . 5

3.3.1 Encryption algorithms used in the record layer 5
3.3.2 Compression algorithms used in the record layer 7
3.3.3 Weaknesses and countermeasures . 7
3.3.4 On record padding . 7

3.4 The TLS alert protocol . 8
3.5 The TLS handshake protocol . 9

3.5.1 TLS ciphersuites . 9
3.5.2 Authentication . 9
3.5.3 Client authentication . 11
3.5.4 Resuming sessions . 11

3.6 TLS extensions . 11
3.6.1 Maximum fragment length negotiation . 12
3.6.2 Server name indication . 12
3.6.3 Session tickets . 12
3.6.4 Safe renegotiation . 12

3.7 How to use TLS in application protocols . 14
3.7.1 Separate ports . 14
3.7.2 Upward negotiation . 14

3.8 On SSL 2 and older protocols . 15

4 Certificate authentication . 17
4.1 X.509 certificates . 17

4.1.1 X.509 certificate structure . 17
4.1.2 Verifying X.509 certificate paths . 19
4.1.3 Verifying a certificate in the context of TLS session 20

4.2 OpenPGP certificates . 20
4.2.1 OpenPGP certificate structure . 21
4.2.2 Verifying an OpenPGP certificate . 21
4.2.3 Verifying a certificate in the context of a TLS session 22

4.3 Digital signatures . 22
4.3.1 Trading security for interoperability . 23

ii

5 Shared-key and anonymous authentication . . 24
5.1 SRP authentication . 24

5.1.1 Authentication using SRP . 24
5.1.2 Invoking srptool . 24

5.2 PSK authentication . 25
5.2.1 Authentication using PSK . 25
5.2.2 Invoking psktool . 25

5.3 Anonymous authentication . 26

6 More on certificate authentication 27
6.1 PKCS #10 certificate requests . 27
6.2 PKIX certificate revocation lists . 29
6.3 Managing encrypted keys . 30
6.4 The certtool application . 34
6.5 Smart cards and HSMs . 40

6.5.1 Initialization . 41
6.5.2 Reading objects . 42
6.5.3 Writing objects . 44
6.5.4 Using a PKCS #11 token with TLS . 44
6.5.5 The p11tool application . 44

6.6 Abstract key types . 46
6.6.1 Public keys . 47
6.6.2 Private keys . 47
6.6.3 Operations . 47

7 How to use GnuTLS in applications 49
7.1 Introduction . 49

7.1.1 General idea . 49
7.1.2 Error handling . 50
7.1.3 Debugging and auditing . 50
7.1.4 Thread safety . 50
7.1.5 Callback functions . 51

7.2 Preparation . 51
7.2.1 Headers . 51
7.2.2 Initialization . 51
7.2.3 Version check . 52
7.2.4 Building the source . 52

7.3 Session initialization . 52
7.4 Associating the credentials . 53

7.4.1 Certificates . 53
7.4.2 SRP . 54
7.4.3 PSK . 55
7.4.4 Anonymous . 56

7.5 Setting up the transport layer . 56
7.5.1 Asynchronous operation . 57
7.5.2 DTLS sessions . 57

7.6 TLS handshake . 58

iii

7.7 Data transfer and termination . 58
7.8 Handling alerts . 59
7.9 Priority strings . 59
7.10 Advanced and other topics . 63

7.10.1 Session resumption . 63
7.10.2 Parameter generation . 64
7.10.3 Keying material exporters . 64
7.10.4 Channel bindings . 65
7.10.5 Interoperability . 65
7.10.6 Compatibility with the OpenSSL library 66

7.11 Using the cryptographic library . 66
7.11.1 Symmetric cryptography . 66
7.11.2 Hash and HMAC functions . 66
7.11.3 Random number generation . 67

7.12 Selecting cryptographic key sizes . 67

8 GnuTLS application examples 69
8.1 Client examples . 69

8.1.1 Simple client example with anonymous authentication 69
8.1.2 Simple client example with X.509 certificate support 71
8.1.3 Simple datagram TLS client example . 76
8.1.4 Obtaining session information . 79
8.1.5 Using a callback to select the certificate to use 82
8.1.6 Verifying a certificate . 88
8.1.7 Using a smart card with TLS . 91
8.1.8 Client with resume capability example . 95
8.1.9 Simple client example with SRP authentication 98
8.1.10 Simple client example using the C++ API 101
8.1.11 Helper functions for TCP connections 103
8.1.12 Helper functions for UDP connections 104

8.2 Server examples . 106
8.2.1 Echo server with X.509 authentication 106
8.2.2 Echo server with OpenPGP authentication 110
8.2.3 Echo server with SRP authentication . 114
8.2.4 Echo server with anonymous authentication 118
8.2.5 DTLS echo server with X.509 authentication 122

8.3 Miscellaneous examples . 131
8.3.1 Checking for an alert . 131
8.3.2 X.509 certificate parsing example . 132

9 Other included programs . 136
9.1 The gnutls-cli tool . 136
9.2 The gnutls-serv tool . 137
9.3 The gnutls-cli-debug tool . 141

iv

10 Internal Architecture of GnuTLS 143
10.1 The TLS Protocol . 143
10.2 TLS Handshake Protocol . 143
10.3 TLS Authentication Methods . 144
10.4 TLS Extension Handling . 145
10.5 Cryptographic Backend . 149

Appendix A Support . 152
A.1 Getting Help . 152
A.2 Commercial Support . 152
A.3 Bug Reports . 152
A.4 Contributing . 153

Appendix B Error Codes and Descriptions . . 154

Appendix C API reference . 162
C.1 Core TLS API . 162
C.2 Datagram TLS API . 220
C.3 X.509 certificate API . 222
C.4 OpenPGP API . 289
C.5 PKCS 12 API . 308
C.6 Hardware token via PKCS 11 API . 313
C.7 Abstract key API . 323
C.8 Cryptographic API . 339
C.9 Compatibility API . 345

Appendix D Supported Ciphersuites 355

Appendix E Copying Information 360

Bibliography . 368

Function and Data Index . 371

Concept Index . 378

Chapter 1: Preface 1

1 Preface

This document demonstrates and explains the GnuTLS library API. A brief introduction to
the protocols and the technology involved is also included so that an application programmer
can better understand the GnuTLS purpose and actual offerings. Even if GnuTLS is a typical
library software, it operates over several security and cryptographic protocols which require
the programmer to make careful and correct usage of them. Otherwise it is likely to only
obtain a false sense of security. The term of security is very broad even if restricted to
computer software, and cannot be confined to a single cryptographic library. For that
reason, do not consider any program secure just because it uses GnuTLS; there are several
ways to compromise a program or a communication line and GnuTLS only helps with some
of them.

Although this document tries to be self contained, basic network programming and public
key infrastructure (PKI) knowledge is assumed in most of it. A good introduction to
networking can be found in [STEVENS], to public key infrastructure in [GUTPKI] and to
security engineering in [ANDERSON].

Updated versions of the GnuTLS software and this document will be available from
http://www.gnutls.org/ and http://www.gnu.org/software/gnutls/.

http://www.gnutls.org/
http://www.gnu.org/software/gnutls/

Chapter 2: Introduction to GnuTLS 2

2 Introduction to GnuTLS

In brief GnuTLS can be described as a library which offers an API to access secure commu-
nication protocols. These protocols provide privacy over insecure lines, and were designed
to prevent eavesdropping, tampering, or message forgery.

Technically GnuTLS is a portable ANSI C based library which implements the protocols
ranging from SSL 3.0 to TLS 1.2 (see Chapter 3 [Introduction to TLS], page 4, for a detailed
description of the protocols), accompanied with the required framework for authentication
and public key infrastructure. Important features of the GnuTLS library include:

• Support for TLS 1.2, TLS 1.1, TLS 1.0 and SSL 3.0 protocols.

• Support for Datagram TLS 1.0.

• Support for handling and verification of X.509 and OpenPGP certificates.

• Support for password authentication using TLS-SRP.

• Support for keyed authentication using TLS-PSK.

• Support for PKCS #11 tokens and smart-cards.

The GnuTLS library consists of three independent parts, namely the “TLS protocol part”,
the “Certificate part”, and the “Cryptographic back-end” part. The “TLS protocol part” is
the actual protocol implementation, and is entirely implemented within the GnuTLS library.
The “Certificate part” consists of the certificate parsing, and verification functions and it
uses functionality from the libtasn11 library. The “Cryptographic back-end” is provided by
the nettle2 library.

2.1 Downloading and installing

GnuTLS is available for download at: http://www.gnutls.org/download.html

GnuTLS uses a development cycle where even minor version numbers indicate a stable
release and a odd minor version number indicate a development release. For example,
GnuTLS 1.6.3 denote a stable release since 6 is even, and GnuTLS 1.7.11 denote a devel-
opment release since 7 is odd.

GnuTLS depends on Libnettle, and you will need to install it before installing GnuTLS.
Libnettle is available from http://www.lysator.liu.se/~nisse/nettle/. Don’t forget
to verify the cryptographic signature after downloading source code packages.

The package is then extracted, configured and built like many other packages that use
Autoconf. For detailed information on configuring and building it, refer to the ‘INSTALL’
file that is part of the distribution archive. Typically you invoke ./configure and then
make check install. There are a number of compile-time parameters, as discussed below.

The compression library, libz, as well as p11-kit are a optional dependencies. You can get
libz from http://www.zlib.net/ and p11-kit from http://p11-glue.freedesktop.org/.

The X.509 part of GnuTLS needs ASN.1 functionality, from a library called libtasn1.
A copy of libtasn1 is included in GnuTLS. If you want to install it separately
(e.g., to make it possibly to use libtasn1 in other programs), you can get it from
http://www.gnu.org/software/gnutls/download.html.

1 http://www.gnu.org/software/libtasn1/
2 http://www.lysator.liu.se/~nisse/nettle/

http://www.gnutls.org/download.html
http://www.lysator.liu.se/~nisse/nettle/
http://www.zlib.net/
http://p11-glue.freedesktop.org/
http://www.gnu.org/software/gnutls/download.html
http://www.gnu.org/software/libtasn1/
http://www.lysator.liu.se/~nisse/nettle/

Chapter 2: Introduction to GnuTLS 3

A few configure options may be relevant, summarized below. They disable or enable
particular features, to create a smaller library with only the required features.

--disable-srp-authentication

--disable-psk-authentication

--disable-anon-authentication

--disable-extra-pki

--disable-openpgp-authentication

--disable-openssl-compatibility

--without-p11-kit

For the complete list, refer to the output from configure --help.

2.2 Overview

In this document we present an overview of the supported security protocols in Chapter 3
[Introduction to TLS], page 4, and continue by providing more information on the certifi-
cate authentication in Chapter 4 [Certificate authentication], page 17, and shared-key as
well anonymous authentication in Chapter 5 [Shared-key and anonymous authentication],
page 24. We elaborate on certificate authentication by demonstrating advanced usage of
the API in Chapter 6 [More on certificate authentication], page 27. The core of the TLS
library is presented in Chapter 7 [How to use GnuTLS in applications], page 49 and example
applications are listed in Chapter 8 [GnuTLS application examples], page 69. In Chapter 9
[Other included programs], page 136 the usage of few included programs that may assist
debugging is presented. The last chapter is Chapter 10 [Internal architecture of GnuTLS],
page 143 that provides a short introduction to GnuTLS’ internal architecture.

Chapter 3: Introduction to TLS and DTLS 4

3 Introduction to TLS and DTLS

TLS stands for “Transport Layer Security” and is the successor of SSL, the Secure Sockets
Layer protocol [SSL3] designed by Netscape. TLS is an Internet protocol, defined by IETF1,
described in [RFC5246]. The protocol provides confidentiality, and authentication layers
over any reliable transport layer. The description, above, refers to TLS 1.0 but applies to
all other TLS versions as the differences between the protocols are not major.

The DTLS protocol, or “Datagram TLS” [RFC4347] is a protocol with identical goals as
TLS, but can operate under unreliable transport layers such as UDP. The discussions below
apply to this protocol as well, except when noted otherwise.

3.1 TLS layers

TLS is a layered protocol, and consists of the record protocol, the handshake protocol and
the alert protocol. The record protocol is to serve all other protocols and is above the
transport layer. The record protocol offers symmetric encryption, data authenticity, and
optionally compression. The alert protocol offers some signaling to the other protocols.
It can help informing the peer for the cause of failures and other error conditions. See
[The Alert Protocol], page 8, for more information. The alert protocol is above the record
protocol.

The handshake protocol is responsible for the security parameters’ negotiation, the initial
key exchange and authentication. See [The Handshake Protocol], page 9, for more informa-
tion about the handshake protocol. The protocol layering in TLS is shown in Figure 3.1.

Figure 3.1: The TLS protocol layers.

3.2 The transport layer

TLS is not limited to any transport layer and can be used above any transport layer,
as long as it is a reliable one. DTLS can be used over reliable and unreliable transport

1 IETF, or Internet Engineering Task Force, is a large open international community of network designers,
operators, vendors, and researchers concerned with the evolution of the Internet architecture and the smooth
operation of the Internet. It is open to any interested individual.

Chapter 3: Introduction to TLS and DTLS 5

layers. GnuTLS supports TCP and UDP layers transparently using the Berkeley sockets
API. However, any transport layer can be used by providing callbacks for GnuTLS to access
the transport layer (for details see Section 7.5 [Setting up the transport layer], page 56).

3.3 The TLS record protocol

The record protocol is the secure communications provider. Its purpose is to encrypt,
authenticate and —optionally— compress packets. The record layer functions can be called
at any time after the handshake process is finished, when there is need to receive or send
data. In DTLS however, due to re-transmission timers used in the handshake out-of-order
handshake data might be received for some time (maximum 60 seconds) after the handshake
process is finished. For this reason programs using DTLS should call the receive functions
for every packet received by the peer, even if no data were expected.

The functions to access the record protocol are limited to send and receive functions, which
might, given the importance of this protocol in TLS, seem awkward. This is because the
record protocol’s parameters are all set by the handshake protocol. The record protocol
initially starts with NULL parameters, which means no encryption, and no MAC is used.
Encryption and authentication begin just after the handshake protocol has finished.

• [gnutls record send], page 205

• [gnutls record recv], page 204

• [gnutls record recv seq], page 205

3.3.1 Encryption algorithms used in the record layer

Confidentiality in the record layer is achieved by using symmetric block encryption al-
gorithms like 3DES, AES or stream algorithms like ARCFOUR_128. Ciphers are encryption
algorithms that use a single, secret, key to encrypt and decrypt data. Block algorithms in
CBC mode also provide protection against statistical analysis of the data. Thus, if you’re
using the TLS protocol, a random number of blocks will be appended to data, to prevent
eavesdroppers from guessing the actual data size.

The supported in GnuTLS ciphers and MAC algorithms are shown in Table 3.1 and Table 3.2.

Chapter 3: Introduction to TLS and DTLS 6

Algorithm Description
3DES CBC This is the DES block cipher algorithm used with triple en-

cryption (EDE). Has 64 bits block size and is used in CBC
mode.

ARCFOUR 128 ARCFOUR 128 is a compatible algorithm with RSA’s RC4
algorithm, which is considered to be a trade secret. It is a
fast cipher but considered weak today.

ARCFOUR 40 This is the ARCFOUR cipher fed with a 40 bit key, which is
considered weak.

AES CBC AES or RIJNDAEL is the block cipher algorithm that replaces
the old DES algorithm. Has 128 bits block size and is used in
CBC mode.

AES GCM This is the AES algorithm in the authenticated encryption
GCMmode. This mode combines message authentication and
encryption and can be extremely fast on CPUs that support
hardware acceleration.

CAMELLIA CBC This is an 128-bit block cipher developed by Mitsubishi and
NTT. It is one of the approved ciphers of the European
NESSIE and Japanese CRYPTREC projects.

Table 3.1: Supported ciphers.

Algorithm Description
MAC MD5 This is a cryptographic hash algorithm designed by Ron

Rivest. Outputs 128 bits of data.

MAC SHA1 A cryptographic hash algorithm designed by NSA. Outputs
160 bits of data.

MAC SHA256 A cryptographic hash algorithm designed by NSA. Outputs
256 bits of data.

MAC AEAD This indicates that an authenticated encryption algorithm,
such as GCM, is in use.

Table 3.2: Supported MAC algorithms.

Chapter 3: Introduction to TLS and DTLS 7

3.3.2 Compression algorithms used in the record layer

The TLS record layer also supports compression. The algorithms implemented in GnuTLS

can be found in the table below. The included algorithms perform really good when text,
or other compressible data are to be transferred, but offer nothing on already compressed
data, such as compressed images, zipped archives etc. These compression algorithms, may
be useful in high bandwidth TLS tunnels, and in cases where network usage has to be
minimized. It should be noted however that compression increases latency.

The record layer compression in GnuTLS is implemented based on [RFC3749]. The sup-
ported algorithms are shown in 〈undefined〉 [gnutls compression method t], page 〈unde-
fined〉.

3.3.3 Weaknesses and countermeasures

Some weaknesses that may affect the security of the record layer have been found in TLS

1.0 protocol. These weaknesses can be exploited by active attackers, and exploit the facts
that

1. TLS has separate alerts for “decryption failed” and “bad record mac”

2. The decryption failure reason can be detected by timing the response time.

3. The IV for CBC encrypted packets is the last block of the previous encrypted packet.

Those weaknesses were solved in TLS 1.1 [RFC4346] which is implemented in GnuTLS. For
this reason we suggest to always negotiate the highest supported TLS version with the peer.
For a detailed discussion of the issues see the archives of the TLS Working Group mailing
list and [CBCATT].

3.3.4 On record padding

The TLS protocol allows for random padding of records in CBC ciphers, to prevent statis-
tical analysis based on the length of exchanged messages (see [RFC5246] section 6.2.3.2).
GnuTLS appears to be one of few implementation that take advantage of this text, and pad
records by a random length.

The TLS implementation in the Symbian operating system, frequently used by Nokia and
Sony-Ericsson mobile phones, cannot handle non-minimal record padding. What happens
when one of these clients handshake with a GnuTLS server is that the client will fail to
compute the correct MAC for the record. The client sends a TLS alert (bad_record_mac)
and disconnects. Typically this will result in error messages such as ’A TLS fatal alert has
been received’, ’Bad record MAC’, or both, on the GnuTLS server side.

GnuTLS implements a work around for this problem. However, it has to be enabled
specifically. It can be enabled by using [gnutls record disable padding], page 204, or
[gnutls priority set], page 198 with the %COMPAT priority string (see Section 7.9 [Priority
Strings], page 59).

If you implement an application that have a configuration file, we recommend that you make
it possible for users or administrators to specify a GnuTLS protocol priority string, which
is used by your application via [gnutls priority set], page 198. To allow the best flexibility,
make it possible to have a different priority string for different incoming IP addresses.

Chapter 3: Introduction to TLS and DTLS 8

3.4 The TLS alert protocol

The alert protocol is there to allow signals to be sent between peers. These signals are
mostly used to inform the peer about the cause of a protocol failure. Some of these signals
are used internally by the protocol and the application protocol does not have to cope with
them (e.g. GNUTLS_A_CLOSE_NOTIFY), and others refer to the application protocol solely
(e.g. GNUTLS_A_USER_CANCELLED). An alert signal includes a level indication which may be
either fatal or warning. Fatal alerts always terminate the current connection, and prevent
future re-negotiations using the current session ID. All alert messages are summarized in
[tab:alerts], page 8.

The alert messages are protected by the record protocol, thus the information that is in-
cluded does not leak. You must take extreme care for the alert information not to leak to
a possible attacker, via public log files etc.

Available alert messages:

GNUTLS A CLOSE NOTIFY 0 Close notify
GNUTLS A UNEXPECTED MESSAGE 10 Unexpected message
GNUTLS A BAD RECORD MAC 20 Bad record MAC
GNUTLS A DECRYPTION FAILED 21 Decryption failed
GNUTLS A RECORD OVERFLOW 22 Record overflow
GNUTLS A DECOMPRESSION FAILURE 30 Decompression failed
GNUTLS A HANDSHAKE FAILURE 40 Handshake failed
GNUTLS A SSL3 NO CERTIFICATE 41 No certificate (SSL 3.0)
GNUTLS A BAD CERTIFICATE 42 Certificate is bad
GNUTLS A UNSUPPORTED CERTIFICATE 43 Certificate is not

supported

GNUTLS A CERTIFICATE REVOKED 44 Certificate was revoked
GNUTLS A CERTIFICATE EXPIRED 45 Certificate is expired
GNUTLS A CERTIFICATE UNKNOWN 46 Unknown certificate
GNUTLS A ILLEGAL PARAMETER 47 Illegal parameter
GNUTLS A UNKNOWN CA 48 CA is unknown
GNUTLS A ACCESS DENIED 49 Access was denied
GNUTLS A DECODE ERROR 50 Decode error
GNUTLS A DECRYPT ERROR 51 Decrypt error
GNUTLS A EXPORT RESTRICTION 60 Export restriction
GNUTLS A PROTOCOL VERSION 70 Error in protocol version
GNUTLS A INSUFFICIENT SECURITY 71 Insufficient security
GNUTLS A INTERNAL ERROR 80 Internal error
GNUTLS A USER CANCELED 90 User canceled
GNUTLS A NO RENEGOTIATION 100 No renegotiation is

allowed

GNUTLS A UNSUPPORTED EXTENSION 110 An unsupported exten-
sion was sent

GNUTLS A CERTIFICATE UNOBTAINABLE 111 Could not retrieve the
specified certificate

Chapter 3: Introduction to TLS and DTLS 9

GNUTLS A UNRECOGNIZED NAME 112 The server name sent
was not recognized

GNUTLS A UNKNOWN PSK IDENTITY 115 The SRP/PSK username
is missing or not known

3.5 The TLS handshake protocol

The handshake protocol is responsible for the ciphersuite negotiation, the initial key ex-
change, and the authentication of the two peers. This is fully controlled by the application
layer, thus your program has to set up the required parameters. The main handshake func-
tion is [gnutls handshake], page 188. In the next paragraphs we elaborate on the handshake
protocol, i.e., the ciphersuite negotiation.

3.5.1 TLS ciphersuites

The handshake protocol of TLS negotiates cipher suites of a special form illustrated by the
TLS_DHE_RSA_WITH_3DES_CBC_SHA cipher suite name. A typical cipher suite contains these
parameters:

• The key exchange algorithm. DHE_RSA in the example.

• The Symmetric encryption algorithm and mode 3DES_CBC in this example.

• The MAC2 algorithm used for authentication. MAC_SHA is used in the above example.

The cipher suite negotiated in the handshake protocol will affect the record protocol, by
enabling encryption and data authentication. Note that you should not over rely on TLS

to negotiate the strongest available cipher suite. Do not enable ciphers and algorithms that
you consider weak.

All the supported ciphersuites are listed in [ciphersuites], page 355.

3.5.2 Authentication

The key exchange algorithms of the TLS protocol offer authentication, which is a prerequisite
for a secure connection. The available authentication methods in GnuTLS follow.

• Certificate authentication: Authenticated key exchange using public key infrastructure
and certificates (X.509 or OpenPGP).

• SRP authentication: Authenticated key exchange using a password.

• PSK authentication: Authenticated key exchange using a pre-shared key.

• Anonymous authentication: Key exchange without peer authentication.

2 MAC stands for Message Authentication Code. It can be described as a keyed hash algorithm. See RFC2104.

Chapter 3: Introduction to TLS and DTLS 10

Key exchange Description

RSA The RSA algorithm is used to encrypt a key and send it to
the peer. The certificate must allow the key to be used for
encryption.

RSA EXPORT The RSA algorithm is used to encrypt a key and send it to the
peer. In the EXPORT algorithm, the server signs temporary
RSA parameters of 512 bits — which are considered weak —
and sends them to the client.

DHE RSA The RSA algorithm is used to sign ephemeral Diffie-Hellman
parameters which are sent to the peer. The key in the certifi-
cate must allow the key to be used for signing. Note that key
exchange algorithms which use ephemeral Diffie-Hellman pa-
rameters, offer perfect forward secrecy. That means that even
if the private key used for signing is compromised, it cannot
be used to reveal past session data.

ECDHE RSA The RSA algorithm is used to sign ephemeral elliptic curve
Diffie-Hellman parameters which are sent to the peer. The key
in the certificate must allow the key to be used for signing. It
also offers perfect forward secrecy. That means that even if
the private key used for signing is compromised, it cannot be
used to reveal past session data.

DHE DSS The DSA algorithm is used to sign ephemeral Diffie-Hellman
parameters which are sent to the peer. The certificate must
contain DSA parameters to use this key exchange algorithm.
DSA is the algorithm of the Digital Signature Standard
(DSS).

ECDHE ECDSA The Elliptic curve DSA algorithm is used to sign ephemeral
elliptic curve Diffie-Hellman parameters which are sent to the
peer. The certificate must contain ECDSA parameters to use
this key exchange algorithm.

Table 3.3: Supported key exchange algorithms.

Each authentication method is associated with a key exchange method, shown in Table 3.3,
and a credentials type. The contents of the credentials is method-dependent, e.g. certifi-
cates for certificate authentication and should be initialized and associated with a session
(see [gnutls credentials set], page 178). A mapping of the key exchange methods with the
credential types is shown in Table 3.4.

Chapter 3: Introduction to TLS and DTLS 11

Authentication
method

Key exchange Client
credentials

Server creden-
tials

Certificate KX_RSA, KX_DHE_

RSA, KX_DHE_DSS,
KX_ECDHE_RSA,
KX_ECDHE_ECDSA,
KX_RSA_EXPORT

CRD_

CERTIFICATE

CRD_

CERTIFICATE

Password and
certificate

KX_SRP_RSA,
KX_SRP_DSS

CRD_SRP CRD_

CERTIFICATE,
CRD_SRP

Password KX_SRP CRD_SRP CRD_SRP

Anonymous KX_ANON_DH,
KX_ANON_ECDH

CRD_ANON CRD_ANON

Pre-shared key KX_PSK, KX_

DHE_PSK,
KX_ECDHE_PSK

CRD_PSK CRD_PSK

Table 3.4: Key exchange algorithms and the corresponding credential types.

3.5.3 Client authentication

In the case of ciphersuites that use certificate authentication, the authentication of the
client is optional in TLS. A server may request a certificate from the client using the
[gnutls certificate server set request], page 168 function. We elaborate in Section 7.4.1
[Certificate credentials], page 53.

3.5.4 Resuming sessions

The TLS handshake process performs expensive calculations and a busy server might easily
be put under load. To reduce the load, session resumption may be used. This is a feature of
the TLS protocol which allows a client to connect to a server after a successful handshake,
without the expensive calculations. This is achieved by re-using the previously established
keys, meaning the server needs to store the state of established connections (unless session
tickets are used – Section 3.6.3 [Session tickets], page 12).

Session resumption is an integral part of GnuTLS, and Section 7.10.1 [Session resumption],
page 63 and [ex:resume-client], page 95 illustrate typical uses of it.

3.6 TLS extensions

A number of extensions to the TLS protocol have been proposed mainly in [TLSEXT]. The
extensions supported in GnuTLS are:

• Maximum fragment length negotiation

• Server name indication

• Session tickets

Chapter 3: Introduction to TLS and DTLS 12

• Safe Renegotiation

and they will be discussed in the subsections that follow.

3.6.1 Maximum fragment length negotiation

This extension allows a TLS implementation to negotiate a smaller value for record packet
maximum length. This extension may be useful to clients with constrained capabilities.
The functions shown below can be used to control this extension.

• [gnutls record get max size], page 204

• [gnutls record set max size], page 206

3.6.2 Server name indication

A common problem in HTTPS servers is the fact that the TLS protocol is not aware of the
hostname that a client connects to, when the handshake procedure begins. For that reason
the TLS server has no way to know which certificate to send.

This extension solves that problem within the TLS protocol, and allows a client to send
the HTTP hostname before the handshake begins within the first handshake packet. The
functions [gnutls server name set], page 208 and [gnutls server name get], page 207 can be
used to enable this extension, or to retrieve the name sent by a client.

• [gnutls server name set], page 208

• [gnutls server name get], page 207

3.6.3 Session tickets

To resume a TLS session the server normally store session parameters. This complicates
deployment, and could be avoiding by delegating the storage to the client. Because session
parameters are sensitive they are encrypted and authenticated with a key only known to
the server and then sent to the client. The Session Ticket extension implements this idea,
and it is documented in RFC 5077 [TLSTKT].

3.6.4 Safe renegotiation

TLS gives the option to two communicating parties to renegotiate and update their secu-
rity parameters. One useful example of this feature was for a client to initially connect
using anonymous negotiation to a server, and the renegotiate using some authenticated
ciphersuite. This occurred to avoid having the client sending its credentials in the clear.

However this renegotiation, as initially designed would not ensure that the party one is
renegotiating is the same as the one in the initial negotiation. For example one server could
forward all renegotiation traffic to an other server who will see this traffic as an initial
negotiation attempt.

This might be seen as a valid design decision, but it seems it was not widely known or un-
derstood, thus today some application protocols the TLS renegotiation feature in a manner
that enables a malicious server to insert content of his choice in the beginning of a TLS
session.

The most prominent vulnerability was with HTTPS. There servers request a renegotiation
to enforce an anonymous user to use a certificate in order to access certain parts of a web
site. The attack works by having the attacker simulate a client and connect to a server, with

Chapter 3: Introduction to TLS and DTLS 13

server-only authentication, and send some data intended to cause harm. The server will
then require renegotiation from him in order to perform the request. When the proper client
attempts to contact the server, the attacker hijacks that connection and forwards traffic to
the initial server that requested renegotiation. The attacker will not be able to read the
data exchanged between the client and the server. However, the server will (incorrectly)
assume that the initial request sent by the attacker was sent by the now authenticated
client. The result is a prefix plain-text injection attack.

The above is just one example. Other vulnerabilities exists that do not rely on the TLS
renegotiation to change the client’s authenticated status (either TLS or application layer).

While fixing these application protocols and implementations would be one natural reaction,
an extension to TLS has been designed that cryptographically binds together any renego-
tiated handshakes with the initial negotiation. When the extension is used, the attack is
detected and the session can be terminated. The extension is specified in [RFC5746].

GnuTLS supports the safe renegotiation extension. The default behavior is as follows.
Clients will attempt to negotiate the safe renegotiation extension when talking to servers.
Servers will accept the extension when presented by clients. Clients and servers will permit
an initial handshake to complete even when the other side does not support the safe renego-
tiation extension. Clients and servers will refuse renegotiation attempts when the extension
has not been negotiated.

Note that permitting clients to connect to servers when the safe renegotiation extension
is not enabled, is open up for attacks. Changing this default behavior would prevent in-
teroperability against the majority of deployed servers out there. We will reconsider this
default behavior in the future when more servers have been upgraded. Note that it is easy
to configure clients to always require the safe renegotiation extension from servers.

To modify the default behavior, we have introduced some new priority strings (see
Section 7.9 [Priority Strings], page 59). The %UNSAFE_RENEGOTIATION priority string
permits (re-)handshakes even when the safe renegotiation extension was not negotiated.
The default behavior is %PARTIAL_RENEGOTIATION that will prevent renegotiation with
clients and servers not supporting the extension. This is secure for servers but leaves clients
vulnerable to some attacks, but this is a trade-off between security and compatibility with
old servers. The %SAFE_RENEGOTIATION priority string makes clients and servers require
the extension for every handshake. The latter is the most secure option for clients, at the
cost of not being able to connect to legacy servers. Servers will also deny clients that do
not support the extension from connecting.

It is possible to disable use of the extension completely, in both clients and servers, by using
the %DISABLE_SAFE_RENEGOTIATION priority string however we strongly recommend you to
only do this for debugging and test purposes.

The default values if the flags above are not specified are:

Server: %PARTIAL RENEGOTIATION

Client: %PARTIAL RENEGOTIATION

For applications we have introduced a new API related to safe renegotiation. The
[gnutls safe renegotiation status], page 206 function is used to check if the extension has
been negotiated on a session, and can be used both by clients and servers.

Chapter 3: Introduction to TLS and DTLS 14

3.7 How to use TLS in application protocols

This chapter is intended to provide some hints on how to use the TLS over simple custom
made application protocols. The discussion below mainly refers to the TCP/IP transport
layer but may be extended to other ones too.

3.7.1 Separate ports

Traditionally SSL was used in application protocols by assigning a new port number for the
secure services. That way two separate ports were assigned, one for the non secure sessions,
and one for the secured ones. This has the benefit that if a user requests a secure session
then the client will try to connect to the secure port and fail otherwise. The only possible
attack with this method is a denial of service one. The most famous example of this method
is the famous “HTTP over TLS” or HTTPS protocol [RFC2818].

Despite its wide use, this method is not as good as it seems. This approach starts the
TLS Handshake procedure just after the client connects on the —so called— secure port.
That way the TLS protocol does not know anything about the client, and popular methods
like the host advertising in HTTP do not work3. There is no way for the client to say “I
connected to YYY server” before the Handshake starts, so the server cannot possibly know
which certificate to use.

Other than that it requires two separate ports to run a single service, which is unnecessary
complication. Due to the fact that there is a limitation on the available privileged ports,
this approach was soon obsoleted.

3.7.2 Upward negotiation

Other application protocols4 use a different approach to enable the secure layer. They use
something often called as the “TLS upgrade” method. This method is quite tricky but it
is more flexible. The idea is to extend the application protocol to have a “STARTTLS”
request, whose purpose it to start the TLS protocols just after the client requests it. This
approach does not require any extra port to be reserved. There is even an extension to
HTTP protocol to support that method [RFC2817].

The tricky part, in this method, is that the “STARTTLS” request is sent in the clear, thus
is vulnerable to modifications. A typical attack is to modify the messages in a way that the
client is fooled and thinks that the server does not have the “STARTTLS” capability. See
a typical conversation of a hypothetical protocol:

(client connects to the server)

CLIENT: HELLO I’M MR. XXX

SERVER: NICE TO MEET YOU XXX

CLIENT: PLEASE START TLS

SERVER: OK

*** TLS STARTS

CLIENT: HERE ARE SOME CONFIDENTIAL DATA

And see an example of a conversation where someone is acting in between:

3 See also the Server Name Indication extension on [serverind], page 12.
4 See LDAP, IMAP etc.

Chapter 3: Introduction to TLS and DTLS 15

(client connects to the server)

CLIENT: HELLO I’M MR. XXX

SERVER: NICE TO MEET YOU XXX

CLIENT: PLEASE START TLS

(here someone inserts this message)

SERVER: SORRY I DON’T HAVE THIS CAPABILITY

CLIENT: HERE ARE SOME CONFIDENTIAL DATA

As you can see above the client was fooled, and was dummy enough to send the confidential
data in the clear.

How to avoid the above attack? As you may have already noticed this one is easy to avoid.
The client has to ask the user before it connects whether the user requests TLS or not. If
the user answered that he certainly wants the secure layer the last conversation should be:

(client connects to the server)

CLIENT: HELLO I’M MR. XXX

SERVER: NICE TO MEET YOU XXX

CLIENT: PLEASE START TLS

(here someone inserts this message)

SERVER: SORRY I DON’T HAVE THIS CAPABILITY

CLIENT: BYE

(the client notifies the user that the secure connection was not possible)

This method, if implemented properly, is far better than the traditional method, and the
security properties remain the same, since only denial of service is possible. The benefit is
that the server may request additional data before the TLS Handshake protocol starts, in
order to send the correct certificate, use the correct password file, or anything else!

3.8 On SSL 2 and older protocols

One of the initial decisions in the GnuTLS development was to implement the known security
protocols for the transport layer. Initially TLS 1.0 was implemented since it was the latest
at that time, and was considered to be the most advanced in security properties. Later the
SSL 3.0 protocol was implemented since it is still the only protocol supported by several
servers and there are no serious security vulnerabilities known.

One question that may arise is why we didn’t implement SSL 2.0 in the library. There are
several reasons, most important being that it has serious security flaws, unacceptable for a
modern security library. Other than that, this protocol is barely used by anyone these days
since it has been deprecated since 1996. The security problems in SSL 2.0 include:

• Message integrity compromised. The SSLv2 message authentication uses the MD5
function, and is insecure.

• Man-in-the-middle attack. There is no protection of the handshake in SSLv2, which
permits a man-in-the-middle attack.

• Truncation attack. SSLv2 relies on TCP FIN to close the session, so the attacker can
forge a TCP FIN, and the peer cannot tell if it was a legitimate end of data or not.

Chapter 3: Introduction to TLS and DTLS 16

• Weak message integrity for export ciphers. The cryptographic keys in SSLv2 are used
for both message authentication and encryption, so if weak encryption schemes are
negotiated (say 40-bit keys) the message authentication code use the same weak key,
which isn’t necessary.

Other protocols such as Microsoft’s PCT 1 and PCT 2 were not implemented because they
were also abandoned and deprecated by SSL 3.0 and later TLS 1.0.

Chapter 4: Certificate authentication 17

4 Certificate authentication

The most known authentication method of TLS are certificates. The PKIX [PKIX] public
key infrastructure is daily used by anyone using a browser today. GnuTLS supports both
X.509 certificates [PKIX] and OpenPGP certificates using a common API.

4.1 X.509 certificates

The X.509 protocols rely on a hierarchical trust model. In this trust model Certification
Authorities (CAs) are used to certify entities. Usually more than one certification authorities
exist, and certification authorities may certify other authorities to issue certificates as well,
following a hierarchical model.

Figure 4.1: An example of the X.509 hierarchical trust model.

One needs to trust one or more CAs for his secure communications. In that case only the
certificates issued by the trusted authorities are acceptable. The framework is illustrated
on Figure 4.1.

4.1.1 X.509 certificate structure

An X.509 certificate usually contains information about the certificate holder, the signer, a
unique serial number, expiration dates and some other fields [PKIX] as shown in Table 4.1.

Chapter 4: Certificate authentication 18

Field Description

version The field that indicates the version of the certificate.

serialNumber This field holds a unique serial number per certificate.

signature The issuing authority’s signature.

issuer Holds the issuer’s distinguished name.

validity The activation and expiration dates.

subject The subject’s distinguished name of the certificate.

extensions The extensions are fields only present in version 3 certificates.

Table 4.1: X.509 certificate fields.

The certificate’s subject or issuer name is not just a single string. It is a Distinguished name
and in the ASN.1 notation is a sequence of several object identifiers with their corresponding
values. Some of available OIDs to be used in an X.509 distinguished name are defined in
‘gnutls/x509.h’.

The Version field in a certificate has values either 1 or 3 for version 3 certificates. Version
1 certificates do not support the extensions field so it is not possible to distinguish a CA
from a person, thus their usage should be avoided.

The validity dates are there to indicate the date that the specific certificate was activated
and the date the certificate’s key would be considered invalid.

Certificate extensions are there to include information about the certificate’s subject that
did not fit in the typical certificate fields. Those may be e-mail addresses, flags that indicate
whether the belongs to a CA etc. All the supported X.509 version 3 extensions are shown
in Table 4.2.

Chapter 4: Certificate authentication 19

Extension OID Description

Subject key id 2.5.29.14 An identifier of the key of the sub-
ject.

Authority key id 2.5.29.35 An identifier of the authority’s key
used to sign the certificate.

Subject alternative name 2.5.29.17 Alternative names to subject’s
distinguished name.

Key usage 2.5.29.15 Constraints the key’s usage of the
certificate.

Extended key usage 2.5.29.37 Constraints the purpose of the
certificate.

Basic constraints 2.5.29.19 Indicates whether this is a CA
certificate or not, and specify the
maximum path lengths of certifi-
cate chains.

CRL distribution points 2.5.29.31 This extension is set by the CA, in
order to inform about the issued
CRLs.

Proxy Certification
Information

1.3.6.1.5.5.7.1.14 Proxy Certificates includes this
extension that contains the OID
of the proxy policy language used,
and can specify limits on the max-
imum lengths of proxy chains.
Proxy Certificates are specified in
[RFC3820].

Table 4.2: X.509 certificate extensions.

In GnuTLS the X.509 certificate structures are handled using the gnutls_x509_crt_t type
and the corresponding private keys with the gnutls_x509_privkey_t type. All the avail-
able functions for X.509 certificate handling have their prototypes in ‘gnutls/x509.h’. An
example program to demonstrate the X.509 parsing capabilities can be found at [ex:x509-
info], page 132.

4.1.2 Verifying X.509 certificate paths

Verifying certificate paths is important in X.509 authentication. For this purpose the fol-
lowing functions are provided.

Chapter 4: Certificate authentication 20

• [gnutls x509 trust list add cas], page 286

• [gnutls x509 trust list add named crt], page 287

• [gnutls x509 trust list add crls], page 286

• [gnutls x509 trust list verify crt], page 288

• [gnutls x509 trust list verify named crt], page 288

The verification function will verify a given certificate chain against a list of
certificate authorities and certificate revocation lists, and output a bit-wise OR of
elements of the gnutls_certificate_status_t enumeration shown in 〈undefined〉
[gnutls certificate status t], page 〈undefined〉.

An example of certificate verification is shown in [ex:verify2], page 88. It is also possible to
have a set of certificates that are trusted for a particular server but not to authorize other
certificates. This purpose is served by the functions [gnutls x509 trust list add named crt],
page 287 and [gnutls x509 trust list verify named crt], page 288.

4.1.3 Verifying a certificate in the context of TLS session

When operating in the context of a TLS session, the trusted certificate author-
ity list has been set via the [gnutls certificate set x509 trust file], page 173 and
[gnutls certificate set x509 crl file], page 171, thus it is not required to setup a trusted list
as above. Convenience functions such as [gnutls certificate verify peers2], page 175 are
equivalent and will verify the peer’s certificate chain in a TLS session.

There is also the possibility to pass some input to the verification functions in the
form of flags. For [gnutls x509 trust list verify crt], page 288 the flags are passed
straightforward, but [gnutls certificate verify peers2], page 175 depends on the flags
set by calling [gnutls certificate set verify flags], page 170. All the available flags are
part of the enumeration gnutls_certificate_verify_flags shown in 〈undefined〉
[gnutls certificate verify flags], page 〈undefined〉.

Although the verification of a certificate path indicates that the certificate is signed by
trusted authority, does not reveal anything about the peer’s identity. It is required to verify
if the certificate’s owner is the one you expect. For more information consult [RFC2818]
and section [ex:verify], page 71 for an example.

4.2 OpenPGP certificates

The OpenPGP key authentication relies on a distributed trust model, called the “web of
trust”. The “web of trust” uses a decentralized system of trusted introducers, which are
the same as a CA. OpenPGP allows anyone to sign anyone else’s public key. When Alice
signs Bob’s key, she is introducing Bob’s key to anyone who trusts Alice. If someone trusts
Alice to introduce keys, then Alice is a trusted introducer in the mind of that observer. For
example in Figure 4.2, David trusts Alice to be an introducer and Alice signed Bob’s key
thus Dave trusts Bob’s key to be the real one.

Chapter 4: Certificate authentication 21

Figure 4.2: An example of the OpenPGP trust model.

There are some key points that are important in that model. In the example Alice has to
sign Bob’s key, only if she is sure that the key belongs to Bob. Otherwise she may also
make Dave falsely believe that this is Bob’s key. Dave has also the responsibility to know
who to trust. This model is similar to real life relations.

Just see how Charlie behaves in the previous example. Although he has signed Bob’s key
- because he knows, somehow, that it belongs to Bob - he does not trust Bob to be an
introducer. Charlie decided to trust only Kevin, for some reason. A reason could be that
Bob is lazy enough, and signs other people’s keys without being sure that they belong to
the actual owner.

4.2.1 OpenPGP certificate structure

In GnuTLS the OpenPGP key structures [RFC2440] are handled using the gnutls_openpgp_
crt_t type and the corresponding private keys with the gnutls_openpgp_privkey_t type.
All the prototypes for the key handling functions can be found at ‘gnutls/openpgp.h’.

4.2.2 Verifying an OpenPGP certificate

The verification functions of OpenPGP keys, included in GnuTLS, are simple ones, and do
not use the features of the “web of trust”. For that reason, if the verification needs are
complex, the assistance of external tools like GnuPG and GPGME1 is recommended.

In GnuTLS there is a verification function for OpenPGP certificates, the
[gnutls openpgp crt verify ring], page 299. This checks an OpenPGP key against
a given set of public keys (keyring) and returns the key status. The key verification status
is the same as in X.509 certificates, although the meaning and interpretation are different.
For example an OpenPGP key may be valid, if the self signature is ok, even if no signers
were found. The meaning of verification status flags is the same as in the X.509 certificates
(see 〈undefined〉 [gnutls certificate verify flags], page 〈undefined〉).

1 http://www.gnupg.org/related_software/gpgme/

http://www.gnupg.org/related_software/gpgme/

Chapter 4: Certificate authentication 22

• [gnutls openpgp crt verify ring], page 299

• [gnutls openpgp crt verify self], page 300

4.2.3 Verifying a certificate in the context of a TLS session

Similarly with X.509 certificates, one needs to specify the OpenPGP keyring
file in the credentials structure. The certificates in this file will be used by
[gnutls certificate verify peers2], page 175 to verify the signatures in the certificate sent
by the peer.

• [gnutls certificate set openpgp keyring file], page 291

4.3 Digital signatures

In this section we will provide some information about digital signatures, how they work,
and give the rationale for disabling some of the algorithms used.

Digital signatures work by using somebody’s secret key to sign some arbitrary data. Then
anybody else could use the public key of that person to verify the signature. Since the data
may be arbitrary it is not suitable input to a cryptographic digital signature algorithm. For
this reason and also for performance cryptographic hash algorithms are used to preprocess
the input to the signature algorithm. This works as long as it is difficult enough to generate
two different messages with the same hash algorithm output. In that case the same signature
could be used as a proof for both messages. Nobody wants to sign an innocent message of
donating 1 e to Greenpeace and find out that he donated 1.000.000 e to Bad Inc.

For a hash algorithm to be called cryptographic the following three requirements must hold:

1. Preimage resistance. That means the algorithm must be one way and given the output
of the hash function H(x), it is impossible to calculate x.

2. 2nd preimage resistance. That means that given a pair x, y with y = H(x) it is
impossible to calculate an x′ such that y = H(x′).

3. Collision resistance. That means that it is impossible to calculate random x and x′

such H(x′) = H(x).

The last two requirements in the list are the most important in digital signatures. These
protect against somebody who would like to generate two messages with the same hash out-
put. When an algorithm is considered broken usually it means that the Collision resistance
of the algorithm is less than brute force. Using the birthday paradox the brute force attack
takes 2(hash size)/2 operations. Today colliding certificates using the MD5 hash algorithm
have been generated as shown in [WEGER].

There has been cryptographic results for the SHA-1 hash algorithms as well, although they
are not yet critical. Before 2004, MD5 had a presumed collision strength of 264, but it
has been showed to have a collision strength well under 250. As of November 2005, it is
believed that SHA-1’s collision strength is around 263. We consider this sufficiently hard so
that we still support SHA-1. We anticipate that SHA-256/386/512 will be used in publicly-
distributed certificates in the future. When 263 can be considered too weak compared to
the computer power available sometime in the future, SHA-1 will be disabled as well. The
collision attacks on SHA-1 may also get better, given the new interest in tools for creating
them.

Chapter 4: Certificate authentication 23

4.3.1 Trading security for interoperability

If you connect to a server and use GnuTLS’ functions to verify the certificate chain, and get
a GNUTLS_CERT_INSECURE_ALGORITHM validation error (see Section 4.1.2 [Verifying X.509
certificate paths], page 19), it means that somewhere in the certificate chain there is a
certificate signed using RSA-MD2 or RSA-MD5. These two digital signature algorithms are
considered broken, so GnuTLS fails verifying the certificate. In some situations, it may be
useful to be able to verify the certificate chain anyway, assuming an attacker did not utilize
the fact that these signatures algorithms are broken. This section will give help on how to
achieve that.

It is important to know that you do not have to enable any of the flags discussed here
to be able to use trusted root CA certificates self-signed using RSA-MD2 or RSA-MD5. The
certificates in the trusted list are considered trusted irrespective of the signature.

If you are using [gnutls certificate verify peers2], page 175 to verify the certificate chain,
you can call [gnutls certificate set verify flags], page 170 with the flags:

• GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD2

• GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD5

as in the following example:

gnutls_certificate_set_verify_flags (x509cred,

GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD5);

This will tell the verifier algorithm to enable RSA-MD5 when verifying the certificates.

If you are using [gnutls x509 crt verify], page 276 or [gnutls x509 crt list verify], page 267,
you can pass the GNUTLS_VERIFY_ALLOW_SIGN_RSA_MD5 parameter directly in the flags

parameter.

If you are using these flags, it may also be a good idea to warn the user when verification
failure occur for this reason. The simplest is to not use the flags by default, and only fall back
to using them after warning the user. If you wish to inspect the certificate chain yourself,
you can use [gnutls certificate get peers], page 168 to extract the raw server’s certificate
chain, [gnutls x509 crt list import], page 266 to parse each of the certificates, and then
[gnutls x509 crt get signature algorithm], page 263 to find out the signing algorithm used
for each certificate. If any of the intermediary certificates are using GNUTLS_SIGN_RSA_MD2

or GNUTLS_SIGN_RSA_MD5, you could present a warning.

Chapter 5: Shared-key and anonymous authentication 24

5 Shared-key and anonymous authentication

In addition to certificate authentication, the TLS protocol may be used with password,
shared-key and anonymous authentication methods. The rest of this chapter discusses
details of these methods.

5.1 SRP authentication

5.1.1 Authentication using SRP

GnuTLS supports authentication via the Secure Remote Password or SRP protocol (see
[RFC2945,TOMSRP] for a description). The SRP key exchange is an extension to the
TLS protocol, and it provides an authenticated with a password key exchange. The peers
can be identified using a single password, or there can be combinations where the client is
authenticated using SRP and the server using a certificate.

The advantage of SRP authentication, over other proposed secure password authentication
schemes, is that SRP is not susceptible to off-line dictionary attacks. Moreover, SRP does
not require the server to hold the user’s password. This kind of protection is similar to the
one used traditionally in the UNIX ‘/etc/passwd’ file, where the contents of this file did
not cause harm to the system security if they were revealed. The SRP needs instead of the
plain password something called a verifier, which is calculated using the user’s password,
and if stolen cannot be used to impersonate the user. The Stanford SRP libraries, include a
PAM module that synchronizes the system’s users passwords with the SRP password files.
That way SRP authentication could be used for all users of a system.

The implementation in GnuTLS is based on [TLSSRP]. The supported key exchange meth-
ods are shown below.

SRP: Authentication using the SRP protocol.

SRP_DSS: Client authentication using the SRP protocol. Server is authenticated using a
certificate with DSA parameters.

SRP_RSA: Client authentication using the SRP protocol. Server is authenticated using a
certificate with RSA parameters.

Helper functions are included in GnuTLS, used to generate and maintain SRP verifiers and
password files. A program to manipulate the required parameters for SRP authentication
is also included. See [srptool], page 24, for more information.

• [gnutls srp verifier], page 216

• [gnutls srp base64 encode], page 213

• [gnutls srp base64 decode], page 213

5.1.2 Invoking srptool

The ‘srptool’ is a very simple program that emulates the programs in the Stanford SRP
libraries1. It requires two files, one called tpasswd which holds usernames and verifiers, and
tpasswd.conf which holds generators and primes.

1 See http://srp.stanford.edu/.

http://srp.stanford.edu/

Chapter 5: Shared-key and anonymous authentication 25

To create tpasswd.conf which holds the generator and prime values for the SRP protocol,
run:

$ srptool --create-conf /etc/tpasswd.conf

This command will create /etc/tpasswd and will add user ’test’ (you will also be prompted
for a password). Verifiers are stored in a way that is compatible with libsrp.

$ srptool --passwd /etc/tpasswd \

--passwd-conf /etc/tpasswd.conf -u test

This command will check against a password. If the password matches the one in
/etc/tpasswd you will get an ok.

$ srptool --passwd /etc/tpasswd \

--passwd-conf /etc/tpasswd.conf --verify -u test

5.2 PSK authentication

5.2.1 Authentication using PSK

Authentication using Pre-shared keys is a method to authenticate using usernames and
binary keys. This protocol avoids making use of public key infrastructure and expensive
calculations, thus it is suitable for constraint clients.

The implementation in GnuTLS is based on [TLSPSK]. The supported PSK key exchange
methods are:

PSK: Authentication using the PSK protocol.

DHE-PSK: Authentication using the PSK protocol and Diffie-Hellman key exchange. This
method offers perfect forward secrecy.

ECDHE-PSK:

Authentication using the PSK protocol and Elliptic curve Diffie-Hellman key
exchange. This method offers perfect forward secrecy.

Helper functions to generate and maintain PSK keys are also included in GnuTLS.

• [gnutls key generate], page 191

• [gnutls hex encode], page 190

• [gnutls hex decode], page 190

5.2.2 Invoking psktool

This is a program to manage PSK username and keys. It will generate random keys for the
indicated username, using a simple password file format.

PSKtool help

Usage : psktool [options]

-u, --username username

specify username.

-p, --passwd FILE specify a password file.

-s, --keysize SIZE specify the key size in bytes.

-v, --version prints the program’s version number

-h, --help shows this help text

Chapter 5: Shared-key and anonymous authentication 26

The generation of a PSK password file is illustrated in the example below. The password
is provided in the prompt.

$./psktool -u psk_identity -p psks.txt

Generating a random key for user ’psk_identity’

Key stored to psks.txt

$ cat psks.txt

psk_identity:88f3824b3e5659f52d00e959bacab954b6540344

$

5.3 Anonymous authentication

The anonymous key exchange offers encryption without any indication of the peer’s identity.
This kind of authentication is vulnerable to a man in the middle attack, but can be used
even if there is no prior communication or shared trusted parties with the peer. Moreover
it is useful when complete anonymity is required. Unless in one of the above cases, do not
use anonymous authentication.

The available key exchange algorithms for anonymous authentication are shown below.

ANON_DH: This algorithm exchanges Diffie-Hellman parameters.

ANON_ECDH:

This algorithm exchanges elliptic curve Diffie-Hellman parameters. It is more
efficient than ANON DH on equivalent security levels.

Chapter 6: More on certificate authentication 27

6 More on certificate authentication

Certificates are not the only structures involved in a public key infrastructure. Several
other structures that are used for certificate requests, encrypted private keys, revocation
lists, GnuTLS abstract key structures, etc., are discussed in this chapter.

6.1 PKCS #10 certificate requests

A certificate request is a structure, which contain information about an applicant of a
certificate service. It usually contains a private key, a distinguished name and secondary
data such as a challenge password. GnuTLS supports the requests defined in PKCS #10
[RFC2986]. Other formats of certificate requests are not currently supported.

A certificate request can be generated by associating it with a private key, setting the
subject’s information and finally self signing it. The last step ensures that the requester is
in possession of the private key.

• [gnutls x509 crq set version], page 247

• [gnutls x509 crq set dn by oid], page 245

• [gnutls x509 crq set key usage], page 246

• [gnutls x509 crq set key purpose oid], page 246

• [gnutls x509 crq set basic constraints], page 244

The [gnutls x509 crq set key], page 245 and [gnutls x509 crq sign2], page 247 functions
associate the request with a private key and sign it. If a request is to be signed with a
key residing in a PKCS #11 token it is recommended to use the signing functions shown in
Section 6.6 [Abstract key types], page 46.

• [gnutls x509 crq set key], page 245

• [gnutls x509 crq sign2], page 247

The following example is about generating a certificate request, and a private key. A
certificate request can be later be processed by a CA which should return a signed certificate.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <gnutls/gnutls.h>

#include <gnutls/x509.h>

#include <gnutls/abstract.h>

#include <time.h>

/* This example will generate a private key and a certificate

* request.

Chapter 6: More on certificate authentication 28

*/

int

main (void)

{

gnutls_x509_crq_t crq;

gnutls_x509_privkey_t key;

unsigned char buffer[10 * 1024];

size_t buffer_size = sizeof (buffer);

unsigned int bits;

gnutls_global_init ();

/* Initialize an empty certificate request, and

* an empty private key.

*/

gnutls_x509_crq_init (&crq);

gnutls_x509_privkey_init (&key);

/* Generate an RSA key of moderate security.

*/

bits = gnutls_sec_param_to_pk_bits (GNUTLS_PK_RSA, GNUTLS_SEC_PARAM_NORMAL);

gnutls_x509_privkey_generate (key, GNUTLS_PK_RSA, bits, 0);

/* Add stuff to the distinguished name

*/

gnutls_x509_crq_set_dn_by_oid (crq, GNUTLS_OID_X520_COUNTRY_NAME,

0, "GR", 2);

gnutls_x509_crq_set_dn_by_oid (crq, GNUTLS_OID_X520_COMMON_NAME,

0, "Nikos", strlen ("Nikos"));

/* Set the request version.

*/

gnutls_x509_crq_set_version (crq, 1);

/* Set a challenge password.

*/

gnutls_x509_crq_set_challenge_password (crq, "something to remember here");

/* Associate the request with the private key

*/

gnutls_x509_crq_set_key (crq, key);

/* Self sign the certificate request.

*/

Chapter 6: More on certificate authentication 29

gnutls_x509_crq_sign2 (crq, key, GNUTLS_DIG_SHA1, 0);

/* Export the PEM encoded certificate request, and

* display it.

*/

gnutls_x509_crq_export (crq, GNUTLS_X509_FMT_PEM, buffer, &buffer_size);

printf ("Certificate Request: \n%s", buffer);

/* Export the PEM encoded private key, and

* display it.

*/

buffer_size = sizeof (buffer);

gnutls_x509_privkey_export (key, GNUTLS_X509_FMT_PEM, buffer, &buffer_size);

printf ("\n\nPrivate key: \n%s", buffer);

gnutls_x509_crq_deinit (crq);

gnutls_x509_privkey_deinit (key);

return 0;

}

6.2 PKIX certificate revocation lists

A certificate revocation list (CRL) is a structure issued by an authority periodically con-
taining a list of revoked certificates serial numbers. The CRL structure is signed with the
issuing authorities’ keys. A typical CRL contains the fields as shown in Table 6.1. Certifi-
cate revocation lists are used to complement the expiration date of a certificate, in order to
account for other reasons of revocation, such as compromised keys, etc.

A certificate request can be generated by associating it with a private key, setting the
subject’s information and finally self signing it. The last step ensures that the requester
is in possession of the private key. Each CRL is valid for limited amount of time and is
required to provide, except for the current issuing time, also the issuing time of the next
update.

Chapter 6: More on certificate authentication 30

Field Description

version The field that indicates the version of the CRL structure.

signature A signature by the issuing authority.

issuer Holds the issuer’s distinguished name.

thisUpdate The issuing time of the revocation list.

nextUpdate The issuing time of the revocation list that will update that
one.

revokedCertificates List of revoked certificates serial numbers.

extensions Optional CRL structure extensions.

Table 6.1: Certificate revocation list fields.

• [gnutls x509 crl set version], page 234

• [gnutls x509 crl set crt serial], page 233

• [gnutls x509 crl set crt], page 233

• [gnutls x509 crl set next update], page 234

• [gnutls x509 crl set this update], page 234

The [gnutls x509 crl sign2], page 235 and [gnutls x509 crl privkey sign], page 337 func-
tions sign the revocation list with a private key. The latter function can be used to sign
with a key residing in a PKCS #11 token.

• [gnutls x509 crl sign2], page 235

• [gnutls x509 crl privkey sign], page 337

Few extensions on the CRL structure are supported, including the CRL number extension
and the authority key identifier.

• [gnutls x509 crl set number], page 234

• [gnutls x509 crl set authority key id], page 233

6.3 Managing encrypted keys

Transferring or storing private keys in plain might not be a good idea. Any access on
the keys becomes a fatal compromise. Storing the keys in hardware security modules (see
Section 6.5 [Smart cards and HSMs], page 40) could solve the storage problem but it is not
always practical or efficient enough. This section describes alternative ways that involve
encryption of the private keys to store and transfer.

There are two alternatives to use for key encryption, PKCS #8 and #12 methods of private
key encryption. The PKCS #8 method only allows encryption of the private key, whilst the

Chapter 6: More on certificate authentication 31

PKCS #12 method allows in addition the bundling of other data into the structure. That
could be bundling together the certificate as well as the trusted CA certificate.

PKCS #8 structures

PKCS #8 keys can be imported and exported as normal private keys using the functions
below. An addition to the normal import functions, are a password and a flags argument.
The flags can be any element of the gnutls_pkcs_encrypt_flags_t enumeration. Note
however, that GnuTLS only supports the PKCS #5 PBES2 encryption scheme. Keys
encrypted with the obsolete PBES1 scheme cannot be decrypted.

• [gnutls x509 privkey import pkcs8], page 283

• [gnutls x509 privkey export pkcs8], page 279

PKCS #12 structures

A PKCS #12 structure [PKCS12] usually contains a user’s private keys and certificates. It
is commonly used in browsers to export and import the user’s identities.

In GnuTLS the PKCS #12 structures are handled using the gnutls_pkcs12_t type. This
is an abstract type that may hold several gnutls_pkcs12_bag_t types. The bag types are
the holders of the actual data, which may be certificates, private keys or encrypted data.
A bag of type encrypted should be decrypted in order for its data to be accessed.

The following functions are available to read a PKCS #12 structure.

• [gnutls pkcs12 get bag], page 312

• [gnutls pkcs12 verify mac], page 313

• [gnutls pkcs12 bag decrypt], page 308

• [gnutls pkcs12 bag get count], page 309

• [gnutls pkcs12 bag get data], page 309

• [gnutls pkcs12 bag get key id], page 309

• [gnutls pkcs12 bag get friendly name], page 309

The functions below are used to generate a PKCS #12 structure. An example of their usage
is also shown.

• [gnutls pkcs12 set bag], page 313

• [gnutls pkcs12 bag encrypt], page 308

• [gnutls pkcs12 generate mac], page 312

• [gnutls pkcs12 bag set data], page 310

• [gnutls pkcs12 bag set crl], page 310

• [gnutls pkcs12 bag set crt], page 310

• [gnutls pkcs12 bag set key id], page 311

• [gnutls pkcs12 bag set friendly name], page 311

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

Chapter 6: More on certificate authentication 32

#include <stdio.h>

#include <stdlib.h>

#include <gnutls/gnutls.h>

#include <gnutls/pkcs12.h>

#include "examples.h"

#define OUTFILE "out.p12"

/* This function will write a pkcs12 structure into a file.

* cert: is a DER encoded certificate

* pkcs8_key: is a PKCS #8 encrypted key (note that this must be

* encrypted using a PKCS #12 cipher, or some browsers will crash)

* password: is the password used to encrypt the PKCS #12 packet.

*/

int

write_pkcs12 (const gnutls_datum_t * cert,

const gnutls_datum_t * pkcs8_key, const char *password)

{

gnutls_pkcs12_t pkcs12;

int ret, bag_index;

gnutls_pkcs12_bag_t bag, key_bag;

char pkcs12_struct[10 * 1024];

size_t pkcs12_struct_size;

FILE *fd;

/* A good idea might be to use gnutls_x509_privkey_get_key_id()

* to obtain a unique ID.

*/

gnutls_datum_t key_id = { (char *) "\x00\x00\x07", 3 };

gnutls_global_init ();

/* Firstly we create two helper bags, which hold the certificate,

* and the (encrypted) key.

*/

gnutls_pkcs12_bag_init (&bag);

gnutls_pkcs12_bag_init (&key_bag);

ret = gnutls_pkcs12_bag_set_data (bag, GNUTLS_BAG_CERTIFICATE, cert);

if (ret < 0)

{

fprintf (stderr, "ret: %s\n", gnutls_strerror (ret));

return 1;

}

Chapter 6: More on certificate authentication 33

/* ret now holds the bag’s index.

*/

bag_index = ret;

/* Associate a friendly name with the given certificate. Used

* by browsers.

*/

gnutls_pkcs12_bag_set_friendly_name (bag, bag_index, "My name");

/* Associate the certificate with the key using a unique key

* ID.

*/

gnutls_pkcs12_bag_set_key_id (bag, bag_index, &key_id);

/* use weak encryption for the certificate.

*/

gnutls_pkcs12_bag_encrypt (bag, password, GNUTLS_PKCS_USE_PKCS12_RC2_40);

/* Now the key.

*/

ret = gnutls_pkcs12_bag_set_data (key_bag,

GNUTLS_BAG_PKCS8_ENCRYPTED_KEY,

pkcs8_key);

if (ret < 0)

{

fprintf (stderr, "ret: %s\n", gnutls_strerror (ret));

return 1;

}

/* Note that since the PKCS #8 key is already encrypted we don’t

* bother encrypting that bag.

*/

bag_index = ret;

gnutls_pkcs12_bag_set_friendly_name (key_bag, bag_index, "My name");

gnutls_pkcs12_bag_set_key_id (key_bag, bag_index, &key_id);

/* The bags were filled. Now create the PKCS #12 structure.

*/

gnutls_pkcs12_init (&pkcs12);

/* Insert the two bags in the PKCS #12 structure.

*/

Chapter 6: More on certificate authentication 34

gnutls_pkcs12_set_bag (pkcs12, bag);

gnutls_pkcs12_set_bag (pkcs12, key_bag);

/* Generate a message authentication code for the PKCS #12

* structure.

*/

gnutls_pkcs12_generate_mac (pkcs12, password);

pkcs12_struct_size = sizeof (pkcs12_struct);

ret =

gnutls_pkcs12_export (pkcs12, GNUTLS_X509_FMT_DER, pkcs12_struct,

&pkcs12_struct_size);

if (ret < 0)

{

fprintf (stderr, "ret: %s\n", gnutls_strerror (ret));

return 1;

}

fd = fopen (OUTFILE, "w");

if (fd == NULL)

{

fprintf (stderr, "cannot open file\n");

return 1;

}

fwrite (pkcs12_struct, 1, pkcs12_struct_size, fd);

fclose (fd);

gnutls_pkcs12_bag_deinit (bag);

gnutls_pkcs12_bag_deinit (key_bag);

gnutls_pkcs12_deinit (pkcs12);

return 0;

}

6.4 The certtool application

This is a program to generate X.509 certificates, certificate requests, CRLs and private keys.

Certtool help

Usage: certtool [options]

-s, --generate-self-signed

Generate a self-signed certificate.

-c, --generate-certificate

Generate a signed certificate.

--generate-proxy Generate a proxy certificate.

--generate-crl Generate a CRL.

Chapter 6: More on certificate authentication 35

-u, --update-certificate

Update a signed certificate.

-p, --generate-privkey Generate a private key.

-q, --generate-request Generate a PKCS #10 certificate

request.

-e, --verify-chain Verify a PEM encoded certificate chain.

The last certificate in the chain must

be a self signed one.

--verify Verify a PEM encoded certificate chain.

CA certificates must be loaded with

--load-ca-certificate.

--verify-crl Verify a CRL.

--generate-dh-params Generate PKCS #3 encoded Diffie-Hellman

parameters.

--get-dh-params Get the included PKCS #3 encoded

Diffie-Hellman parameters.

--load-privkey FILE Private key file to use.

--load-pubkey FILE Public key file to use.

--load-request FILE Certificate request file to use.

--load-certificate FILE

Certificate file to use.

--load-ca-privkey FILE Certificate authority’s private key

file to use.

--load-ca-certificate FILE

Certificate authority’s certificate

file to use.

--password PASSWORD Password to use.

-i, --certificate-info Print information on a certificate.

--certificate-pubkey Print certificate public key.

--pgp-certificate-info Print information on a OpenPGP

certificate.

--pgp-ring-info Print information on a keyring

structure.

-l, --crl-info Print information on a CRL.

--crq-info Print information on a Certificate

Request.

--no-crq-extensions Do not use extensions in certificate

requests.

--p12-info Print information on a PKCS #12

structure.

--p7-info Print information on a PKCS #7

structure.

--smime-to-p7 Convert S/MIME to PKCS #7 structure.

-k, --key-info Print information on a private key.

--pgp-key-info Print information on a OpenPGP private

key.

--pubkey-info Print information on a public key.

Chapter 6: More on certificate authentication 36

--fix-key Regenerate the parameters in a private

key.

--v1 Generate an X.509 version 1 certificate

(no extensions).

--to-p12 Generate a PKCS #12 structure.

--to-p8 Generate a PKCS #8 key structure.

-8, --pkcs8 Use PKCS #8 format for private keys.

--dsa Use DSA keys.

--ecc Use ECC (ECDSA) keys.

--hash STR Hash algorithm to use for signing

(MD5,SHA1,RMD160,SHA256,SHA384,SHA512).

--export-ciphers Use weak encryption algorithms.

--inder Use DER format for input certificates

and private keys.

--inraw Use RAW/DER format for input

certificates and private keys.

--outder Use DER format for output certificates

and private keys.

--outraw Use RAW/DER format for output

certificates and private keys.

--bits BITS specify the number of bits for key

generation.

--sec-param PARAM specify the security level

[low|normal|high|ultra].

--disable-quick-random Use /dev/random for key generationg,

thus increasing the quality of

randomness used.

--outfile FILE Output file.

--infile FILE Input file.

--template FILE Template file to use for non

interactive operation.

--pkcs-cipher CIPHER Cipher to use for pkcs operations

(3des,3des-pkcs12,aes-128,aes-192,aes-25

6,rc2-40,arcfour).

-d, --debug LEVEL specify the debug level. Default is 1.

-h, --help shows this help text

-v, --version shows the program’s version

The program can be used interactively or non interactively by specifying the --template

command line option. See below for an example of a template file.

Diffie-Hellman parameter generation

To generate parameters for Diffie-Hellman key exchange, use the command:

$ certtool --generate-dh-params --outfile dh.pem

Self-signed certificate generation

To create a self signed certificate, use the command:

Chapter 6: More on certificate authentication 37

$ certtool --generate-privkey --outfile ca-key.pem

$ certtool --generate-self-signed --load-privkey ca-key.pem \

--outfile ca-cert.pem

Note that a self-signed certificate usually belongs to a certificate authority, that signs other
certificates.

Private key generation

To create a private key (RSA by default), run:

$ certtool --generate-privkey --outfile key.pem

To create a DSA or elliptic curves (ECDSA) private key use the above command combined
with --dsa or --ecc options.

Certificate generation

To generate a certificate using the private key, use the command:

$ certtool --generate-certificate --load-privkey key.pem \

--outfile cert.pem --load-ca-certificate ca-cert.pem \

--load-ca-privkey ca-key.pem

Alternatively you may create a certificate request, which is needed when the certificate will
be signed by a third party authority.

$ certtool --generate-request --load-privkey key.pem \

--outfile request.pem

If the private key is stored in a smart card you can generate a request by specifying the
private key object URL (see Section 6.5.5 [The p11tool application], page 44 on how to
obtain the URL).

$ certtool --generate-request --load-privkey pkcs11:(PRIVKEY URL) \

--load-pubkey pkcs11:(PUBKEY URL) --outfile request.pem

To generate a certificate using the previous request, use the command:

$ certtool --generate-certificate --load-request request.pem \

--outfile cert.pem \

--load-ca-certificate ca-cert.pem --load-ca-privkey ca-key.pem

Certificate information

To view the certificate information, use:

$ certtool --certificate-info --infile cert.pem

PKCS #12 structure generation

To generate a PKCS #12 structure using the previous key and certificate, use the command:

$ certtool --load-certificate cert.pem --load-privkey key.pem \

--to-p12 --outder --outfile key.p12

Some tools (reportedly web browsers) have problems with that file because it does not
contain the CA certificate for the certificate. To work around that problem in the tool, you
can use the –load-ca-certificate parameter as follows:

Chapter 6: More on certificate authentication 38

$ certtool --load-ca-certificate ca.pem \

--load-certificate cert.pem --load-privkey key.pem \

--to-p12 --outder --outfile key.p12

Proxy certificate generation

Proxy certificate can be used to delegate your credential to a temporary, typically short-
lived, certificate. To create one from the previously created certificate, first create a tem-
porary key and then generate a proxy certificate for it, using the commands:

$ certtool --generate-privkey > proxy-key.pem

$ certtool --generate-proxy --load-ca-privkey key.pem \

--load-privkey proxy-key.pem --load-certificate cert.pem \

--outfile proxy-cert.pem

Certificate revocation list generation

To create an empty Certificate Revocation List (CRL) do:

$ certtool --generate-crl --load-ca-privkey x509-ca-key.pem \

--load-ca-certificate x509-ca.pem

To create a CRL that contains some revoked certificates, place the certificates in a file and
use --load-certificate as follows:

$ certtool --generate-crl --load-ca-privkey x509-ca-key.pem \

--load-ca-certificate x509-ca.pem --load-certificate revoked-certs.pem

To verify a Certificate Revocation List (CRL) do:

$ certtool --verify-crl --load-ca-certificate x509-ca.pem < crl.pem

Certtool’s template file format:

A template file can be used to avoid the interactive questions of certtool. Initially create a
file named ’cert.cfg’ that contains the information about the certificate. The template can
be used as below:

$ certtool --generate-certificate cert.pem --load-privkey key.pem \

--template cert.cfg \

--load-ca-certificate ca-cert.pem --load-ca-privkey ca-key.pem

An example certtool template file:

X.509 Certificate options

#

DN options

The organization of the subject.

organization = "Koko inc."

The organizational unit of the subject.

unit = "sleeping dept."

The locality of the subject.

locality =

Chapter 6: More on certificate authentication 39

The state of the certificate owner.

state = "Attiki"

The country of the subject. Two letter code.

country = GR

The common name of the certificate owner.

cn = "Cindy Lauper"

A user id of the certificate owner.

#uid = "clauper"

If the supported DN OIDs are not adequate you can set

any OID here.

For example set the X.520 Title and the X.520 Pseudonym

by using OID and string pairs.

#dn_oid = "2.5.4.12" "Dr." "2.5.4.65" "jackal"

This is deprecated and should not be used in new

certificates.

pkcs9_email = "none@none.org"

The serial number of the certificate

serial = 007

In how many days, counting from today, this certificate will expire.

expiration_days = 700

X.509 v3 extensions

A dnsname in case of a WWW server.

#dns_name = "www.none.org"

#dns_name = "www.morethanone.org"

An IP address in case of a server.

#ip_address = "192.168.1.1"

An email in case of a person

email = "none@none.org"

An URL that has CRLs (certificate revocation lists)

available. Needed in CA certificates.

#crl_dist_points = "http://www.getcrl.crl/getcrl/"

Whether this is a CA certificate or not

#ca

Chapter 6: More on certificate authentication 40

Whether this certificate will be used for a TLS client

#tls_www_client

Whether this certificate will be used for a TLS server

#tls_www_server

Whether this certificate will be used to sign data (needed

in TLS DHE ciphersuites).

signing_key

Whether this certificate will be used to encrypt data (needed

in TLS RSA ciphersuites). Note that it is preferred to use different

keys for encryption and signing.

#encryption_key

Whether this key will be used to sign other certificates.

#cert_signing_key

Whether this key will be used to sign CRLs.

#crl_signing_key

Whether this key will be used to sign code.

#code_signing_key

Whether this key will be used to sign OCSP data.

#ocsp_signing_key

Whether this key will be used for time stamping.

#time_stamping_key

Whether this key will be used for IPsec IKE operations.

#ipsec_ike_key

6.5 Smart cards and HSMs

In this section we present the smart-card and hardware security module (HSM) support in
GnuTLS using PKCS #11 [PKCS11]. Hardware security modules and smart cards provide
a way to store private keys and perform operations on them without exposing them. This
allows decoupling cryptographic keys from the applications that use them providing an
additional security layer. Since this can also be achieved in software components such as in
Gnome keyring, we will use the term security module to describe such an isolation interface.

PKCS #11 is plugin API allowing applications to access cryptographic operations on a
security module, as well as to objects residing on it. PKCS #11 modules exist for hardware

Chapter 6: More on certificate authentication 41

tokens such as smart cards1, the trusted platform module (TPM)2 as well as for software
modules like Gnome Keyring. The objects residing on a security module may be certificates,
public keys, private keys or secret keys. Of those certificates and public/private key pairs
can be used with GnuTLS. PKCS #11’s main advantage is that it allows operations on
private key objects such as decryption and signing without exposing the key.

Moreover PKCS #11 can be (ab)used to allow all applications in the same operating system
to access shared cryptographic keys and certificates in a uniform way, as in Figure 6.1. That
way applications could load their trusted certificate list, as well as user certificates from a
common PKCS #11 module. Such a provider exists in the Gnome system, being the Gnome

Keyring.

Figure 6.1: PKCS #11 module usage.

6.5.1 Initialization

To allow all the GnuTLS applications to access PKCS #11 tokens you can use a con-
figuration per module, stored in /etc/pkcs11/modules/. These are the configuration
files of p11-kit3. For example a file that will load the OpenSC module, could be named
/etc/pkcs11/modules/opensc and contain the following:

module: /usr/lib/opensc-pkcs11.so

If you use this file, then there is no need for other initialization in GnuTLS, except for the
PIN and token functions. Those allow retrieving a PIN when accessing a protected object,
such as a private key, as well as probe the user to insert the token. All the initialization
functions are below.

• [gnutls pkcs11 init], page 315

• [gnutls pkcs11 set token function], page 320

• [gnutls pkcs11 set pin function], page 319

• [gnutls pkcs11 add provider], page 313

1 http://www.opensc-project.org
2 http://trousers.sourceforge.net/
3 http://p11-glue.freedesktop.org/

http://www.opensc-project.org
http://trousers.sourceforge.net/
http://p11-glue.freedesktop.org/

Chapter 6: More on certificate authentication 42

Note that due to limitations of PKCS #11 there are issues when multiple libraries are
sharing a module. To avoid this problem GnuTLS uses p11-kit that provides a middleware
to control access to resources over the multiple users.

6.5.2 Reading objects

All PKCS #11 objects are referenced by GnuTLS functions by URLs as described
in [PKCS11URI]. This allows for a consistent naming of objects across systems and
applications in the same system. For example a public key on a smart card may be
referenced as:

pkcs11:token=Nikos;serial=307521161601031;model=PKCS%2315; \

manufacturer=EnterSafe;object=test1;objecttype=public;\

id=32f153f3e37990b08624141077ca5dec2d15faed

while the smart card itself can be referenced as:

pkcs11:token=Nikos;serial=307521161601031;model=PKCS%2315;manufacturer=EnterSafe

Objects stored in a PKCS #11 token can be extracted if they are not marked as sensitive.
Usually only private keys are marked as sensitive and cannot be extracted, while certificates
and other data can be retrieved. The functions that can be used to access objects are shown
below.

• [gnutls pkcs11 obj import url], page 317

• [gnutls pkcs11 obj export url], page 316

• [gnutls pkcs11 obj get info], page 316

• [gnutls x509 crt import pkcs11], page 322

• [gnutls x509 crt import pkcs11 url], page 322

• [gnutls x509 crt list import pkcs11], page 323

Properties of the physical token can also be accessed and altered with GnuTLS. For example
data in a token can be erased (initialized), PIN can be altered, etc.

• [gnutls pkcs11 token init], page 321

• [gnutls pkcs11 token get url], page 321

• [gnutls pkcs11 token get info], page 320

• [gnutls pkcs11 token get flags], page 320

• [gnutls pkcs11 token set pin], page 321

The following examples demonstrate the usage of the API. The first example will list all
available PKCS #11 tokens in a system and the latter will list all certificates in a token
that have a corresponding private key.

int i;

char* url;

gnutls_global_init();

for (i=0;;i++)

{

ret = gnutls_pkcs11_token_get_url(i, &url);

Chapter 6: More on certificate authentication 43

if (ret == GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE)

break;

if (ret < 0)

exit(1);

fprintf(stdout, "Token[%d]: URL: %s\n", i, url);

gnutls_free(url);

}

gnutls_global_deinit();

#include <config.h>

#include <gnutls/gnutls.h>

#include <gnutls/pkcs11.h>

#include <stdio.h>

#include <stdlib.h>

#define URL "pkcs11:URL"

int

main (int argc, char** argv)

{

gnutls_pkcs11_obj_t *obj_list;

gnutls_x509_crt_t xcrt;

unsigned int obj_list_size = 0;

gnutls_datum_t cinfo;

int i, ret;

obj_list_size = 0;

ret = gnutls_pkcs11_obj_list_import_url (NULL, &obj_list_size, URL,

GNUTLS_PKCS11_OBJ_ATTR_CRT_WITH_PRIVKEY,

0);

if (ret < 0 && ret != GNUTLS_E_SHORT_MEMORY_BUFFER)

return -1;

/* no error checking from now on */

obj_list = malloc (sizeof (*obj_list) * obj_list_size);

gnutls_pkcs11_obj_list_import_url (obj_list, &obj_list_size, URL,

GNUTLS_PKCS11_OBJ_ATTR_CRT_WITH_PRIVKEY,

0);

/* now all certificates are in obj_list */

for (i = 0; i < obj_list_size; i++)

{

gnutls_x509_crt_init (&xcrt);

Chapter 6: More on certificate authentication 44

gnutls_x509_crt_import_pkcs11 (xcrt, obj_list[i]);

gnutls_x509_crt_print (xcrt, GNUTLS_CRT_PRINT_FULL, &cinfo);

fprintf (stdout, "cert[%d]:\n %s\n\n", i, cinfo.data);

gnutls_free (cinfo.data);

gnutls_x509_crt_deinit (xcrt);

}

return 0;

}

6.5.3 Writing objects

With GnuTLS you can copy existing private keys and certificates to a token. Note that
when copying private keys it is recommended to mark them as sensitive using the GNUTLS_
PKCS11_OBJ_FLAG_MARK_SENSITIVE to prevent its extraction. An object can be marked
as private using the flag GNUTLS_PKCS11_OBJ_FLAG_MARK_PRIVATE, to require PIN to be
entered before accessing the object (for operations or otherwise).

• [gnutls pkcs11 copy x509 privkey], page 314

• [gnutls pkcs11 copy x509 crt], page 314

• [gnutls pkcs11 delete url], page 315

6.5.4 Using a PKCS #11 token with TLS

It is possible to use a PKCS #11 token to a TLS session, as shown in [ex:pkcs11-client],
page 91. In addition the following functions can be used to load PKCS #11 key and
certificates by specifying a PKCS #11 URL instead of a filename.

• [gnutls certificate set x509 trust file], page 173

• [gnutls certificate set x509 key file], page 172

6.5.5 The p11tool application

p11tool is a program that is used to access tokens and security modules that support the
PKCS #11 API. It requires individual PKCS #11 modules to be loaded either with the
--provider option, or by setting up the GnuTLS configuration file for PKCS #11 as in
Section 6.5 [Smart cards and HSMs], page 40.

p11tool help

Usage: p11tool [options]

Usage: p11tool --list-tokens

Usage: p11tool --list-all

Usage: p11tool --export ’pkcs11:...’

--export URL Export an object specified by a pkcs11

URL

--list-tokens List all available tokens

Chapter 6: More on certificate authentication 45

--list-mechanisms URL List all available mechanisms in token.

--list-all List all objects specified by a PKCS#11

URL

--list-all-certs List all certificates specified by a

PKCS#11 URL

--list-certs List certificates that have a private

key specified by a PKCS#11 URL

--list-privkeys List private keys specified by a

PKCS#11 URL

--list-trusted List certificates marked as trusted,

specified by a PKCS#11 URL

--initialize URL Initializes a PKCS11 token.

--write URL Writes loaded certificates, private or

secret keys to a PKCS11 token.

--delete URL Deletes objects matching the URL.

--label label Sets a label for the write operation.

--trusted Marks the certificate to be written as

trusted.

--private Marks the object to be written as

private (requires PIN).

--no-private Marks the object to be written as not

private.

--login Force login to token

--detailed-url Export detailed URLs.

--no-detailed-url Export less detailed URLs.

--secret-key HEX_KEY Provide a hex encoded secret key.

--load-privkey FILE Private key file to use.

--load-pubkey FILE Private key file to use.

--load-certificate FILE

Certificate file to use.

-8, --pkcs8 Use PKCS #8 format for private keys.

--inder Use DER format for input certificates

and private keys.

--inraw Use RAW/DER format for input

certificates and private keys.

--provider Library Specify the pkcs11 provider library

--outfile FILE Output file.

-d, --debug LEVEL specify the debug level. Default is 1.

-h, --help shows this help text

After being provided the available PKCS #11 modules, it can list all tokens available in
your system, the objects on the tokens, and perform operations on them.

Some examples on how to use p11tool are illustrated in the following paragraphs.

List all tokens

$ p11tool --list-tokens

Chapter 6: More on certificate authentication 46

List all objects

The following command will list all objects in a token. The --login is required to show
objects marked as private.

$ p11tool --login --list-all

Exporting an object

To retrieve an object stored in the card use the following command. Note however that ob-
jects marked as sensitive (typically PKCS #11 private keys) are not allowed to be extracted
from the token.

$ p11tool --login --export [OBJECT URL]

Copy an object to a token

To copy an object, such as a certificate or private key to a token use the following command.

$ p11tool --login --write [TOKEN URL] \

--load-certificate cert.pem --label "my_cert"

6.6 Abstract key types

Since there are many forms of a public or private keys supported by GnuTLS such as
X.509, OpenPGP, or PKCS #11 it is desirable to allow common operations on them. For
these reasons the abstract gnutls_privkey_t and gnutls_pubkey_t were introduced in
gnutls/abstract.h header. Those types are initialized using a specific type of key and
then can be used to perform operations in an abstract way. For example in order to sign
an X.509 certificate with a key that resides in a token the following steps must be used.

#inlude <gnutls/abstract.h>

#inlude <gnutls/pkcs11.h>

void sign_cert(gnutls_x509_crt_t to_be_signed)

{

gnutls_pkcs11_privkey_t ca_key;

gnutls_x509_crt_t ca_cert;

gnutls_privkey_t abs_key;

/* load the PKCS #11 key and certificates */

gnutls_pkcs11_privkey_init(&ca_key);

gnutls_pkcs11_privkey_import_url(ca_key, key_url);

gnutls_x509_crt_init(&ca_cert);

gnutls_x509_crt_import_pkcs11_url(&ca_cert, cert_url);

/* initialize the abstract key */

gnutls_privkey_init(&abs_key);

gnutls_privkey_import_pkcs11(abs_key, ca_key);

/* sign the certificate to be signed */

gnutls_x509_crt_privkey_sign(to_be_signed, ca_cert, ca_key,

Chapter 6: More on certificate authentication 47

GNUTLS_DIG_SHA256, 0);

}

6.6.1 Public keys

An abstract gnutls_pubkey_t can be initialized using the functions below. It can be
imported through an existing structure like gnutls_x509_crt_t, or through an ASN.1
encoding of the X.509 SubjectPublicKeyInfo sequence.

• [gnutls pubkey import x509], page 336

• [gnutls pubkey import openpgp], page 334

• [gnutls pubkey import pkcs11], page 334

• [gnutls pubkey import pkcs11 url], page 335

• [gnutls pubkey import privkey], page 335

Additional functions are available that will return information over a public key.

• [gnutls pubkey get pk algorithm], page 331

• [gnutls pubkey get preferred hash algorithm], page 332

• [gnutls pubkey get key id], page 330

6.6.2 Private keys

An abstract gnutls_privkey_t can be initialized using the functions below. It can be
imported through an existing structure like gnutls_x509_privkey_t, but unlike public
keys it cannot be exported. That is to allow abstraction over PKCS #11 keys that are not
extractable.

• [gnutls privkey import x509], page 328

• [gnutls privkey import openpgp], page 327

• [gnutls privkey import pkcs11], page 327

• [gnutls privkey import ext], page 326

• [gnutls privkey get pk algorithm], page 326

• [gnutls privkey get type], page 326

6.6.3 Operations

The abstract key types can be used to access signing and signature verification operations
with the underlying keys.

• [gnutls pubkey verify data2], page 337

• [gnutls pubkey verify hash], page 337

• [gnutls privkey sign data], page 328

• [gnutls privkey sign hash], page 329

Signing existing structures, such as certificates, CRLs, or certificate requests, as well as
associating public keys with structures is also possible using the key abstractions.

• [gnutls x509 crq set pubkey], page 338

• [gnutls x509 crt set pubkey], page 339

• [gnutls x509 crt privkey sign], page 338

Chapter 6: More on certificate authentication 48

• [gnutls x509 crl privkey sign], page 337

• [gnutls x509 crq privkey sign], page 338

Chapter 7: How to use GnuTLS in applications 49

7 How to use GnuTLS in applications

7.1 Introduction

7.1.1 General idea

A brief description of how GnuTLS works internally is shown at Figure 7.1. This section
may become more clear after having read the rest of this section. As shown in the figure,
there is a read-only global state that is initialized once by the global initialization function.
This global structure, among others, contains the memory allocation functions used, and
structures needed for the ASN.1 parser. This structure is never modified by any GnuTLS

function, except for the deinitialization function which frees all allocated memory and is
called after the program has permanently finished using GnuTLS.

Figure 7.1: High level design of GnuTLS.

The credentials structures are used by the authentication methods, such as certificate au-
thentication. They store certificates, privates keys, and other information that is needed
to prove the identity to the peer, and/or verify the indentity of the peer. The information
stored in the credentials structures is initialized once and then can be shared by many TLS

sessions.

A GnuTLS session contains all the required information to handle one secure connection.
The session communicates with the peers using the provided functions of the transport
layer. Every session has a unique session ID shared with the peer.

Since TLS sessions can be resumed, servers need a database back-end to hold the session’s
parameters. Every GnuTLS session after a successful handshake calls the appropriate back-
end function (see [resume], page 11) to store the newly negotiated session. The session

Chapter 7: How to use GnuTLS in applications 50

database is examined by the server just after having received the client hello1, and if the
session ID sent by the client, matches a stored session, the stored session will be retrieved,
and the new session will be a resumed one, and will share the same session ID with the
previous one.

7.1.2 Error handling

In GnuTLS most functions return an integer type as a result. In almost all cases a zero or a
positive number means success, and a negative number indicates failure, or a situation that
some action has to be taken. Thus negative error codes may be fatal or not.

Fatal errors terminate the connection immediately and further sends and receives will be
disallowed. Such an example is GNUTLS_E_DECRYPTION_FAILED. Non-fatal errors may
warn about something, i.e., a warning alert was received, or indicate the some action
has to be taken. This is the case with the error code GNUTLS_E_REHANDSHAKE returned
by [gnutls record recv], page 204. This error code indicates that the server requests a re-
handshake. The client may ignore this request, or may reply with an alert. You can test if
an error code is a fatal one by using the [gnutls error is fatal], page 185.

If any non fatal errors, that require an action, are to be returned by a function, these
error codes will be documented in the function’s reference. See Appendix B [Error codes],
page 154, for a description of the available error codes.

7.1.3 Debugging and auditing

In many cases things may not go as expected and further information, to assist debug-
ging, from GnuTLS is desired. Those are the cases where the [gnutls global set log level],
page 187 and [gnutls global set log function], page 186 are to be used. Those will print
verbose information on the GnuTLS functions internal flow.

• [gnutls global set log level], page 187

• [gnutls global set log function], page 186

When debugging is not required, important issues, such as detected attacks on the
protocol still need to be logged. This is provided by the logging function set by
[gnutls global set audit log function], page 186. The provided function will receive an
message and the corresponding TLS session. The session information might be used to
derive IP addresses or other information about the peer involved.

• [gnutls global set audit log function], page 186

7.1.4 Thread safety

The GnuTLS library is thread safe by design, meaning that objects of the library such as
TLS sessions, can be safely divided across threads as long as a single thread accesses a single
object. This is sufficient to support a server which handles several sessions per thread. If,
however, an object needs to be shared across threads then access must be protected with a
mutex. Read-only access to objects, for example the credentials holding structures, is also
thread-safe.

The random generator of the cryptographic back-end, is not thread safe and requires mu-
tex locks which are setup by GnuTLS. Applications can either call [gnutls global init],

1 The first message in a TLS handshake

Chapter 7: How to use GnuTLS in applications 51

page 186 which will initialize the default operating system provided locks (i.e. pthreads on
GNU/Linux and CriticalSection on Windows), or manually specify the locking system
using the function [gnutls global set mutex], page 187 before calling [gnutls global init],
page 186. Setting mutexes manually is recommended only for applications that have full
control of the underlying libraries. If this is not the case, the use of the operating system
defaults is recommended. An example of non-native thread usage is shown below.

#include <gnutls.h>

/* Other thread packages

*/

int main()

{

gnutls_global_set_mutex (mutex_init, mutex_deinit,

mutex_lock, mutex_unlock);

gnutls_global_init();

}

• [gnutls global set mutex], page 187

7.1.5 Callback functions

There are several cases where GnuTLS may need out of band input from your program.
This is now implemented using some callback functions, which your program is expected to
register.

An example of this type of functions are the push and pull callbacks which are used to
specify the functions that will retrieve and send data to the transport layer.

• [gnutls transport set push function], page 219

• [gnutls transport set pull function], page 219

Other callback functions may require more complicated input and data to be allocated.
Such an example is [gnutls srp set server credentials function], page 216. All callbacks
should allocate and free memory using gnutls_malloc and gnutls_free.

7.2 Preparation

To use GnuTLS, you have to perform some changes to your sources and your build system.
The necessary changes are explained in the following subsections.

7.2.1 Headers

All the data types and functions of the GnuTLS library are defined in the header file
‘gnutls/gnutls.h’. This must be included in all programs that make use of the GnuTLS

library.

7.2.2 Initialization

GnuTLS must be initialized before it can be used. The library is initialized by calling
[gnutls global init], page 186. The resources allocated by the initialization process can be
released if the application no longer has a need to call GnuTLS functions, this is done by
calling [gnutls global deinit], page 186.

Chapter 7: How to use GnuTLS in applications 52

In order to take advantage of the internationalization features in GnuTLS, such as trans-
lated error messages, the application must set the current locale using setlocale before
initializing GnuTLS.

7.2.3 Version check

It is often desirable to check that the version of ‘gnutls’ used is indeed one which fits
all requirements. Even with binary compatibility new features may have been introduced
but due to problem with the dynamic linker an old version is actually used. So you may
want to check that the version is okay right after program start-up. See the function
[gnutls check version], page 175.

7.2.4 Building the source

If you want to compile a source file including the ‘gnutls/gnutls.h’ header file, you must
make sure that the compiler can find it in the directory hierarchy. This is accomplished by
adding the path to the directory in which the header file is located to the compilers include
file search path (via the ‘-I’ option).

However, the path to the include file is determined at the time the source is configured. To
solve this problem, the library uses the external package pkg-config that knows the path
to the include file and other configuration options. The options that need to be added to
the compiler invocation at compile time are output by the ‘--cflags’ option to pkg-config
gnutls. The following example shows how it can be used at the command line:

gcc -c foo.c ‘pkg-config gnutls --cflags‘

Adding the output of ‘pkg-config gnutls --cflags’ to the compilers command line will
ensure that the compiler can find the ‘gnutls/gnutls.h’ header file.

A similar problem occurs when linking the program with the library. Again, the compiler
has to find the library files. For this to work, the path to the library files has to be added to
the library search path (via the ‘-L’ option). For this, the option ‘--libs’ to pkg-config

gnutls can be used. For convenience, this option also outputs all other options that are
required to link the program with the library (for instance, the ‘-ltasn1’ option). The
example shows how to link ‘foo.o’ with the library to a program foo.

gcc -o foo foo.o ‘pkg-config gnutls --libs‘

Of course you can also combine both examples to a single command by specifying both
options to pkg-config:

gcc -o foo foo.c ‘pkg-config gnutls --cflags --libs‘

7.3 Session initialization

In the previous sections we have discussed the global initialization required for GnuTLS
as well as the initialization required for each authentication method’s credentials (see
Section 3.5.2 [Authentication], page 9). In this section we elaborate on the TLS or DTLS
session initiation. Each session is initialized using [gnutls init], page 191 which among
others is used to specify the type of the connection (server or client), and the underlying
protocol type, i.e., datagram (UDP) or reliable (TCP).

• [gnutls init], page 191

Chapter 7: How to use GnuTLS in applications 53

After the session initialization details on the allowed ciphersuites and protocol versions
should be set using the priority functions such as [gnutls priority set direct], page 198. We
elaborate on them in Section 7.9 [Priority Strings], page 59. The credentials used for the key
exchange method, such as certificates or usernames and passwords should also be associated
with the session current session using [gnutls credentials set], page 178.

• [gnutls credentials set], page 178

7.4 Associating the credentials

7.4.1 Certificates

Server certificate authentication

When using certificates the server is required to have at least one certificate and private
key pair. Clients may not hold such a pair, but a server could require it. In this section we
discuss general issues applying to both client and server certificates. The next section will
elaborate on issues arising from client authentication only.

• [gnutls certificate allocate credentials], page 166

• [gnutls certificate free credentials], page 167

After the credentials structures are initialized, the certificate and key pair must be loaded.
This occurs before any TLS session is initialized, and the same structures are reused for
multiple sessions. Depending on the certificate type different loading functions are available,
as shown below. For X.509 certificates, the functions will accept and use a certificate chain
that leads to a trusted authority. The certificate chain must be ordered in such way that
every certificate certifies the one before it. The trusted authority’s certificate need not to
be included since the peer should possess it already.

• [gnutls certificate set x509 key mem], page 172

• [gnutls certificate set x509 key], page 172

• [gnutls certificate set x509 key file], page 172

• [gnutls certificate set openpgp key mem], page 290

• [gnutls certificate set openpgp key], page 289

• [gnutls certificate set openpgp key file], page 289

• [gnutls certificate set key], page 323

As an alternative to loading from files or buffers, a callback may be used for the server
or the client to specify the certificate and the key at the handshake time. In that case a
certificate should be selected according the peer’s signature algorithm preferences. To get
those preferences use [gnutls sign algorithm get requested], page 211. Both functions are
shown below.

• [gnutls certificate set retrieve function], page 169

• [gnutls sign algorithm get requested], page 211

Certificate verification is possible by loading the trusted authorities into the credentials
structure by using the following functions, applicable to X.509 and OpenPGP certificates.

• [gnutls certificate set x509 trust file], page 173

Chapter 7: How to use GnuTLS in applications 54

• [gnutls certificate set openpgp keyring file], page 291

Note however that the peer’s certificate is not automatically verified, you should call
[gnutls certificate verify peers2], page 175, after a successful handshake or during if
[gnutls certificate set verify function], page 170 has been used, to verify the certificate’s
signature. An alternative way, which reports a more detailed verification output, is to use
[gnutls certificate get peers], page 168 to obtain the raw certificate of the peer and verify
it using the functions discussed in Section 4.1 [X.509 certificates], page 17.

• [gnutls certificate verify peers2], page 175

In a handshake, the negotiated cipher suite also depends on the certificate’s parameters,
so some key exchange methods might not be available with some certificates. GnuTLS will
disable ciphersuites that are not compatible with the key, or the enabled authentication
methods. For example keys marked as sign-only, will not be able to access the plain RSA
ciphersuites, that require decryption. It is not recommended to use RSA keys for both
signing and encryption. If possible use a different key for the DHE_RSA which uses signing
and RSA that requires decryption. All the key exchange methods shown in Table 3.3 are
available in certificate authentication.

• [gnutls certificate set verify function], page 170

Note that the DHE key exchange methods are generally slower2 than the elliptic curves
counterpart (ECDHE). Moreover the plain Diffie-Hellman key exchange requires parameters
to be generated and associated with a credentials structure by the server (see Section 7.10.2
[Parameter generation], page 64).

Client certificate authentication

If a certificate is to be requested from the client during the handshake, the
server will send a certificate request message. This behavior is controlled
[gnutls certificate server set request], page 168. The request contains a list of the
acceptable by the server certificate signers. This list is constructed using the trusted
certificate authorities of the server. In cases where the server supports a large number of
certificate authorities it makes sense not to advertise all of the names to save bandwidth.
That can be controlled using the function [gnutls certificate send x509 rdn sequence],
page 168. This however will have the side-effect of not restricting the client to certificates
signed by server’s acceptable signers.

• [gnutls certificate server set request], page 168

• [gnutls certificate send x509 rdn sequence], page 168

7.4.2 SRP

The initialization functions in SRP credentials differ between client and server. Clients
supporting SRP should set the username and password prior to connection, to the credentials
structure. Alternatively [gnutls srp set client credentials function], page 215 may be used
instead, to specify a callback function that should return the SRP username and password.
The callback is called once during the TLS handshake.

• [gnutls srp allocate server credentials], page 212

2 It depends on the group used. Primes with lesser bits are always faster, but also easier to break. See
Section 7.12 [Selecting cryptographic key sizes], page 67 for the acceptable security levels.

Chapter 7: How to use GnuTLS in applications 55

• [gnutls srp allocate client credentials], page 212

• [gnutls srp free server credentials], page 214

• [gnutls srp free client credentials], page 214

• [gnutls srp set client credentials], page 214

• [gnutls srp set client credentials function], page 215

In server side the default behavior of GnuTLS is to read the usernames and SRP

verifiers from password files. These password file format is compatible the with
the Stanford srp libraries format. If a different password file format is to be used,
then [gnutls srp set server credentials function], page 216 should be called, to set an
appropriate callback.

• [gnutls srp set server credentials file], page 215

• [gnutls srp set server credentials function], page 216

7.4.3 PSK

The initialization functions in PSK credentials differ between client and server.

• [gnutls psk allocate server credentials], page 200

• [gnutls psk allocate client credentials], page 199

• [gnutls psk free server credentials], page 200

• [gnutls psk free client credentials], page 200

Clients supporting PSK should supply the username and key before a TLS session is estab-
lished. Alternatively [gnutls psk set client credentials function], page 201 can be used to
specify a callback function. This has the advantage that the callback will be called only if
PSK has been negotiated.

• [gnutls psk set client credentials], page 201

• [gnutls psk set client credentials function], page 201

In server side the default behavior of GnuTLS is to read the usernames and PSK keys
from a password file. The password file should contain usernames and keys in hexadecimal
format. The name of the password file can be stored to the credentials structure by calling
[gnutls psk set server credentials file], page 202. If a different password file format is to be
used, then a callback should be set instead by [gnutls psk set server credentials function],
page 202.

The server can help the client chose a suitable username and password, by sending a hint.
Note that there is no common profile for the PSK hint and applications are discouraged
to use it. A server, may specify the hint by calling [gnutls psk set server credentials hint],
page 202. The client can retrieve the hint, for example in the callback function, using
[gnutls psk client get hint], page 200.

• [gnutls psk set server credentials file], page 202

• [gnutls psk set server credentials function], page 202

• [gnutls psk set server credentials hint], page 202

• [gnutls psk client get hint], page 200

Chapter 7: How to use GnuTLS in applications 56

7.4.4 Anonymous

The initialization functions for the credentials are shown below.

• [gnutls anon allocate server credentials], page 163

• [gnutls anon allocate client credentials], page 163

• [gnutls anon free server credentials], page 164

• [gnutls anon free client credentials], page 163

Note that the key exchange methods for anonymous authentication require Diffie-Hellman
parameters to be generated by the server and associated with an anonymous credentials
structure. Check Section 7.10.2 [Parameter generation], page 64 for more information.

7.5 Setting up the transport layer

The next step is to setup the underlying transport layer details. The Berkeley sockets are
implicitly used by GnuTLS, thus a call to [gnutls transport set ptr2], page 219 would be
sufficient to specify the socket descriptor.

• [gnutls transport set ptr2], page 219

• [gnutls transport set ptr], page 218

If however another transport layer than TCP is selected, then the following functions have
to be specified.

• [gnutls transport set push function], page 219

• [gnutls transport set vec push function], page 220

• [gnutls transport set pull function], page 219

The functions above accept a callback function which should return the number of bytes
written, or -1 on error and should set errno appropriately. In some environments, setting
errno is unreliable. For example Windows have several errno variables in different CRTs,
or in other systems it may be a non thread-local variable. If this is a concern to you,
call [gnutls transport set errno], page 218 with the intended errno value instead of setting
errno directly.

• [gnutls transport set errno], page 218

GnuTLS currently only interprets the EINTR and EAGAIN errno values and returns the
corresponding GnuTLS error codes:

• GNUTLS_E_INTERRUPTED

• GNUTLS_E_AGAIN

The EINTR and EAGAIN values are returned by interrupted system calls, or when non
blocking IO is used. All GnuTLS functions can be resumed (called again), if any of the
above error codes is returned.

In the case of DTLS it is also desirable to override the generic transport functions
with functions that emulate the operation of recvfrom and sendto. In addition
DTLS requires timers during the receive of a handshake message. This requires the
[gnutls transport set pull timeout function], page 219 function to be used.

• [gnutls transport set pull timeout function], page 219

Chapter 7: How to use GnuTLS in applications 57

7.5.1 Asynchronous operation

GnuTLS can be used with asynchronous socket or event-driven programming. During a
TLS protocol session GnuTLS does not block for anything except calculations. The only
blocking operations are due to the transport layer (sockets) functions. Those, however,
in an asynchronous scenario are typically set to non-blocking mode, which forces them to
return EAGAIN error code instead of blocking. In that case GnuTLS functions will return the
GNUTLS_E_AGAIN error code and can be resumed the same way as a system call would. The
only exception is [gnutls record send], page 205, which if interrupted subsequent calls need
not to include the data to be sent (can be called with NULL argument).

The select system call can also be used in combination with the GnuTLS functions. select
allows monitoring of sockets and notifies on them being ready for reading or writing data.
Note however that this system call cannot notify on data present in GnuTLS read buffers,
it is only applicable to the kernel sockets API. Thus if you are using it for reading from a
GnuTLS session, make sure the session is read completely. That can be achieved by checking
there are no data waiting to be read (using [gnutls record check pending], page 203), either
before the select system call, or after a call to [gnutls record recv], page 204. GnuTLS

does not keep a write buffer, thus when writing select need only to be consulted.

In the DTLS, however, GnuTLS might block due to timers required by the protocol. To
prevent those timers from blocking a DTLS handshake, the [gnutls init], page 191 should
be called with the GNUTLS_NONBLOCK flag (see Section 7.3 [Session initialization], page 52).

7.5.2 DTLS sessions

Because datagram TLS can operate over connections where the peer of a server cannot
be reliably verified, functionality is available to prevent denial of service attacks. GnuTLS

requires a server to generate a secret key that is used to sign a cookie3. That cookie is
sent to the client using [gnutls dtls cookie send], page 220, and the client must reply using
the correct cookie. The server side should verify the initial message sent by client using
[gnutls dtls cookie verify], page 221. If successful the session should be initialized and
associated with the cookie using [gnutls dtls prestate set], page 221, before proceeding to
the handshake.

• [gnutls key generate], page 191

• [gnutls dtls cookie send], page 220

• [gnutls dtls cookie verify], page 221

• [gnutls dtls prestate set], page 221

Note that the above apply to server side only and they are not mandatory to be used. Not
using them, however, allows denial of service attacks. The client side cookie handling is
part of [gnutls handshake], page 188.

Datagrams are typically restricted by a maximum transfer unit (MTU). For that both client
and server side should set the correct maximum transfer unit for the layer underneath
GnuTLS. This will allow proper fragmentation of DTLS messages and prevent messages
from being silently discarded by the transport layer. The “correct” maximum transfer unit
can be obtained through a path MTU discovery mechanism [RFC4821].

3 A key of 128 bits or 16 bytes should be sufficient for this purpose.

Chapter 7: How to use GnuTLS in applications 58

• [gnutls dtls set mtu], page 222

• [gnutls dtls get mtu], page 221

• [gnutls dtls get data mtu], page 221

7.6 TLS handshake

Once a session has been initialized and a network connection has been set up, TLS and
DTLS protocols perform a handshake. The handshake is the actual key exchange.

• [gnutls handshake], page 188

The handshake process doesn’t ensure the verification of the peer’s identity. When certifi-
cates are in use, this can be done, either after the handshake is complete, or during the
handshake if [gnutls certificate set verify function], page 170 has been used. In both cases
the [gnutls certificate verify peers2], page 175 function can be used to verify the peer’s
certificate (see Chapter 4 [Certificate authentication], page 17 for more information).

• [gnutls certificate verify peers2], page 175

7.7 Data transfer and termination

Once the handshake is complete and peer’s identity has been verified data can be exchanged.
The available functions resemble the POSIX recv and send functions. It is suggested to
use [gnutls error is fatal], page 185 to check whether the error codes returned by these
functions are fatal for the protocol or can be ignored.

• [gnutls record send], page 205

• [gnutls record recv], page 204

• [gnutls error is fatal], page 185

In DTLS it is advisable to use the extended receive function shown below, because it allows
the extraction of the sequence number. This is required in DTLS because messages may
arrive out of order.

• [gnutls record recv seq], page 205

The [gnutls record check pending], page 203 helper function is available to allow checking
whether data are available to be read in a GnuTLS session buffers. Note that this function
complements but does not replace select, i.e., [gnutls record check pending], page 203
reports no data to be read, select should be called to check for data in the network
buffers.

• [gnutls record check pending], page 203

• [gnutls record get direction], page 204

Once a TLS or DTLS session is no longer needed, it is recommended to use [gnutls bye],
page 165 to terminate the session. That way the peer is notified securely about the intention
of termination, which allows distinguishing it from a malicious connection termination. A
session can be deinitialized with the [gnutls deinit], page 180 function.

• [gnutls bye], page 165

• [gnutls deinit], page 180

Chapter 7: How to use GnuTLS in applications 59

7.8 Handling alerts

During a TLS connection alert messages may be exchanged by the two peers. Those mes-
sages may be fatal, meaning the connection must be terminated afterwards, or warning
when something needs to be reported to the peer, but without interrupting the session. The
error codes GNUTLS_E_WARNING_ALERT_RECEIVED or GNUTLS_E_FATAL_ALERT_RECEIVED sig-
nal those alerts when received, and may be returned by all GnuTLS functions that receive
data from the peer, being [gnutls handshake], page 188 and [gnutls record recv], page 204.
Alerts messages may be sent to the peer using [gnutls alert send], page 162.

• [gnutls alert get], page 162

• [gnutls alert send], page 162

• [gnutls error to alert], page 185

• [gnutls alert get name], page 162

7.9 Priority strings

In order to specify cipher suite preferences on a TLS session there are priority functions
that accept a string specifying the enabled for the handshake algorithms. That string may
contain a high level keyword such as in Table 7.1 or combination of a high level keyword,
additional algorithm keywords and special keywords.

• [gnutls priority set direct], page 198

• [gnutls priority set], page 198

Chapter 7: How to use GnuTLS in applications 60

Keyword Description
PERFORMANCE All the "secure" ciphersuites are enabled, limited to 128 bit

ciphers and sorted by terms of speed performance.

NORMAL Means all "secure" ciphersuites. The 256-bit ciphers are in-
cluded as a fallback only. The ciphers are sorted by security
margin.

SECURE128 Means all "secure" ciphersuites of security level 128-bit or
more.

SECURE192 Means all "secure" ciphersuites of security level 192-bit or
more.

SECURE256 Currently alias for SECURE192.

SUITEB128 Means all the NSA Suite B cryptography (RFC5430) cipher-
suites with an 128 bit security level.

SUITEB192 Means all the NSA Suite B cryptography (RFC5430) cipher-
suites with an 192 bit security level.

EXPORT Means all ciphersuites are enabled, including the low-security
40 bit ciphers.

NONE Means nothing is enabled. This disables even protocols and
compression methods. It should be followed by the algorithms
to be enabled.

Table 7.1: Supported priority string keywords.

Unless the first keyword is "NONE" the defaults (in preference order) are for TLS protocols
TLS 1.2, TLS1.1, TLS1.0, SSL3.0; for compression NULL; for certificate types X.509. In
key exchange algorithms when in NORMAL or SECURE levels the perfect forward secrecy
algorithms take precedence of the other protocols. In all cases all the supported key exchange
algorithms are enabled (except for the RSA-EXPORT which is only enabled in EXPORT
level). The NONE keyword, if used, must followed by the algorithms to be enabled, and
is used to provide the exact list of requested algorithms4. The order with which every
algorithm is specified is significant. Similar algorithms specified before others will take
precedence. The individual algorithms are shown in Table 7.2 and special keywords are in
Table 7.3. The prefixes for individual algorithms are:

’ !’ or ’-’ appended with an algorithm will remove this algorithm.

4 To avoid collisions in order to specify a compression algorithm in this string you have to prefix it with
"COMP-", protocol versions with "VERS-", signature algorithms with "SIGN-" and certificate types with
"CTYPE-". All other algorithms don’t need a prefix.

Chapter 7: How to use GnuTLS in applications 61

"+" appended with an algorithm will add this algorithm.

Type Keywords
Ciphers AES-128-CBC, AES-256-CBC, AES-128-GCM, CAMELLIA-

128-CBC, CAMELLIA-256-CBC, ARCFOUR-128, 3DES-
CBC ARCFOUR-40. Catch all name is CIPHER-ALL which
will add all the algorithms from NORMAL priority.

Key exchange RSA, DHE-RSA, DHE-DSS, SRP, SRP-RSA, SRP-DSS,
PSK, DHE-PSK, ECDHE-RSA, ANON-ECDH, ANON-DH,
RSA-EXPORT. The Catch all name is KX-ALL which will
add all the algorithms from NORMAL priority.

MAC MD5, SHA1, SHA256, AEAD (used with GCM ciphers only).
All algorithms from NORMAL priority can be accessed with
MAC-ALL.

Compression
algorithms

COMP-NULL, COMP-DEFLATE. Catch all is COMP-ALL.

TLS versions VERS-SSL3.0, VERS-TLS1.0, VERS-TLS1.1, VERS-TLS1.2,
VERS-DTLS1.0. Catch all is VERS-TLS-ALL.

Signature
algorithms

SIGN-RSA-SHA1, SIGN-RSA-SHA224, SIGN-RSA-SHA256,
SIGN-RSA-SHA384, SIGN-RSA-SHA512, SIGN-DSA-SHA1,
SIGN-DSA-SHA224, SIGN-DSA-SHA256, SIGN-RSA-MD5.
Catch all is SIGN-ALL. This is only valid for TLS 1.2 and
later.

Elliptic curves CURVE-SECP192R1, CURVE-SECP224R1, CURVE-
SECP256R1, CURVE-SECP384R1, CURVE-SECP521R1.
Catch all is CURVE-ALL.

Table 7.2: The supported algorithm keywords in priority strings.

Chapter 7: How to use GnuTLS in applications 62

Keyword Description

%COMPAT will enable compatibility mode. It
might mean that violations of the pro-
tocols are allowed as long as maximum
compatibility with problematic clients
and servers is achieved.

%NO EXTENSIONS will prevent the sending of any TLS ex-
tensions in client side. Note that TLS
1.2 requires extensions to be used, as
well as safe renegotiation thus this op-
tion must be used with care.

%SERVER PRECEDENCE The ciphersuite will be selected accord-
ing to server priorities and not the
client’s.

%DISABLE SAFE RENEGOTIATION will disable safe renegotiation com-
pletely. Do not use unless you know
what you are doing. Testing purposes
only.

%UNSAFE RENEGOTIATION will allow handshakes and
re-handshakes without the safe
renegotiation extension. Note that
for clients this mode is insecure
(you may be under attack), and for
servers it will allow insecure clients
to connect (which could be fooled by
an attacker). Do not use unless you
know what you are doing and want
maximum compatibility.

%PARTIAL RENEGOTIATION will allow initial handshakes to pro-
ceed, but not re-handshakes. This
leaves the client vulnerable to attack,
and servers will be compatible with
non-upgraded clients for initial hand-
shakes. This is currently the default
for clients and servers, for compatibil-
ity reasons.

%SAFE RENEGOTIATION will enforce safe renegotiation. Clients
and servers will refuse to talk to an
insecure peer. Currently this causes
interoperability problems, but is re-
quired for full protection.

%SSL3 RECORD VERSION will use SSL3.0 record version in client
hello. This is the default.

%LATEST RECORD VERSION will use the latest TLS version record
version in client hello.

%VERIFY ALLOW SIGN RSA MD5 will allow RSA-MD5 signatures in cer-
tificate chains.

%VERIFY ALLOW X509 V1 CA CRT will allow V1 CAs in chains.

Table 7.3: Special priority string keywords.

Chapter 7: How to use GnuTLS in applications 63

7.10 Advanced and other topics

7.10.1 Session resumption

Client side

To reduce time and roundtrips spent in a handshake the client can utilize session re-
sumption. This requires the client to retrieve and store the session parameters. On
new sessions to the same server the parameters must be re-associated with sessions us-
ing [gnutls session set data], page 210.

• [gnutls session get data], page 208

• [gnutls session get id], page 209

• [gnutls session set data], page 210

Keep in mind that sessions might be expired after some time, and it may be normal for a
server not to resume a session even it was requested. That is to prevent temporal session
keys from becoming long-term keys. Also note that as a client you must enable, using the
priority functions, at least the algorithms used in the last session.

It is highly recommended for clients to enable the session ticket extension using
[gnutls session ticket enable client], page 210 in order to allow resumption with servers
that do not store any state.

• [gnutls session ticket enable client], page 210

Server side

In order to support resumption a server might do it either by storing the session security
parameters in a local database or by using session tickets (see Section 3.6.3 [Session tickets],
page 12) to delegate storage to the client. Because session tickets might not be supported
by all clients, servers might combine the two methods.

A storing server needs to specify callback functions to store, retrieve and delete session data.
These can be registered with the functions below. The stored sessions in the database can
be checked using [gnutls db check entry], page 178 for expiration.

• [gnutls db set retrieve function], page 180

• [gnutls db set store function], page 180

• [gnutls db set ptr], page 179

• [gnutls db set remove function], page 179

• [gnutls db check entry], page 178

A server utilizing tickets should use [gnutls session ticket key generate], page 211 to gener-
ate a ticket encryption key and call [gnutls session ticket enable server], page 211 to enable
the extension.

• [gnutls session ticket enable server], page 211

• [gnutls session ticket key generate], page 211

Chapter 7: How to use GnuTLS in applications 64

7.10.2 Parameter generation

Several TLS ciphersuites require additional parameters that need to be generated
or provided by the application. The Diffie-Hellman based ciphersuites (ANON-DH
or DHE), require the group parameters to be provided. Those can either be be
generated on the fly using [gnutls dh params generate2], page 183 or imported from
pregenerated data using [gnutls dh params import pkcs3], page 183. The parameters
can be used in a TLS session by calling [gnutls certificate set dh params], page 169 or
[gnutls anon set server dh params], page 164 for anonymous sessions.

• [gnutls dh params generate2], page 183

• [gnutls dh params import pkcs3], page 183

• [gnutls certificate set dh params], page 169

• [gnutls anon set server dh params], page 164

Due to the time-consuming calculations required for the generation of Diffie-Hellman pa-
rameters we suggest against performing generation of them within an application. The
certtool tool can be used to generate or export known safe values that can be stored in
code or in a configuration file to provide the ability to replace. We also recommend the
usage of [gnutls sec param to pk bits], page 207 (see Section 7.12 [Selecting cryptographic
key sizes], page 67) to determine the bit size of the generated parameters.

The ciphersuites that involve the RSA-EXPORT key exchange require additional param-
eters. Those ciphersuites are rarely used today because they are by design insecure, thus
if you have no requirement for them, the rest of this section can be skipped. The RSA-
EXPORT key exchange requires 512-bit RSA keys to be generated. It is recommended
those parameters to be refreshed (regenerated) in short intervals. The following functions
can be used for these parameters.

• [gnutls rsa params generate2], page 349

• [gnutls certificate set rsa export params], page 345

• [gnutls rsa params import pkcs1], page 349

• [gnutls rsa params export pkcs1], page 348

To allow renewal of the parameters within an application without accessing the credentials,
which are a shared structure, an alternative interface is available using a callback function.

• [gnutls certificate set params function], page 169

7.10.3 Keying material exporters

The TLS PRF can be used by other protocols to derive data. The API to use is [gnutls prf],
page 196. The function needs to be provided with the label in the parameter label, and
the extra data to mix in the extra parameter. Depending on whether you want to mix in
the client or server random data first, you can set the server_random_first parameter.

For example, after establishing a TLS session using [gnutls handshake], page 188, you can
invoke the TLS PRF with this call:

#define MYLABEL "EXPORTER-FOO"

#define MYCONTEXT "some context data"

char out[32];

rc = gnutls_prf (session, strlen (MYLABEL), MYLABEL, 0,

Chapter 7: How to use GnuTLS in applications 65

strlen (MYCONTEXT), MYCONTEXT, 32, out);

If you don’t want to mix in the client/server random, there is a more low-level TLS PRF
interface called [gnutls prf raw], page 196.

7.10.4 Channel bindings

In user authentication protocols (e.g., EAP or SASL mechanisms) it is useful to have a
unique string that identifies the secure channel that is used, to bind together the user
authentication with the secure channel. This can protect against man-in-the-middle attacks
in some situations. That unique string is called a “channel binding”. For background and
discussion see [RFC5056].

In GnuTLS you can extract a channel binding using the [gnutls session channel binding],
page 208 function. Currently only the type GNUTLS_CB_TLS_UNIQUE is supported, which
corresponds to the tls-unique channel binding for TLS defined in [RFC5929].

The following example describes how to print the channel binding data. Note that it must
be run after a successful TLS handshake.

{

gnutls_datum_t cb;

int rc;

rc = gnutls_session_channel_binding (session,

GNUTLS_CB_TLS_UNIQUE,

&cb);

if (rc)

fprintf (stderr, "Channel binding error: %s\n",

gnutls_strerror (rc));

else

{

size_t i;

printf ("- Channel binding ’tls-unique’: ");

for (i = 0; i < cb.size; i++)

printf ("%02x", cb.data[i]);

printf ("\n");

}

}

7.10.5 Interoperability

The TLS protocols support many ciphersuites, extensions and version numbers. As a result,
few implementations are not able to properly interoperate once faced with extensions or
version protocols they do not support and understand. The TLS protocol allows for a
graceful downgrade to the commonly supported options, but practice shows it is not always
implemented correctly.

Because there is no way to achieve maximum interoperability with broken peers without
sacrificing security, GnuTLS ignores such peers by default. This might not be acceptable in
cases where maximum compatibility is required. Thus we allow enabling compatibility with
broken peers using priority strings (see Section 7.9 [Priority Strings], page 59). An example

Chapter 7: How to use GnuTLS in applications 66

priority string that is known to provide wide compatibility even with broken peers is shown
below:

NORMAL:-VERS-TLS-ALL:+VERS-TLS1.0:+VERS-SSL3.0:%COMPAT

This priority string will only enable SSL 3.0 and TLS 1.0 as protocols and will disable, via
the %COMPAT keyword, several TLS protocol options that are known to cause compatibility
problems. Note however that there are known attacks against those protocol versions and
this mode trades security for compatibility.

7.10.6 Compatibility with the OpenSSL library

To ease GnuTLS’ integration with existing applications, a compatibility layer with the
OpenSSL library is included in the gnutls-openssl library. This compatibility layer is
not complete and it is not intended to completely re-implement the OpenSSL API with
GnuTLS. It only provides limited source-level compatibility.

The prototypes for the compatibility functions are in the ‘gnutls/openssl.h’ header file.
The limitations imposed by the compatibility layer include:

• Error handling is not thread safe.

7.11 Using the cryptographic library

GnuTLS is not a low-level cryptographic library, i.e., it does not provide access to basic
cryptographic primitives. However it abstracts the internal cryptographic back-end (see
Section 10.5 [Cryptographic Backend], page 149), providing symmetric crypto, hash and
HMAC algorithms, as well access to the random number generation.

7.11.1 Symmetric cryptography

The available functions to access symmetric crypto algorithms operations are shown below.
The supported algorithms are the algorithms required by the TLS protocol. They are listed
in Table 3.1.

• [gnutls cipher init], page 341

• [gnutls cipher encrypt2], page 341

• [gnutls cipher decrypt2], page 340

• [gnutls cipher set iv], page 341

• [gnutls cipher deinit], page 340

In order to support authenticated encryption with associated data (AEAD) algorithms the
following functions are provided to set the associated data and retrieve the authentication
tag.

• [gnutls cipher add auth], page 339

• [gnutls cipher tag], page 342

7.11.2 Hash and HMAC functions

The available operations to access hash functions and hash-MAC (HMAC) algorithms are
shown below. HMAC algorithms provided keyed hash functionality. They supported HMAC
algorithms are listed in Table 3.2.

• [gnutls hmac init], page 344

Chapter 7: How to use GnuTLS in applications 67

• [gnutls hmac], page 343

• [gnutls hmac output], page 345

• [gnutls hmac deinit], page 344

• [gnutls hmac get len], page 344

• [gnutls hmac fast], page 344

The available functions to access hash functions are shown below. The supported hash
functions are the same as the HMAC algorithms.

• [gnutls hash init], page 343

• [gnutls hash], page 342

• [gnutls hash output], page 343

• [gnutls hash deinit], page 342

• [gnutls hash get len], page 343

• [gnutls hash fast], page 342

7.11.3 Random number generation

Access to the random number generator is provided using the [gnutls rnd], page 345 func-
tion. It allows obtaining random data of various levels.

• [gnutls rnd], page 345

7.12 Selecting cryptographic key sizes

Because many algorithms are involved in TLS, it is not easy to set a consistent security level.
For this reason in Table 7.4 we present some correspondence between key sizes of symmetric
algorithms and public key algorithms based on [ECRYPT]. Those can be used to generate
certificates with appropriate key sizes as well as select parameters for Diffie-Hellman and
SRP authentication.

Chapter 7: How to use GnuTLS in applications 68

Security
bits

RSA,
DH and
SRP
param-
eter
size

ECC
key
size

Security
parameter

Description

64 816 128 WEAK Very short term protec-
tion against small organi-
zations

80 1248 160 LOW Very short term protection
against agencies

112 2432 224 NORMAL Medium-term protection

128 3248 256 HIGH Long term protection

256 15424 512 ULTRA Foreseeable future

Table 7.4: Key sizes and security parameters.

The first column provides a security parameter in a number of bits. This gives an indication
of the number of combinations to be tried by an adversary to brute force a key. For example
to test all possible keys in a 112 bit security parameter 2112 combinations have to be tried.
For today’s technology this is infeasible. The next two columns correlate the security
parameter with actual bit sizes of parameters for DH, RSA, SRP and ECC algorithms. A
mapping to gnutls_sec_param_t value is given for each security parameter, on the next
column, and finally a brief description of the level.

Note, however, that the values suggested here are nothing more than an educated guess
that is valid today. There are no guarantees that an algorithm will remain unbreakable or
that these values will remain constant in time. There could be scientific breakthroughs that
cannot be predicted or total failure of the current public key systems by quantum computers.
On the other hand though the cryptosystems used in TLS are selected in a conservative
way and such catastrophic breakthroughs or failures are believed to be unlikely. The NIST
publication SP 800-57 [NISTSP80057] contains a similar table.

When using GnuTLS and a decision on bit sizes for a public key algorithm is required, use
of the following functions is recommended:

• [gnutls sec param to pk bits], page 207

• [gnutls pk bits to sec param], page 195

Those functions will convert a human understandable security parameter of gnutls_sec_
param_t type, to a number of bits suitable for a public key algorithm.

Chapter 8: GnuTLS application examples 69

8 GnuTLS application examples

In this chapter several examples of real-world use cases are listed. The examples are sim-
plified to promote readability and contain little or no error checking.

8.1 Client examples

This section contains examples of TLS and SSL clients, using GnuTLS. Note that some of
the examples require functions implemented by another example.

8.1.1 Simple client example with anonymous authentication

The simplest client using TLS is the one that doesn’t do any authentication. This means
no external certificates or passwords are needed to set up the connection. As could be
expected, the connection is vulnerable to man-in-the-middle (active or redirection) attacks.
However, the data are integrity protected and encrypted from passive eavesdroppers.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <unistd.h>

#include <gnutls/gnutls.h>

/* A very basic TLS client, with anonymous authentication.

*/

#define MAX_BUF 1024

#define MSG "GET / HTTP/1.0\r\n\r\n"

extern int tcp_connect (void);

extern void tcp_close (int sd);

int

main (void)

{

int ret, sd, ii;

gnutls_session_t session;

char buffer[MAX_BUF + 1];

gnutls_anon_client_credentials_t anoncred;

/* Need to enable anonymous KX specifically. */

Chapter 8: GnuTLS application examples 70

gnutls_global_init ();

gnutls_anon_allocate_client_credentials (&anoncred);

/* Initialize TLS session

*/

gnutls_init (&session, GNUTLS_CLIENT);

/* Use default priorities */

gnutls_priority_set_direct (session, "PERFORMANCE:+ANON-ECDH:+ANON-DH",

NULL);

/* put the anonymous credentials to the current session

*/

gnutls_credentials_set (session, GNUTLS_CRD_ANON, anoncred);

/* connect to the peer

*/

sd = tcp_connect ();

gnutls_transport_set_ptr (session, (gnutls_transport_ptr_t) sd);

/* Perform the TLS handshake

*/

do

{

ret = gnutls_handshake (session);

}

while (gnutls_error_is_fatal (ret) == 0);

if (ret < 0)

{

fprintf (stderr, "*** Handshake failed\n");

gnutls_perror (ret);

goto end;

}

else

{

printf ("- Handshake was completed\n");

}

gnutls_record_send (session, MSG, strlen (MSG));

ret = gnutls_record_recv (session, buffer, MAX_BUF);

if (ret == 0)

{

Chapter 8: GnuTLS application examples 71

printf ("- Peer has closed the TLS connection\n");

goto end;

}

else if (ret < 0)

{

fprintf (stderr, "*** Error: %s\n", gnutls_strerror (ret));

goto end;

}

printf ("- Received %d bytes: ", ret);

for (ii = 0; ii < ret; ii++)

{

fputc (buffer[ii], stdout);

}

fputs ("\n", stdout);

gnutls_bye (session, GNUTLS_SHUT_RDWR);

end:

tcp_close (sd);

gnutls_deinit (session);

gnutls_anon_free_client_credentials (anoncred);

gnutls_global_deinit ();

return 0;

}

8.1.2 Simple client example with X.509 certificate support

Let’s assume now that we want to create a TCP client which communicates with servers
that use X.509 or OpenPGP certificate authentication. The following client is a very simple
TLS client, which uses the high level verification functions for certificates, but does not
support session resumption.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <gnutls/gnutls.h>

Chapter 8: GnuTLS application examples 72

#include <gnutls/x509.h>

#include "examples.h"

/* A very basic TLS client, with X.509 authentication and server certificate

* verification.

*/

#define MAX_BUF 1024

#define CAFILE "ca.pem"

#define MSG "GET / HTTP/1.0\r\n\r\n"

extern int tcp_connect (void);

extern void tcp_close (int sd);

static int _verify_certificate_callback (gnutls_session_t session);

int main (void)

{

int ret, sd, ii;

gnutls_session_t session;

char buffer[MAX_BUF + 1];

const char *err;

gnutls_certificate_credentials_t xcred;

gnutls_global_init ();

/* X509 stuff */

gnutls_certificate_allocate_credentials (&xcred);

/* sets the trusted cas file

*/

gnutls_certificate_set_x509_trust_file (xcred, CAFILE, GNUTLS_X509_FMT_PEM);

gnutls_certificate_set_verify_function (xcred, _verify_certificate_callback);

/* Initialize TLS session

*/

gnutls_init (&session, GNUTLS_CLIENT);

gnutls_session_set_ptr (session, (void *) "my_host_name");

gnutls_server_name_set (session, GNUTLS_NAME_DNS, "my_host_name",

strlen("my_host_name"));

/* Use default priorities */

ret = gnutls_priority_set_direct (session, "NORMAL", &err);

if (ret < 0)

{

if (ret == GNUTLS_E_INVALID_REQUEST)

{

Chapter 8: GnuTLS application examples 73

fprintf (stderr, "Syntax error at: %s\n", err);

}

exit (1);

}

/* put the x509 credentials to the current session

*/

gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICATE, xcred);

/* connect to the peer

*/

sd = tcp_connect ();

gnutls_transport_set_ptr (session, (gnutls_transport_ptr_t) sd);

/* Perform the TLS handshake

*/

ret = gnutls_handshake (session);

if (ret < 0)

{

fprintf (stderr, "*** Handshake failed\n");

gnutls_perror (ret);

goto end;

}

else

{

printf ("- Handshake was completed\n");

}

gnutls_record_send (session, MSG, strlen (MSG));

ret = gnutls_record_recv (session, buffer, MAX_BUF);

if (ret == 0)

{

printf ("- Peer has closed the TLS connection\n");

goto end;

}

else if (ret < 0)

{

fprintf (stderr, "*** Error: %s\n", gnutls_strerror (ret));

goto end;

}

printf ("- Received %d bytes: ", ret);

for (ii = 0; ii < ret; ii++)

{

Chapter 8: GnuTLS application examples 74

fputc (buffer[ii], stdout);

}

fputs ("\n", stdout);

gnutls_bye (session, GNUTLS_SHUT_RDWR);

end:

tcp_close (sd);

gnutls_deinit (session);

gnutls_certificate_free_credentials (xcred);

gnutls_global_deinit ();

return 0;

}

/* This function will verify the peer’s certificate, and check

* if the hostname matches, as well as the activation, expiration dates.

*/

static int

_verify_certificate_callback (gnutls_session_t session)

{

unsigned int status;

const gnutls_datum_t *cert_list;

unsigned int cert_list_size;

int ret;

gnutls_x509_crt_t cert;

const char *hostname;

/* read hostname */

hostname = gnutls_session_get_ptr (session);

/* This verification function uses the trusted CAs in the credentials

* structure. So you must have installed one or more CA certificates.

*/

ret = gnutls_certificate_verify_peers2 (session, &status);

if (ret < 0)

{

printf ("Error\n");

return GNUTLS_E_CERTIFICATE_ERROR;

}

if (status & GNUTLS_CERT_INVALID)

printf ("The certificate is not trusted.\n");

Chapter 8: GnuTLS application examples 75

if (status & GNUTLS_CERT_SIGNER_NOT_FOUND)

printf ("The certificate hasn’t got a known issuer.\n");

if (status & GNUTLS_CERT_REVOKED)

printf ("The certificate has been revoked.\n");

if (status & GNUTLS_CERT_EXPIRED)

printf ("The certificate has expired\n");

if (status & GNUTLS_CERT_NOT_ACTIVATED)

printf ("The certificate is not yet activated\n");

/* Up to here the process is the same for X.509 certificates and

* OpenPGP keys. From now on X.509 certificates are assumed. This can

* be easily extended to work with openpgp keys as well.

*/

if (gnutls_certificate_type_get (session) != GNUTLS_CRT_X509)

return GNUTLS_E_CERTIFICATE_ERROR;

if (gnutls_x509_crt_init (&cert) < 0)

{

printf ("error in initialization\n");

return GNUTLS_E_CERTIFICATE_ERROR;

}

cert_list = gnutls_certificate_get_peers (session, &cert_list_size);

if (cert_list == NULL)

{

printf ("No certificate was found!\n");

return GNUTLS_E_CERTIFICATE_ERROR;

}

/* This is not a real world example, since we only check the first

* certificate in the given chain.

*/

if (gnutls_x509_crt_import (cert, &cert_list[0], GNUTLS_X509_FMT_DER) < 0)

{

printf ("error parsing certificate\n");

return GNUTLS_E_CERTIFICATE_ERROR;

}

if (!gnutls_x509_crt_check_hostname (cert, hostname))

{

printf ("The certificate’s owner does not match hostname ’%s’\n",

hostname);

Chapter 8: GnuTLS application examples 76

return GNUTLS_E_CERTIFICATE_ERROR;

}

gnutls_x509_crt_deinit (cert);

/* notify gnutls to continue handshake normally */

return 0;

}

8.1.3 Simple datagram TLS client example

This is a client that uses UDP to connect to a server. This is the DTLS equivalent to the
TLS example with X.509 certificates.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <unistd.h>

#include <gnutls/gnutls.h>

#include <gnutls/dtls.h>

/* A very basic Datagram TLS client, over UDP with X.509 authentication.

*/

#define MAX_BUF 1024

#define CAFILE "ca.pem"

#define MSG "GET / HTTP/1.0\r\n\r\n"

extern int udp_connect (void);

extern void udp_close (int sd);

extern int verify_certificate_callback (gnutls_session_t session);

int

main (void)

{

int ret, sd, ii;

gnutls_session_t session;

char buffer[MAX_BUF + 1];

Chapter 8: GnuTLS application examples 77

const char *err;

gnutls_certificate_credentials_t xcred;

gnutls_global_init ();

/* X509 stuff */

gnutls_certificate_allocate_credentials (&xcred);

/* sets the trusted cas file */

gnutls_certificate_set_x509_trust_file (xcred, CAFILE, GNUTLS_X509_FMT_PEM);

gnutls_certificate_set_verify_function (xcred, verify_certificate_callback);

/* Initialize TLS session */

gnutls_init (&session, GNUTLS_CLIENT | GNUTLS_DATAGRAM);

/* Use default priorities */

ret = gnutls_priority_set_direct (session, "NORMAL", &err);

if (ret < 0)

{

if (ret == GNUTLS_E_INVALID_REQUEST)

{

fprintf (stderr, "Syntax error at: %s\n", err);

}

exit (1);

}

/* put the x509 credentials to the current session */

gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICATE, xcred);

gnutls_server_name_set (session, GNUTLS_NAME_DNS, "my_host_name",

strlen("my_host_name"));

/* connect to the peer */

sd = udp_connect ();

gnutls_transport_set_ptr (session, (gnutls_transport_ptr_t) sd);

/* set the connection MTU */

gnutls_dtls_set_mtu (session, 1000);

/* Perform the TLS handshake */

do

{

ret = gnutls_handshake (session);

}

while (gnutls_error_is_fatal (ret) == 0);

if (ret < 0)

Chapter 8: GnuTLS application examples 78

{

fprintf (stderr, "*** Handshake failed\n");

gnutls_perror (ret);

goto end;

}

else

{

printf ("- Handshake was completed\n");

}

gnutls_record_send (session, MSG, strlen (MSG));

ret = gnutls_record_recv (session, buffer, MAX_BUF);

if (ret == 0)

{

printf ("- Peer has closed the TLS connection\n");

goto end;

}

else if (ret < 0)

{

fprintf (stderr, "*** Error: %s\n", gnutls_strerror (ret));

goto end;

}

printf ("- Received %d bytes: ", ret);

for (ii = 0; ii < ret; ii++)

{

fputc (buffer[ii], stdout);

}

fputs ("\n", stdout);

/* It is suggested not to use GNUTLS_SHUT_RDWR in DTLS

* connections because the peer’s closure message might

* be lost */

gnutls_bye (session, GNUTLS_SHUT_WR);

end:

udp_close (sd);

gnutls_deinit (session);

gnutls_certificate_free_credentials (xcred);

gnutls_global_deinit ();

return 0;

Chapter 8: GnuTLS application examples 79

}

8.1.4 Obtaining session information

Most of the times it is desirable to know the security properties of the current established
session. This includes the underlying ciphers and the protocols involved. That is the
purpose of the following function. Note that this function will print meaningful values only
if called after a successful [gnutls handshake], page 188.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <gnutls/gnutls.h>

#include <gnutls/x509.h>

#include "examples.h"

/* This function will print some details of the

* given session.

*/

int

print_info (gnutls_session_t session)

{

const char *tmp;

gnutls_credentials_type_t cred;

gnutls_kx_algorithm_t kx;

int dhe, ecdh;

dhe = ecdh = 0;

/* print the key exchange’s algorithm name

*/

kx = gnutls_kx_get (session);

tmp = gnutls_kx_get_name (kx);

printf ("- Key Exchange: %s\n", tmp);

/* Check the authentication type used and switch

* to the appropriate.

*/

cred = gnutls_auth_get_type (session);

switch (cred)

{

case GNUTLS_CRD_IA:

Chapter 8: GnuTLS application examples 80

printf ("- TLS/IA session\n");

break;

#ifdef ENABLE_SRP

case GNUTLS_CRD_SRP:

printf ("- SRP session with username %s\n",

gnutls_srp_server_get_username (session));

break;

#endif

case GNUTLS_CRD_PSK:

/* This returns NULL in server side.

*/

if (gnutls_psk_client_get_hint (session) != NULL)

printf ("- PSK authentication. PSK hint ’%s’\n",

gnutls_psk_client_get_hint (session));

/* This returns NULL in client side.

*/

if (gnutls_psk_server_get_username (session) != NULL)

printf ("- PSK authentication. Connected as ’%s’\n",

gnutls_psk_server_get_username (session));

if (kx == GNUTLS_KX_ECDHE_PSK)

ecdh = 1;

else if (kx == GNUTLS_KX_DHE_PSK)

dhe = 1;

break;

case GNUTLS_CRD_ANON: /* anonymous authentication */

printf ("- Anonymous authentication.\n");

if (kx == GNUTLS_KX_ANON_ECDH)

ecdh = 1;

else if (kx == GNUTLS_KX_ANON_DH)

dhe = 1;

break;

case GNUTLS_CRD_CERTIFICATE: /* certificate authentication */

/* Check if we have been using ephemeral Diffie-Hellman.

*/

if (kx == GNUTLS_KX_DHE_RSA || kx == GNUTLS_KX_DHE_DSS)

dhe = 1;

else if (kx == GNUTLS_KX_ECDHE_RSA || kx == GNUTLS_KX_ECDHE_ECDSA)

ecdh = 1;

Chapter 8: GnuTLS application examples 81

/* if the certificate list is available, then

* print some information about it.

*/

print_x509_certificate_info (session);

} /* switch */

if (ecdh != 0)

printf ("- Ephemeral ECDH using curve %s\n",

gnutls_ecc_curve_get_name (gnutls_ecc_curve_get (session)));

else if (dhe != 0)

printf ("- Ephemeral DH using prime of %d bits\n",

gnutls_dh_get_prime_bits (session));

/* print the protocol’s name (ie TLS 1.0)

*/

tmp = gnutls_protocol_get_name (gnutls_protocol_get_version (session));

printf ("- Protocol: %s\n", tmp);

/* print the certificate type of the peer.

* ie X.509

*/

tmp =

gnutls_certificate_type_get_name (gnutls_certificate_type_get (session));

printf ("- Certificate Type: %s\n", tmp);

/* print the compression algorithm (if any)

*/

tmp = gnutls_compression_get_name (gnutls_compression_get (session));

printf ("- Compression: %s\n", tmp);

/* print the name of the cipher used.

* ie 3DES.

*/

tmp = gnutls_cipher_get_name (gnutls_cipher_get (session));

printf ("- Cipher: %s\n", tmp);

/* Print the MAC algorithms name.

* ie SHA1

*/

tmp = gnutls_mac_get_name (gnutls_mac_get (session));

printf ("- MAC: %s\n", tmp);

return 0;

}

Chapter 8: GnuTLS application examples 82

8.1.5 Using a callback to select the certificate to use

There are cases where a client holds several certificate and key pairs, and may not want to
load all of them in the credentials structure. The following example demonstrates the use
of the certificate selection callback.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <unistd.h>

#include <gnutls/gnutls.h>

#include <gnutls/x509.h>

#include <gnutls/abstract.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

/* A TLS client that loads the certificate and key.

*/

#define MAX_BUF 1024

#define MSG "GET / HTTP/1.0\r\n\r\n"

#define CERT_FILE "cert.pem"

#define KEY_FILE "key.pem"

#define CAFILE "ca.pem"

extern int tcp_connect (void);

extern void tcp_close (int sd);

static int

cert_callback (gnutls_session_t session,

const gnutls_datum_t * req_ca_rdn, int nreqs,

const gnutls_pk_algorithm_t * sign_algos,

int sign_algos_length, gnutls_pcert_st ** pcert,

unsigned int *pcert_length, gnutls_privkey_t * pkey);

gnutls_pcert_st crt;

gnutls_privkey_t key;

Chapter 8: GnuTLS application examples 83

/* Helper functions to load a certificate and key

* files into memory.

*/

static gnutls_datum_t

load_file (const char *file)

{

FILE *f;

gnutls_datum_t loaded_file = { NULL, 0 };

long filelen;

void *ptr;

if (!(f = fopen (file, "r"))

|| fseek (f, 0, SEEK_END) != 0

|| (filelen = ftell (f)) < 0

|| fseek (f, 0, SEEK_SET) != 0

|| !(ptr = malloc ((size_t) filelen))

|| fread (ptr, 1, (size_t) filelen, f) < (size_t) filelen)

{

return loaded_file;

}

loaded_file.data = ptr;

loaded_file.size = (unsigned int) filelen;

return loaded_file;

}

static void

unload_file (gnutls_datum_t data)

{

free (data.data);

}

/* Load the certificate and the private key.

*/

static void

load_keys (void)

{

int ret;

gnutls_datum_t data;

gnutls_x509_privkey_t x509_key;

data = load_file (CERT_FILE);

if (data.data == NULL)

{

fprintf (stderr, "*** Error loading certificate file.\n");

exit (1);

Chapter 8: GnuTLS application examples 84

}

ret = gnutls_pcert_import_x509_raw (&crt, &data, GNUTLS_X509_FMT_PEM, 0);

if (ret < 0)

{

fprintf (stderr, "*** Error loading certificate file: %s\n",

gnutls_strerror (ret));

exit (1);

}

unload_file (data);

data = load_file (KEY_FILE);

if (data.data == NULL)

{

fprintf (stderr, "*** Error loading key file.\n");

exit (1);

}

gnutls_x509_privkey_init (&x509_key);

ret = gnutls_x509_privkey_import (x509_key, &data, GNUTLS_X509_FMT_PEM);

if (ret < 0)

{

fprintf (stderr, "*** Error loading key file: %s\n",

gnutls_strerror (ret));

exit (1);

}

gnutls_privkey_init (&key);

ret =

gnutls_privkey_import_x509 (key, x509_key,

GNUTLS_PRIVKEY_IMPORT_AUTO_RELEASE);

if (ret < 0)

{

fprintf (stderr, "*** Error importing key: %s\n",

gnutls_strerror (ret));

exit (1);

}

unload_file (data);

}

int

main (void)

{

Chapter 8: GnuTLS application examples 85

int ret, sd, ii;

gnutls_session_t session;

gnutls_priority_t priorities_cache;

char buffer[MAX_BUF + 1];

gnutls_certificate_credentials_t xcred;

/* Allow connections to servers that have OpenPGP keys as well.

*/

gnutls_global_init ();

load_keys ();

/* X509 stuff */

gnutls_certificate_allocate_credentials (&xcred);

/* priorities */

gnutls_priority_init (&priorities_cache, "NORMAL", NULL);

/* sets the trusted cas file

*/

gnutls_certificate_set_x509_trust_file (xcred, CAFILE, GNUTLS_X509_FMT_PEM);

gnutls_certificate_set_retrieve_function2 (xcred, cert_callback);

/* Initialize TLS session

*/

gnutls_init (&session, GNUTLS_CLIENT);

/* Use default priorities */

gnutls_priority_set (session, priorities_cache);

/* put the x509 credentials to the current session

*/

gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICATE, xcred);

/* connect to the peer

*/

sd = tcp_connect ();

gnutls_transport_set_ptr (session, (gnutls_transport_ptr_t) sd);

/* Perform the TLS handshake

*/

ret = gnutls_handshake (session);

if (ret < 0)

Chapter 8: GnuTLS application examples 86

{

fprintf (stderr, "*** Handshake failed\n");

gnutls_perror (ret);

goto end;

}

else

{

printf ("- Handshake was completed\n");

}

gnutls_record_send (session, MSG, strlen (MSG));

ret = gnutls_record_recv (session, buffer, MAX_BUF);

if (ret == 0)

{

printf ("- Peer has closed the TLS connection\n");

goto end;

}

else if (ret < 0)

{

fprintf (stderr, "*** Error: %s\n", gnutls_strerror (ret));

goto end;

}

printf ("- Received %d bytes: ", ret);

for (ii = 0; ii < ret; ii++)

{

fputc (buffer[ii], stdout);

}

fputs ("\n", stdout);

gnutls_bye (session, GNUTLS_SHUT_RDWR);

end:

tcp_close (sd);

gnutls_deinit (session);

gnutls_certificate_free_credentials (xcred);

gnutls_priority_deinit (priorities_cache);

gnutls_global_deinit ();

return 0;

}

Chapter 8: GnuTLS application examples 87

/* This callback should be associated with a session by calling

* gnutls_certificate_client_set_retrieve_function(session, cert_callback),

* before a handshake.

*/

static int

cert_callback (gnutls_session_t session,

const gnutls_datum_t * req_ca_rdn, int nreqs,

const gnutls_pk_algorithm_t * sign_algos,

int sign_algos_length, gnutls_pcert_st ** pcert,

unsigned int *pcert_length, gnutls_privkey_t * pkey)

{

char issuer_dn[256];

int i, ret;

size_t len;

gnutls_certificate_type_t type;

/* Print the server’s trusted CAs

*/

if (nreqs > 0)

printf ("- Server’s trusted authorities:\n");

else

printf ("- Server did not send us any trusted authorities names.\n");

/* print the names (if any) */

for (i = 0; i < nreqs; i++)

{

len = sizeof (issuer_dn);

ret = gnutls_x509_rdn_get (&req_ca_rdn[i], issuer_dn, &len);

if (ret >= 0)

{

printf (" [%d]: ", i);

printf ("%s\n", issuer_dn);

}

}

/* Select a certificate and return it.

* The certificate must be of any of the "sign algorithms"

* supported by the server.

*/

type = gnutls_certificate_type_get (session);

if (type == GNUTLS_CRT_X509)

{

*pcert_length = 1;

*pcert = &crt;

Chapter 8: GnuTLS application examples 88

*pkey = key;

}

else

{

return -1;

}

return 0;

}

8.1.6 Verifying a certificate

An example is listed below which uses the high level verification functions to verify a given
certificate list.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <gnutls/gnutls.h>

#include <gnutls/x509.h>

#include "examples.h"

/* All the available CRLs

*/

gnutls_x509_crl_t *crl_list;

int crl_list_size;

/* All the available trusted CAs

*/

gnutls_x509_crt_t *ca_list;

int ca_list_size;

static int print_details_func (gnutls_x509_crt_t cert,

gnutls_x509_crt_t issuer,

gnutls_x509_crl_t crl,

unsigned int verification_output);

/* This function will try to verify the peer’s certificate chain, and

* also check if the hostname matches.

*/

Chapter 8: GnuTLS application examples 89

void

verify_certificate_chain (const char *hostname,

const gnutls_datum_t * cert_chain,

int cert_chain_length)

{

int i;

gnutls_x509_trust_list_t tlist;

gnutls_x509_crt_t *cert;

unsigned int output;

/* Initialize the trusted certificate list. This should be done

* once on initialization. gnutls_x509_crt_list_import2() and

* gnutls_x509_crl_list_import2() can be used to load them.

*/

gnutls_x509_trust_list_init (&tlist, 0);

gnutls_x509_trust_list_add_cas (tlist, ca_list, ca_list_size, 0);

gnutls_x509_trust_list_add_crls (tlist, crl_list, crl_list_size,

GNUTLS_TL_VERIFY_CRL, 0);

cert = malloc (sizeof (*cert) * cert_chain_length);

/* Import all the certificates in the chain to

* native certificate format.

*/

for (i = 0; i < cert_chain_length; i++)

{

gnutls_x509_crt_init (&cert[i]);

gnutls_x509_crt_import (cert[i], &cert_chain[i], GNUTLS_X509_FMT_DER);

}

gnutls_x509_trust_list_verify_named_crt (tlist, cert[0], hostname,

strlen (hostname),

GNUTLS_VERIFY_DISABLE_CRL_CHECKS,

&output, print_details_func);

/* if this certificate is not explicitly trusted verify against CAs

*/

if (output != 0)

{

gnutls_x509_trust_list_verify_crt (tlist, cert, cert_chain_length, 0,

&output, print_details_func);

}

if (output & GNUTLS_CERT_INVALID)

{

Chapter 8: GnuTLS application examples 90

fprintf (stderr, "Not trusted");

if (output & GNUTLS_CERT_SIGNER_NOT_FOUND)

fprintf (stderr, ": no issuer was found");

if (output & GNUTLS_CERT_SIGNER_NOT_CA)

fprintf (stderr, ": issuer is not a CA");

if (output & GNUTLS_CERT_NOT_ACTIVATED)

fprintf (stderr, ": not yet activated\n");

if (output & GNUTLS_CERT_EXPIRED)

fprintf (stderr, ": expired\n");

fprintf (stderr, "\n");

}

else

fprintf (stderr, "Trusted\n");

/* Check if the name in the first certificate matches our destination!

*/

if (!gnutls_x509_crt_check_hostname (cert[0], hostname))

{

printf ("The certificate’s owner does not match hostname ’%s’\n",

hostname);

}

gnutls_x509_trust_list_deinit (tlist, 1);

return;

}

static int

print_details_func (gnutls_x509_crt_t cert,

gnutls_x509_crt_t issuer, gnutls_x509_crl_t crl,

unsigned int verification_output)

{

char name[512];

char issuer_name[512];

size_t name_size;

size_t issuer_name_size;

issuer_name_size = sizeof (issuer_name);

gnutls_x509_crt_get_issuer_dn (cert, issuer_name, &issuer_name_size);

name_size = sizeof (name);

gnutls_x509_crt_get_dn (cert, name, &name_size);

fprintf (stdout, "\tSubject: %s\n", name);

fprintf (stdout, "\tIssuer: %s\n", issuer_name);

Chapter 8: GnuTLS application examples 91

if (issuer != NULL)

{

issuer_name_size = sizeof (issuer_name);

gnutls_x509_crt_get_dn (issuer, issuer_name, &issuer_name_size);

fprintf (stdout, "\tVerified against: %s\n", issuer_name);

}

if (crl != NULL)

{

issuer_name_size = sizeof (issuer_name);

gnutls_x509_crl_get_issuer_dn (crl, issuer_name, &issuer_name_size);

fprintf (stdout, "\tVerified against CRL of: %s\n", issuer_name);

}

fprintf (stdout, "\tVerification output: %x\n\n", verification_output);

return 0;

}

8.1.7 Using a smart card with TLS

This example will demonstrate how to load keys and certificates from a smart-card or any
other PKCS #11 token, and use it in a TLS connection.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <unistd.h>

#include <gnutls/gnutls.h>

#include <gnutls/x509.h>

#include <gnutls/pkcs11.h>

#include <sys/types.h>

#include <sys/stat.h>

#include <fcntl.h>

#include <getpass.h> /* for getpass() */

Chapter 8: GnuTLS application examples 92

/* A TLS client that loads the certificate and key.

*/

#define MAX_BUF 1024

#define MSG "GET / HTTP/1.0\r\n\r\n"

#define MIN(x,y) (((x)<(y))?(x):(y))

#define CAFILE "ca.pem"

/* The URLs of the objects can be obtained

* using p11tool --list-all --login

*/

#define KEY_URL "pkcs11:manufacturer=SomeManufacturer;object=Private%20Key" \

";objecttype=private;id=%db%5b%3e%b5%72%33"

#define CERT_URL "pkcs11:manufacturer=SomeManufacturer;object=Certificate;" \

"objecttype=cert;id=db%5b%3e%b5%72%33"

extern int tcp_connect (void);

extern void tcp_close (int sd);

static int

pin_callback (void *user, int attempt, const char *token_url,

const char *token_label, unsigned int flags, char *pin,

size_t pin_max)

{

const char *password;

int len;

printf ("PIN required for token ’%s’ with URL ’%s’\n", token_label,

token_url);

if (flags & GNUTLS_PKCS11_PIN_FINAL_TRY)

printf ("*** This is the final try before locking!\n");

if (flags & GNUTLS_PKCS11_PIN_COUNT_LOW)

printf ("*** Only few tries left before locking!\n");

if (flags & GNUTLS_PKCS11_PIN_WRONG)

printf ("*** Wrong PIN\n");

password = getpass ("Enter pin: ");

if (password == NULL || password[0] == 0)

{

fprintf (stderr, "No password given\n");

exit (1);

}

len = MIN (pin_max, strlen (password));

memcpy (pin, password, len);

pin[len] = 0;

Chapter 8: GnuTLS application examples 93

return 0;

}

int

main (void)

{

int ret, sd, ii;

gnutls_session_t session;

gnutls_priority_t priorities_cache;

char buffer[MAX_BUF + 1];

gnutls_certificate_credentials_t xcred;

/* Allow connections to servers that have OpenPGP keys as well.

*/

gnutls_global_init ();

/* PKCS11 private key operations might require PIN.

* Register a callback.

*/

gnutls_pkcs11_set_pin_function (pin_callback, NULL);

/* X509 stuff */

gnutls_certificate_allocate_credentials (&xcred);

/* priorities */

gnutls_priority_init (&priorities_cache, "NORMAL", NULL);

/* sets the trusted cas file

*/

gnutls_certificate_set_x509_trust_file (xcred, CAFILE, GNUTLS_X509_FMT_PEM);

gnutls_certificate_set_x509_key_file (xcred, CERT_URL, KEY_URL, GNUTLS_X509_FMT_DER);

/* Initialize TLS session

*/

gnutls_init (&session, GNUTLS_CLIENT);

/* Use default priorities */

gnutls_priority_set (session, priorities_cache);

/* put the x509 credentials to the current session

*/

gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICATE, xcred);

/* connect to the peer

*/

sd = tcp_connect ();

Chapter 8: GnuTLS application examples 94

gnutls_transport_set_ptr (session, (gnutls_transport_ptr_t) sd);

/* Perform the TLS handshake

*/

ret = gnutls_handshake (session);

if (ret < 0)

{

fprintf (stderr, "*** Handshake failed\n");

gnutls_perror (ret);

goto end;

}

else

{

printf ("- Handshake was completed\n");

}

gnutls_record_send (session, MSG, strlen (MSG));

ret = gnutls_record_recv (session, buffer, MAX_BUF);

if (ret == 0)

{

printf ("- Peer has closed the TLS connection\n");

goto end;

}

else if (ret < 0)

{

fprintf (stderr, "*** Error: %s\n", gnutls_strerror (ret));

goto end;

}

printf ("- Received %d bytes: ", ret);

for (ii = 0; ii < ret; ii++)

{

fputc (buffer[ii], stdout);

}

fputs ("\n", stdout);

gnutls_bye (session, GNUTLS_SHUT_RDWR);

end:

tcp_close (sd);

gnutls_deinit (session);

Chapter 8: GnuTLS application examples 95

gnutls_certificate_free_credentials (xcred);

gnutls_priority_deinit (priorities_cache);

gnutls_global_deinit ();

return 0;

}

8.1.8 Client with resume capability example

This is a modification of the simple client example. Here we demonstrate the use of session
resumption. The client tries to connect once using TLS, close the connection and then try
to establish a new connection using the previously negotiated data.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

#include <gnutls/gnutls.h>

/* Those functions are defined in other examples.

*/

extern void check_alert (gnutls_session_t session, int ret);

extern int tcp_connect (void);

extern void tcp_close (int sd);

#define MAX_BUF 1024

#define CAFILE "ca.pem"

#define MSG "GET / HTTP/1.0\r\n\r\n"

int

main (void)

{

int ret;

int sd, ii;

gnutls_session_t session;

char buffer[MAX_BUF + 1];

gnutls_certificate_credentials_t xcred;

/* variables used in session resuming

*/

int t;

char *session_data = NULL;

Chapter 8: GnuTLS application examples 96

size_t session_data_size = 0;

gnutls_global_init ();

/* X509 stuff */

gnutls_certificate_allocate_credentials (&xcred);

gnutls_certificate_set_x509_trust_file (xcred, CAFILE, GNUTLS_X509_FMT_PEM);

for (t = 0; t < 2; t++)

{ /* connect 2 times to the server */

sd = tcp_connect ();

gnutls_init (&session, GNUTLS_CLIENT);

gnutls_priority_set_direct (session, "PERFORMANCE:!ARCFOUR-128", NULL);

gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICATE, xcred);

if (t > 0)

{

/* if this is not the first time we connect */

gnutls_session_set_data (session, session_data, session_data_size);

free (session_data);

}

gnutls_transport_set_ptr (session, (gnutls_transport_ptr_t) sd);

/* Perform the TLS handshake

*/

do

{

ret = gnutls_handshake (session);

}

while (gnutls_error_is_fatal (ret) == 0);

if (ret < 0)

{

fprintf (stderr, "*** Handshake failed\n");

gnutls_perror (ret);

goto end;

}

else

{

printf ("- Handshake was completed\n");

}

Chapter 8: GnuTLS application examples 97

if (t == 0)

{ /* the first time we connect */

/* get the session data size */

gnutls_session_get_data (session, NULL, &session_data_size);

session_data = malloc (session_data_size);

/* put session data to the session variable */

gnutls_session_get_data (session, session_data, &session_data_size);

}

else

{ /* the second time we connect */

/* check if we actually resumed the previous session */

if (gnutls_session_is_resumed (session) != 0)

{

printf ("- Previous session was resumed\n");

}

else

{

fprintf (stderr, "*** Previous session was NOT resumed\n");

}

}

/* This function was defined in a previous example

*/

/* print_info(session); */

gnutls_record_send (session, MSG, strlen (MSG));

ret = gnutls_record_recv (session, buffer, MAX_BUF);

if (ret == 0)

{

printf ("- Peer has closed the TLS connection\n");

goto end;

}

else if (ret < 0)

{

fprintf (stderr, "*** Error: %s\n", gnutls_strerror (ret));

goto end;

}

printf ("- Received %d bytes: ", ret);

for (ii = 0; ii < ret; ii++)

{

fputc (buffer[ii], stdout);

Chapter 8: GnuTLS application examples 98

}

fputs ("\n", stdout);

gnutls_bye (session, GNUTLS_SHUT_RDWR);

end:

tcp_close (sd);

gnutls_deinit (session);

} /* for() */

gnutls_certificate_free_credentials (xcred);

gnutls_global_deinit ();

return 0;

}

8.1.9 Simple client example with SRP authentication

The following client is a very simple SRP TLS client which connects to a server and au-
thenticates using a username and a password. The server may authenticate itself using a
certificate, and in that case it has to be verified.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <gnutls/gnutls.h>

/* Those functions are defined in other examples.

*/

extern void check_alert (gnutls_session_t session, int ret);

extern int tcp_connect (void);

extern void tcp_close (int sd);

#define MAX_BUF 1024

#define USERNAME "user"

#define PASSWORD "pass"

#define CAFILE "ca.pem"

#define MSG "GET / HTTP/1.0\r\n\r\n"

Chapter 8: GnuTLS application examples 99

int

main (void)

{

int ret;

int sd, ii;

gnutls_session_t session;

char buffer[MAX_BUF + 1];

gnutls_srp_client_credentials_t srp_cred;

gnutls_certificate_credentials_t cert_cred;

gnutls_global_init ();

gnutls_srp_allocate_client_credentials (&srp_cred);

gnutls_certificate_allocate_credentials (&cert_cred);

gnutls_certificate_set_x509_trust_file (cert_cred, CAFILE,

GNUTLS_X509_FMT_PEM);

gnutls_srp_set_client_credentials (srp_cred, USERNAME, PASSWORD);

/* connects to server

*/

sd = tcp_connect ();

/* Initialize TLS session

*/

gnutls_init (&session, GNUTLS_CLIENT);

/* Set the priorities.

*/

gnutls_priority_set_direct (session, "NORMAL:+SRP:+SRP-RSA:+SRP-DSS", NULL);

/* put the SRP credentials to the current session

*/

gnutls_credentials_set (session, GNUTLS_CRD_SRP, srp_cred);

gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICATE, cert_cred);

gnutls_transport_set_ptr (session, (gnutls_transport_ptr_t) sd);

/* Perform the TLS handshake

*/

do

{

ret = gnutls_handshake (session);

}

while (gnutls_error_is_fatal (ret) == 0);

Chapter 8: GnuTLS application examples 100

if (ret < 0)

{

fprintf (stderr, "*** Handshake failed\n");

gnutls_perror (ret);

goto end;

}

else

{

printf ("- Handshake was completed\n");

}

gnutls_record_send (session, MSG, strlen (MSG));

ret = gnutls_record_recv (session, buffer, MAX_BUF);

if (gnutls_error_is_fatal (ret) == 1 || ret == 0)

{

if (ret == 0)

{

printf ("- Peer has closed the GnuTLS connection\n");

goto end;

}

else

{

fprintf (stderr, "*** Error: %s\n", gnutls_strerror (ret));

goto end;

}

}

else

check_alert (session, ret);

if (ret > 0)

{

printf ("- Received %d bytes: ", ret);

for (ii = 0; ii < ret; ii++)

{

fputc (buffer[ii], stdout);

}

fputs ("\n", stdout);

}

gnutls_bye (session, GNUTLS_SHUT_RDWR);

end:

tcp_close (sd);

gnutls_deinit (session);

Chapter 8: GnuTLS application examples 101

gnutls_srp_free_client_credentials (srp_cred);

gnutls_certificate_free_credentials (cert_cred);

gnutls_global_deinit ();

return 0;

}

8.1.10 Simple client example using the C++ API

The following client is a simple example of a client client utilizing the GnuTLS C++ API.

#include <config.h>

#include <iostream>

#include <stdexcept>

#include <gnutls/gnutls.h>

#include <gnutls/gnutlsxx.h>

#include <cstring> /* for strlen */

/* A very basic TLS client, with anonymous authentication.

* written by Eduardo Villanueva Che.

*/

#define MAX_BUF 1024

#define SA struct sockaddr

#define CAFILE "ca.pem"

#define MSG "GET / HTTP/1.0\r\n\r\n"

extern "C"

{

int tcp_connect(void);

void tcp_close(int sd);

}

int main(void)

{

int sd = -1;

gnutls_global_init();

try

{

/* Allow connections to servers that have OpenPGP keys as well.

*/

gnutls::client_session session;

Chapter 8: GnuTLS application examples 102

/* X509 stuff */

gnutls::certificate_credentials credentials;

/* sets the trusted cas file

*/

credentials.set_x509_trust_file(CAFILE, GNUTLS_X509_FMT_PEM);

/* put the x509 credentials to the current session

*/

session.set_credentials(credentials);

/* Use default priorities */

session.set_priority ("NORMAL", NULL);

/* connect to the peer

*/

sd = tcp_connect();

session.set_transport_ptr((gnutls_transport_ptr_t) sd);

/* Perform the TLS handshake

*/

int ret = session.handshake();

if (ret < 0)

{

throw std::runtime_error("Handshake failed");

}

else

{

std::cout << "- Handshake was completed" << std::endl;

}

session.send(MSG, strlen(MSG));

char buffer[MAX_BUF + 1];

ret = session.recv(buffer, MAX_BUF);

if (ret == 0)

{

throw std::runtime_error("Peer has closed the TLS connection");

}

else if (ret < 0)

{

throw std::runtime_error(gnutls_strerror(ret));

}

std::cout << "- Received " << ret << " bytes:" << std::endl;

std::cout.write(buffer, ret);

std::cout << std::endl;

Chapter 8: GnuTLS application examples 103

session.bye(GNUTLS_SHUT_RDWR);

}

catch (std::exception &ex)

{

std::cerr << "Exception caught: " << ex.what() << std::endl;

}

if (sd != -1)

tcp_close(sd);

gnutls_global_deinit();

return 0;

}

8.1.11 Helper functions for TCP connections

Those helper function abstract away TCP connection handling from the other examples. It
is required to build some examples.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <netinet/in.h>

#include <unistd.h>

#define SA struct sockaddr

/* tcp.c */

int tcp_connect (void);

void tcp_close (int sd);

/* Connects to the peer and returns a socket

* descriptor.

*/

extern int

tcp_connect (void)

{

Chapter 8: GnuTLS application examples 104

const char *PORT = "5556";

const char *SERVER = "127.0.0.1";

int err, sd;

struct sockaddr_in sa;

/* connects to server

*/

sd = socket (AF_INET, SOCK_STREAM, 0);

memset (&sa, ’\0’, sizeof (sa));

sa.sin_family = AF_INET;

sa.sin_port = htons (atoi (PORT));

inet_pton (AF_INET, SERVER, &sa.sin_addr);

err = connect (sd, (SA *) & sa, sizeof (sa));

if (err < 0)

{

fprintf (stderr, "Connect error\n");

exit (1);

}

return sd;

}

/* closes the given socket descriptor.

*/

extern void

tcp_close (int sd)

{

shutdown (sd, SHUT_RDWR); /* no more receptions */

close (sd);

}

8.1.12 Helper functions for UDP connections

The UDP helper functions abstract away UDP connection handling from the other examples.
It is required to build the examples using UDP.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <sys/types.h>

Chapter 8: GnuTLS application examples 105

#include <sys/socket.h>

#include <arpa/inet.h>

#include <netinet/in.h>

#include <unistd.h>

/* udp.c */

int udp_connect (void);

void udp_close (int sd);

/* Connects to the peer and returns a socket

* descriptor.

*/

extern int

udp_connect (void)

{

const char *PORT = "5557";

const char *SERVER = "127.0.0.1";

int err, sd, optval;

struct sockaddr_in sa;

/* connects to server

*/

sd = socket (AF_INET, SOCK_DGRAM, 0);

memset (&sa, ’\0’, sizeof (sa));

sa.sin_family = AF_INET;

sa.sin_port = htons (atoi (PORT));

inet_pton (AF_INET, SERVER, &sa.sin_addr);

#if defined(IP_DONTFRAG)

optval = 1;

setsockopt (sd, IPPROTO_IP, IP_DONTFRAG,

(const void *) &optval, sizeof (optval));

#elif defined(IP_MTU_DISCOVER)

optval = IP_PMTUDISC_DO;

setsockopt(sd, IPPROTO_IP, IP_MTU_DISCOVER,

(const void*) &optval, sizeof (optval));

#endif

err = connect (sd, (struct sockaddr *) & sa, sizeof (sa));

if (err < 0)

{

fprintf (stderr, "Connect error\n");

exit (1);

}

return sd;

Chapter 8: GnuTLS application examples 106

}

/* closes the given socket descriptor.

*/

extern void

udp_close (int sd)

{

close (sd);

}

8.2 Server examples

This section contains examples of TLS and SSL servers, using GnuTLS.

8.2.1 Echo server with X.509 authentication

This example is a very simple echo server which supports X.509 authentication.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <netinet/in.h>

#include <string.h>

#include <unistd.h>

#include <gnutls/gnutls.h>

#define KEYFILE "key.pem"

#define CERTFILE "cert.pem"

#define CAFILE "ca.pem"

#define CRLFILE "crl.pem"

/* This is a sample TLS 1.0 echo server, using X.509 authentication.

*/

#define MAX_BUF 1024

#define PORT 5556 /* listen to 5556 port */

/* These are global */

gnutls_certificate_credentials_t x509_cred;

gnutls_priority_t priority_cache;

Chapter 8: GnuTLS application examples 107

static gnutls_session_t

initialize_tls_session (void)

{

gnutls_session_t session;

gnutls_init (&session, GNUTLS_SERVER);

gnutls_priority_set (session, priority_cache);

gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICATE, x509_cred);

/* We don’t request any certificate from the client.

* If we did we would need to verify it.

*/

gnutls_certificate_server_set_request (session, GNUTLS_CERT_IGNORE);

return session;

}

static gnutls_dh_params_t dh_params;

static int

generate_dh_params (void)

{

int bits = gnutls_sec_param_to_pk_bits (GNUTLS_PK_DH, GNUTLS_SEC_PARAM_LOW);

/* Generate Diffie-Hellman parameters - for use with DHE

* kx algorithms. When short bit length is used, it might

* be wise to regenerate parameters often.

*/

gnutls_dh_params_init (&dh_params);

gnutls_dh_params_generate2 (dh_params, bits);

return 0;

}

int

main (void)

{

int listen_sd;

int sd, ret;

struct sockaddr_in sa_serv;

struct sockaddr_in sa_cli;

int client_len;

char topbuf[512];

gnutls_session_t session;

Chapter 8: GnuTLS application examples 108

char buffer[MAX_BUF + 1];

int optval = 1;

/* this must be called once in the program

*/

gnutls_global_init ();

gnutls_certificate_allocate_credentials (&x509_cred);

gnutls_certificate_set_x509_trust_file (x509_cred, CAFILE,

GNUTLS_X509_FMT_PEM);

gnutls_certificate_set_x509_crl_file (x509_cred, CRLFILE,

GNUTLS_X509_FMT_PEM);

ret = gnutls_certificate_set_x509_key_file (x509_cred, CERTFILE, KEYFILE,

GNUTLS_X509_FMT_PEM);

if (ret < 0)

{

printf("No certificate or key were found\n");

exit(1);

}

generate_dh_params ();

gnutls_priority_init (&priority_cache, "PERFORMANCE:%SERVER_PRECEDENCE", NULL);

gnutls_certificate_set_dh_params (x509_cred, dh_params);

/* Socket operations

*/

listen_sd = socket (AF_INET, SOCK_STREAM, 0);

memset (&sa_serv, ’\0’, sizeof (sa_serv));

sa_serv.sin_family = AF_INET;

sa_serv.sin_addr.s_addr = INADDR_ANY;

sa_serv.sin_port = htons (PORT); /* Server Port number */

setsockopt (listen_sd, SOL_SOCKET, SO_REUSEADDR, (void *) &optval,

sizeof (int));

bind (listen_sd, (struct sockaddr *) & sa_serv, sizeof (sa_serv));

listen (listen_sd, 1024);

printf ("Server ready. Listening to port ’%d’.\n\n", PORT);

Chapter 8: GnuTLS application examples 109

client_len = sizeof (sa_cli);

for (;;)

{

session = initialize_tls_session ();

sd = accept (listen_sd, (struct sockaddr *) & sa_cli, &client_len);

printf ("- connection from %s, port %d\n",

inet_ntop (AF_INET, &sa_cli.sin_addr, topbuf,

sizeof (topbuf)), ntohs (sa_cli.sin_port));

gnutls_transport_set_ptr (session, (gnutls_transport_ptr_t) sd);

do

{

ret = gnutls_handshake (session);

}

while (gnutls_error_is_fatal (ret) == 0);

if (ret < 0)

{

close (sd);

gnutls_deinit (session);

fprintf (stderr, "*** Handshake has failed (%s)\n\n",

gnutls_strerror (ret));

continue;

}

printf ("- Handshake was completed\n");

/* see the Getting peer’s information example */

/* print_info(session); */

for (;;)

{

memset (buffer, 0, MAX_BUF + 1);

ret = gnutls_record_recv (session, buffer, MAX_BUF);

if (ret == 0)

{

printf ("\n- Peer has closed the GnuTLS connection\n");

break;

}

else if (ret < 0)

{

fprintf (stderr, "\n*** Received corrupted "

"data(%d). Closing the connection.\n\n", ret);

break;

Chapter 8: GnuTLS application examples 110

}

else if (ret > 0)

{

/* echo data back to the client

*/

gnutls_record_send (session, buffer, strlen (buffer));

}

}

printf ("\n");

/* do not wait for the peer to close the connection.

*/

gnutls_bye (session, GNUTLS_SHUT_WR);

close (sd);

gnutls_deinit (session);

}

close (listen_sd);

gnutls_certificate_free_credentials (x509_cred);

gnutls_priority_deinit (priority_cache);

gnutls_global_deinit ();

return 0;

}

8.2.2 Echo server with OpenPGP authentication

The following example is an echo server which supports OpenPGP key authentication. You
can easily combine this functionality —that is have a server that supports both X.509 and
OpenPGP certificates— but we separated them to keep these examples as simple as possible.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <netinet/in.h>

#include <string.h>

Chapter 8: GnuTLS application examples 111

#include <unistd.h>

#include <gnutls/gnutls.h>

#include <gnutls/openpgp.h>

#define KEYFILE "secret.asc"

#define CERTFILE "public.asc"

#define RINGFILE "ring.gpg"

/* This is a sample TLS 1.0-OpenPGP echo server.

*/

#define SA struct sockaddr

#define SOCKET_ERR(err,s) if(err==-1) {perror(s);return(1);}

#define MAX_BUF 1024

#define PORT 5556 /* listen to 5556 port */

#define DH_BITS 1024

/* These are global */

gnutls_certificate_credentials_t cred;

gnutls_dh_params_t dh_params;

static int

generate_dh_params (void)

{

/* Generate Diffie-Hellman parameters - for use with DHE

* kx algorithms. These should be discarded and regenerated

* once a day, once a week or once a month. Depending on the

* security requirements.

*/

gnutls_dh_params_init (&dh_params);

gnutls_dh_params_generate2 (dh_params, DH_BITS);

return 0;

}

static gnutls_session_t

initialize_tls_session (void)

{

gnutls_session_t session;

gnutls_init (&session, GNUTLS_SERVER);

gnutls_priority_set_direct (session, "NORMAL:+CTYPE-OPENPGP", NULL);

/* request client certificate if any.

Chapter 8: GnuTLS application examples 112

*/

gnutls_certificate_server_set_request (session, GNUTLS_CERT_REQUEST);

gnutls_dh_set_prime_bits (session, DH_BITS);

return session;

}

int

main (void)

{

int err, listen_sd;

int sd, ret;

struct sockaddr_in sa_serv;

struct sockaddr_in sa_cli;

int client_len;

char topbuf[512];

gnutls_session_t session;

char buffer[MAX_BUF + 1];

int optval = 1;

char name[256];

strcpy (name, "Echo Server");

/* this must be called once in the program

*/

gnutls_global_init ();

gnutls_certificate_allocate_credentials (&cred);

gnutls_certificate_set_openpgp_keyring_file (cred, RINGFILE,

GNUTLS_OPENPGP_FMT_BASE64);

gnutls_certificate_set_openpgp_key_file (cred, CERTFILE, KEYFILE,

GNUTLS_OPENPGP_FMT_BASE64);

generate_dh_params ();

gnutls_certificate_set_dh_params (cred, dh_params);

/* Socket operations

*/

listen_sd = socket (AF_INET, SOCK_STREAM, 0);

SOCKET_ERR (listen_sd, "socket");

memset (&sa_serv, ’\0’, sizeof (sa_serv));

sa_serv.sin_family = AF_INET;

sa_serv.sin_addr.s_addr = INADDR_ANY;

Chapter 8: GnuTLS application examples 113

sa_serv.sin_port = htons (PORT); /* Server Port number */

setsockopt (listen_sd, SOL_SOCKET, SO_REUSEADDR, (void *) &optval,

sizeof (int));

err = bind (listen_sd, (SA *) & sa_serv, sizeof (sa_serv));

SOCKET_ERR (err, "bind");

err = listen (listen_sd, 1024);

SOCKET_ERR (err, "listen");

printf ("%s ready. Listening to port ’%d’.\n\n", name, PORT);

client_len = sizeof (sa_cli);

for (;;)

{

session = initialize_tls_session ();

sd = accept (listen_sd, (SA *) & sa_cli, &client_len);

printf ("- connection from %s, port %d\n",

inet_ntop (AF_INET, &sa_cli.sin_addr, topbuf,

sizeof (topbuf)), ntohs (sa_cli.sin_port));

gnutls_transport_set_ptr (session, (gnutls_transport_ptr_t) sd);

ret = gnutls_handshake (session);

if (ret < 0)

{

close (sd);

gnutls_deinit (session);

fprintf (stderr, "*** Handshake has failed (%s)\n\n",

gnutls_strerror (ret));

continue;

}

printf ("- Handshake was completed\n");

/* see the Getting peer’s information example */

/* print_info(session); */

for (;;)

{

memset (buffer, 0, MAX_BUF + 1);

ret = gnutls_record_recv (session, buffer, MAX_BUF);

if (ret == 0)

{

printf ("\n- Peer has closed the GnuTLS connection\n");

break;

Chapter 8: GnuTLS application examples 114

}

else if (ret < 0)

{

fprintf (stderr, "\n*** Received corrupted "

"data(%d). Closing the connection.\n\n", ret);

break;

}

else if (ret > 0)

{

/* echo data back to the client

*/

gnutls_record_send (session, buffer, strlen (buffer));

}

}

printf ("\n");

/* do not wait for the peer to close the connection.

*/

gnutls_bye (session, GNUTLS_SHUT_WR);

close (sd);

gnutls_deinit (session);

}

close (listen_sd);

gnutls_certificate_free_credentials (cred);

gnutls_global_deinit ();

return 0;

}

8.2.3 Echo server with SRP authentication

This is a server which supports SRP authentication. It is also possible to combine this
functionality with a certificate server. Here it is separate for simplicity.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <sys/types.h>

Chapter 8: GnuTLS application examples 115

#include <sys/socket.h>

#include <arpa/inet.h>

#include <netinet/in.h>

#include <string.h>

#include <unistd.h>

#include <gnutls/gnutls.h>

#define SRP_PASSWD "tpasswd"

#define SRP_PASSWD_CONF "tpasswd.conf"

#define KEYFILE "key.pem"

#define CERTFILE "cert.pem"

#define CAFILE "ca.pem"

/* This is a sample TLS-SRP echo server.

*/

#define SA struct sockaddr

#define SOCKET_ERR(err,s) if(err==-1) {perror(s);return(1);}

#define MAX_BUF 1024

#define PORT 5556 /* listen to 5556 port */

/* These are global */

gnutls_srp_server_credentials_t srp_cred;

gnutls_certificate_credentials_t cert_cred;

static gnutls_session_t

initialize_tls_session (void)

{

gnutls_session_t session;

gnutls_init (&session, GNUTLS_SERVER);

gnutls_priority_set_direct (session, "NORMAL:-KX-ALL:+SRP:+SRP-DSS:+SRP-RSA", NULL);

gnutls_credentials_set (session, GNUTLS_CRD_SRP, srp_cred);

/* for the certificate authenticated ciphersuites.

*/

gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICATE, cert_cred);

/* request client certificate if any.

*/

gnutls_certificate_server_set_request (session, GNUTLS_CERT_IGNORE);

return session;

}

Chapter 8: GnuTLS application examples 116

int

main (void)

{

int err, listen_sd;

int sd, ret;

struct sockaddr_in sa_serv;

struct sockaddr_in sa_cli;

int client_len;

char topbuf[512];

gnutls_session_t session;

char buffer[MAX_BUF + 1];

int optval = 1;

char name[256];

strcpy (name, "Echo Server");

gnutls_global_init ();

/* SRP_PASSWD a password file (created with the included srptool utility)

*/

gnutls_srp_allocate_server_credentials (&srp_cred);

gnutls_srp_set_server_credentials_file (srp_cred, SRP_PASSWD,

SRP_PASSWD_CONF);

gnutls_certificate_allocate_credentials (&cert_cred);

gnutls_certificate_set_x509_trust_file (cert_cred, CAFILE,

GNUTLS_X509_FMT_PEM);

gnutls_certificate_set_x509_key_file (cert_cred, CERTFILE, KEYFILE,

GNUTLS_X509_FMT_PEM);

/* TCP socket operations

*/

listen_sd = socket (AF_INET, SOCK_STREAM, 0);

SOCKET_ERR (listen_sd, "socket");

memset (&sa_serv, ’\0’, sizeof (sa_serv));

sa_serv.sin_family = AF_INET;

sa_serv.sin_addr.s_addr = INADDR_ANY;

sa_serv.sin_port = htons (PORT); /* Server Port number */

setsockopt (listen_sd, SOL_SOCKET, SO_REUSEADDR, (void *) &optval,

sizeof (int));

err = bind (listen_sd, (SA *) & sa_serv, sizeof (sa_serv));

SOCKET_ERR (err, "bind");

err = listen (listen_sd, 1024);

SOCKET_ERR (err, "listen");

Chapter 8: GnuTLS application examples 117

printf ("%s ready. Listening to port ’%d’.\n\n", name, PORT);

client_len = sizeof (sa_cli);

for (;;)

{

session = initialize_tls_session ();

sd = accept (listen_sd, (SA *) & sa_cli, &client_len);

printf ("- connection from %s, port %d\n",

inet_ntop (AF_INET, &sa_cli.sin_addr, topbuf,

sizeof (topbuf)), ntohs (sa_cli.sin_port));

gnutls_transport_set_ptr (session, (gnutls_transport_ptr_t) sd);

do

{

ret = gnutls_handshake (session);

}

while (gnutls_error_is_fatal (ret) == 0);

if (ret < 0)

{

close (sd);

gnutls_deinit (session);

fprintf (stderr, "*** Handshake has failed (%s)\n\n",

gnutls_strerror (ret));

continue;

}

printf ("- Handshake was completed\n");

printf ("- User %s was connected\n", gnutls_srp_server_get_username(session));

/* print_info(session); */

for (;;)

{

memset (buffer, 0, MAX_BUF + 1);

ret = gnutls_record_recv (session, buffer, MAX_BUF);

if (ret == 0)

{

printf ("\n- Peer has closed the GnuTLS connection\n");

break;

}

else if (ret < 0)

{

Chapter 8: GnuTLS application examples 118

fprintf (stderr, "\n*** Received corrupted "

"data(%d). Closing the connection.\n\n", ret);

break;

}

else if (ret > 0)

{

/* echo data back to the client

*/

gnutls_record_send (session, buffer, strlen (buffer));

}

}

printf ("\n");

/* do not wait for the peer to close the connection. */

gnutls_bye (session, GNUTLS_SHUT_WR);

close (sd);

gnutls_deinit (session);

}

close (listen_sd);

gnutls_srp_free_server_credentials (srp_cred);

gnutls_certificate_free_credentials (cert_cred);

gnutls_global_deinit ();

return 0;

}

8.2.4 Echo server with anonymous authentication

This example server supports anonymous authentication, and could be used to serve the
example client for anonymous authentication.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <netinet/in.h>

Chapter 8: GnuTLS application examples 119

#include <string.h>

#include <unistd.h>

#include <gnutls/gnutls.h>

/* This is a sample TLS 1.0 echo server, for anonymous authentication only.

*/

#define SA struct sockaddr

#define SOCKET_ERR(err,s) if(err==-1) {perror(s);return(1);}

#define MAX_BUF 1024

#define PORT 5556 /* listen to 5556 port */

#define DH_BITS 1024

/* These are global */

gnutls_anon_server_credentials_t anoncred;

static gnutls_session_t

initialize_tls_session (void)

{

gnutls_session_t session;

gnutls_init (&session, GNUTLS_SERVER);

gnutls_priority_set_direct (session, "NORMAL:+ANON-ECDH:+ANON-DH", NULL);

gnutls_credentials_set (session, GNUTLS_CRD_ANON, anoncred);

gnutls_dh_set_prime_bits (session, DH_BITS);

return session;

}

static gnutls_dh_params_t dh_params;

static int

generate_dh_params (void)

{

/* Generate Diffie-Hellman parameters - for use with DHE

* kx algorithms. These should be discarded and regenerated

* once a day, once a week or once a month. Depending on the

* security requirements.

*/

gnutls_dh_params_init (&dh_params);

gnutls_dh_params_generate2 (dh_params, DH_BITS);

Chapter 8: GnuTLS application examples 120

return 0;

}

int

main (void)

{

int err, listen_sd;

int sd, ret;

struct sockaddr_in sa_serv;

struct sockaddr_in sa_cli;

int client_len;

char topbuf[512];

gnutls_session_t session;

char buffer[MAX_BUF + 1];

int optval = 1;

/* this must be called once in the program

*/

gnutls_global_init ();

gnutls_anon_allocate_server_credentials (&anoncred);

generate_dh_params ();

gnutls_anon_set_server_dh_params (anoncred, dh_params);

/* Socket operations

*/

listen_sd = socket (AF_INET, SOCK_STREAM, 0);

SOCKET_ERR (listen_sd, "socket");

memset (&sa_serv, ’\0’, sizeof (sa_serv));

sa_serv.sin_family = AF_INET;

sa_serv.sin_addr.s_addr = INADDR_ANY;

sa_serv.sin_port = htons (PORT); /* Server Port number */

setsockopt (listen_sd, SOL_SOCKET, SO_REUSEADDR, (void *) &optval,

sizeof (int));

err = bind (listen_sd, (SA *) & sa_serv, sizeof (sa_serv));

SOCKET_ERR (err, "bind");

err = listen (listen_sd, 1024);

SOCKET_ERR (err, "listen");

printf ("Server ready. Listening to port ’%d’.\n\n", PORT);

client_len = sizeof (sa_cli);

Chapter 8: GnuTLS application examples 121

for (;;)

{

session = initialize_tls_session ();

sd = accept (listen_sd, (SA *) & sa_cli, &client_len);

printf ("- connection from %s, port %d\n",

inet_ntop (AF_INET, &sa_cli.sin_addr, topbuf,

sizeof (topbuf)), ntohs (sa_cli.sin_port));

gnutls_transport_set_ptr (session, (gnutls_transport_ptr_t) sd);

do

{

ret = gnutls_handshake (session);

}

while (gnutls_error_is_fatal (ret) == 0);

if (ret < 0)

{

close (sd);

gnutls_deinit (session);

fprintf (stderr, "*** Handshake has failed (%s)\n\n",

gnutls_strerror (ret));

continue;

}

printf ("- Handshake was completed\n");

/* see the Getting peer’s information example */

/* print_info(session); */

for (;;)

{

memset (buffer, 0, MAX_BUF + 1);

ret = gnutls_record_recv (session, buffer, MAX_BUF);

if (ret == 0)

{

printf ("\n- Peer has closed the GnuTLS connection\n");

break;

}

else if (ret < 0)

{

fprintf (stderr, "\n*** Received corrupted "

"data(%d). Closing the connection.\n\n", ret);

break;

}

Chapter 8: GnuTLS application examples 122

else if (ret > 0)

{

/* echo data back to the client

*/

gnutls_record_send (session, buffer, strlen (buffer));

}

}

printf ("\n");

/* do not wait for the peer to close the connection.

*/

gnutls_bye (session, GNUTLS_SHUT_WR);

close (sd);

gnutls_deinit (session);

}

close (listen_sd);

gnutls_anon_free_server_credentials (anoncred);

gnutls_global_deinit ();

return 0;

}

8.2.5 DTLS echo server with X.509 authentication

This example is a very simple echo server using Datagram TLS and X.509 authentication.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <errno.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <arpa/inet.h>

#include <netinet/in.h>

#include <sys/select.h>

#include <netdb.h>

#include <string.h>

#include <unistd.h>

#include <gnutls/gnutls.h>

Chapter 8: GnuTLS application examples 123

#include <gnutls/dtls.h>

#define KEYFILE "key.pem"

#define CERTFILE "cert.pem"

#define CAFILE "ca.pem"

#define CRLFILE "crl.pem"

/* This is a sample DTLS echo server, using X.509 authentication.

* Note that error checking is minimal to simplify the example.

*/

#define MAX_BUFFER 1024

#define PORT 5556

typedef struct

{

gnutls_session_t session;

int fd;

struct sockaddr *cli_addr;

socklen_t cli_addr_size;

} priv_data_st;

static int pull_timeout_func (gnutls_transport_ptr_t ptr, unsigned int ms);

static ssize_t push_func (gnutls_transport_ptr_t p, const void *data,

size_t size);

static ssize_t pull_func (gnutls_transport_ptr_t p, void *data, size_t size);

static const char *human_addr (const struct sockaddr *sa, socklen_t salen,

char *buf, size_t buflen);

static int wait_for_connection (int fd);

static gnutls_session_t initialize_tls_session (void);

static int generate_dh_params (void);

/* Use global credentials and parameters to simplify

* the example. */

static gnutls_certificate_credentials_t x509_cred;

static gnutls_priority_t priority_cache;

static gnutls_dh_params_t dh_params;

int

main (void)

{

int listen_sd;

int sock, ret;

struct sockaddr_in sa_serv;

struct sockaddr_in cli_addr;

socklen_t cli_addr_size;

gnutls_session_t session;

Chapter 8: GnuTLS application examples 124

char buffer[MAX_BUFFER];

priv_data_st priv;

gnutls_datum_t cookie_key;

gnutls_dtls_prestate_st prestate;

int mtu = 1400;

unsigned char sequence[8];

/* this must be called once in the program

*/

gnutls_global_init ();

gnutls_certificate_allocate_credentials (&x509_cred);

gnutls_certificate_set_x509_trust_file (x509_cred, CAFILE,

GNUTLS_X509_FMT_PEM);

gnutls_certificate_set_x509_crl_file (x509_cred, CRLFILE,

GNUTLS_X509_FMT_PEM);

ret = gnutls_certificate_set_x509_key_file (x509_cred, CERTFILE, KEYFILE,

GNUTLS_X509_FMT_PEM);

if (ret < 0)

{

printf("No certificate or key were found\n");

exit(1);

}

generate_dh_params ();

gnutls_certificate_set_dh_params (x509_cred, dh_params);

gnutls_priority_init (&priority_cache,

"PERFORMANCE:-VERS-TLS-ALL:+VERS-DTLS1.0:%SERVER_PRECEDENCE",

NULL);

gnutls_key_generate (&cookie_key, GNUTLS_COOKIE_KEY_SIZE);

/* Socket operations

*/

listen_sd = socket (AF_INET, SOCK_DGRAM, 0);

memset (&sa_serv, ’\0’, sizeof (sa_serv));

sa_serv.sin_family = AF_INET;

sa_serv.sin_addr.s_addr = INADDR_ANY;

sa_serv.sin_port = htons (PORT);

{ /* DTLS requires the IP don’t fragment (DF) bit to be set */

#if defined(IP_DONTFRAG)

Chapter 8: GnuTLS application examples 125

int optval = 1;

setsockopt (listen_sd, IPPROTO_IP, IP_DONTFRAG,

(const void *) &optval, sizeof (optval));

#elif defined(IP_MTU_DISCOVER)

int optval = IP_PMTUDISC_DO;

setsockopt(listen_sd, IPPROTO_IP, IP_MTU_DISCOVER,

(const void*) &optval, sizeof (optval));

#endif

}

bind (listen_sd, (struct sockaddr *) &sa_serv, sizeof (sa_serv));

printf ("UDP server ready. Listening to port ’%d’.\n\n", PORT);

for (;;)

{

printf ("Waiting for connection...\n");

sock = wait_for_connection (listen_sd);

if (sock < 0)

continue;

cli_addr_size = sizeof (cli_addr);

ret = recvfrom (sock, buffer, sizeof (buffer), MSG_PEEK,

(struct sockaddr *) &cli_addr, &cli_addr_size);

if (ret > 0)

{

memset (&prestate, 0, sizeof (prestate));

ret = gnutls_dtls_cookie_verify (&cookie_key, &cli_addr,

sizeof (cli_addr), buffer, ret,

&prestate);

if (ret < 0) /* cookie not valid */

{

priv_data_st s;

memset (&s, 0, sizeof (s));

s.fd = sock;

s.cli_addr = (void *) &cli_addr;

s.cli_addr_size = sizeof (cli_addr);

printf ("Sending hello verify request to %s\n",

human_addr ((struct sockaddr *) &cli_addr,

sizeof (cli_addr), buffer,

sizeof (buffer)));

gnutls_dtls_cookie_send (&cookie_key, &cli_addr,

sizeof (cli_addr), &prestate,

(gnutls_transport_ptr_t) & s,

Chapter 8: GnuTLS application examples 126

push_func);

/* discard peeked data */

recvfrom (sock, buffer, sizeof (buffer), 0,

(struct sockaddr *) &cli_addr, &cli_addr_size);

usleep (100);

continue;

}

printf ("Accepted connection from %s\n",

human_addr ((struct sockaddr *)

&cli_addr, sizeof (cli_addr), buffer,

sizeof (buffer)));

}

else

continue;

session = initialize_tls_session ();

gnutls_dtls_prestate_set (session, &prestate);

gnutls_dtls_set_mtu (session, mtu);

priv.session = session;

priv.fd = sock;

priv.cli_addr = (struct sockaddr *) &cli_addr;

priv.cli_addr_size = sizeof (cli_addr);

gnutls_transport_set_ptr (session, &priv);

gnutls_transport_set_push_function (session, push_func);

gnutls_transport_set_pull_function (session, pull_func);

gnutls_transport_set_pull_timeout_function (session, pull_timeout_func);

do

{

ret = gnutls_handshake (session);

}

while (gnutls_error_is_fatal (ret) == 0);

if (ret < 0)

{

fprintf (stderr, "Error in handshake(): %s\n",

gnutls_strerror (ret));

gnutls_deinit (session);

continue;

}

printf ("- Handshake was completed\n");

for (;;)

Chapter 8: GnuTLS application examples 127

{

do

{

ret = gnutls_record_recv_seq (session, buffer, MAX_BUFFER,

sequence);

}

while (ret == GNUTLS_E_AGAIN || ret == GNUTLS_E_INTERRUPTED);

if (ret < 0)

{

fprintf (stderr, "Error in recv(): %s\n",

gnutls_strerror (ret));

break;

}

if (ret == 0)

{

printf ("EOF\n\n");

break;

}

buffer[ret] = 0;

printf ("received[%.2x%.2x%.2x%.2x%.2x%.2x%.2x%.2x]: %s\n",

sequence[0], sequence[1], sequence[2], sequence[3],

sequence[4], sequence[5], sequence[6], sequence[7], buffer);

/* reply back */

ret = gnutls_record_send (session, buffer, ret);

if (ret < 0)

{

fprintf (stderr, "Error in send(): %s\n",

gnutls_strerror (ret));

break;

}

}

gnutls_bye (session, GNUTLS_SHUT_WR);

gnutls_deinit (session);

}

close (listen_sd);

gnutls_certificate_free_credentials (x509_cred);

gnutls_priority_deinit (priority_cache);

gnutls_global_deinit ();

return 0;

Chapter 8: GnuTLS application examples 128

}

static int

wait_for_connection (int fd)

{

fd_set rd, wr;

int n;

FD_ZERO (&rd);

FD_ZERO (&wr);

FD_SET (fd, &rd);

/* waiting part */

n = select (fd + 1, &rd, &wr, NULL, NULL);

if (n == -1 && errno == EINTR)

return -1;

if (n < 0)

{

perror ("select()");

exit (1);

}

return fd;

}

/* Wait for data to be received within a timeout period in milliseconds

*/

static int

pull_timeout_func (gnutls_transport_ptr_t ptr, unsigned int ms)

{

fd_set rfds;

struct timeval tv;

priv_data_st *priv = ptr;

struct sockaddr_in cli_addr;

socklen_t cli_addr_size;

int ret;

char c;

FD_ZERO (&rfds);

FD_SET (priv->fd, &rfds);

tv.tv_sec = 0;

tv.tv_usec = ms * 1000;

ret = select (priv->fd + 1, &rfds, NULL, NULL, &tv);

Chapter 8: GnuTLS application examples 129

if (ret <= 0)

return ret;

/* only report ok if the next message is from the peer we expect

* from

*/

cli_addr_size = sizeof (cli_addr);

ret =

recvfrom (priv->fd, &c, 1, MSG_PEEK, (struct sockaddr *) &cli_addr,

&cli_addr_size);

if (ret > 0)

{

if (cli_addr_size == priv->cli_addr_size

&& memcmp (&cli_addr, priv->cli_addr, sizeof (cli_addr)) == 0)

return 1;

}

return 0;

}

static ssize_t

push_func (gnutls_transport_ptr_t p, const void *data, size_t size)

{

priv_data_st *priv = p;

return sendto (priv->fd, data, size, 0, priv->cli_addr,

priv->cli_addr_size);

}

static ssize_t

pull_func (gnutls_transport_ptr_t p, void *data, size_t size)

{

priv_data_st *priv = p;

struct sockaddr_in cli_addr;

socklen_t cli_addr_size;

char buffer[64];

int ret;

cli_addr_size = sizeof (cli_addr);

ret =

recvfrom (priv->fd, data, size, 0, (struct sockaddr *) &cli_addr,

&cli_addr_size);

if (ret == -1)

return ret;

if (cli_addr_size == priv->cli_addr_size

&& memcmp (&cli_addr, priv->cli_addr, sizeof (cli_addr)) == 0)

Chapter 8: GnuTLS application examples 130

return ret;

printf ("Denied connection from %s\n",

human_addr ((struct sockaddr *)

&cli_addr, sizeof (cli_addr), buffer, sizeof (buffer)));

gnutls_transport_set_errno (priv->session, EAGAIN);

return -1;

}

static const char *

human_addr (const struct sockaddr *sa, socklen_t salen,

char *buf, size_t buflen)

{

const char *save_buf = buf;

size_t l;

if (!buf || !buflen)

return NULL;

*buf = ’\0’;

switch (sa->sa_family)

{

#if HAVE_IPV6

case AF_INET6:

snprintf (buf, buflen, "IPv6 ");

break;

#endif

case AF_INET:

snprintf (buf, buflen, "IPv4 ");

break;

}

l = strlen (buf);

buf += l;

buflen -= l;

if (getnameinfo (sa, salen, buf, buflen, NULL, 0, NI_NUMERICHOST) != 0)

return NULL;

l = strlen (buf);

buf += l;

buflen -= l;

strncat (buf, " port ", buflen);

Chapter 8: GnuTLS application examples 131

l = strlen (buf);

buf += l;

buflen -= l;

if (getnameinfo (sa, salen, NULL, 0, buf, buflen, NI_NUMERICSERV) != 0)

return NULL;

return save_buf;

}

static gnutls_session_t

initialize_tls_session (void)

{

gnutls_session_t session;

gnutls_init (&session, GNUTLS_SERVER | GNUTLS_DATAGRAM);

gnutls_priority_set (session, priority_cache);

gnutls_credentials_set (session, GNUTLS_CRD_CERTIFICATE, x509_cred);

return session;

}

static int

generate_dh_params (void)

{

int bits = gnutls_sec_param_to_pk_bits (GNUTLS_PK_DH, GNUTLS_SEC_PARAM_LOW);

/* Generate Diffie-Hellman parameters - for use with DHE

* kx algorithms. When short bit length is used, it might

* be wise to regenerate parameters often.

*/

gnutls_dh_params_init (&dh_params);

gnutls_dh_params_generate2 (dh_params, bits);

return 0;

}

8.3 Miscellaneous examples

8.3.1 Checking for an alert

This is a function that checks if an alert has been received in the current session.

/* This example code is placed in the public domain. */

Chapter 8: GnuTLS application examples 132

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

#include <stdio.h>

#include <stdlib.h>

#include <gnutls/gnutls.h>

#include "examples.h"

/* This function will check whether the given return code from

* a gnutls function (recv/send), is an alert, and will print

* that alert.

*/

void

check_alert (gnutls_session_t session, int ret)

{

int last_alert;

if (ret == GNUTLS_E_WARNING_ALERT_RECEIVED

|| ret == GNUTLS_E_FATAL_ALERT_RECEIVED)

{

last_alert = gnutls_alert_get (session);

/* The check for renegotiation is only useful if we are

* a server, and we had requested a rehandshake.

*/

if (last_alert == GNUTLS_A_NO_RENEGOTIATION &&

ret == GNUTLS_E_WARNING_ALERT_RECEIVED)

printf ("* Received NO_RENEGOTIATION alert. "

"Client Does not support renegotiation.\n");

else

printf ("* Received alert ’%d’: %s.\n", last_alert,

gnutls_alert_get_name (last_alert));

}

}

8.3.2 X.509 certificate parsing example

To demonstrate the X.509 parsing capabilities an example program is listed below. That
program reads the peer’s certificate, and prints information about it.

/* This example code is placed in the public domain. */

#ifdef HAVE_CONFIG_H

#include <config.h>

#endif

Chapter 8: GnuTLS application examples 133

#include <stdio.h>

#include <stdlib.h>

#include <gnutls/gnutls.h>

#include <gnutls/x509.h>

#include "examples.h"

static const char *

bin2hex (const void *bin, size_t bin_size)

{

static char printable[110];

const unsigned char *_bin = bin;

char *print;

size_t i;

if (bin_size > 50)

bin_size = 50;

print = printable;

for (i = 0; i < bin_size; i++)

{

sprintf (print, "%.2x ", _bin[i]);

print += 2;

}

return printable;

}

/* This function will print information about this session’s peer

* certificate.

*/

void

print_x509_certificate_info (gnutls_session_t session)

{

char serial[40];

char dn[256];

size_t size;

unsigned int algo, bits;

time_t expiration_time, activation_time;

const gnutls_datum_t *cert_list;

unsigned int cert_list_size = 0;

gnutls_x509_crt_t cert;

gnutls_datum_t cinfo;

/* This function only works for X.509 certificates.

*/

if (gnutls_certificate_type_get (session) != GNUTLS_CRT_X509)

Chapter 8: GnuTLS application examples 134

return;

cert_list = gnutls_certificate_get_peers (session, &cert_list_size);

printf ("Peer provided %d certificates.\n", cert_list_size);

if (cert_list_size > 0)

{

int ret;

/* we only print information about the first certificate.

*/

gnutls_x509_crt_init (&cert);

gnutls_x509_crt_import (cert, &cert_list[0], GNUTLS_X509_FMT_DER);

printf ("Certificate info:\n");

/* This is the preferred way of printing short information about

a certificate. */

ret = gnutls_x509_crt_print (cert, GNUTLS_CRT_PRINT_ONELINE, &cinfo);

if (ret == 0)

{

printf ("\t%s\n", cinfo.data);

gnutls_free (cinfo.data);

}

/* If you want to extract fields manually for some other reason,

below are popular example calls. */

expiration_time = gnutls_x509_crt_get_expiration_time (cert);

activation_time = gnutls_x509_crt_get_activation_time (cert);

printf ("\tCertificate is valid since: %s", ctime (&activation_time));

printf ("\tCertificate expires: %s", ctime (&expiration_time));

/* Print the serial number of the certificate.

*/

size = sizeof (serial);

gnutls_x509_crt_get_serial (cert, serial, &size);

printf ("\tCertificate serial number: %s\n", bin2hex (serial, size));

/* Extract some of the public key algorithm’s parameters

*/

algo = gnutls_x509_crt_get_pk_algorithm (cert, &bits);

Chapter 8: GnuTLS application examples 135

printf ("Certificate public key: %s",

gnutls_pk_algorithm_get_name (algo));

/* Print the version of the X.509

* certificate.

*/

printf ("\tCertificate version: #%d\n",

gnutls_x509_crt_get_version (cert));

size = sizeof (dn);

gnutls_x509_crt_get_dn (cert, dn, &size);

printf ("\tDN: %s\n", dn);

size = sizeof (dn);

gnutls_x509_crt_get_issuer_dn (cert, dn, &size);

printf ("\tIssuer’s DN: %s\n", dn);

gnutls_x509_crt_deinit (cert);

}

}

Chapter 9: Other included programs 136

9 Other included programs

Included with GnuTLS are also a few command line tools that let you use the library
for common tasks without writing an application. The applications are discussed in this
chapter.

9.1 The gnutls-cli tool

Simple client program to set up a TLS connection to some other computer. It sets up a
TLS connection and forwards data from the standard input to the secured socket and vice
versa.

GnuTLS test client

Usage: gnutls-cli [options] hostname

-d, --debug integer Enable debugging

-r, --resume Connect, establish a session. Connect

again and resume this session.

-s, --starttls Connect, establish a plain session and

start TLS when EOF or a SIGALRM is

received.

--crlf Send CR LF instead of LF.

--x509fmtder Use DER format for certificates to read

from.

-f, --fingerprint Send the openpgp fingerprint, instead

of the key.

--disable-extensions Disable all the TLS extensions.

--print-cert Print the certificate in PEM format.

--recordsize integer The maximum record size to advertize.

-V, --verbose More verbose output.

--ciphers cipher1 cipher2...

Ciphers to enable.

--protocols protocol1 protocol2...

Protocols to enable.

--comp comp1 comp2... Compression methods to enable.

--macs mac1 mac2... MACs to enable.

--kx kx1 kx2... Key exchange methods to enable.

--ctypes certType1 certType2...

Certificate types to enable.

--priority PRIORITY STRING

Priorities string.

--x509cafile FILE Certificate file to use.

--x509crlfile FILE CRL file to use.

--pgpkeyfile FILE PGP Key file to use.

--pgpkeyring FILE PGP Key ring file to use.

--pgpcertfile FILE PGP Public Key (certificate) file to

use.

--pgpsubkey HEX|auto PGP subkey to use.

Chapter 9: Other included programs 137

--x509keyfile FILE X.509 key file to use.

--x509certfile FILE X.509 Certificate file to use.

--srpusername NAME SRP username to use.

--srppasswd PASSWD SRP password to use.

--pskusername NAME PSK username to use.

--pskkey KEY PSK key (in hex) to use.

--opaque-prf-input DATA

Use Opaque PRF Input DATA.

-p, --port PORT The port to connect to.

--insecure Don’t abort program if server

certificate can’t be validated.

-l, --list Print a list of the supported

algorithms and modes.

-h, --help prints this help

-v, --version prints the program’s version number

Example client PSK connection

To connect to a server using PSK authentication, you need to enable the choice of PSK by
using a cipher priority parameter such as in the example below.

$./gnutls-cli -p 5556 localhost --pskusername psk_identity \

--pskkey 88f3824b3e5659f52d00e959bacab954b6540344 \

--priority NORMAL:-KX-ALL:+ECDHE-PSK:+DHE-PSK:+PSK

Resolving ’localhost’...

Connecting to ’127.0.0.1:5556’...

- PSK authentication.

- Version: TLS1.1

- Key Exchange: PSK

- Cipher: AES-128-CBC

- MAC: SHA1

- Compression: NULL

- Handshake was completed

- Simple Client Mode:

By keeping the --pskusername parameter and removing the --pskkey parameter, it will
query only for the password during the handshake.

9.2 The gnutls-serv tool

Simple server program that listens to incoming TLS connections.

GnuTLS test server

Usage: gnutls-serv [options]

-d, --debug integer Enable debugging

-g, --generate Generate Diffie-Hellman Parameters.

-p, --port integer The port to connect to.

-q, --quiet Suppress some messages.

Chapter 9: Other included programs 138

--nodb Does not use the resume database.

--http Act as an HTTP Server.

--echo Act as an Echo Server.

--dhparams FILE DH params file to use.

--x509fmtder Use DER format for certificates

--x509cafile FILE Certificate file to use.

--x509crlfile FILE CRL file to use.

--pgpkeyring FILE PGP Key ring file to use.

--pgpkeyfile FILE PGP Key file to use.

--pgpcertfile FILE PGP Public Key (certificate) file to

use.

--pgpsubkey HEX|auto PGP subkey to use.

--x509keyfile FILE X.509 key file to use.

--x509certfile FILE X.509 Certificate file to use.

--x509dsakeyfile FILE Alternative X.509 key file to use.

--x509dsacertfile FILE Alternative X.509 certificate file to

use.

-r, --require-cert Require a valid certificate.

-a, --disable-client-cert

Disable request for a client

certificate.

--pskpasswd FILE PSK password file to use.

--pskhint HINT PSK identity hint to use.

--srppasswd FILE SRP password file to use.

--srppasswdconf FILE SRP password conf file to use.

--opaque-prf-input DATA

Use Opaque PRF Input DATA.

--ciphers cipher1 cipher2...

Ciphers to enable.

--protocols protocol1 protocol2...

Protocols to enable.

--comp comp1 comp2... Compression methods to enable.

--macs mac1 mac2... MACs to enable.

--kx kx1 kx2... Key exchange methods to enable.

--ctypes certType1 certType2...

Certificate types to enable.

--priority PRIORITY STRING

Priorities string.

-l, --list Print a list of the supported

algorithms and modes.

-h, --help prints this help

-v, --version prints the program’s version number

Chapter 9: Other included programs 139

Setting up a test HTTPS server

Running your own TLS server based on GnuTLS can be useful when debugging clients
and/or GnuTLS itself. This section describes how to use gnutls-serv as a simple HTTPS
server.

The most basic server can be started as:

gnutls-serv --http

It will only support anonymous ciphersuites, which many TLS clients refuse to use.

The next step is to add support for X.509. First we generate a CA:

$ certtool --generate-privkey > x509-ca-key.pem

$ echo ’cn = GnuTLS test CA’ > ca.tmpl

$ echo ’ca’ >> ca.tmpl

$ echo ’cert_signing_key’ >> ca.tmpl

$ certtool --generate-self-signed --load-privkey x509-ca-key.pem \

--template ca.tmpl --outfile x509-ca.pem

...

Then generate a server certificate. Remember to change the dns name value to the name
of your server host, or skip that command to avoid the field.

$ certtool --generate-privkey > x509-server-key.pem

$ echo ’organization = GnuTLS test server’ > server.tmpl

$ echo ’cn = test.gnutls.org’ >> server.tmpl

$ echo ’tls_www_server’ >> server.tmpl

$ echo ’encryption_key’ >> server.tmpl

$ echo ’signing_key’ >> server.tmpl

$ echo ’dns_name = test.gnutls.org’ >> server.tmpl

$ certtool --generate-certificate --load-privkey x509-server-key.pem \

--load-ca-certificate x509-ca.pem --load-ca-privkey x509-ca-key.pem \

--template server.tmpl --outfile x509-server.pem

...

For use in the client, you may want to generate a client certificate as well.

$ certtool --generate-privkey > x509-client-key.pem

$ echo ’cn = GnuTLS test client’ > client.tmpl

$ echo ’tls_www_client’ >> client.tmpl

$ echo ’encryption_key’ >> client.tmpl

$ echo ’signing_key’ >> client.tmpl

$ certtool --generate-certificate --load-privkey x509-client-key.pem \

--load-ca-certificate x509-ca.pem --load-ca-privkey x509-ca-key.pem \

--template client.tmpl --outfile x509-client.pem

...

To be able to import the client key/certificate into some applications, you will need to
convert them into a PKCS#12 structure. This also encrypts the security sensitive key with
a password.

$ certtool --to-p12 --load-ca-certificate x509-ca.pem \

--load-privkey x509-client-key.pem --load-certificate x509-client.pem \

--outder --outfile x509-client.p12

Chapter 9: Other included programs 140

For icing, we’ll create a proxy certificate for the client too.

$ certtool --generate-privkey > x509-proxy-key.pem

$ echo ’cn = GnuTLS test client proxy’ > proxy.tmpl

$ certtool --generate-proxy --load-privkey x509-proxy-key.pem \

--load-ca-certificate x509-client.pem --load-ca-privkey x509-client-key.pem \

--load-certificate x509-client.pem --template proxy.tmpl \

--outfile x509-proxy.pem

...

Then start the server again:

$ gnutls-serv --http \

--x509cafile x509-ca.pem \

--x509keyfile x509-server-key.pem \

--x509certfile x509-server.pem

Try connecting to the server using your web browser. Note that the server listens to port
5556 by default.

While you are at it, to allow connections using DSA, you can also create a DSA key and
certificate for the server. These credentials will be used in the final example below.

$ certtool --generate-privkey --dsa > x509-server-key-dsa.pem

$ certtool --generate-certificate --load-privkey x509-server-key-dsa.pem \

--load-ca-certificate x509-ca.pem --load-ca-privkey x509-ca-key.pem \

--template server.tmpl --outfile x509-server-dsa.pem

...

The next step is to create OpenPGP credentials for the server.

gpg --gen-key

...enter whatever details you want, use ’test.gnutls.org’ as name...

Make a note of the OpenPGP key identifier of the newly generated key, here it was 5D1D14D8.
You will need to export the key for GnuTLS to be able to use it.

gpg -a --export 5D1D14D8 > openpgp-server.txt

gpg --export 5D1D14D8 > openpgp-server.bin

gpg --export-secret-keys 5D1D14D8 > openpgp-server-key.bin

gpg -a --export-secret-keys 5D1D14D8 > openpgp-server-key.txt

Let’s start the server with support for OpenPGP credentials:

gnutls-serv --http \

--pgpkeyfile openpgp-server-key.txt \

--pgpcertfile openpgp-server.txt

The next step is to add support for SRP authentication. This requires an SRP password
file (see Section 5.1.2 [Invoking srptool], page 24). To start the server with SRP support:

gnutls-serv --http \

--srppasswdconf srp-tpasswd.conf \

--srppasswd srp-passwd.txt

Let’s also start a server with support for PSK. This would require a password file created
with psktool (see Section 5.2.2 [Invoking psktool], page 25).

Chapter 9: Other included programs 141

gnutls-serv --http \

--pskpasswd psk-passwd.txt

Finally, we start the server with all the earlier parameters and you get this command:

gnutls-serv --http \

--x509cafile x509-ca.pem \

--x509keyfile x509-server-key.pem \

--x509certfile x509-server.pem \

--x509dsakeyfile x509-server-key-dsa.pem \

--x509dsacertfile x509-server-dsa.pem \

--pgpkeyfile openpgp-server-key.txt \

--pgpcertfile openpgp-server.txt \

--srppasswdconf srp-tpasswd.conf \

--srppasswd srp-passwd.txt \

--pskpasswd psk-passwd.txt

9.3 The gnutls-cli-debug tool

This program was created to assist in debugging GnuTLS, but it might be useful to extract
a TLS server’s capabilities. It’s purpose is to connect onto a TLS server, perform some tests
and print the server’s capabilities. If called with the ‘-v’ parameter more checks will be
performed. An example output is:

crystal:/cvs/gnutls/src$./gnutls-cli-debug localhost -p 5556

Resolving ’localhost’...

Connecting to ’127.0.0.1:5556’...

Checking for TLS 1.1 support... yes

Checking fallback from TLS 1.1 to... N/A

Checking for TLS 1.0 support... yes

Checking for SSL 3.0 support... yes

Checking for version rollback bug in RSA PMS... no

Checking for version rollback bug in Client Hello... no

Checking whether we need to disable TLS 1.0... N/A

Checking whether the server ignores the RSA PMS version... no

Checking whether the server can accept Hello Extensions... yes

Checking whether the server can accept cipher suites not in SSL 3.0 spec... yes

Checking for certificate information... N/A

Checking for trusted CAs... N/A

Checking whether the server understands TLS closure alerts... yes

Checking whether the server supports session resumption... yes

Checking for export-grade ciphersuite support... no

Checking RSA-export ciphersuite info... N/A

Checking for anonymous authentication support... no

Checking anonymous Diffie-Hellman group info... N/A

Checking for ephemeral Diffie-Hellman support... no

Checking ephemeral Diffie-Hellman group info... N/A

Checking for AES cipher support (TLS extension)... yes

Checking for 3DES cipher support... yes

Checking for ARCFOUR 128 cipher support... yes

Chapter 9: Other included programs 142

Checking for ARCFOUR 40 cipher support... no

Checking for MD5 MAC support... yes

Checking for SHA1 MAC support... yes

Checking for ZLIB compression support (TLS extension)... yes

Checking for max record size (TLS extension)... yes

Checking for SRP authentication support (TLS extension)... yes

Checking for OpenPGP authentication support (TLS extension)... no

Chapter 10: Internal Architecture of GnuTLS 143

10 Internal Architecture of GnuTLS

This chapter is to give a brief description of the way GnuTLS works. The focus is to give
an idea to potential developers and those who want to know what happens inside the black
box.

10.1 The TLS Protocol

The main use case for the TLS protocol is shown in Figure 10.1. A user of a library
implementing the protocol expects no less than this functionality, i.e., to be able to set
parameters such as the accepted security level, perform a negotiation with the peer and be
able to exchange data.

Figure 10.1: TLS protocol use case.

10.2 TLS Handshake Protocol

The GnuTLS handshake protocol is implemented as a state machine that waits for input or
returns immediately when the non-blocking transport layer functions are used. The main
idea is shown in Figure 10.2.

Chapter 10: Internal Architecture of GnuTLS 144

Figure 10.2: GnuTLS handshake state machine.

Also the way the input is processed varies per ciphersuite. Several implementations of the
internal handlers are available and [gnutls handshake], page 188 only multiplexes the input
to the appropriate handler. For example a PSK ciphersuite has a different implementation
of the process_client_key_exchange than a certificate ciphersuite. We illustrate the idea
in Figure 10.3.

Figure 10.3: GnuTLS handshake process sequence.

10.3 TLS Authentication Methods

In GnuTLS authentication methods can be implemented quite easily. Since the required
changes to add a new authentication method affect only the handshake protocol, a simple
interface is used. An authentication method needs to implement the functions shown below.

typedef struct

{

Chapter 10: Internal Architecture of GnuTLS 145

const char *name;

int (*gnutls_generate_server_certificate) (gnutls_session_t, gnutls_buffer_st*);

int (*gnutls_generate_client_certificate) (gnutls_session_t, gnutls_buffer_st*);

int (*gnutls_generate_server_kx) (gnutls_session_t, gnutls_buffer_st*);

int (*gnutls_generate_client_kx) (gnutls_session_t, gnutls_buffer_st*);

int (*gnutls_generate_client_cert_vrfy) (gnutls_session_t, gnutls_buffer_st *);

int (*gnutls_generate_server_certificate_request) (gnutls_session_t,

gnutls_buffer_st *);

int (*gnutls_process_server_certificate) (gnutls_session_t, opaque *,

size_t);

int (*gnutls_process_client_certificate) (gnutls_session_t, opaque *,

size_t);

int (*gnutls_process_server_kx) (gnutls_session_t, opaque *, size_t);

int (*gnutls_process_client_kx) (gnutls_session_t, opaque *, size_t);

int (*gnutls_process_client_cert_vrfy) (gnutls_session_t, opaque *, size_t);

int (*gnutls_process_server_certificate_request) (gnutls_session_t,

opaque *, size_t);

} mod_auth_st;

Those functions are responsible for the interpretation of the handshake protocol messages.
It is common for such functions to read data from one or more credentials_t structures1

and write data, such as certificates, usernames etc. to auth_info_t structures.

Simple examples of existing authentication methods can be seen in auth/psk.c for PSK
ciphersuites and auth/srp.c for SRP ciphersuites. After implementing these functions the
structure holding its pointers has to be registered in gnutls_algorithms.c in the _gnutls_
kx_algorithms structure.

10.4 TLS Extension Handling

As with authentication methods, the TLS extensions handlers can be implemented using
the interface shown below.

typedef int (*gnutls_ext_recv_func) (gnutls_session_t session,

const unsigned char *data, size_t len);

typedef int (*gnutls_ext_send_func) (gnutls_session_t session,

gnutls_buffer_st *extdata);

Here there are two functions, one for receiving the extension data and one for sending.
These functions have to check internally whether they operate in client or server side.

A simple example of an extension handler can be seen in ext/srp.c in GnuTLS’ source
code. After implementing these functions, together with the extension number they handle,
they have to be registered using _gnutls_ext_register in gnutls_extensions.c typically
within _gnutls_ext_init.

1 such as the gnutls_certificate_credentials_t structures

Chapter 10: Internal Architecture of GnuTLS 146

Adding a new TLS extension

Adding support for a new TLS extension is done from time to time, and the process to do
so is not difficult. Here are the steps you need to follow if you wish to do this yourself. For
sake of discussion, let’s consider adding support for the hypothetical TLS extension foobar.

Add configure option like --enable-foobar or --disable-foobar.

This step is useful when the extension code is large and it might be desirable to disable the
extension under some circumstances. Otherwise it can be safely skipped.

Whether to chose enable or disable depends on whether you intend to make the extension
be enabled by default. Look at existing checks (i.e., SRP, authz) for how to model the code.
For example:

AC_MSG_CHECKING([whether to disable foobar support])

AC_ARG_ENABLE(foobar,

AS_HELP_STRING([--disable-foobar],

[disable foobar support]),

ac_enable_foobar=no)

if test x$ac_enable_foobar != xno; then

AC_MSG_RESULT(no)

AC_DEFINE(ENABLE_FOOBAR, 1, [enable foobar])

else

ac_full=0

AC_MSG_RESULT(yes)

fi

AM_CONDITIONAL(ENABLE_FOOBAR, test "$ac_enable_foobar" != "no")

These lines should go in lib/m4/hooks.m4.

Add IANA extension value to extensions_t in gnutls_int.h.

A good name for the value would be GNUTLS EXTENSION FOOBAR. Check with
http://www.iana.org/assignments/tls-extensiontype-values for allocated values.
For experiments, you could pick a number but remember that some consider it a bad idea
to deploy such modified version since it will lead to interoperability problems in the future
when the IANA allocates that number to someone else, or when the foobar protocol is
allocated another number.

Add an entry to _gnutls_extensions in gnutls_extensions.c.

A typical entry would be:

int ret;

#if ENABLE_FOOBAR

ret = _gnutls_ext_register (&foobar_ext);

if (ret != GNUTLS_E_SUCCESS)

return ret;

#endif

Most likely you’ll need to add an #include "ext/foobar.h", that will contain something
like like:

http://www.iana.org/assignments/tls-extensiontype-values

Chapter 10: Internal Architecture of GnuTLS 147

extension_entry_st foobar_ext = {

.name = "FOOBAR",

.type = GNUTLS_EXTENSION_FOOBAR,

.parse_type = GNUTLS_EXT_TLS,

.recv_func = _foobar_recv_params,

.send_func = _foobar_send_params,

.pack_func = _foobar_pack,

.unpack_func = _foobar_unpack,

.deinit_func = NULL

}

The GNUTLS EXTENSION FOOBAR is the integer value you added to gnutls_int.h

earlier. In this structure you specify the functions to read the extension from the hello
message, the function to send the reply to, and two more functions to pack and unpack
from stored session data (e.g. when resumming a session). The deinit function will be
called to deinitialize the extension’s private parameters, if any.

Note that the conditional ENABLE_FOOBAR definition should only be used if step 1 with the
configure options has taken place.

Add new files that implement the extension.

The functions you are responsible to add are those mentioned in the previous step. They
should be added in a file such as ext/foobar.c and headers should be placed in ext/

foobar.h. As a starter, you could add this:

int

_foobar_recv_params (gnutls_session_t session, const opaque * data,

size_t data_size)

{

return 0;

}

int

_foobar_send_params (gnutls_session_t session, gnutls_buffer_st* data)

{

return 0;

}

int

_foobar_pack (extension_priv_data_t epriv, gnutls_buffer_st * ps)

{

/* Append the extension’s internal state to buffer */

return 0;

}

int

_foobar_unpack (gnutls_buffer_st * ps, extension_priv_data_t * epriv)

{

/* Read the internal state from buffer */

Chapter 10: Internal Architecture of GnuTLS 148

return 0;

}

The _foobar_recv_params function is responsible for parsing incoming extension data
(both in the client and server).

The _foobar_send_params function is responsible for sending extension data (both in the
client and server).

If you receive length fields that don’t match, return GNUTLS_E_UNEXPECTED_PACKET_LENGTH.
If you receive invalid data, return GNUTLS_E_RECEIVED_ILLEGAL_PARAMETER. You can use
other error codes from the list in Appendix B [Error codes], page 154. Return 0 on success.

An extension typically stores private information in the session data for later usage. That
can be done using the functions _gnutls_ext_set_session_data and _gnutls_ext_get_

session_data. You can check simple examples at ext/max_record.c and ext/server_

name.c extensions. That private information can be saved and restored across session
resumption if the following functions are set:

The _foobar_pack function is responsible for packing internal extension data to save them
in the session resumption storage.

The _foobar_unpack function is responsible for restoring session data from the session
resumption storage.

Recall that both the client and server, send and receive parameters, and your code most
likely will need to do different things depending on which mode it is in. It may be useful to
make this distinction explicit in the code. Thus, for example, a better template than above
would be:

int

_gnutls_foobar_recv_params (gnutls_session_t session,

const opaque * data,

size_t data_size)

{

if (session->security_parameters.entity == GNUTLS_CLIENT)

return foobar_recv_client (session, data, data_size);

else

return foobar_recv_server (session, data, data_size);

}

int

_gnutls_foobar_send_params (gnutls_session_t session,

gnutls_buffer_st * data)

{

if (session->security_parameters.entity == GNUTLS_CLIENT)

return foobar_send_client (session, data);

else

return foobar_send_server (session, data);

}

The functions used would be declared as static functions, of the appropriate prototype, in
the same file. When adding the files, you’ll need to add them to ext/Makefile.am as well,
for example:

Chapter 10: Internal Architecture of GnuTLS 149

if ENABLE_FOOBAR

libgnutls_ext_la_SOURCES += ext/foobar.c ext/foobar.h

endif

Add API functions to enable/disable the extension.

It might be desirable to allow users of the extension to request use of the extension, or set
extension specific data. This can be implemented by adding extension specific function calls
that can be added to includes/gnutls/gnutls.h, as long as the LGPLv3+ applies. The
implementation of the function should lie in the ext/foobar.c file.

To make the API available in the shared library you need to add the symbol in lib/

libgnutls.map, so that the symbol is exported properly.

When writing GTK-DOC style documentation for your new APIs, don’t forget to add
Since: tags to indicate the GnuTLS version the API was introduced in.

10.5 Cryptographic Backend

Today most new processors, either for embedded or desktop systems include either instruc-
tions intended to speed up cryptographic operations, or a co-processor with cryptographic
capabilities. Taking advantage of those is a challenging task for every cryptographic appli-
cation or library. Unfortunately the cryptographic library that GnuTLS is based on takes no
advantage of these capabilities. For this reason GnuTLS handles this internally by following
a layered approach to accessing cryptographic operations as in Figure 10.4.

Chapter 10: Internal Architecture of GnuTLS 150

Figure 10.4: GnuTLS cryptographic back-end design.

The TLS layer uses a cryptographic provider layer, that will in turn either use the default
crypto provider – a software crypto library, or use an external crypto provider, if available.

Cryptographic library layer

The Cryptographic library layer, currently supports only libnettle. Other cryptographic
libraries might be supported in the future.

External cryptography provider

Systems that include a cryptographic co-processor, typically come with kernel drivers to
utilize the operations from software. For this reason GnuTLS provides a layer where each
individual algorithm used can be replaced by another implementation, i.e., the one provided
by the driver. The FreeBSD, OpenBSD and Linux kernels2 include already a number of
hardware assisted implementations, and also provide an interface to access them, called
/dev/crypto. GnuTLS will take advantage of this interface if compiled with special options.
That is because in most systems where hardware-assisted cryptographic operations are not
available, using this interface might actually harm performance.

In systems that include cryptographic instructions with the CPU’s instructions set, using
the kernel interface will introduce an unneeded layer. For this reason GnuTLS includes
such optimizations found in popular processors such as the AES-NI or VIA PADLOCK

2 Check http://home.gna.org/cryptodev-linux/ for the Linux kernel implementation of /dev/crypto.

http://home.gna.org/cryptodev-linux/

Chapter 10: Internal Architecture of GnuTLS 151

instruction sets. This is achieved using a mechanism that detects CPU capabilities and
overrides parts of crypto backend at runtime. The next section discusses the registration of
a detected algorithm optimization. For more information please consult the GnuTLS source
code in lib/accelerated/.

Overriding specific algorithms

When an optimized implementation of a single algorithm is available, say a hardware as-
sisted version of AES-CBC then the following (internal) functions, from crypto-backend.h,
can be used to register those algorithms.

• gnutls_crypto_single_cipher_register: To register a cipher algorithm.

• gnutls_crypto_single_digest_register: To register a hash (digest) or MAC algo-
rithm.

Those registration functions will only replace the specified algorithm and leave the rest of
subsystem intact.

Overriding the cryptographic library

In some systems, that might contain a broad acceleration engine, it might be desirable to
override big parts of the cryptographic backend, or even all of them. T following functions
are provided for this reason.

• gnutls_crypto_cipher_register: To override the cryptographic algorithms backend.

• gnutls_crypto_digest_register: To override the digest algorithms backend.

• gnutls_crypto_rnd_register: To override the random number generator backend.

• gnutls_crypto_bigint_register: To override the big number number operations
backend.

• gnutls_crypto_pk_register: To override the public key encryption backend. This is
tied to the big number operations so either none or both of them should be overriden.

Appendix A: Support 152

Appendix A Support

A.1 Getting Help

A mailing list where users may help each other exists, and you can reach it by
sending e-mail to help-gnutls@gnu.org. Archives of the mailing list discussions, and
an interface to manage subscriptions, is available through the World Wide Web at
http://lists.gnu.org/mailman/listinfo/help-gnutls.

A mailing list for developers are also available, see http://www.gnu.org/software/gnutls/lists.html.
Bug reports should be sent to bug-gnutls@gnu.org, see Section A.3 [Bug Reports],
page 152.

A.2 Commercial Support

Commercial support is available for users of GnuTLS. The kind of support that can be
purchased may include:

• Implement new features. Such as a new TLS extension.

• Port GnuTLS to new platforms. This could include porting to an embedded platforms
that may need memory or size optimization.

• Integrating TLS as a security environment in your existing project.

• System design of components related to TLS.

If you are interested, please write to:

Simon Josefsson Datakonsult

Hagagatan 24

113 47 Stockholm

Sweden

E-mail: simon@josefsson.org

If your company provides support related to GnuTLS and would like to be mentioned here,
contact the authors.

A.3 Bug Reports

If you think you have found a bug in GnuTLS, please investigate it and report it.

• Please make sure that the bug is really in GnuTLS, and preferably also check that it
hasn’t already been fixed in the latest version.

• You have to send us a test case that makes it possible for us to reproduce the bug.

• You also have to explain what is wrong; if you get a crash, or if the results printed are
not good and in that case, in what way. Make sure that the bug report includes all
information you would need to fix this kind of bug for someone else.

Please make an effort to produce a self-contained report, with something definite that can
be tested or debugged. Vague queries or piecemeal messages are difficult to act on and
don’t help the development effort.

mailto:help-gnutls@gnu.org
http://lists.gnu.org/mailman/listinfo/help-gnutls
http://www.gnu.org/software/gnutls/lists.html
mailto:bug-gnutls@gnu.org

Appendix A: Support 153

If your bug report is good, we will do our best to help you to get a corrected version of the
software; if the bug report is poor, we won’t do anything about it (apart from asking you
to send better bug reports).

If you think something in this manual is unclear, or downright incorrect, or if the language
needs to be improved, please also send a note.

Send your bug report to:
‘bug-gnutls@gnu.org’

A.4 Contributing

If you want to submit a patch for inclusion – from solving a typo you discovered, up to
adding support for a new feature – you should submit it as a bug report, using the process
in Section A.3 [Bug Reports], page 152. There are some things that you can do to increase
the chances for it to be included in the official package.

Unless your patch is very small (say, under 10 lines) we require that you assign the copyright
of your work to the Free Software Foundation. This is to protect the freedom of the project.
If you have not already signed papers, we will send you the necessary information when you
submit your contribution.

For contributions that doesn’t consist of actual programming code, the only guidelines are
common sense. For code contributions, a number of style guides will help you:

• Coding Style. Follow the GNU Standards document.

If you normally code using another coding standard, there is no problem, but you
should use ‘indent’ to reformat the code before submitting your work.

• Use the unified diff format ‘diff -u’.

• Return errors. No reason whatsoever should abort the execution of the library. Even
memory allocation errors, e.g. when malloc return NULL, should work although result
in an error code.

• Design with thread safety in mind. Don’t use global variables. Don’t even write to
per-handle global variables unless the documented behaviour of the function you write
is to write to the per-handle global variable.

• Avoid using the C math library. It causes problems for embedded implementations,
and in most situations it is very easy to avoid using it.

• Document your functions. Use comments before each function headers, that, if properly
formatted, are extracted into Texinfo manuals and GTK-DOC web pages.

• Supply a ChangeLog and NEWS entries, where appropriate.

Appendix B: Error Codes and Descriptions 154

Appendix B Error Codes and Descriptions

The error codes used throughout the library are described below. The return code GNUTLS_
E_SUCCESS indicate successful operation, and is guaranteed to have the value 0, so you can
use it in logical expressions.

GNUTLS_E_AGAIN:

Resource temporarily unavailable, try again.

GNUTLS_E_ASN1_DER_ERROR:

ASN1 parser: Error in DER parsing.

GNUTLS_E_ASN1_DER_OVERFLOW:

ASN1 parser: Overflow in DER parsing.

GNUTLS_E_ASN1_ELEMENT_NOT_FOUND:

ASN1 parser: Element was not found.

GNUTLS_E_ASN1_GENERIC_ERROR:

ASN1 parser: Generic parsing error.

GNUTLS_E_ASN1_IDENTIFIER_NOT_FOUND:

ASN1 parser: Identifier was not found

GNUTLS_E_ASN1_SYNTAX_ERROR:

ASN1 parser: Syntax error.

GNUTLS_E_ASN1_TAG_ERROR:

ASN1 parser: Error in TAG.

GNUTLS_E_ASN1_TAG_IMPLICIT:

ASN1 parser: error in implicit tag

GNUTLS_E_ASN1_TYPE_ANY_ERROR:

ASN1 parser: Error in type ’ANY’.

GNUTLS_E_ASN1_VALUE_NOT_FOUND:

ASN1 parser: Value was not found.

GNUTLS_E_ASN1_VALUE_NOT_VALID:

ASN1 parser: Value is not valid.

GNUTLS_E_BAD_COOKIE:

The cookie was bad.

GNUTLS_E_BASE64_DECODING_ERROR:

Base64 decoding error.

GNUTLS_E_BASE64_ENCODING_ERROR:

Base64 encoding error.

GNUTLS_E_BASE64_UNEXPECTED_HEADER_ERROR:

Base64 unexpected header error.

GNUTLS_E_CERTIFICATE_ERROR:

Error in the certificate.

Appendix B: Error Codes and Descriptions 155

GNUTLS_E_CERTIFICATE_KEY_MISMATCH:

The certificate and the given key do not match.

GNUTLS_E_CERTIFICATE_LIST_UNSORTED:

The provided X.509 certificate list is not sorted (in subject to issuer order)

GNUTLS_E_CHANNEL_BINDING_NOT_AVAILABLE:

Channel binding data not available

GNUTLS_E_COMPRESSION_FAILED:

Compression of the TLS record packet has failed.

GNUTLS_E_CONSTRAINT_ERROR:

Some constraint limits were reached.

GNUTLS_E_CRYPTODEV_DEVICE_ERROR:

Error opening /dev/crypto

GNUTLS_E_CRYPTODEV_IOCTL_ERROR:

Error interfacing with /dev/crypto

GNUTLS_E_CRYPTO_ALREADY_REGISTERED:

There is already a crypto algorithm with lower priority.

GNUTLS_E_CRYPTO_INIT_FAILED:

The initialization of crypto backend has failed.

GNUTLS_E_DB_ERROR:

Error in Database backend.

GNUTLS_E_DECOMPRESSION_FAILED:

Decompression of the TLS record packet has failed.

GNUTLS_E_DECRYPTION_FAILED:

Decryption has failed.

GNUTLS_E_DH_PRIME_UNACCEPTABLE:

The Diffie-Hellman prime sent by the server is not acceptable (not long enough).

GNUTLS_E_ECC_NO_SUPPORTED_CURVES:

No supported ECC curves were found

GNUTLS_E_ECC_UNSUPPORTED_CURVE:

The curve is unsupported

GNUTLS_E_ENCRYPTION_FAILED:

Encryption has failed.

GNUTLS_E_ERROR_IN_FINISHED_PACKET:

An error was encountered at the TLS Finished packet calculation.

GNUTLS_E_EXPIRED:

The requested session has expired.

GNUTLS_E_FATAL_ALERT_RECEIVED:

A TLS fatal alert has been received.

Appendix B: Error Codes and Descriptions 156

GNUTLS_E_FILE_ERROR:

Error while reading file.

GNUTLS_E_GOT_APPLICATION_DATA:

TLS Application data were received, while expecting handshake data.

GNUTLS_E_HANDSHAKE_TOO_LARGE:

The handshake data size is too large.

GNUTLS_E_HASH_FAILED:

Hashing has failed.

GNUTLS_E_IA_VERIFY_FAILED:

Verifying TLS/IA phase checksum failed

GNUTLS_E_ILLEGAL_PARAMETER:

An illegal parameter was found.

GNUTLS_E_ILLEGAL_SRP_USERNAME:

The SRP username supplied is illegal.

GNUTLS_E_INCOMPATIBLE_GCRYPT_LIBRARY:

The crypto library version is too old.

GNUTLS_E_INCOMPATIBLE_LIBTASN1_LIBRARY:

The tasn1 library version is too old.

GNUTLS_E_INCOMPAT_DSA_KEY_WITH_TLS_PROTOCOL:

The given DSA key is incompatible with the selected TLS protocol.

GNUTLS_E_INSUFFICIENT_CREDENTIALS:

Insufficient credentials for that request.

GNUTLS_E_INTERNAL_ERROR:

GnuTLS internal error.

GNUTLS_E_INTERRUPTED:

Function was interrupted.

GNUTLS_E_INVALID_PASSWORD:

The given password contains invalid characters.

GNUTLS_E_INVALID_REQUEST:

The request is invalid.

GNUTLS_E_INVALID_SESSION:

The specified session has been invalidated for some reason.

GNUTLS_E_KEY_USAGE_VIOLATION:

Key usage violation in certificate has been detected.

GNUTLS_E_LARGE_PACKET:

A large TLS record packet was received.

GNUTLS_E_LOCKING_ERROR:

Thread locking error

Appendix B: Error Codes and Descriptions 157

GNUTLS_E_MAC_VERIFY_FAILED:

The Message Authentication Code verification failed.

GNUTLS_E_MEMORY_ERROR:

Internal error in memory allocation.

GNUTLS_E_MPI_PRINT_FAILED:

Could not export a large integer.

GNUTLS_E_MPI_SCAN_FAILED:

The scanning of a large integer has failed.

GNUTLS_E_NO_CERTIFICATE_FOUND:

No certificate was found.

GNUTLS_E_NO_CIPHER_SUITES:

No supported cipher suites have been found.

GNUTLS_E_NO_COMPRESSION_ALGORITHMS:

No supported compression algorithms have been found.

GNUTLS_E_NO_TEMPORARY_DH_PARAMS:

No temporary DH parameters were found.

GNUTLS_E_NO_TEMPORARY_RSA_PARAMS:

No temporary RSA parameters were found.

GNUTLS_E_OPENPGP_FINGERPRINT_UNSUPPORTED:

The OpenPGP fingerprint is not supported.

GNUTLS_E_OPENPGP_GETKEY_FAILED:

Could not get OpenPGP key.

GNUTLS_E_OPENPGP_KEYRING_ERROR:

Error loading the keyring.

GNUTLS_E_OPENPGP_PREFERRED_KEY_ERROR:

The OpenPGP key has not a preferred key set.

GNUTLS_E_OPENPGP_SUBKEY_ERROR:

Could not find OpenPGP subkey.

GNUTLS_E_OPENPGP_UID_REVOKED:

The OpenPGP User ID is revoked.

GNUTLS_E_PARSING_ERROR:

Error in parsing.

GNUTLS_E_PKCS11_ATTRIBUTE_ERROR:

PKCS #11 error in attribute

GNUTLS_E_PKCS11_DATA_ERROR:

PKCS #11 error in data

GNUTLS_E_PKCS11_DEVICE_ERROR:

PKCS #11 error in device

Appendix B: Error Codes and Descriptions 158

GNUTLS_E_PKCS11_ERROR:

PKCS #11 error.

GNUTLS_E_PKCS11_KEY_ERROR:

PKCS #11 error in key

GNUTLS_E_PKCS11_LOAD_ERROR:

PKCS #11 initialization error.

GNUTLS_E_PKCS11_PIN_ERROR:

PKCS #11 error in PIN.

GNUTLS_E_PKCS11_PIN_EXPIRED:

PKCS #11 PIN expired

GNUTLS_E_PKCS11_PIN_LOCKED:

PKCS #11 PIN locked

GNUTLS_E_PKCS11_REQUESTED_OBJECT_NOT_AVAILBLE:

The requested PKCS #11 object is not available

GNUTLS_E_PKCS11_SESSION_ERROR:

PKCS #11 error in session

GNUTLS_E_PKCS11_SIGNATURE_ERROR:

PKCS #11 error in signature

GNUTLS_E_PKCS11_SLOT_ERROR:

PKCS #11 error in slot

GNUTLS_E_PKCS11_TOKEN_ERROR:

PKCS #11 error in token

GNUTLS_E_PKCS11_UNSUPPORTED_FEATURE_ERROR:

PKCS #11 unsupported feature

GNUTLS_E_PKCS11_USER_ERROR:

PKCS #11 user error

GNUTLS_E_PKCS1_WRONG_PAD:

Wrong padding in PKCS1 packet.

GNUTLS_E_PK_DECRYPTION_FAILED:

Public key decryption has failed.

GNUTLS_E_PK_ENCRYPTION_FAILED:

Public key encryption has failed.

GNUTLS_E_PK_SIGN_FAILED:

Public key signing has failed.

GNUTLS_E_PK_SIG_VERIFY_FAILED:

Public key signature verification has failed.

GNUTLS_E_PREMATURE_TERMINATION:

The TLS connection was non-properly terminated.

Appendix B: Error Codes and Descriptions 159

GNUTLS_E_PULL_ERROR:

Error in the pull function.

GNUTLS_E_PUSH_ERROR:

Error in the push function.

GNUTLS_E_RANDOM_FAILED:

Failed to acquire random data.

GNUTLS_E_RECEIVED_ILLEGAL_EXTENSION:

An illegal TLS extension was received.

GNUTLS_E_RECEIVED_ILLEGAL_PARAMETER:

An illegal parameter has been received.

GNUTLS_E_RECORD_LIMIT_REACHED:

The upper limit of record packet sequence numbers has been reached. Wow!

GNUTLS_E_REHANDSHAKE:

Rehandshake was requested by the peer.

GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE:

The requested data were not available.

GNUTLS_E_SAFE_RENEGOTIATION_FAILED:

Safe renegotiation failed.

GNUTLS_E_SHORT_MEMORY_BUFFER:

The given memory buffer is too short to hold parameters.

GNUTLS_E_SRP_PWD_ERROR:

Error in password file.

GNUTLS_E_SRP_PWD_PARSING_ERROR:

Parsing error in password file.

GNUTLS_E_SUCCESS:

Success.

GNUTLS_E_TIMEDOUT:

The operation timed out

GNUTLS_E_TOO_MANY_EMPTY_PACKETS:

Too many empty record packets have been received.

GNUTLS_E_TOO_MANY_HANDSHAKE_PACKETS:

Too many handshake packets have been received.

GNUTLS_E_UNEXPECTED_HANDSHAKE_PACKET:

An unexpected TLS handshake packet was received.

GNUTLS_E_UNEXPECTED_PACKET:

An unexpected TLS packet was received.

GNUTLS_E_UNEXPECTED_PACKET_LENGTH:

A TLS packet with unexpected length was received.

Appendix B: Error Codes and Descriptions 160

GNUTLS_E_UNKNOWN_ALGORITHM:

The specified algorithm or protocol is unknown.

GNUTLS_E_UNKNOWN_CIPHER_SUITE:

Could not negotiate a supported cipher suite.

GNUTLS_E_UNKNOWN_CIPHER_TYPE:

The cipher type is unsupported.

GNUTLS_E_UNKNOWN_COMPRESSION_ALGORITHM:

Could not negotiate a supported compression method.

GNUTLS_E_UNKNOWN_HASH_ALGORITHM:

The hash algorithm is unknown.

GNUTLS_E_UNKNOWN_PKCS_BAG_TYPE:

The PKCS structure’s bag type is unknown.

GNUTLS_E_UNKNOWN_PKCS_CONTENT_TYPE:

The PKCS structure’s content type is unknown.

GNUTLS_E_UNKNOWN_PK_ALGORITHM:

An unknown public key algorithm was encountered.

GNUTLS_E_UNKNOWN_SRP_USERNAME:

The SRP username supplied is unknown.

GNUTLS_E_UNSAFE_RENEGOTIATION_DENIED:

Unsafe renegotiation denied.

GNUTLS_E_UNSUPPORTED_CERTIFICATE_TYPE:

The certificate type is not supported.

GNUTLS_E_UNSUPPORTED_SIGNATURE_ALGORITHM:

The signature algorithm is not supported.

GNUTLS_E_UNSUPPORTED_VERSION_PACKET:

A record packet with illegal version was received.

GNUTLS_E_UNWANTED_ALGORITHM:

An algorithm that is not enabled was negotiated.

GNUTLS_E_USER_ERROR:

The operation was cancelled due to user error

GNUTLS_E_WARNING_ALERT_RECEIVED:

A TLS warning alert has been received.

GNUTLS_E_WARNING_IA_FPHF_RECEIVED:

Received a TLS/IA Final Phase Finished message

GNUTLS_E_WARNING_IA_IPHF_RECEIVED:

Received a TLS/IA Intermediate Phase Finished message

GNUTLS_E_X509_UNKNOWN_SAN:

Unknown Subject Alternative name in X.509 certificate.

Appendix B: Error Codes and Descriptions 161

GNUTLS_E_X509_UNSUPPORTED_ATTRIBUTE:

The certificate has unsupported attributes.

GNUTLS_E_X509_UNSUPPORTED_CRITICAL_EXTENSION:

Unsupported critical extension in X.509 certificate.

GNUTLS_E_X509_UNSUPPORTED_OID:

The OID is not supported.

Appendix C: API reference 162

Appendix C API reference

C.1 Core TLS API

The prototypes for the following functions lie in ‘gnutls/gnutls.h’.

gnutls alert get

[Function]gnutls_alert_description_t gnutls_alert_get (gnutls session t
session)

session: is a gnutls_session_t structure.

This function will return the last alert number received. This function should be called
when GNUTLS_E_WARNING_ALERT_RECEIVED or GNUTLS_E_FATAL_ALERT_RECEIVED er-
rors are returned by a gnutls function. The peer may send alerts if he encounters an
error. If no alert has been received the returned value is undefined.

Returns: the last alert received, a gnutls_alert_description_t value.

gnutls alert get name

[Function]const char * gnutls_alert_get_name (gnutls alert description t
alert)

alert: is an alert number.

This function will return a string that describes the given alert number, or NULL. See
gnutls_alert_get().

Returns: string corresponding to gnutls_alert_description_t value.

gnutls alert get strname

[Function]const char * gnutls_alert_get_strname (gnutls alert description t
alert)

alert: is an alert number.

This function will return a string of the name of the alert.

Returns: string corresponding to gnutls_alert_description_t value.

Since: 3.0.0

gnutls alert send

[Function]int gnutls_alert_send (gnutls session t session , gnutls alert level t
level , gnutls alert description t desc)

session: is a gnutls_session_t structure.

level: is the level of the alert

desc: is the alert description

This function will send an alert to the peer in order to inform him of something
important (eg. his Certificate could not be verified). If the alert level is Fatal then
the peer is expected to close the connection, otherwise he may ignore the alert and
continue.

Appendix C: API reference 163

The error code of the underlying record send function will be returned, so you may
also receive GNUTLS_E_INTERRUPTED or GNUTLS_E_AGAIN as well.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

gnutls alert send appropriate

[Function]int gnutls_alert_send_appropriate (gnutls session t session , int
err)

session: is a gnutls_session_t structure.

err: is an integer

Sends an alert to the peer depending on the error code returned by a gnutls function.
This function will call gnutls_error_to_alert() to determine the appropriate alert
to send.

This function may also return GNUTLS_E_AGAIN, or GNUTLS_E_INTERRUPTED.

If the return value is GNUTLS_E_INVALID_REQUEST, then no alert has been sent to the
peer.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

gnutls anon allocate client credentials

[Function]int gnutls_anon_allocate_client_credentials
(gnutls anon client credentials t * sc)

sc: is a pointer to a gnutls_anon_client_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to allocate it.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls anon allocate server credentials

[Function]int gnutls_anon_allocate_server_credentials
(gnutls anon server credentials t * sc)

sc: is a pointer to a gnutls_anon_server_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to allocate it.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls anon free client credentials

[Function]void gnutls_anon_free_client_credentials
(gnutls anon client credentials t sc)

sc: is a gnutls_anon_client_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to free (deallocate) it.

Appendix C: API reference 164

gnutls anon free server credentials

[Function]void gnutls_anon_free_server_credentials
(gnutls anon server credentials t sc)

sc: is a gnutls_anon_server_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to free (deallocate) it.

gnutls anon set params function

[Function]void gnutls_anon_set_params_function
(gnutls anon server credentials t res , gnutls params function * func)

res: is a gnutls anon server credentials t structure

func: is the function to be called

This function will set a callback in order for the server to get the Diffie-Hellman or
RSA parameters for anonymous authentication. The callback should return GNUTLS_

E_SUCCESS (0) on success.

gnutls anon set server dh params

[Function]void gnutls_anon_set_server_dh_params
(gnutls anon server credentials t res , gnutls dh params t dh_params)

res: is a gnutls anon server credentials t structure

dh params: is a structure that holds Diffie-Hellman parameters.

This function will set the Diffie-Hellman parameters for an anonymous server to use.
These parameters will be used in Anonymous Diffie-Hellman cipher suites.

gnutls anon set server params function

[Function]void gnutls_anon_set_server_params_function
(gnutls anon server credentials t res , gnutls params function * func)

res: is a gnutls certificate credentials t structure

func: is the function to be called

This function will set a callback in order for the server to get the Diffie-Hellman
parameters for anonymous authentication. The callback should return GNUTLS_E_

SUCCESS (0) on success.

gnutls auth client get type

[Function]gnutls_credentials_type_t gnutls_auth_client_get_type
(gnutls session t session)

session: is a gnutls_session_t structure.

Returns the type of credentials that were used for client authentication. The returned
information is to be used to distinguish the function used to access authentication
data.

Returns: The type of credentials for the client authentication schema, a gnutls_

credentials_type_t type.

Appendix C: API reference 165

gnutls auth get type

[Function]gnutls_credentials_type_t gnutls_auth_get_type
(gnutls session t session)

session: is a gnutls_session_t structure.

Returns type of credentials for the current authentication schema. The returned
information is to be used to distinguish the function used to access authentication
data.

Eg. for CERTIFICATE ciphersuites (key exchange algorithms: GNUTLS_KX_RSA,
GNUTLS_KX_DHE_RSA), the same function are to be used to access the authentication
data.

Returns: The type of credentials for the current authentication schema, a gnutls_

credentials_type_t type.

gnutls auth server get type

[Function]gnutls_credentials_type_t gnutls_auth_server_get_type
(gnutls session t session)

session: is a gnutls_session_t structure.

Returns the type of credentials that were used for server authentication. The returned
information is to be used to distinguish the function used to access authentication
data.

Returns: The type of credentials for the server authentication schema, a gnutls_

credentials_type_t type.

gnutls bye

[Function]int gnutls_bye (gnutls session t session , gnutls close request t how)
session: is a gnutls_session_t structure.

how : is an integer

Terminates the current TLS/SSL connection. The connection should have been initi-
ated using gnutls_handshake(). howshould be one of GNUTLS_SHUT_RDWR, GNUTLS_
SHUT_WR.

In case of GNUTLS_SHUT_RDWR the TLS session gets terminated and further receives
and sends will be disallowed. If the return value is zero you may continue using
the underlying transport layer. GNUTLS_SHUT_RDWR sends an alert containing a close
request and waits for the peer to reply with the same message.

In case of GNUTLS_SHUT_WR the TLS session gets terminated and further sends will
be disallowed. In order to reuse the connection you should wait for an EOF from the
peer. GNUTLS_SHUT_WR sends an alert containing a close request.

Note that not all implementations will properly terminate a TLS connection. Some of
them, usually for performance reasons, will terminate only the underlying transport
layer, and thus not distinguishing between a malicious party prematurely terminating
the connection and normal termination.

This function may also return GNUTLS_E_AGAIN or GNUTLS_E_INTERRUPTED; cf.
gnutls_record_get_direction().

Appendix C: API reference 166

Returns: GNUTLS_E_SUCCESS on success, or an error code, see function documentation
for entire semantics.

gnutls certificate activation time peers

[Function]time_t gnutls_certificate_activation_time_peers
(gnutls session t session)

session: is a gnutls session

This function will return the peer’s certificate activation time. This is the creation
time for openpgp keys.

Returns: (time t)-1 on error.

Deprecated: gnutls_certificate_verify_peers2() now verifies activation times.

gnutls certificate allocate credentials

[Function]int gnutls_certificate_allocate_credentials
(gnutls certificate credentials t * res)

res: is a pointer to a gnutls_certificate_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to allocate it.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls certificate client get request status

[Function]int gnutls_certificate_client_get_request_status
(gnutls session t session)

session: is a gnutls session

Get whether client certificate is requested or not.

Returns: 0 if the peer (server) did not request client authentication or 1 otherwise,
or a negative error code in case of error.

gnutls certificate expiration time peers

[Function]time_t gnutls_certificate_expiration_time_peers
(gnutls session t session)

session: is a gnutls session

This function will return the peer’s certificate expiration time.

Returns: (time t)-1 on error.

Deprecated: gnutls_certificate_verify_peers2() now verifies expiration times.

gnutls certificate free ca names

[Function]void gnutls_certificate_free_ca_names
(gnutls certificate credentials t sc)

sc: is a gnutls_certificate_credentials_t structure.

This function will delete all the CA name in the given credentials. Clients may call
this to save some memory since in client side the CA names are not used. Servers

Appendix C: API reference 167

might want to use this function if a large list of trusted CAs is present and sending the
names of it would just consume bandwidth without providing information to client.

CA names are used by servers to advertise the CAs they support to clients.

gnutls certificate free cas

[Function]void gnutls_certificate_free_cas (gnutls certificate credentials t
sc)

sc: is a gnutls_certificate_credentials_t structure.

This function will delete all the CAs associated with the given credentials. Servers
that do not use gnutls_certificate_verify_peers2() may call this to save some
memory.

gnutls certificate free credentials

[Function]void gnutls_certificate_free_credentials
(gnutls certificate credentials t sc)

sc: is a gnutls_certificate_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to free (deallocate) it.

This function does not free any temporary parameters associated with this structure
(ie RSA and DH parameters are not freed by this function).

gnutls certificate free crls

[Function]void gnutls_certificate_free_crls (gnutls certificate credentials t
sc)

sc: is a gnutls_certificate_credentials_t structure.

This function will delete all the CRLs associated with the given credentials.

gnutls certificate free keys

[Function]void gnutls_certificate_free_keys (gnutls certificate credentials t
sc)

sc: is a gnutls_certificate_credentials_t structure.

This function will delete all the keys and the certificates associated with the given
credentials. This function must not be called when a TLS negotiation that uses the
credentials is in progress.

gnutls certificate get issuer

[Function]int gnutls_certificate_get_issuer (gnutls certificate credentials t
sc , gnutls x509 crt t cert , gnutls x509 crt t* issuer , unsigned int flags)

sc: is a gnutls_certificate_credentials_t structure.

cert: is the certificate to find issuer for

issuer: Will hold the issuer if any. Should be treated as constant.

flags: Use zero.

Appendix C: API reference 168

This function will return the issuer of a given certificate.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0.0

gnutls certificate get ours

[Function]const gnutls_datum_t * gnutls_certificate_get_ours
(gnutls session t session)

session: is a gnutls session

Gets the certificate as sent to the peer in the last handshake. The certificate is in raw
(DER) format. No certificate list is being returned. Only the first certificate.

Returns: a pointer to a gnutls_datum_t containing our certificates, or NULL in case
of an error or if no certificate was used.

gnutls certificate get peers

[Function]const gnutls_datum_t * gnutls_certificate_get_peers
(gnutls session t session , unsigned int * list_size)

session: is a gnutls session

list size: is the length of the certificate list

Get the peer’s raw certificate (chain) as sent by the peer. These certificates are in raw
format (DER encoded for X.509). In case of a X.509 then a certificate list may be
present. The first certificate in the list is the peer’s certificate, following the issuer’s
certificate, then the issuer’s issuer etc.

In case of OpenPGP keys a single key will be returned in raw format.

Returns: a pointer to a gnutls_datum_t containing our certificates, or NULL in case
of an error or if no certificate was used.

gnutls certificate send x509 rdn sequence

[Function]void gnutls_certificate_send_x509_rdn_sequence
(gnutls session t session , int status)

session: is a pointer to a gnutls_session_t structure.

status: is 0 or 1

If status is non zero, this function will order gnutls not to send the rdnSequence in
the certificate request message. That is the server will not advertise its trusted CAs
to the peer. If status is zero then the default behaviour will take effect, which is to
advertise the server’s trusted CAs.

This function has no effect in clients, and in authentication methods other than
certificate with X.509 certificates.

gnutls certificate server set request

[Function]void gnutls_certificate_server_set_request (gnutls session t
session , gnutls certificate request t req)

session: is a gnutls_session_t structure.

Appendix C: API reference 169

req: is one of GNUTLS CERT REQUEST, GNUTLS CERT REQUIRE

This function specifies if we (in case of a server) are going to send a certificate request
message to the client. If reqis GNUTLS CERT REQUIRE then the server will return
an error if the peer does not provide a certificate. If you do not call this function then
the client will not be asked to send a certificate.

gnutls certificate set dh params

[Function]void gnutls_certificate_set_dh_params
(gnutls certificate credentials t res , gnutls dh params t dh_params)

res: is a gnutls certificate credentials t structure

dh params: is a structure that holds Diffie-Hellman parameters.

This function will set the Diffie-Hellman parameters for a certificate server to use.
These parameters will be used in Ephemeral Diffie-Hellman cipher suites. Note that
only a pointer to the parameters are stored in the certificate handle, so if you deal-
locate the parameters before the certificate is deallocated, you must change the pa-
rameters stored in the certificate first.

gnutls certificate set params function

[Function]void gnutls_certificate_set_params_function
(gnutls certificate credentials t res , gnutls params function * func)

res: is a gnutls certificate credentials t structure

func: is the function to be called

This function will set a callback in order for the server to get the Diffie-Hellman or
RSA parameters for certificate authentication. The callback should return GNUTLS_

E_SUCCESS (0) on success.

gnutls certificate set retrieve function

[Function]void gnutls_certificate_set_retrieve_function
(gnutls certificate credentials t cred , gnutls certificate retrieve function *
func)

cred: is a gnutls_certificate_credentials_t structure.

func: is the callback function

This function sets a callback to be called in order to retrieve the certificate to be
used in the handshake. You are advised to use gnutls_certificate_set_retrieve_
function2() because it is much more efficient in the processing it requires from
gnutls.

The callback’s function prototype is: int (*callback)(gnutls session t, const
gnutls datum t* req ca dn, int nreqs, const gnutls pk algorithm t* pk algos, int
pk algos length, gnutls retr2 st* st);

req_ca_certis only used in X.509 certificates. Contains a list with the CA names
that the server considers trusted. Normally we should send a certificate that is signed
by one of these CAs. These names are DER encoded. To get a more meaningful value
use the function gnutls_x509_rdn_get().

Appendix C: API reference 170

pk_algoscontains a list with server’s acceptable signature algorithms. The certificate
returned should support the server’s given algorithms.

stshould contain the certificates and private keys.

If the callback function is provided then gnutls will call it, in the handshake, after
the certificate request message has been received.

In server side pk algos and req ca dn are NULL.

The callback function should set the certificate list to be sent, and return 0 on success.
If no certificate was selected then the number of certificates should be set to zero.
The value (-1) indicates error and the handshake will be terminated.

Since: 3.0.0

gnutls certificate set verify flags

[Function]void gnutls_certificate_set_verify_flags
(gnutls certificate credentials t res , unsigned int flags)

res: is a gnutls certificate credentials t structure

flags: are the flags

This function will set the flags to be used at verification of the certificates. Flags
must be OR of the gnutls_certificate_verify_flags enumerations.

gnutls certificate set verify function

[Function]void gnutls_certificate_set_verify_function
(gnutls certificate credentials t cred , gnutls certificate verify function *
func)

cred: is a gnutls_certificate_credentials_t structure.

func: is the callback function

This function sets a callback to be called when peer’s certificate has been received in
order to verify it on receipt rather than doing after the handshake is completed.

The callback’s function prototype is: int (*callback)(gnutls session t);

If the callback function is provided then gnutls will call it, in the handshake, just
after the certificate message has been received. To verify or obtain the certificate
the gnutls_certificate_verify_peers2(), gnutls_certificate_type_get(),
gnutls_certificate_get_peers() functions can be used.

The callback function should return 0 for the handshake to continue or non-zero to
terminate.

Since: 2.10.0

gnutls certificate set verify limits

[Function]void gnutls_certificate_set_verify_limits
(gnutls certificate credentials t res , unsigned int max_bits , unsigned int
max_depth)

res: is a gnutls certificate credentials structure

max bits: is the number of bits of an acceptable certificate (default 8200)

Appendix C: API reference 171

max depth: is maximum depth of the verification of a certificate chain (default 5)

This function will set some upper limits for the default verification function, gnutls_
certificate_verify_peers2(), to avoid denial of service attacks. You can set them
to zero to disable limits.

gnutls certificate set x509 crl

[Function]int gnutls_certificate_set_x509_crl
(gnutls certificate credentials t res , gnutls x509 crl t * crl_list , int
crl_list_size)

res: is a gnutls_certificate_credentials_t structure.

crl list: is a list of trusted CRLs. They should have been verified before.

crl list size: holds the size of the crl list

This function adds the trusted CRLs in order to verify client or server certificates.
In case of a client this is not required to be called if the certificates are not verified
using gnutls_certificate_verify_peers2(). This function may be called multiple
times.

Returns: GNUTLS_E_SUCCESS (0) on success, or a negative error code.

Since: 2.4.0

gnutls certificate set x509 crl file

[Function]int gnutls_certificate_set_x509_crl_file
(gnutls certificate credentials t res , const char * crlfile ,
gnutls x509 crt fmt t type)

res: is a gnutls_certificate_credentials_t structure.

crlfile: is a file containing the list of verified CRLs (DER or PEM list)

type: is PEM or DER

This function adds the trusted CRLs in order to verify client or server certificates.
In case of a client this is not required to be called if the certificates are not verified
using gnutls_certificate_verify_peers2(). This function may be called multiple
times.

Returns: number of CRLs processed or a negative error code on error.

gnutls certificate set x509 crl mem

[Function]int gnutls_certificate_set_x509_crl_mem
(gnutls certificate credentials t res , const gnutls datum t * CRL ,
gnutls x509 crt fmt t type)

res: is a gnutls_certificate_credentials_t structure.

CRL: is a list of trusted CRLs. They should have been verified before.

type: is DER or PEM

This function adds the trusted CRLs in order to verify client or server certificates.
In case of a client this is not required to be called if the certificates are not verified
using gnutls_certificate_verify_peers2(). This function may be called multiple
times.

Appendix C: API reference 172

Returns: number of CRLs processed, or a negative error code on error.

gnutls certificate set x509 key

[Function]int gnutls_certificate_set_x509_key
(gnutls certificate credentials t res , gnutls x509 crt t * cert_list , int
cert_list_size , gnutls x509 privkey t key)

res: is a gnutls_certificate_credentials_t structure.

cert list: contains a certificate list (path) for the specified private key

cert list size: holds the size of the certificate list

key : is a gnutls x509 privkey t key

This function sets a certificate/private key pair in the gnutls certificate credentials t
structure. This function may be called more than once, in case multiple
keys/certificates exist for the server. For clients that wants to send more than its
own end entity certificate (e.g., also an intermediate CA cert) then put the certificate
chain in cert_list.

Returns: GNUTLS_E_SUCCESS (0) on success, or a negative error code.

Since: 2.4.0

gnutls certificate set x509 key file

[Function]int gnutls_certificate_set_x509_key_file
(gnutls certificate credentials t res , const char * certfile , const char *
keyfile , gnutls x509 crt fmt t type)

res: is a gnutls_certificate_credentials_t structure.

certfile: is a file that containing the certificate list (path) for the specified private key,
in PKCS7 format, or a list of certificates

keyfile: is a file that contains the private key

type: is PEM or DER

This function sets a certificate/private key pair in the gnutls certificate credentials t
structure. This function may be called more than once, in case multiple
keys/certificates exist for the server. For clients that need to send more than its own
end entity certificate, e.g., also an intermediate CA cert, then the certfilemust
contain the ordered certificate chain.

This function can also accept PKCS 11 URLs at keyfileand certfile. In that case
it will import the private key and certificate indicated by the URLs.

Returns: GNUTLS_E_SUCCESS (0) on success, or a negative error code.

gnutls certificate set x509 key mem

[Function]int gnutls_certificate_set_x509_key_mem
(gnutls certificate credentials t res , const gnutls datum t * cert , const
gnutls datum t * key , gnutls x509 crt fmt t type)

res: is a gnutls_certificate_credentials_t structure.

cert: contains a certificate list (path) for the specified private key

Appendix C: API reference 173

key : is the private key, or NULL

type: is PEM or DER

This function sets a certificate/private key pair in the gnutls certificate credentials t
structure. This function may be called more than once, in case multiple
keys/certificates exist for the server.

Note that the keyUsage (2.5.29.15) PKIX extension in X.509 certificates is supported.
This means that certificates intended for signing cannot be used for ciphersuites that
require encryption.

If the certificate and the private key are given in PEM encoding then the strings that
hold their values must be null terminated.

The keymay be NULL if you are using a sign callback, see gnutls_sign_callback_

set().

Returns: GNUTLS_E_SUCCESS (0) on success, or a negative error code.

gnutls certificate set x509 trust

[Function]int gnutls_certificate_set_x509_trust
(gnutls certificate credentials t res , gnutls x509 crt t * ca_list , int
ca_list_size)

res: is a gnutls_certificate_credentials_t structure.

ca list: is a list of trusted CAs

ca list size: holds the size of the CA list

This function adds the trusted CAs in order to verify client or server certificates.
In case of a client this is not required to be called if the certificates are not verified
using gnutls_certificate_verify_peers2(). This function may be called multiple
times.

In case of a server the CAs set here will be sent to the client if a certificate request is
sent. This can be disabled using gnutls_certificate_send_x509_rdn_sequence().

Returns: the number of certificates processed or a negative error code on error.

Since: 2.4.0

gnutls certificate set x509 trust file

[Function]int gnutls_certificate_set_x509_trust_file
(gnutls certificate credentials t cred , const char * cafile ,
gnutls x509 crt fmt t type)

cred: is a gnutls_certificate_credentials_t structure.

cafile: is a file containing the list of trusted CAs (DER or PEM list)

type: is PEM or DER

This function adds the trusted CAs in order to verify client or server certificates.
In case of a client this is not required to be called if the certificates are not verified
using gnutls_certificate_verify_peers2(). This function may be called multiple
times.

Appendix C: API reference 174

In case of a server the names of the CAs set here will be sent to the client if a certificate
request is sent. This can be disabled using gnutls_certificate_send_x509_rdn_

sequence().

This function can also accept PKCS 11 URLs. In that case it will import all certifi-
cates that are marked as trusted.

Returns: number of certificates processed, or a negative error code on error.

gnutls certificate set x509 trust mem

[Function]int gnutls_certificate_set_x509_trust_mem
(gnutls certificate credentials t res , const gnutls datum t * ca ,
gnutls x509 crt fmt t type)

res: is a gnutls_certificate_credentials_t structure.

ca: is a list of trusted CAs or a DER certificate

type: is DER or PEM

This function adds the trusted CAs in order to verify client or server certificates.
In case of a client this is not required to be called if the certificates are not verified
using gnutls_certificate_verify_peers2(). This function may be called multiple
times.

In case of a server the CAs set here will be sent to the client if a certificate request is
sent. This can be disabled using gnutls_certificate_send_x509_rdn_sequence().

Returns: the number of certificates processed or a negative error code on error.

gnutls certificate type get

[Function]gnutls_certificate_type_t gnutls_certificate_type_get
(gnutls session t session)

session: is a gnutls_session_t structure.

The certificate type is by default X.509, unless it is negotiated as a TLS extension.

Returns: the currently used gnutls_certificate_type_t certificate type.

gnutls certificate type get id

[Function]gnutls_certificate_type_t gnutls_certificate_type_get_id
(const char * name)

name: is a certificate type name

The names are compared in a case insensitive way.

Returns: a gnutls_certificate_type_t for the specified in a string certificate type,
or GNUTLS_CRT_UNKNOWN on error.

gnutls certificate type get name

[Function]const char * gnutls_certificate_type_get_name
(gnutls certificate type t type)

type: is a certificate type

Convert a gnutls_certificate_type_t type to a string.

Appendix C: API reference 175

Returns: a string that contains the name of the specified certificate type, or NULL in
case of unknown types.

gnutls certificate type list

[Function]const gnutls_certificate_type_t *
gnutls_certificate_type_list (void)

Get a list of certificate types. Note that to be able to use OpenPGP certificates, you
must link to libgnutls-extra and call gnutls_global_init_extra().

Returns: a (0)-terminated list of gnutls_certificate_type_t integers indicating
the available certificate types.

gnutls certificate verify peers2

[Function]int gnutls_certificate_verify_peers2 (gnutls session t session ,
unsigned int * status)

session: is a gnutls session

status: is the output of the verification

This function will try to verify the peer’s certificate and return its status
(trusted, invalid etc.). The value of statusshould be one or more of the
gnutls certificate status t enumerated elements bitwise or’d. To avoid denial of
service attacks some default upper limits regarding the certificate key size and chain
size are set. To override them use gnutls_certificate_set_verify_limits().

Note that you must also check the peer’s name in order to check if the verified cer-
tificate belongs to the actual peer.

This function uses gnutls_x509_crt_list_verify() with the CAs in the credentials
as trusted CAs.

Returns: a negative error code on error and GNUTLS_E_SUCCESS (0) on success.

gnutls check version

[Function]const char * gnutls_check_version (const char * req_version)
req version: version string to compare with, or NULL.

Check GnuTLS Library version.

See GNUTLS_VERSION for a suitable req_versionstring.

Returns: Check that the version of the library is at minimum the one given as a
string in req_versionand return the actual version string of the library; return NULL

if the condition is not met. If NULL is passed to this function no check is done and
only the version string is returned.

gnutls cipher get

[Function]gnutls_cipher_algorithm_t gnutls_cipher_get (gnutls session t
session)

session: is a gnutls_session_t structure.

Get currently used cipher.

Returns: the currently used cipher, a gnutls_cipher_algorithm_t type.

Appendix C: API reference 176

gnutls cipher get id

[Function]gnutls_cipher_algorithm_t gnutls_cipher_get_id (const char *
name)

name: is a cipher algorithm name

The names are compared in a case insensitive way.

Returns: return a gnutls_cipher_algorithm_t value corresponding to the specified
cipher, or GNUTLS_CIPHER_UNKNOWN on error.

gnutls cipher get key size

[Function]size_t gnutls_cipher_get_key_size (gnutls cipher algorithm t
algorithm)

algorithm: is an encryption algorithm

Get key size for cipher.

Returns: length (in bytes) of the given cipher’s key size, or 0 if the given cipher is
invalid.

gnutls cipher get name

[Function]const char * gnutls_cipher_get_name (gnutls cipher algorithm t
algorithm)

algorithm: is an encryption algorithm

Convert a gnutls_cipher_algorithm_t type to a string.

Returns: a pointer to a string that contains the name of the specified cipher, or NULL.

gnutls cipher list

[Function]const gnutls_cipher_algorithm_t * gnutls_cipher_list (
void)

Get a list of supported cipher algorithms. Note that not necessarily all ciphers are
supported as TLS cipher suites. For example, DES is not supported as a cipher suite,
but is supported for other purposes (e.g., PKCS8 or similar).

This function is not thread safe.

Returns: a (0)-terminated list of gnutls_cipher_algorithm_t integers indicating
the available ciphers.

gnutls cipher suite get name

[Function]const char * gnutls_cipher_suite_get_name
(gnutls kx algorithm t kx_algorithm , gnutls cipher algorithm t
cipher_algorithm , gnutls mac algorithm t mac_algorithm)

kx algorithm: is a Key exchange algorithm

cipher algorithm: is a cipher algorithm

mac algorithm: is a MAC algorithm

Note that the full cipher suite name must be prepended by TLS or SSL depending of
the protocol in use.

Appendix C: API reference 177

Returns: a string that contains the name of a TLS cipher suite, specified by the given
algorithms, or NULL.

gnutls cipher suite info

[Function]const char * gnutls_cipher_suite_info (size t idx , unsigned char
* cs_id , gnutls kx algorithm t * kx , gnutls cipher algorithm t * cipher ,
gnutls mac algorithm t * mac , gnutls protocol t * min_version)

idx: index of cipher suite to get information about, starts on 0.

cs id: output buffer with room for 2 bytes, indicating cipher suite value

kx: output variable indicating key exchange algorithm, or NULL.

cipher: output variable indicating cipher, or NULL.

mac: output variable indicating MAC algorithm, or NULL.

min version: output variable indicating TLS protocol version, or NULL.

Get information about supported cipher suites. Use the function iteratively to get
information about all supported cipher suites. Call with idx=0 to get information
about first cipher suite, then idx=1 and so on until the function returns NULL.

Returns: the name of idxcipher suite, and set the information about the cipher suite
in the output variables. If idxis out of bounds, NULL is returned.

gnutls compression get

[Function]gnutls_compression_method_t gnutls_compression_get
(gnutls session t session)

session: is a gnutls_session_t structure.

Get currently used compression algorithm.

Returns: the currently used compression method, a gnutls_compression_method_t

value.

gnutls compression get id

[Function]gnutls_compression_method_t gnutls_compression_get_id
(const char * name)

name: is a compression method name

The names are compared in a case insensitive way.

Returns: an id of the specified in a string compression method, or GNUTLS_COMP_

UNKNOWN on error.

gnutls compression get name

[Function]const char * gnutls_compression_get_name
(gnutls compression method t algorithm)

algorithm: is a Compression algorithm

Convert a gnutls_compression_method_t value to a string.

Returns: a pointer to a string that contains the name of the specified compression
algorithm, or NULL.

Appendix C: API reference 178

gnutls compression list

[Function]const gnutls_compression_method_t *
gnutls_compression_list (void)

Get a list of compression methods.

Returns: a zero-terminated list of gnutls_compression_method_t integers indicat-
ing the available compression methods.

gnutls credentials clear

[Function]void gnutls_credentials_clear (gnutls session t session)
session: is a gnutls_session_t structure.

Clears all the credentials previously set in this session.

gnutls credentials set

[Function]int gnutls_credentials_set (gnutls session t session ,
gnutls credentials type t type , void * cred)

session: is a gnutls_session_t structure.

type: is the type of the credentials

cred: is a pointer to a structure.

Sets the needed credentials for the specified type. Eg username, password - or public
and private keys etc. The credparameter is a structure that depends on the specified
type and on the current session (client or server).

In order to minimize memory usage, and share credentials between several threads
gnutls keeps a pointer to cred, and not the whole cred structure. Thus you will have
to keep the structure allocated until you call gnutls_deinit().

For GNUTLS_CRD_ANON, credshould be gnutls_anon_client_credentials_t in case
of a client. In case of a server it should be gnutls_anon_server_credentials_t.

For GNUTLS_CRD_SRP, credshould be gnutls_srp_client_credentials_t in case of
a client, and gnutls_srp_server_credentials_t, in case of a server.

For GNUTLS_CRD_CERTIFICATE, credshould be gnutls_certificate_credentials_

t.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

gnutls db check entry

[Function]int gnutls_db_check_entry (gnutls session t session ,
gnutls datum t session_entry)

session: is a gnutls_session_t structure.

session entry : is the session data (not key)

Check if database entry has expired. This function is to be used when you want to
clear unnecessary sessions which occupy space in your backend.

Returns: Returns GNUTLS_E_EXPIRED, if the database entry has expired or 0 other-
wise.

Appendix C: API reference 179

gnutls db get ptr

[Function]void * gnutls_db_get_ptr (gnutls session t session)
session: is a gnutls_session_t structure.

Get db function pointer.

Returns: the pointer that will be sent to db store, retrieve and delete functions, as
the first argument.

gnutls db remove session

[Function]void gnutls_db_remove_session (gnutls session t session)
session: is a gnutls_session_t structure.

This function will remove the current session data from the session database. This
will prevent future handshakes reusing these session data. This function should be
called if a session was terminated abnormally, and before gnutls_deinit() is called.

Normally gnutls_deinit() will remove abnormally terminated sessions.

gnutls db set cache expiration

[Function]void gnutls_db_set_cache_expiration (gnutls session t session ,
int seconds)

session: is a gnutls_session_t structure.

seconds: is the number of seconds.

Set the expiration time for resumed sessions. The default is 3600 (one hour) at the
time of this writing.

gnutls db set ptr

[Function]void gnutls_db_set_ptr (gnutls session t session , void * ptr)
session: is a gnutls_session_t structure.

ptr: is the pointer

Sets the pointer that will be provided to db store, retrieve and delete functions, as
the first argument.

gnutls db set remove function

[Function]void gnutls_db_set_remove_function (gnutls session t session ,
gnutls db remove func rem_func)

session: is a gnutls_session_t structure.

rem func: is the function.

Sets the function that will be used to remove data from the resumed sessions database.
This function must return 0 on success.

The first argument to rem_funcwill be null unless gnutls_db_set_ptr() has been
called.

Appendix C: API reference 180

gnutls db set retrieve function

[Function]void gnutls_db_set_retrieve_function (gnutls session t session ,
gnutls db retr func retr_func)

session: is a gnutls_session_t structure.

retr func: is the function.

Sets the function that will be used to retrieve data from the resumed sessions database.
This function must return a gnutls datum t containing the data on success, or a
gnutls datum t containing null and 0 on failure.

The datum’s data must be allocated using the function gnutls_malloc().

The first argument to retr_funcwill be null unless gnutls_db_set_ptr() has been
called.

gnutls db set store function

[Function]void gnutls_db_set_store_function (gnutls session t session ,
gnutls db store func store_func)

session: is a gnutls_session_t structure.

store func: is the function

Sets the function that will be used to store data in the resumed sessions database.
This function must return 0 on success.

The first argument to store_funcwill be null unless gnutls_db_set_ptr() has been
called.

gnutls deinit

[Function]void gnutls_deinit (gnutls session t session)
session: is a gnutls_session_t structure.

This function clears all buffers associated with the session. This function will also
remove session data from the session database if the session was terminated abnor-
mally.

gnutls dh get group

[Function]int gnutls_dh_get_group (gnutls session t session , gnutls datum t
* raw_gen , gnutls datum t * raw_prime)

session: is a gnutls session

raw gen: will hold the generator.

raw prime: will hold the prime.

This function will return the group parameters used in the last Diffie-Hellman key
exchange with the peer. These are the prime and the generator used. This func-
tion should be used for both anonymous and ephemeral Diffie-Hellman. The output
parameters must be freed with gnutls_free().

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

Appendix C: API reference 181

gnutls dh get peers public bits

[Function]int gnutls_dh_get_peers_public_bits (gnutls session t session)
session: is a gnutls session

Get the Diffie-Hellman public key bit size. Can be used for both anonymous and
ephemeral Diffie-Hellman.

Returns: The public key bit size used in the last Diffie-Hellman key exchange with
the peer, or a negative error code in case of error.

gnutls dh get prime bits

[Function]int gnutls_dh_get_prime_bits (gnutls session t session)
session: is a gnutls session

This function will return the bits of the prime used in the last Diffie-Hellman key
exchange with the peer. Should be used for both anonymous and ephemeral Diffie-
Hellman. Note that some ciphers, like RSA and DSA without DHE, do not use a
Diffie-Hellman key exchange, and then this function will return 0.

Returns: The Diffie-Hellman bit strength is returned, or 0 if no Diffie-Hellman key
exchange was done, or a negative error code on failure.

gnutls dh get pubkey

[Function]int gnutls_dh_get_pubkey (gnutls session t session , gnutls datum t
* raw_key)

session: is a gnutls session

raw key : will hold the public key.

This function will return the peer’s public key used in the last Diffie-Hellman key
exchange. This function should be used for both anonymous and ephemeral Diffie-
Hellman. The output parameters must be freed with gnutls_free().

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

gnutls dh get secret bits

[Function]int gnutls_dh_get_secret_bits (gnutls session t session)
session: is a gnutls session

This function will return the bits used in the last Diffie-Hellman key exchange with
the peer. Should be used for both anonymous and ephemeral Diffie-Hellman.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

gnutls dh params cpy

[Function]int gnutls_dh_params_cpy (gnutls dh params t dst ,
gnutls dh params t src)

dst: Is the destination structure, which should be initialized.

src: Is the source structure

Appendix C: API reference 182

This function will copy the DH parameters structure from source to destination.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

gnutls dh params deinit

[Function]void gnutls_dh_params_deinit (gnutls dh params t dh_params)
dh params: Is a structure that holds the prime numbers

This function will deinitialize the DH parameters structure.

gnutls dh params export pkcs3

[Function]int gnutls_dh_params_export_pkcs3 (gnutls dh params t params ,
gnutls x509 crt fmt t format , unsigned char * params_data , size t *
params_data_size)

params: Holds the DH parameters

format: the format of output params. One of PEM or DER.

params data: will contain a PKCS3 DHParams structure PEM or DER encoded

params data size: holds the size of params data (and will be replaced by the actual
size of parameters)

This function will export the given dh parameters to a PKCS3 DHParams structure.
This is the format generated by "openssl dhparam" tool. If the buffer provided is
not long enough to hold the output, then GNUTLS E SHORT MEMORY BUFFER
will be returned.

If the structure is PEM encoded, it will have a header of "BEGIN DH PARAME-
TERS".

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

gnutls dh params export raw

[Function]int gnutls_dh_params_export_raw (gnutls dh params t params ,
gnutls datum t * prime , gnutls datum t * generator , unsigned int * bits)

params: Holds the DH parameters

prime: will hold the new prime

generator: will hold the new generator

bits: if non null will hold the secret key’s number of bits

This function will export the pair of prime and generator for use in the Diffie-Hellman
key exchange. The new parameters will be allocated using gnutls_malloc() and will
be stored in the appropriate datum.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

Appendix C: API reference 183

gnutls dh params generate2

[Function]int gnutls_dh_params_generate2 (gnutls dh params t params ,
unsigned int bits)

params: Is the structure that the DH parameters will be stored

bits: is the prime’s number of bits

This function will generate a new pair of prime and generator for use in the Diffie-
Hellman key exchange. The new parameters will be allocated using gnutls_malloc()
and will be stored in the appropriate datum. This function is normally slow.

Do not set the number of bits directly, use gnutls_sec_param_to_pk_bits() to get
bits for GNUTLS_PK_DSA. Also note that the DH parameters are only useful to servers.
Since clients use the parameters sent by the server, it’s of no use to call this in client
side.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

gnutls dh params import pkcs3

[Function]int gnutls_dh_params_import_pkcs3 (gnutls dh params t params ,
const gnutls datum t * pkcs3_params , gnutls x509 crt fmt t format)

params: A structure where the parameters will be copied to

pkcs3 params: should contain a PKCS3 DHParams structure PEM or DER encoded

format: the format of params. PEM or DER.

This function will extract the DHParams found in a PKCS3 formatted structure.
This is the format generated by "openssl dhparam" tool.

If the structure is PEM encoded, it should have a header of "BEGIN DH PARAME-
TERS".

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

gnutls dh params import raw

[Function]int gnutls_dh_params_import_raw (gnutls dh params t dh_params ,
const gnutls datum t * prime , const gnutls datum t * generator)

dh params: Is a structure that will hold the prime numbers

prime: holds the new prime

generator: holds the new generator

This function will replace the pair of prime and generator for use in the Diffie-Hellman
key exchange. The new parameters should be stored in the appropriate gnutls datum.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

Appendix C: API reference 184

gnutls dh params init

[Function]int gnutls_dh_params_init (gnutls dh params t * dh_params)
dh params: Is a structure that will hold the prime numbers

This function will initialize the DH parameters structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

gnutls dh set prime bits

[Function]void gnutls_dh_set_prime_bits (gnutls session t session , unsigned
int bits)

session: is a gnutls_session_t structure.

bits: is the number of bits

This function sets the number of bits, for use in a Diffie-Hellman key exchange. This
is used both in DH ephemeral and DH anonymous cipher suites. This will set the
minimum size of the prime that will be used for the handshake.

In the client side it sets the minimum accepted number of bits. If a server sends a
prime with less bits than that GNUTLS_E_DH_PRIME_UNACCEPTABLE will be returned
by the handshake.

This function has no effect in server side.

gnutls ecc curve get

[Function]gnutls_ecc_curve_t gnutls_ecc_curve_get (gnutls session t
session)

session: is a gnutls_session_t structure.

Returns the currently used elliptic curve. Only valid when using an elliptic curve
ciphersuite.

Returns: the currently used curve, a gnutls_ecc_curve_t type.

Since: 3.0.0

gnutls ecc curve get name

[Function]const char * gnutls_ecc_curve_get_name (gnutls ecc curve t
curve)

curve: is an ECC curve

Convert a gnutls_ecc_curve_t value to a string.

Returns: a string that contains the name of the specified curve or NULL.

Since: 3.0.0

gnutls ecc curve get size

[Function]int gnutls_ecc_curve_get_size (gnutls ecc curve t curve)
curve: is an ECC curve

Returns the size in bytes of the curve.

Appendix C: API reference 185

Returns: a the size or (0).

Since: 3.0.0

gnutls error is fatal

[Function]int gnutls_error_is_fatal (int error)
error: is a GnuTLS error code, a negative error code

If a GnuTLS function returns a negative error code you may feed that value to this
function to see if the error condition is fatal. Note that you may also want to check
the error code manually, since some non-fatal errors to the protocol (such as a warning
alert or a rehandshake request) may be fatal for your program.

This function is only useful if you are dealing with errors from the record layer or the
handshake layer.

Returns: 1 if the error code is fatal, for positive errorvalues, 0 is returned. For
unknown errorvalues, -1 is returned.

gnutls error to alert

[Function]int gnutls_error_to_alert (int err , int * level)
err: is a negative integer

level: the alert level will be stored there

Get an alert depending on the error code returned by a gnutls function. All alerts
sent by this function should be considered fatal. The only exception is when erris
GNUTLS_E_REHANDSHAKE, where a warning alert should be sent to the peer indicating
that no renegotiation will be performed.

If there is no mapping to a valid alert the alert to indicate internal error is returned.

Returns: the alert code to use for a particular error code.

gnutls fingerprint

[Function]int gnutls_fingerprint (gnutls digest algorithm t algo , const
gnutls datum t * data , void * result , size t * result_size)

algo: is a digest algorithm

data: is the data

result: is the place where the result will be copied (may be null).

result size: should hold the size of the result. The actual size of the returned result
will also be copied there.

This function will calculate a fingerprint (actually a hash), of the given data. The
result is not printable data. You should convert it to hex, or to something else
printable.

This is the usual way to calculate a fingerprint of an X.509 DER encoded certificate.
Note however that the fingerprint of an OpenPGP is not just a hash and cannot be
calculated with this function.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

Appendix C: API reference 186

gnutls global deinit

[Function]void gnutls_global_deinit (void)
This function deinitializes the global data, that were initialized using gnutls_global_
init().

Note! This function is not thread safe. See the discussion for gnutls_global_init()
for more information.

gnutls global init

[Function]int gnutls_global_init (void)
This function initializes the global data to defaults. Every gnutls application has a
global data which holds common parameters shared by gnutls session structures. You
should call gnutls_global_deinit() when gnutls usage is no longer needed

Note that this function will also initialize the underlying crypto backend, if it has not
been initialized before.

This function increments a global counter, so that gnutls_global_deinit() only
releases resources when it has been called as many times as gnutls_global_init().
This is useful when GnuTLS is used by more than one library in an application. This
function can be called many times, but will only do something the first time.

Note! This function is not thread safe. If two threads call this function simultaneously,
they can cause a race between checking the global counter and incrementing it, causing
both threads to execute the library initialization code. That would lead to a memory
leak. To handle this, your application could invoke this function after aquiring a
thread mutex. To ignore the potential memory leak is also an option.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

gnutls global set audit log function

[Function]void gnutls_global_set_audit_log_function
(gnutls audit log func log_func)

log func: it is the audit log function

This is the function where you set the logging function gnutls is going to use. This is
different from gnutls_global_set_log_function() because it will report the session
of the event if any. Note that that session might be null if there is no corresponding
TLS session.

gnutls_audit_log_funcis of the form, void (*gnutls audit log func)(
gnutls session t, int level, const char*);

Since: 3.0.0

gnutls global set log function

[Function]void gnutls_global_set_log_function (gnutls log func log_func)
log func: it’s a log function

Appendix C: API reference 187

This is the function where you set the logging function gnutls is going to use. This
function only accepts a character array. Normally you may not use this function since
it is only used for debugging purposes.

gnutls_log_funcis of the form, void (*gnutls log func)(int level, const char*);

gnutls global set log level

[Function]void gnutls_global_set_log_level (int level)
level: it’s an integer from 0 to 9.

This is the function that allows you to set the log level. The level is an integer between
0 and 9. Higher values mean more verbosity. The default value is 0. Larger values
should only be used with care, since they may reveal sensitive information.

Use a log level over 10 to enable all debugging options.

gnutls global set mem functions

[Function]void gnutls_global_set_mem_functions (gnutls alloc function
alloc_func , gnutls alloc function secure_alloc_func ,
gnutls is secure function is_secure_func , gnutls realloc function
realloc_func , gnutls free function free_func)

alloc func: it’s the default memory allocation function. Like malloc().

secure alloc func: This is the memory allocation function that will be used for sensi-
tive data.

is secure func: a function that returns 0 if the memory given is not secure. May be
NULL.

realloc func: A realloc function

free func: The function that frees allocated data. Must accept a NULL pointer.

This is the function where you set the memory allocation functions gnutls is going
to use. By default the libc’s allocation functions (malloc(), free()), are used by
gnutls, to allocate both sensitive and not sensitive data. This function is provided to
set the memory allocation functions to something other than the defaults

This function must be called before gnutls_global_init() is called. This function
is not thread safe.

gnutls global set mutex

[Function]void gnutls_global_set_mutex (mutex init func init ,
mutex deinit func deinit , mutex lock func lock , mutex unlock func
unlock)

init: mutex initialization function

deinit: mutex deinitialization function

lock: mutex locking function

unlock: mutex unlocking function

With this function you are allowed to override the default mutex locks used in some
parts of gnutls and dependent libraries. This function should be used if you have

Appendix C: API reference 188

complete control of your program and libraries. Do not call this function from a
library. Instead only initialize gnutls and the default OS mutex locks will be used.

This function must be called before gnutls_global_init().

Since: 2.12.0

gnutls global set time function

[Function]void gnutls_global_set_time_function (gnutls time func
time_func)

time func: it’s the system time function, a gnutls_time_func() callback.

This is the function where you can override the default system time function. The
application provided function should behave the same as the standard function.

Since: 2.12.0

gnutls handshake

[Function]int gnutls_handshake (gnutls session t session)
session: is a gnutls_session_t structure.

This function does the handshake of the TLS/SSL protocol, and initializes the TLS
connection.

This function will fail if any problem is encountered, and will return a negative error
code. In case of a client, if the client has asked to resume a session, but the server
couldn’t, then a full handshake will be performed.

The non-fatal errors such as GNUTLS_E_AGAIN and GNUTLS_E_INTERRUPTED interrupt
the handshake procedure, which should be resumed later. Call this function again,
until it returns 0; cf. gnutls_record_get_direction() and gnutls_error_is_

fatal().

If this function is called by a server after a rehandshake request then GNUTLS_E_GOT_

APPLICATION_DATA or GNUTLS_E_WARNING_ALERT_RECEIVED may be returned. Note
that these are non fatal errors, only in the specific case of a rehandshake. Their
meaning is that the client rejected the rehandshake request or in the case of GNUTLS_
E_GOT_APPLICATION_DATA it might also mean that some data were pending.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

gnutls handshake get last in

[Function]gnutls_handshake_description_t
gnutls_handshake_get_last_in (gnutls session t session)

session: is a gnutls_session_t structure.

This function is only useful to check where the last performed handshake failed. If
the previous handshake succeed or was not performed at all then no meaningful value
will be returned.

Check gnutls_handshake_description_t in gnutls.h for the available handshake
descriptions.

Returns: the last handshake message type received, a gnutls_handshake_

description_t.

Appendix C: API reference 189

gnutls handshake get last out

[Function]gnutls_handshake_description_t
gnutls_handshake_get_last_out (gnutls session t session)

session: is a gnutls_session_t structure.

This function is only useful to check where the last performed handshake failed. If
the previous handshake succeed or was not performed at all then no meaningful value
will be returned.

Check gnutls_handshake_description_t in gnutls.h for the available handshake
descriptions.

Returns: the last handshake message type sent, a gnutls_handshake_description_

t.

gnutls handshake set max packet length

[Function]void gnutls_handshake_set_max_packet_length (gnutls session t
session , size t max)

session: is a gnutls_session_t structure.

max: is the maximum number.

This function will set the maximum size of all handshake messages. Handshakes over
this size are rejected with GNUTLS_E_HANDSHAKE_TOO_LARGE error code. The default
value is 48kb which is typically large enough. Set this to 0 if you do not want to set
an upper limit.

The reason for restricting the handshake message sizes are to limit Denial of Service
attacks.

gnutls handshake set post client hello function

[Function]void gnutls_handshake_set_post_client_hello_function
(gnutls session t session , gnutls handshake post client hello func func)

session: is a gnutls_session_t structure.

func: is the function to be called

This function will set a callback to be called after the client hello has been received
(callback valid in server side only). This allows the server to adjust settings based on
received extensions.

Those settings could be ciphersuites, requesting certificate, or anything else except
for version negotiation (this is done before the hello message is parsed).

This callback must return 0 on success or a gnutls error code to terminate the hand-
shake.

Warning: You should not use this function to terminate the handshake based on client
input unless you know what you are doing. Before the handshake is finished there is
no way to know if there is a man-in-the-middle attack being performed.

Appendix C: API reference 190

gnutls handshake set private extensions

[Function]void gnutls_handshake_set_private_extensions (gnutls session t
session , int allow)

session: is a gnutls_session_t structure.

allow : is an integer (0 or 1)

This function will enable or disable the use of private cipher suites (the ones that start
with 0xFF). By default or if allowis 0 then these cipher suites will not be advertized
nor used.

Currently GnuTLS does not include such cipher-suites or compression algorithms.

Enabling the private ciphersuites when talking to other than gnutls servers and clients
may cause interoperability problems.

gnutls hex2bin

[Function]int gnutls_hex2bin (const char * hex_data , size t hex_size , char *
bin_data , size t * bin_size)

hex data: string with data in hex format

hex size: size of hex data

bin data: output array with binary data

bin size: when calling should hold maximum size of bin_data, on return will hold
actual length of bin_data.

Convert a buffer with hex data to binary data.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

Since: 2.4.0

gnutls hex decode

[Function]int gnutls_hex_decode (const gnutls datum t * hex_data , char *
result , size t * result_size)

hex data: contain the encoded data

result: the place where decoded data will be copied

result size: holds the size of the result

This function will decode the given encoded data, using the hex encoding used by
PSK password files.

Note that hex data should be null terminated.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the buffer given is not long enough, or
0 on success.

gnutls hex encode

[Function]int gnutls_hex_encode (const gnutls datum t * data , char * result ,
size t * result_size)

data: contain the raw data

result: the place where hex data will be copied

Appendix C: API reference 191

result size: holds the size of the result

This function will convert the given data to printable data, using the hex encoding,
as used in the PSK password files.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the buffer given is not long enough, or
0 on success.

gnutls init

[Function]int gnutls_init (gnutls session t * session , unsigned int flags)
session: is a pointer to a gnutls_session_t structure.

flags: indicate if this session is to be used for server or client.

This function initializes the current session to null. Every session must be initialized
before use, so internal structures can be allocated. This function allocates structures
which can only be free’d by calling gnutls_deinit(). Returns GNUTLS_E_SUCCESS

(0) on success.

flagscan be one of GNUTLS_CLIENT and GNUTLS_SERVER. For a DTLS entity, the
flags GNUTLS_DATAGRAM and GNUTLS_NONBLOCK are also available. The latter flag will
enable a non-blocking operation of the DTLS timers.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls key generate

[Function]int gnutls_key_generate (gnutls datum t * key , unsigned int
key_size)

key : is a pointer to a gnutls_datum_t which will contain a newly created key.

key size: The number of bytes of the key.

Generates a random key of key_bytessize.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or an error code.

Since: 3.0.0

gnutls kx get

[Function]gnutls_kx_algorithm_t gnutls_kx_get (gnutls session t session)
session: is a gnutls_session_t structure.

Get currently used key exchange algorithm.

Returns: the key exchange algorithm used in the last handshake, a gnutls_kx_

algorithm_t value.

gnutls kx get id

[Function]gnutls_kx_algorithm_t gnutls_kx_get_id (const char * name)
name: is a KX name

Convert a string to a gnutls_kx_algorithm_t value. The names are compared in a
case insensitive way.

Returns: an id of the specified KX algorithm, or GNUTLS_KX_UNKNOWN on error.

Appendix C: API reference 192

gnutls kx get name

[Function]const char * gnutls_kx_get_name (gnutls kx algorithm t
algorithm)

algorithm: is a key exchange algorithm

Convert a gnutls_kx_algorithm_t value to a string.

Returns: a pointer to a string that contains the name of the specified key exchange
algorithm, or NULL.

gnutls kx list

[Function]const gnutls_kx_algorithm_t * gnutls_kx_list (void)
Get a list of supported key exchange algorithms.

This function is not thread safe.

Returns: a (0)-terminated list of gnutls_kx_algorithm_t integers indicating the
available key exchange algorithms.

gnutls mac get

[Function]gnutls_mac_algorithm_t gnutls_mac_get (gnutls session t
session)

session: is a gnutls_session_t structure.

Get currently used MAC algorithm.

Returns: the currently used mac algorithm, a gnutls_mac_algorithm_t value.

gnutls mac get id

[Function]gnutls_mac_algorithm_t gnutls_mac_get_id (const char * name)
name: is a MAC algorithm name

Convert a string to a gnutls_mac_algorithm_t value. The names are compared in
a case insensitive way.

Returns: a gnutls_mac_algorithm_t id of the specified MAC algorithm string, or
GNUTLS_MAC_UNKNOWN on failures.

gnutls mac get key size

[Function]size_t gnutls_mac_get_key_size (gnutls mac algorithm t
algorithm)

algorithm: is an encryption algorithm

Get size of MAC key.

Returns: length (in bytes) of the given MAC key size, or 0 if the given MAC algorithm
is invalid.

Appendix C: API reference 193

gnutls mac get name

[Function]const char * gnutls_mac_get_name (gnutls mac algorithm t
algorithm)

algorithm: is a MAC algorithm

Convert a gnutls_mac_algorithm_t value to a string.

Returns: a string that contains the name of the specified MAC algorithm, or NULL.

gnutls mac list

[Function]const gnutls_mac_algorithm_t * gnutls_mac_list (void)
Get a list of hash algorithms for use as MACs. Note that not necessarily all MACs are
supported in TLS cipher suites. For example, MD2 is not supported as a cipher suite,
but is supported for other purposes (e.g., X.509 signature verification or similar).

This function is not thread safe.

Returns: Return a (0)-terminated list of gnutls_mac_algorithm_t integers indicat-
ing the available MACs.

gnutls openpgp send cert

[Function]void gnutls_openpgp_send_cert (gnutls session t session ,
gnutls openpgp crt status t status)

session: is a pointer to a gnutls_session_t structure.

status: is one of GNUTLS OPENPGP CERT, or GNUTLS OPENPGP CERT FINGERPRINT

This function will order gnutls to send the key fingerprint instead of the key in the
initial handshake procedure. This should be used with care and only when there is
indication or knowledge that the server can obtain the client’s key.

gnutls pem base64 decode

[Function]int gnutls_pem_base64_decode (const char * header , const
gnutls datum t * b64_data , unsigned char * result , size t * result_size)

header: A null terminated string with the PEM header (eg. CERTIFICATE)

b64 data: contain the encoded data

result: the place where decoded data will be copied

result size: holds the size of the result

This function will decode the given encoded data. If the header given is non null this
function will search for "—–BEGIN header" and decode only this part. Otherwise it
will decode the first PEM packet found.

Returns: On success GNUTLS_E_SUCCESS (0) is returned, GNUTLS_E_SHORT_MEMORY_
BUFFER is returned if the buffer given is not long enough, or 0 on success.

gnutls pem base64 decode alloc

[Function]int gnutls_pem_base64_decode_alloc (const char * header , const
gnutls datum t * b64_data , gnutls datum t * result)

header: The PEM header (eg. CERTIFICATE)

Appendix C: API reference 194

b64 data: contains the encoded data

result: the place where decoded data lie

This function will decode the given encoded data. The decoded data will be allocated,
and stored into result. If the header given is non null this function will search for
"—–BEGIN header" and decode only this part. Otherwise it will decode the first
PEM packet found.

You should use gnutls_free() to free the returned data.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

gnutls pem base64 encode

[Function]int gnutls_pem_base64_encode (const char * msg , const
gnutls datum t * data , char * result , size t * result_size)

msg : is a message to be put in the header

data: contain the raw data

result: the place where base64 data will be copied

result size: holds the size of the result

This function will convert the given data to printable data, using the base64 encoding.
This is the encoding used in PEM messages.

The output string will be null terminated, although the size will not include the
terminating null.

Returns: On success GNUTLS_E_SUCCESS (0) is returned, GNUTLS_E_SHORT_MEMORY_
BUFFER is returned if the buffer given is not long enough, or 0 on success.

gnutls pem base64 encode alloc

[Function]int gnutls_pem_base64_encode_alloc (const char * msg , const
gnutls datum t * data , gnutls datum t * result)

msg : is a message to be put in the encoded header

data: contains the raw data

result: will hold the newly allocated encoded data

This function will convert the given data to printable data, using the base64 encoding.
This is the encoding used in PEM messages. This function will allocate the required
memory to hold the encoded data.

You should use gnutls_free() to free the returned data.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

gnutls perror

[Function]void gnutls_perror (int error)
error: is a GnuTLS error code, a negative error code

This function is like perror(). The only difference is that it accepts an error number
returned by a gnutls function.

Appendix C: API reference 195

gnutls pk algorithm get name

[Function]const char * gnutls_pk_algorithm_get_name
(gnutls pk algorithm t algorithm)

algorithm: is a pk algorithm

Convert a gnutls_pk_algorithm_t value to a string.

Returns: a string that contains the name of the specified public key algorithm, or
NULL.

gnutls pk bits to sec param

[Function]gnutls_sec_param_t gnutls_pk_bits_to_sec_param
(gnutls pk algorithm t algo , unsigned int bits)

algo: is a public key algorithm

bits: is the number of bits

This is the inverse of gnutls_sec_param_to_pk_bits(). Given an algorithm and
the number of bits, it will return the security parameter. This is a rough indication.

Returns: The security parameter.

Since: 2.12.0

gnutls pk get id

[Function]gnutls_pk_algorithm_t gnutls_pk_get_id (const char * name)
name: is a string containing a public key algorithm name.

Convert a string to a gnutls_pk_algorithm_t value. The names are compared in a
case insensitive way. For example, gnutls pk get id("RSA") will return GNUTLS_PK_

RSA.

Returns: a gnutls_pk_algorithm_t id of the specified public key algorithm string,
or GNUTLS_PK_UNKNOWN on failures.

Since: 2.6.0

gnutls pk get name

[Function]const char * gnutls_pk_get_name (gnutls pk algorithm t
algorithm)

algorithm: is a public key algorithm

Convert a gnutls_pk_algorithm_t value to a string.

Returns: a pointer to a string that contains the name of the specified public key
algorithm, or NULL.

Since: 2.6.0

gnutls pk list

[Function]const gnutls_pk_algorithm_t * gnutls_pk_list (void)
Get a list of supported public key algorithms.

This function is not thread safe.

Appendix C: API reference 196

Returns: a (0)-terminated list of gnutls_pk_algorithm_t integers indicating the
available ciphers.

Since: 2.6.0

gnutls prf

[Function]int gnutls_prf (gnutls session t session , size t label_size , const
char * label , int server_random_first , size t extra_size , const char *
extra , size t outsize , char * out)

session: is a gnutls_session_t structure.

label size: length of the labelvariable.

label: label used in PRF computation, typically a short string.

server random first: non-0 if server random field should be first in seed

extra size: length of the extravariable.

extra: optional extra data to seed the PRF with.

outsize: size of pre-allocated output buffer to hold the output.

out: pre-allocate buffer to hold the generated data.

Apply the TLS Pseudo-Random-Function (PRF) using the master secret on some
data, seeded with the client and server random fields.

The labelvariable usually contain a string denoting the purpose for the generated
data. The server_random_firstindicate whether the client random field or the
server random field should be first in the seed. Non-0 indicate that the server random
field is first, 0 that the client random field is first.

The extravariable can be used to add more data to the seed, after the random
variables. It can be used to tie make sure the generated output is strongly connected
to some additional data (e.g., a string used in user authentication).

The output is placed in out, which must be pre-allocated.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls prf raw

[Function]int gnutls_prf_raw (gnutls session t session , size t label_size ,
const char * label , size t seed_size , const char * seed , size t outsize ,
char * out)

session: is a gnutls_session_t structure.

label size: length of the labelvariable.

label: label used in PRF computation, typically a short string.

seed size: length of the seedvariable.

seed: optional extra data to seed the PRF with.

outsize: size of pre-allocated output buffer to hold the output.

out: pre-allocate buffer to hold the generated data.

Apply the TLS Pseudo-Random-Function (PRF) using the master secret on some
data.

Appendix C: API reference 197

The labelvariable usually contain a string denoting the purpose for the generated
data. The seedusually contain data such as the client and server random, perhaps
together with some additional data that is added to guarantee uniqueness of the
output for a particular purpose.

Because the output is not guaranteed to be unique for a particular session unless
seedinclude the client random and server random fields (the PRF would output the
same data on another connection resumed from the first one), it is not recommended
to use this function directly. The gnutls_prf() function seed the PRF with the
client and server random fields directly, and is recommended if you want to generate
pseudo random data unique for each session.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls priority deinit

[Function]void gnutls_priority_deinit (gnutls priority t priority_cache)
priority cache: is a gnutls_prioritity_t structure.

Deinitializes the priority cache.

gnutls priority get cipher suite index

[Function]int gnutls_priority_get_cipher_suite_index (gnutls priority t
pcache , unsigned int idx , unsigned int * sidx)

pcache: is a gnutls_prioritity_t structure.

idx: is an index number.

sidx: internal index of cipher suite to get information about.

Provides the internal ciphersuite index to be used with gnutls_cipher_suite_

info(). The index idxprovided is an index kept at the priorities structure. It might
be that a valid priorities index does not correspond to a ciphersuite and in that case
GNUTLS_E_UNKNOWN_CIPHER_SUITE will be returned. Once the last available index is
crossed then GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE will be returned.

Returns: On success it returns GNUTLS_E_SUCCESS (0), or a negative error value
otherwise.

gnutls priority init

[Function]int gnutls_priority_init (gnutls priority t * priority_cache ,
const char * priorities , const char ** err_pos)

priority cache: is a gnutls_prioritity_t structure.

priorities: is a string describing priorities

err pos: In case of an error this will have the position in the string the error occured

Sets priorities for the ciphers, key exchange methods, macs and compression methods.

The priorities option allows you to specify a colon separated list of the cipher
priorities to enable. Some keywords are defined to provide quick access to common
preferences.

"PERFORMANCE" means all the "secure" ciphersuites are enabled, limited to 128
bit ciphers and sorted by terms of speed performance.

Appendix C: API reference 198

"NORMAL" means all "secure" ciphersuites. The 256-bit ciphers are included as a
fallback only. The ciphers are sorted by security margin.

"SECURE128" means all "secure" ciphersuites of security level 128-bit or more.

"SECURE192" means all "secure" ciphersuites of security level 192-bit or more.

"SUITEB128" means all the NSA SuiteB ciphersuites with security level of 128.

"SUITEB192" means all the NSA SuiteB ciphersuites with security level of 192.

"EXPORT" means all ciphersuites are enabled, including the low-security 40 bit
ciphers.

"NONE" means nothing is enabled. This disables even protocols and compression
methods.

Special keywords are "!", "-" and "+". "!" or "-" appended with an algorithm will
remove this algorithm. "+" appended with an algorithm will add this algorithm.

Check the GnuTLS manual section "Priority strings" for detailed information.

Examples: "NONE:+VERS-TLS-ALL:+MAC-ALL:+RSA:+AES-128-CBC:+SIGN-
ALL:+COMP-NULL"

"NORMAL:-ARCFOUR-128" means normal ciphers except for ARCFOUR-128.

"SECURE:-VERS-SSL3.0:+COMP-DEFLATE" means that only secure ciphers are
enabled, SSL3.0 is disabled, and libz compression enabled.

"NONE:+VERS-TLS-ALL:+AES-128-CBC:+RSA:+SHA1:+COMP-NULL:+SIGN-
RSA-SHA1",

"NONE:+VERS-TLS-ALL:+AES-128-CBC:+ECDHE-RSA:+SHA1:+COMP-
NULL:+SIGN-RSA-SHA1:+CURVE-SECP256R1",

"NORMAL:COMPAT" is the most compatible mode.

Returns: On syntax error GNUTLS_E_INVALID_REQUEST is returned, GNUTLS_E_

SUCCESS on success, or an error code.

gnutls priority set

[Function]int gnutls_priority_set (gnutls session t session , gnutls priority t
priority)

session: is a gnutls_session_t structure.

priority : is a gnutls_priority_t structure.

Sets the priorities to use on the ciphers, key exchange methods, macs and compression
methods.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls priority set direct

[Function]int gnutls_priority_set_direct (gnutls session t session , const
char * priorities , const char ** err_pos)

session: is a gnutls_session_t structure.

priorities: is a string describing priorities

err pos: In case of an error this will have the position in the string the error occured

Appendix C: API reference 199

Sets the priorities to use on the ciphers, key exchange methods, macs and compression
methods. This function avoids keeping a priority cache and is used to directly set
string priorities to a TLS session. For documentation check the gnutls_priority_

init().

Returns: On syntax error GNUTLS_E_INVALID_REQUEST is returned, GNUTLS_E_

SUCCESS on success, or an error code.

gnutls protocol get id

[Function]gnutls_protocol_t gnutls_protocol_get_id (const char * name)
name: is a protocol name

The names are compared in a case insensitive way.

Returns: an id of the specified protocol, or GNUTLS_VERSION_UNKNOWN on error.

gnutls protocol get name

[Function]const char * gnutls_protocol_get_name (gnutls protocol t
version)

version: is a (gnutls) version number

Convert a gnutls_protocol_t value to a string.

Returns: a string that contains the name of the specified TLS version (e.g.,
"TLS1.0"), or NULL.

gnutls protocol get version

[Function]gnutls_protocol_t gnutls_protocol_get_version
(gnutls session t session)

session: is a gnutls_session_t structure.

Get TLS version, a gnutls_protocol_t value.

Returns: The version of the currently used protocol.

gnutls protocol list

[Function]const gnutls_protocol_t * gnutls_protocol_list (void)
Get a list of supported protocols, e.g. SSL 3.0, TLS 1.0 etc.

This function is not thread safe.

Returns: a (0)-terminated list of gnutls_protocol_t integers indicating the available
protocols.

gnutls psk allocate client credentials

[Function]int gnutls_psk_allocate_client_credentials
(gnutls psk client credentials t * sc)

sc: is a pointer to a gnutls_psk_server_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to allocate it.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

Appendix C: API reference 200

gnutls psk allocate server credentials

[Function]int gnutls_psk_allocate_server_credentials
(gnutls psk server credentials t * sc)

sc: is a pointer to a gnutls_psk_server_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to allocate it.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

gnutls psk client get hint

[Function]const char * gnutls_psk_client_get_hint (gnutls session t
session)

session: is a gnutls session

The PSK identity hint may give the client help in deciding which username to use.
This should only be called in case of PSK authentication and in case of a client.

Returns: the identity hint of the peer, or NULL in case of an error.

Since: 2.4.0

gnutls psk free client credentials

[Function]void gnutls_psk_free_client_credentials
(gnutls psk client credentials t sc)

sc: is a gnutls_psk_client_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to free (deallocate) it.

gnutls psk free server credentials

[Function]void gnutls_psk_free_server_credentials
(gnutls psk server credentials t sc)

sc: is a gnutls_psk_server_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to free (deallocate) it.

gnutls psk server get username

[Function]const char * gnutls_psk_server_get_username (gnutls session t
session)

session: is a gnutls session

This should only be called in case of PSK authentication and in case of a server.

Returns: the username of the peer, or NULL in case of an error.

Appendix C: API reference 201

gnutls psk set client credentials

[Function]int gnutls_psk_set_client_credentials
(gnutls psk client credentials t res , const char * username , const
gnutls datum t * key , gnutls psk key flags flags)

res: is a gnutls_psk_client_credentials_t structure.

username: is the user’s zero-terminated userid

key : is the user’s key

flags: indicate the format of the key, either GNUTLS_PSK_KEY_RAW or GNUTLS_PSK_

KEY_HEX.

This function sets the username and password, in a gnutls psk client credentials t
structure. Those will be used in PSK authentication. usernameshould be an ASCII
string or UTF-8 strings prepared using the "SASLprep" profile of "stringprep". The
key can be either in raw byte format or in Hex format (without the 0x prefix).

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

gnutls psk set client credentials function

[Function]void gnutls_psk_set_client_credentials_function
(gnutls psk client credentials t cred , gnutls psk client credentials function *
func)

cred: is a gnutls_psk_server_credentials_t structure.

func: is the callback function

This function can be used to set a callback to retrieve the username and pass-
word for client PSK authentication. The callback’s function form is: int (*call-
back)(gnutls session t, char** username, gnutls datum t* key);

The usernameand key->data must be allocated using gnutls_malloc().
usernameshould be ASCII strings or UTF-8 strings prepared using the "SASLprep"
profile of "stringprep".

The callback function will be called once per handshake.

The callback function should return 0 on success. -1 indicates an error.

gnutls psk set params function

[Function]void gnutls_psk_set_params_function
(gnutls psk server credentials t res , gnutls params function * func)

res: is a gnutls psk server credentials t structure

func: is the function to be called

This function will set a callback in order for the server to get the Diffie-Hellman
or RSA parameters for PSK authentication. The callback should return GNUTLS_E_

SUCCESS (0) on success.

Appendix C: API reference 202

gnutls psk set server credentials file

[Function]int gnutls_psk_set_server_credentials_file
(gnutls psk server credentials t res , const char * password_file)

res: is a gnutls_psk_server_credentials_t structure.

password file: is the PSK password file (passwd.psk)

This function sets the password file, in a gnutls_psk_server_credentials_t struc-
ture. This password file holds usernames and keys and will be used for PSK authen-
tication.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

gnutls psk set server credentials function

[Function]void gnutls_psk_set_server_credentials_function
(gnutls psk server credentials t cred , gnutls psk server credentials function *
func)

cred: is a gnutls_psk_server_credentials_t structure.

func: is the callback function

This function can be used to set a callback to retrieve the user’s PSK credentials. The
callback’s function form is: int (*callback)(gnutls session t, const char* username,
gnutls datum t* key);

usernamecontains the actual username. The keymust be filled in using the gnutls_

malloc().

In case the callback returned a negative number then gnutls will assume that the
username does not exist.

The callback function will only be called once per handshake. The callback function
should return 0 on success, while -1 indicates an error.

gnutls psk set server credentials hint

[Function]int gnutls_psk_set_server_credentials_hint
(gnutls psk server credentials t res , const char * hint)

res: is a gnutls_psk_server_credentials_t structure.

hint: is the PSK identity hint string

This function sets the identity hint, in a gnutls_psk_server_credentials_t struc-
ture. This hint is sent to the client to help it chose a good PSK credential (i.e.,
username and password).

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

Since: 2.4.0

Appendix C: API reference 203

gnutls psk set server dh params

[Function]void gnutls_psk_set_server_dh_params
(gnutls psk server credentials t res , gnutls dh params t dh_params)

res: is a gnutls psk server credentials t structure

dh params: is a structure that holds Diffie-Hellman parameters.

This function will set the Diffie-Hellman parameters for an anonymous server to use.
These parameters will be used in Diffie-Hellman exchange with PSK cipher suites.

gnutls psk set server params function

[Function]void gnutls_psk_set_server_params_function
(gnutls psk server credentials t res , gnutls params function * func)

res: is a gnutls_certificate_credentials_t structure

func: is the function to be called

This function will set a callback in order for the server to get the Diffie-Hellman
parameters for PSK authentication. The callback should return GNUTLS_E_SUCCESS

(0) on success.

gnutls random art

[Function]int gnutls_random_art (gnutls random art t type , const char*
key_type , unsigned int key_size , void * fpr , size t fpr_size ,
gnutls datum t* art)

type: The type of the random art

key type: The type of the key (RSA, DSA etc.)

key size: The size of the key in bits

fpr: The fingerprint of the key

fpr size: The size of the fingerprint

art: The returned random art

This function will convert a given fingerprint to an "artistic" image. The returned
image is allocated using gnutls_malloc()

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

gnutls record check pending

[Function]size_t gnutls_record_check_pending (gnutls session t session)
session: is a gnutls_session_t structure.

This function checks if there are unread data in the gnutls buffers. If the return value
is non-zero the next call to gnutls_record_recv() is guarranteed not to block.

Returns: Returns the size of the data or zero.

Appendix C: API reference 204

gnutls record disable padding

[Function]void gnutls_record_disable_padding (gnutls session t session)
session: is a gnutls_session_t structure.

Used to disabled padding in TLS 1.0 and above. Normally you do not need to use
this function, but there are buggy clients that complain if a server pads the encrypted
data. This of course will disable protection against statistical attacks on the data.

Normally only servers that require maximum compatibility with everything out there,
need to call this function.

gnutls record get direction

[Function]int gnutls_record_get_direction (gnutls session t session)
session: is a gnutls_session_t structure.

This function provides information about the internals of the record protocol and is
only useful if a prior gnutls function call (e.g. gnutls_handshake()) was interrupted
for some reason, that is, if a function returned GNUTLS_E_INTERRUPTED or GNUTLS_
E_AGAIN. In such a case, you might want to call select() or poll() before calling
the interrupted gnutls function again. To tell you whether a file descriptor should be
selected for either reading or writing, gnutls_record_get_direction() returns 0 if
the interrupted function was trying to read data, and 1 if it was trying to write data.

Returns: 0 if trying to read data, 1 if trying to write data.

gnutls record get max size

[Function]size_t gnutls_record_get_max_size (gnutls session t session)
session: is a gnutls_session_t structure.

Get the record size. The maximum record size is negotiated by the client after the
first handshake message.

Returns: The maximum record packet size in this connection.

gnutls record recv

[Function]ssize_t gnutls_record_recv (gnutls session t session , void * data ,
size t data_size)

session: is a gnutls_session_t structure.

data: the buffer that the data will be read into

data size: the number of requested bytes

This function has the similar semantics with recv(). The only difference is that it
accepts a GnuTLS session, and uses different error codes. In the special case that
a server requests a renegotiation, the client may receive an error code of GNUTLS_E_
REHANDSHAKE. This message may be simply ignored, replied with an alert GNUTLS_A_
NO_RENEGOTIATION, or replied with a new handshake, depending on the client’s will. If
EINTR is returned by the internal push function (the default is recv()) then GNUTLS_

E_INTERRUPTED will be returned. If GNUTLS_E_INTERRUPTED or GNUTLS_E_AGAIN is
returned, you must call this function again to get the data. See also gnutls_record_

get_direction(). A server may also receive GNUTLS_E_REHANDSHAKE when a client

Appendix C: API reference 205

has initiated a handshake. In that case the server can only initiate a handshake or
terminate the connection.

Returns: The number of bytes received and zero on EOF (for stream connections).
A negative error code is returned in case of an error. The number of bytes received
might be less than the requested data_size.

gnutls record recv seq

[Function]ssize_t gnutls_record_recv_seq (gnutls session t session , void *
data , size t data_size , unsigned char * seq)

session: is a gnutls_session_t structure.

data: the buffer that the data will be read into

data size: the number of requested bytes

seq: is the packet’s 64-bit sequence number. Should have space for 8 bytes.

This function is the same as gnutls_record_recv(), except that it returns in addi-
tion to data, the sequence number of the data. This is useful in DTLS where record
packets might be received out-of-order. The returned 8-byte sequence number is an
integer in big-endian format and should be treated as a unique message identification.

Returns: The number of bytes received and zero on EOF. A negative error code
is returned in case of an error. The number of bytes received might be less than
data_size.

Since: 3.0.0

gnutls record send

[Function]ssize_t gnutls_record_send (gnutls session t session , const void *
data , size t data_size)

session: is a gnutls_session_t structure.

data: contains the data to send

data size: is the length of the data

This function has the similar semantics with send(). The only difference is that
it accepts a GnuTLS session, and uses different error codes. Note that if the send
buffer is full, send() will block this function. See the send() documentation for full
information. You can replace the default push function by using gnutls_transport_

set_ptr2() with a call to send() with a MSG DONTWAIT flag if blocking is a
problem. If the EINTR is returned by the internal push function (the default is
send()) then GNUTLS_E_INTERRUPTED will be returned. If GNUTLS_E_INTERRUPTED
or GNUTLS_E_AGAIN is returned, you must call this function again, with the same
parameters; alternatively you could provide a NULL pointer for data, and 0 for size.
cf. gnutls_record_get_direction().

Returns: The number of bytes sent, or a negative error code. The number of bytes
sent might be less than data_size. The maximum number of bytes this function can
send in a single call depends on the negotiated maximum record size.

Appendix C: API reference 206

gnutls record set max size

[Function]ssize_t gnutls_record_set_max_size (gnutls session t session ,
size t size)

session: is a gnutls_session_t structure.

size: is the new size

This function sets the maximum record packet size in this connection. This property
can only be set to clients. The server may choose not to accept the requested size.

Acceptable values are 512(=2^9), 1024(=2^10), 2048(=2^11) and 4096(=2^12). The
requested record size does get in effect immediately only while sending data. The
receive part will take effect after a successful handshake.

This function uses a TLS extension called ’max record size’. Not all TLS implemen-
tations use or even understand this extension.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

gnutls rehandshake

[Function]int gnutls_rehandshake (gnutls session t session)
session: is a gnutls_session_t structure.

This function will renegotiate security parameters with the client. This should only
be called in case of a server.

This message informs the peer that we want to renegotiate parameters (perform a
handshake).

If this function succeeds (returns 0), you must call the gnutls_handshake() function
in order to negotiate the new parameters.

Since TLS is full duplex some application data might have been sent during peer’s
processing of this message. In that case one should call gnutls_record_recv() until
GNUTLS E REHANDSHAKE is returned to clear any pending data. Care must
be taken if rehandshake is mandatory to terminate if it does not start after some
threshold.

If the client does not wish to renegotiate parameters he will should with an alert
message, thus the return code will be GNUTLS_E_WARNING_ALERT_RECEIVED and the
alert will be GNUTLS_A_NO_RENEGOTIATION. A client may also choose to ignore this
message.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

gnutls safe renegotiation status

[Function]int gnutls_safe_renegotiation_status (gnutls session t session)
session: is a gnutls_session_t structure.

Can be used to check whether safe renegotiation is being used in the current session.

Returns: 0 when safe renegotiation is not used and non (0) when safe renegotiation
is used.

Since: 2.10.0

Appendix C: API reference 207

gnutls sec param get name

[Function]const char * gnutls_sec_param_get_name (gnutls sec param t
param)

param: is a security parameter

Convert a gnutls_sec_param_t value to a string.

Returns: a pointer to a string that contains the name of the specified security level,
or NULL.

Since: 2.12.0

gnutls sec param to pk bits

[Function]unsigned int gnutls_sec_param_to_pk_bits
(gnutls pk algorithm t algo , gnutls sec param t param)

algo: is a public key algorithm

param: is a security parameter

When generating private and public key pairs a difficult question is which size of
"bits" the modulus will be in RSA and the group size in DSA. The easy answer
is 1024, which is also wrong. This function will convert a human understandable
security parameter to an appropriate size for the specific algorithm.

Returns: The number of bits, or (0).

Since: 2.12.0

gnutls server name get

[Function]int gnutls_server_name_get (gnutls session t session , void * data ,
size t * data_length , unsigned int * type , unsigned int indx)

session: is a gnutls_session_t structure.

data: will hold the data

data length: will hold the data length. Must hold the maximum size of data.

type: will hold the server name indicator type

indx: is the index of the server name

This function will allow you to get the name indication (if any), a client has sent.
The name indication may be any of the enumeration gnutls server name type t.

If typeis GNUTLS NAME DNS, then this function is to be used by servers that
support virtual hosting, and the data will be a null terminated UTF-8 string.

If datahas not enough size to hold the server name GNUTLS E SHORT MEMORY BUFFER
is returned, and data_lengthwill hold the required size.

indexis used to retrieve more than one server names (if sent by the client). The first
server name has an index of 0, the second 1 and so on. If no name with the given
index exists GNUTLS E REQUESTED DATA NOT AVAILABLE is returned.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

Appendix C: API reference 208

gnutls server name set

[Function]int gnutls_server_name_set (gnutls session t session ,
gnutls server name type t type , const void * name , size t name_length)

session: is a gnutls_session_t structure.

type: specifies the indicator type

name: is a string that contains the server name.

name length: holds the length of name

This function is to be used by clients that want to inform (via a TLS extension
mechanism) the server of the name they connected to. This should be used by clients
that connect to servers that do virtual hosting.

The value of namedepends on the typetype. In case of GNUTLS_NAME_DNS, an ASCII
(0)-terminated domain name string, without the trailing dot, is expected. IPv4 or
IPv6 addresses are not permitted.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

gnutls session channel binding

[Function]int gnutls_session_channel_binding (gnutls session t session ,
gnutls channel binding t cbtype , gnutls datum t * cb)

session: is a gnutls_session_t structure.

cbtype: an gnutls_channel_binding_t enumeration type

cb: output buffer array with data

Extract given channel binding data of the cbtype(e.g., GNUTLS_CB_TLS_UNIQUE) type.

Returns: GNUTLS_E_SUCCESS on success, GNUTLS_E_UNIMPLEMENTED_FEATURE if the
cbtypeis unsupported, GNUTLS_E_CHANNEL_BINDING_NOT_AVAILABLE if the data is
not currently available, or an error code.

Since: 2.12.0

gnutls session enable compatibility mode

[Function]void gnutls_session_enable_compatibility_mode
(gnutls session t session)

session: is a gnutls_session_t structure.

This function can be used to disable certain (security) features in TLS in order
to maintain maximum compatibility with buggy clients. It is equivalent to calling:
gnutls_record_disable_padding()

Normally only servers that require maximum compatibility with everything out there,
need to call this function.

gnutls session get data

[Function]int gnutls_session_get_data (gnutls session t session , void *
session_data , size t * session_data_size)

session: is a gnutls_session_t structure.

Appendix C: API reference 209

session data: is a pointer to space to hold the session.

session data size: is the session data’s size, or it will be set by the function.

Returns all session parameters, in order to support resuming. The client should call
this, and keep the returned session, if he wants to resume that current version later by
calling gnutls_session_set_data() This function must be called after a successful
handshake.

Resuming sessions is really useful and speedups connections after a successful one.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

gnutls session get data2

[Function]int gnutls_session_get_data2 (gnutls session t session ,
gnutls datum t * data)

session: is a gnutls_session_t structure.

data: is a pointer to a datum that will hold the session.

Returns all session parameters, in order to support resuming. The client should call
this, and keep the returned session, if he wants to resume that current version later by
calling gnutls_session_set_data(). This function must be called after a successful
handshake. The returned datum must be freed with gnutls_free().

Resuming sessions is really useful and speedups connections after a successful one.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

gnutls session get id

[Function]int gnutls_session_get_id (gnutls session t session , void *
session_id , size t * session_id_size)

session: is a gnutls_session_t structure.

session id: is a pointer to space to hold the session id.

session id size: is the session id’s size, or it will be set by the function.

Returns the current session id. This can be used if you want to check if the next
session you tried to resume was actually resumed. This is because resumed sessions
have the same sessionID with the original session.

Session id is some data set by the server, that identify the current session. In TLS
1.0 and SSL 3.0 session id is always less than 32 bytes.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

gnutls session get ptr

[Function]void * gnutls_session_get_ptr (gnutls session t session)
session: is a gnutls_session_t structure.

Get user pointer for session. Useful in callbacks. This is the pointer set with gnutls_

session_set_ptr().

Appendix C: API reference 210

Returns: the user given pointer from the session structure, or NULL if it was never
set.

gnutls session is resumed

[Function]int gnutls_session_is_resumed (gnutls session t session)
session: is a gnutls_session_t structure.

Check whether session is resumed or not.

Returns: non zero if this session is resumed, or a zero if this is a new session.

gnutls session set data

[Function]int gnutls_session_set_data (gnutls session t session , const void
* session_data , size t session_data_size)

session: is a gnutls_session_t structure.

session data: is a pointer to space to hold the session.

session data size: is the session’s size

Sets all session parameters, in order to resume a previously established session. The
session data given must be the one returned by gnutls_session_get_data(). This
function should be called before gnutls_handshake().

Keep in mind that session resuming is advisory. The server may choose not to resume
the session, thus a full handshake will be performed.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

gnutls session set ptr

[Function]void gnutls_session_set_ptr (gnutls session t session , void * ptr)
session: is a gnutls_session_t structure.

ptr: is the user pointer

This function will set (associate) the user given pointer ptrto the session structure.
This is pointer can be accessed with gnutls_session_get_ptr().

gnutls session ticket enable client

[Function]int gnutls_session_ticket_enable_client (gnutls session t
session)

session: is a gnutls_session_t structure.

Request that the client should attempt session resumption using SessionTicket.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or an error code.

Since: 2.10.0

Appendix C: API reference 211

gnutls session ticket enable server

[Function]int gnutls_session_ticket_enable_server (gnutls session t
session , const gnutls datum t * key)

session: is a gnutls_session_t structure.

key : key to encrypt session parameters.

Request that the server should attempt session resumption using SessionTicket.
keymust be initialized with gnutls_session_ticket_key_generate().

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or an error code.

Since: 2.10.0

gnutls session ticket key generate

[Function]int gnutls_session_ticket_key_generate (gnutls datum t * key)
key : is a pointer to a gnutls_datum_t which will contain a newly created key.

Generate a random key to encrypt security parameters within SessionTicket.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or an error code.

Since: 2.10.0

gnutls set default priority

[Function]int gnutls_set_default_priority (gnutls session t session)
session: is a gnutls_session_t structure.

Sets some default priority on the ciphers, key exchange methods, macs and compres-
sion methods.

Thisisthesameascalling: gnutls priority set direct (session, "NORMAL", NULL);

This function is kept around for backwards compatibility, but because of its wide use
it is still fully supported. If you wish to allow users to provide a string that specify
which ciphers to use (which is recommended), you should use gnutls_priority_set_
direct() or gnutls_priority_set() instead.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls sign algorithm get requested

[Function]int gnutls_sign_algorithm_get_requested (gnutls session t
session , size t indx , gnutls sign algorithm t * algo)

session: is a gnutls_session_t structure.

indx: is an index of the signature algorithm to return

algo: the returned certificate type will be stored there

Returns the signature algorithm specified by index that was requested by the peer. If
the specified index has no data available this function returns GNUTLS_E_REQUESTED_
DATA_NOT_AVAILABLE. If the negotiated TLS version does not support signature
algorithms then GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE will be returned even
for the first index. The first index is 0.

Appendix C: API reference 212

This function is useful in the certificate callback functions to assist in selecting the
correct certificate.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

Since: 2.10.0

gnutls sign get id

[Function]gnutls_sign_algorithm_t gnutls_sign_get_id (const char * name)
name: is a MAC algorithm name

The names are compared in a case insensitive way.

Returns: return a gnutls_sign_algorithm_t value corresponding to the specified
cipher, or GNUTLS_SIGN_UNKNOWN on error.

gnutls sign get name

[Function]const char * gnutls_sign_get_name (gnutls sign algorithm t
algorithm)

algorithm: is a sign algorithm

Convert a gnutls_sign_algorithm_t value to a string.

Returns: a string that contains the name of the specified sign algorithm, or NULL.

gnutls sign list

[Function]const gnutls_sign_algorithm_t * gnutls_sign_list (void)
Get a list of supported public key signature algorithms.

Returns: a (0)-terminated list of gnutls_sign_algorithm_t integers indicating the
available ciphers.

gnutls srp allocate client credentials

[Function]int gnutls_srp_allocate_client_credentials
(gnutls srp client credentials t * sc)

sc: is a pointer to a gnutls_srp_server_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to allocate it.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or an error code.

gnutls srp allocate server credentials

[Function]int gnutls_srp_allocate_server_credentials
(gnutls srp server credentials t * sc)

sc: is a pointer to a gnutls_srp_server_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to allocate it.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or an error code.

Appendix C: API reference 213

gnutls srp base64 decode

[Function]int gnutls_srp_base64_decode (const gnutls datum t * b64_data ,
char * result , size t * result_size)

b64 data: contain the encoded data

result: the place where decoded data will be copied

result size: holds the size of the result

This function will decode the given encoded data, using the base64 encoding found
in libsrp.

Note that b64_datashould be null terminated.

Warning! This base64 encoding is not the "standard" encoding, so do not use it for
non-SRP purposes.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the buffer given is not long enough, or
0 on success.

gnutls srp base64 decode alloc

[Function]int gnutls_srp_base64_decode_alloc (const gnutls datum t *
b64_data , gnutls datum t * result)

b64 data: contains the encoded data

result: the place where decoded data lie

This function will decode the given encoded data. The decoded data will be allocated,
and stored into result. It will decode using the base64 algorithm as used in libsrp.

You should use gnutls_free() to free the returned data.

Warning! This base64 encoding is not the "standard" encoding, so do not use it for
non-SRP purposes.

Returns: 0 on success, or an error code.

gnutls srp base64 encode

[Function]int gnutls_srp_base64_encode (const gnutls datum t * data , char *
result , size t * result_size)

data: contain the raw data

result: the place where base64 data will be copied

result size: holds the size of the result

This function will convert the given data to printable data, using the base64 encoding,
as used in the libsrp. This is the encoding used in SRP password files. If the provided
buffer is not long enough GNUTLS E SHORT MEMORY BUFFER is returned.

Warning! This base64 encoding is not the "standard" encoding, so do not use it for
non-SRP purposes.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the buffer given is not long enough, or
0 on success.

Appendix C: API reference 214

gnutls srp base64 encode alloc

[Function]int gnutls_srp_base64_encode_alloc (const gnutls datum t *
data , gnutls datum t * result)

data: contains the raw data

result: will hold the newly allocated encoded data

This function will convert the given data to printable data, using the base64 encoding.
This is the encoding used in SRP password files. This function will allocate the
required memory to hold the encoded data.

You should use gnutls_free() to free the returned data.

Warning! This base64 encoding is not the "standard" encoding, so do not use it for
non-SRP purposes.

Returns: 0 on success, or an error code.

gnutls srp free client credentials

[Function]void gnutls_srp_free_client_credentials
(gnutls srp client credentials t sc)

sc: is a gnutls_srp_client_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to free (deallocate) it.

gnutls srp free server credentials

[Function]void gnutls_srp_free_server_credentials
(gnutls srp server credentials t sc)

sc: is a gnutls_srp_server_credentials_t structure.

This structure is complex enough to manipulate directly thus this helper function is
provided in order to free (deallocate) it.

gnutls srp server get username

[Function]const char * gnutls_srp_server_get_username (gnutls session t
session)

session: is a gnutls session

This function will return the username of the peer. This should only be called in case
of SRP authentication and in case of a server. Returns NULL in case of an error.

Returns: SRP username of the peer, or NULL in case of error.

gnutls srp set client credentials

[Function]int gnutls_srp_set_client_credentials
(gnutls srp client credentials t res , const char * username , const char *
password)

res: is a gnutls_srp_client_credentials_t structure.

username: is the user’s userid

Appendix C: API reference 215

password: is the user’s password

This function sets the username and password, in a gnutls_srp_client_

credentials_t structure. Those will be used in SRP authentication. usernameand
passwordshould be ASCII strings or UTF-8 strings prepared using the "SASLprep"
profile of "stringprep".

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or an error code.

gnutls srp set client credentials function

[Function]void gnutls_srp_set_client_credentials_function
(gnutls srp client credentials t cred , gnutls srp client credentials function *
func)

cred: is a gnutls_srp_server_credentials_t structure.

func: is the callback function

This function can be used to set a callback to retrieve the username and password for
client SRP authentication. The callback’s function form is:

int (*callback)(gnutls session t, char** username, char**password);

The usernameand passwordmust be allocated using gnutls_malloc(). usernameand
passwordshould be ASCII strings or UTF-8 strings prepared using the "SASLprep"
profile of "stringprep".

The callback function will be called once per handshake before the initial hello message
is sent.

The callback should not return a negative error code the second time called, since the
handshake procedure will be aborted.

The callback function should return 0 on success. -1 indicates an error.

gnutls srp set prime bits

[Function]void gnutls_srp_set_prime_bits (gnutls session t session ,
unsigned int bits)

session: is a gnutls_session_t structure.

bits: is the number of bits

This function sets the minimum accepted number of bits, for use in an SRP key
exchange. If zero, the default 2048 bits will be used.

In the client side it sets the minimum accepted number of bits. If a server sends
a prime with less bits than that GNUTLS_E_RECEIVED_ILLEGAL_PARAMETER will be
returned by the handshake.

This function has no effect in server side.

Since: 2.6.0

gnutls srp set server credentials file

[Function]int gnutls_srp_set_server_credentials_file
(gnutls srp server credentials t res , const char * password_file , const char
* password_conf_file)

res: is a gnutls_srp_server_credentials_t structure.

Appendix C: API reference 216

password file: is the SRP password file (tpasswd)

password conf file: is the SRP password conf file (tpasswd.conf)

This function sets the password files, in a gnutls_srp_server_credentials_t struc-
ture. Those password files hold usernames and verifiers and will be used for SRP
authentication.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or an error code.

gnutls srp set server credentials function

[Function]void gnutls_srp_set_server_credentials_function
(gnutls srp server credentials t cred , gnutls srp server credentials function *
func)

cred: is a gnutls_srp_server_credentials_t structure.

func: is the callback function

This function can be used to set a callback to retrieve the user’s SRP credentials.
The callback’s function form is:

int (*callback)(gnutls session t, const char* username, gnutls datum t* salt,
gnutls datum t *verifier, gnutls datum t* g, gnutls datum t* n);

usernamecontains the actual username. The salt, verifier, generatorand
primemust be filled in using the gnutls_malloc(). For convenience primeand
generatormay also be one of the static parameters defined in gnutls.h.

In case the callback returned a negative number then gnutls will assume that the
username does not exist.

In order to prevent attackers from guessing valid usernames, if a user does not exist,
g and n values should be filled in using a random user’s parameters. In that case the
callback must return the special value (1).

The callback function will only be called once per handshake. The callback function
should return 0 on success, while -1 indicates an error.

gnutls srp verifier

[Function]int gnutls_srp_verifier (const char * username , const char *
password , const gnutls datum t * salt , const gnutls datum t * generator ,
const gnutls datum t * prime , gnutls datum t * res)

username: is the user’s name

password: is the user’s password

salt: should be some randomly generated bytes

generator: is the generator of the group

prime: is the group’s prime

res: where the verifier will be stored.

This function will create an SRP verifier, as specified in RFC2945. The primeand
generatorshould be one of the static parameters defined in gnutls/gnutls.h or may
be generated.

Appendix C: API reference 217

The verifier will be allocated with gnutls_malloc() and will be stored in resusing
binary format.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or an error code.

gnutls strerror

[Function]const char * gnutls_strerror (int error)
error: is a GnuTLS error code, a negative error code

This function is similar to strerror. The difference is that it accepts an error number
returned by a gnutls function; In case of an unknown error a descriptive string is sent
instead of NULL.

Error codes are always a negative error code.

Returns: A string explaining the GnuTLS error message.

gnutls strerror name

[Function]const char * gnutls_strerror_name (int error)
error: is an error returned by a gnutls function.

Return the GnuTLS error code define as a string. For example, gnutls strerror name
(GNUTLS E DH PRIME UNACCEPTABLE) will return the string
"GNUTLS E DH PRIME UNACCEPTABLE".

Returns: A string corresponding to the symbol name of the error code.

Since: 2.6.0

gnutls supplemental get name

[Function]const char * gnutls_supplemental_get_name
(gnutls supplemental data format type t type)

type: is a supplemental data format type

Convert a gnutls_supplemental_data_format_type_t value to a string.

Returns: a string that contains the name of the specified supplemental data format
type, or NULL for unknown types.

gnutls transport get ptr

[Function]gnutls_transport_ptr_t gnutls_transport_get_ptr
(gnutls session t session)

session: is a gnutls_session_t structure.

Used to get the first argument of the transport function (like PUSH and PULL). This
must have been set using gnutls_transport_set_ptr().

Returns: The first argument of the transport function.

Appendix C: API reference 218

gnutls transport get ptr2

[Function]void gnutls_transport_get_ptr2 (gnutls session t session ,
gnutls transport ptr t * recv_ptr , gnutls transport ptr t * send_ptr)

session: is a gnutls_session_t structure.

recv ptr: will hold the value for the pull function

send ptr: will hold the value for the push function

Used to get the arguments of the transport functions (like PUSH and PULL). These
should have been set using gnutls_transport_set_ptr2().

gnutls transport set errno

[Function]void gnutls_transport_set_errno (gnutls session t session , int
err)

session: is a gnutls_session_t structure.

err: error value to store in session-specific errno variable.

Store errin the session-specific errno variable. Useful values for erris EAGAIN and
EINTR, other values are treated will be treated as real errors in the push/pull func-
tion.

This function is useful in replacement push and pull functions set by gnutls_

transport_set_push_function() and gnutls_transport_set_pull_function()

under Windows, where the replacements may not have access to the same
errnovariable that is used by GnuTLS (e.g., the application is linked to msvcr71.dll
and gnutls is linked to msvcrt.dll).

gnutls transport set errno function

[Function]void gnutls_transport_set_errno_function (gnutls session t
session , gnutls errno func errno_func)

session: is a gnutls_session_t structure.

errno func: a callback function similar to write()

This is the function where you set a function to retrieve errno after a failed push or
pull operation.

errno_funcis of the form, int (*gnutls errno func)(gnutls transport ptr t); and
should return the errno.

Since: 2.12.0

gnutls transport set ptr

[Function]void gnutls_transport_set_ptr (gnutls session t session ,
gnutls transport ptr t ptr)

session: is a gnutls_session_t structure.

ptr: is the value.

Used to set the first argument of the transport function (for push and pull callbacks).
In berkeley style sockets this function will set the connection descriptor.

Appendix C: API reference 219

gnutls transport set ptr2

[Function]void gnutls_transport_set_ptr2 (gnutls session t session ,
gnutls transport ptr t recv_ptr , gnutls transport ptr t send_ptr)

session: is a gnutls_session_t structure.

recv ptr: is the value for the pull function

send ptr: is the value for the push function

Used to set the first argument of the transport function (for push and pull callbacks).
In berkeley style sockets this function will set the connection descriptor. With this
function you can use two different pointers for receiving and sending.

gnutls transport set pull function

[Function]void gnutls_transport_set_pull_function (gnutls session t
session , gnutls pull func pull_func)

session: is a gnutls_session_t structure.

pull func: a callback function similar to read()

This is the function where you set a function for gnutls to receive data. Normally,
if you use berkeley style sockets, do not need to use this function since the default
recv(2) will probably be ok. The callback should return 0 on connection termination,
a positive number indicating the number of bytes received, and -1 on error.

gnutls_pull_funcis of the form, ssize t (*gnutls pull func)(gnutls transport ptr t,
void*, size t);

gnutls transport set pull timeout function

[Function]void gnutls_transport_set_pull_timeout_function
(gnutls session t session , gnutls pull timeout func func)

session: is a gnutls_session_t structure.

func: a callback function

This is the function where you set a function for gnutls to know whether data are
ready to be received. It should wait for data a given time frame in milliseconds. The
callback should return 0 on timeout, a positive number if data can be received, and
-1 on error. You’ll need to override this function if select() is not suitable for the
provided transport calls. The callback function is used in DTLS only.

gnutls_pull_timeout_funcis of the form, ssize t (*gnutls pull timeout func)(gnutls transport ptr t,
unsigned int ms);

Since: 3.0.0

gnutls transport set push function

[Function]void gnutls_transport_set_push_function (gnutls session t
session , gnutls push func push_func)

session: is a gnutls_session_t structure.

push func: a callback function similar to write()

Appendix C: API reference 220

This is the function where you set a push function for gnutls to use in order to send
data. If you are going to use berkeley style sockets, you do not need to use this
function since the default send(2) will probably be ok. Otherwise you should specify
this function for gnutls to be able to send data. The callback should return a positive
number indicating the bytes sent, and -1 on error.

push_funcis of the form, ssize t (*gnutls push func)(gnutls transport ptr t, const
void*, size t);

gnutls transport set vec push function

[Function]void gnutls_transport_set_vec_push_function (gnutls session t
session , gnutls vec push func vec_func)

session: is a gnutls_session_t structure.

vec func: a callback function similar to writev()

Using this function you can override the default writev(2) function for gnutls to send
data. Setting this callback instead of gnutls_transport_set_push_function() is
recommended since it introduces less overhead in the TLS handshake process.

vec_funcis of the form, ssize t (*gnutls vec push func) (gnutls transport ptr t,
const giovec t * iov, int iovcnt);

Since: 2.12.0

C.2 Datagram TLS API

The prototypes for the following functions lie in ‘gnutls/dtls.h’.

gnutls dtls cookie send

[Function]int gnutls_dtls_cookie_send (gnutls datum t* key , void*
client_data , size t client_data_size , gnutls dtls prestate st*
prestate , gnutls transport ptr t ptr , gnutls push func push_func)

key : is a random key to be used at cookie generation

client data: contains data identifying the client (i.e. address)

client data size: The size of client’s data

prestate: The previous cookie returned by gnutls_dtls_cookie_verify()

ptr: A transport pointer to be used by push_func

push func: A function that will be used to reply

Description: This function can be used to prevent denial of service attacks to a DTLS
server by requiring the client to reply using a cookie sent by this function. That way
it can be ensured that a client we allocated resources for (i.e. gnutls_session_t) is
the one that the original incoming packet was originated from.

Returns: the number of bytes sent, or a negative error code.

Since: 3.0.0

Appendix C: API reference 221

gnutls dtls cookie verify

[Function]int gnutls_dtls_cookie_verify (gnutls datum t* key , void*
client_data , size t client_data_size , void* _msg , size t msg_size ,
gnutls dtls prestate st* prestate)

key : is a random key to be used at cookie generation

client data: contains data identifying the client (i.e. address)

client data size: The size of client’s data

msg : An incoming message that initiates a connection.

msg size: The size of the message.

prestate: The cookie of this client.

Description: This function will verify an incoming message for a valid cookie. If a
valid cookie is returned then it should be associated with the session using gnutls_

dtls_prestate_set();

Returns: GNUTLS_E_SUCCESS (0) on success, or a negative error code.

Since: 3.0.0

gnutls dtls get data mtu

[Function]unsigned int gnutls_dtls_get_data_mtu (gnutls session t
session)

session: is a gnutls_session_t structure.

Description: This function will return the actual maximum transfer unit for applica-
tion data. I.e. DTLS headers are subtracted from the actual MTU.

Returns: the maximum allowed transfer unit.

Since: 3.0.0

gnutls dtls get mtu

[Function]unsigned int gnutls_dtls_get_mtu (gnutls session t session)
session: is a gnutls_session_t structure.

Description: This function will return the MTU size as set with gnutls_dtls_set_

mtu(). This is not the actual MTU of data you can transmit. Use gnutls_dtls_

get_data_mtu() for that reason.

Returns: the set maximum transfer unit.

Since: 3.0.0

gnutls dtls prestate set

[Function]void gnutls_dtls_prestate_set (gnutls session t session ,
gnutls dtls prestate st* prestate)

session: a new session

prestate: contains the client’s prestate

Description: This function will associate the prestate acquired by the cookie authen-
tication with the client, with the newly established session.

Since: 3.0.0

Appendix C: API reference 222

gnutls dtls set mtu

[Function]void gnutls_dtls_set_mtu (gnutls session t session , unsigned int
mtu)

session: is a gnutls_session_t structure.

mtu: The maximum transfer unit of the interface

Description: This function will set the maximum transfer unit of the interface that
DTLS packets are expected to leave from.

Since: 3.0.0

gnutls dtls set timeouts

[Function]void gnutls_dtls_set_timeouts (gnutls session t session , unsigned
int retrans_timeout , unsigned int total_timeout)

session: is a gnutls_session_t structure.

retrans timeout: The time at which a retransmission will occur in milliseconds

total timeout: The time at which the connection will be aborted, in milliseconds.

Description: This function will set the timeouts required for the DTLS handshake
protocol. The retransmission timeout is the time after which a message from the peer
is not received, the previous messages will be retransmitted. The total timeout is the
time after which the handshake will be aborted with GNUTLS_E_TIMEDOUT.

The DTLS protocol recommends the values of 1 sec and 60 seconds respectively.

If the retransmission timeout is zero then the handshake will operate in a non-blocking
way, i.e., return GNUTLS_E_AGAIN.

Since: 3.0.0

gnutls record get discarded

[Function]unsigned int gnutls_record_get_discarded (gnutls session t
session)

session: is a gnutls_session_t structure.

Description: Returns the number of discarded packets in a DTLS connection.

Returns: The number of discarded packets.

Since: 3.0.0

C.3 X.509 certificate API

The following functions are to be used for X.509 certificate handling. Their prototypes lie
in ‘gnutls/x509.h’.

gnutls pkcs7 deinit

[Function]void gnutls_pkcs7_deinit (gnutls pkcs7 t pkcs7)
pkcs7: The structure to be initialized

Description: This function will deinitialize a PKCS7 structure.

Appendix C: API reference 223

gnutls pkcs7 delete crl

[Function]int gnutls_pkcs7_delete_crl (gnutls pkcs7 t pkcs7 , int indx)
pkcs7: should contain a gnutls_pkcs7_t structure

indx: the index of the crl to delete

Description: This function will delete a crl from a PKCS7 or RFC2630 crl set. Index
starts from 0. Returns 0 on success.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls pkcs7 delete crt

[Function]int gnutls_pkcs7_delete_crt (gnutls pkcs7 t pkcs7 , int indx)
pkcs7: should contain a gnutls pkcs7 t structure

indx: the index of the certificate to delete

Description: This function will delete a certificate from a PKCS7 or RFC2630 cer-
tificate set. Index starts from 0. Returns 0 on success.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls pkcs7 export

[Function]int gnutls_pkcs7_export (gnutls pkcs7 t pkcs7 ,
gnutls x509 crt fmt t format , void * output_data , size t *
output_data_size)

pkcs7: Holds the pkcs7 structure

format: the format of output params. One of PEM or DER.

output data: will contain a structure PEM or DER encoded

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

Description: This function will export the pkcs7 structure to DER or PEM format.

If the buffer provided is not long enough to hold the output, then * output_data_

sizeis updated and GNUTLS_E_SHORT_MEMORY_BUFFER will be returned.

If the structure is PEM encoded, it will have a header of "BEGIN PKCS7".

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls pkcs7 get crl count

[Function]int gnutls_pkcs7_get_crl_count (gnutls pkcs7 t pkcs7)
pkcs7: should contain a gnutls pkcs7 t structure

Description: This function will return the number of certifcates in the PKCS7 or
RFC2630 crl set.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Appendix C: API reference 224

gnutls pkcs7 get crl raw

[Function]int gnutls_pkcs7_get_crl_raw (gnutls pkcs7 t pkcs7 , int indx ,
void * crl , size t * crl_size)

pkcs7: should contain a gnutls_pkcs7_t structure

indx: contains the index of the crl to extract

crl: the contents of the crl will be copied there (may be null)

crl size: should hold the size of the crl

Description: This function will return a crl of the PKCS7 or RFC2630 crl set.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative er-
ror value. If the provided buffer is not long enough, then crl_sizeis updated
and GNUTLS_E_SHORT_MEMORY_BUFFER is returned. After the last crl has been read
GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE will be returned.

gnutls pkcs7 get crt count

[Function]int gnutls_pkcs7_get_crt_count (gnutls pkcs7 t pkcs7)
pkcs7: should contain a gnutls_pkcs7_t structure

Description: This function will return the number of certifcates in the PKCS7 or
RFC2630 certificate set.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls pkcs7 get crt raw

[Function]int gnutls_pkcs7_get_crt_raw (gnutls pkcs7 t pkcs7 , int indx ,
void * certificate , size t * certificate_size)

pkcs7: should contain a gnutls pkcs7 t structure

indx: contains the index of the certificate to extract

certificate: the contents of the certificate will be copied there (may be null)

certificate size: should hold the size of the certificate

Description: This function will return a certificate of the PKCS7 or RFC2630 certifi-
cate set.

After the last certificate has been read GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE

will be returned.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value. If the provided buffer is not long enough, then certificate_sizeis updated
and GNUTLS_E_SHORT_MEMORY_BUFFER is returned.

gnutls pkcs7 import

[Function]int gnutls_pkcs7_import (gnutls pkcs7 t pkcs7 , const
gnutls datum t * data , gnutls x509 crt fmt t format)

pkcs7: The structure to store the parsed PKCS7.

data: The DER or PEM encoded PKCS7.

Appendix C: API reference 225

format: One of DER or PEM

Description: This function will convert the given DER or PEM encoded PKCS7 to
the native gnutls_pkcs7_t format. The output will be stored in pkcs7.

If the PKCS7 is PEM encoded it should have a header of "PKCS7".

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls pkcs7 init

[Function]int gnutls_pkcs7_init (gnutls pkcs7 t * pkcs7)
pkcs7: The structure to be initialized

Description: This function will initialize a PKCS7 structure. PKCS7 structures usu-
ally contain lists of X.509 Certificates and X.509 Certificate revocation lists.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls pkcs7 set crl

[Function]int gnutls_pkcs7_set_crl (gnutls pkcs7 t pkcs7 , gnutls x509 crl t
crl)

pkcs7: should contain a gnutls_pkcs7_t structure

crl: the DER encoded crl to be added

Description: This function will add a parsed CRL to the PKCS7 or RFC2630 crl set.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls pkcs7 set crl raw

[Function]int gnutls_pkcs7_set_crl_raw (gnutls pkcs7 t pkcs7 , const
gnutls datum t * crl)

pkcs7: should contain a gnutls_pkcs7_t structure

crl: the DER encoded crl to be added

Description: This function will add a crl to the PKCS7 or RFC2630 crl set.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls pkcs7 set crt

[Function]int gnutls_pkcs7_set_crt (gnutls pkcs7 t pkcs7 , gnutls x509 crt t
crt)

pkcs7: should contain a gnutls_pkcs7_t structure

crt: the certificate to be copied.

Description: This function will add a parsed certificate to the PKCS7 or RFC2630
certificate set. This is a wrapper function over gnutls_pkcs7_set_crt_raw() .

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Appendix C: API reference 226

gnutls pkcs7 set crt raw

[Function]int gnutls_pkcs7_set_crt_raw (gnutls pkcs7 t pkcs7 , const
gnutls datum t * crt)

pkcs7: should contain a gnutls_pkcs7_t structure

crt: the DER encoded certificate to be added

Description: This function will add a certificate to the PKCS7 or RFC2630 certificate
set.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crl check issuer

[Function]int gnutls_x509_crl_check_issuer (gnutls x509 crl t crl ,
gnutls x509 crt t issuer)

crl: is the CRL to be checked

issuer: is the certificate of a possible issuer

Description: This function will check if the given CRL was issued by the given issuer
certificate. It will return true (1) if the given CRL was issued by the given issuer,
and false (0) if not.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crl deinit

[Function]void gnutls_x509_crl_deinit (gnutls x509 crl t crl)
crl: The structure to be initialized

Description: This function will deinitialize a CRL structure.

gnutls x509 crl export

[Function]int gnutls_x509_crl_export (gnutls x509 crl t crl ,
gnutls x509 crt fmt t format , void * output_data , size t *
output_data_size)

crl: Holds the revocation list

format: the format of output params. One of PEM or DER.

output data: will contain a private key PEM or DER encoded

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

Description: This function will export the revocation list to DER or PEM format.

If the buffer provided is not long enough to hold the output, then GNUTLS_E_SHORT_

MEMORY_BUFFER will be returned.

If the structure is PEM encoded, it will have a header of "BEGIN X509 CRL".

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value. and a negative error code on failure.

Appendix C: API reference 227

gnutls x509 crl get authority key id

[Function]int gnutls_x509_crl_get_authority_key_id (gnutls x509 crl t
crl , void * ret , size t * ret_size , unsigned int * critical)

crl: should contain a gnutls_x509_crl_t structure

ret: The place where the identifier will be copied

ret size: Holds the size of the result field.

critical: will be non (0) if the extension is marked as critical (may be null)

Description: This function will return the CRL authority’s key identifier. This is
obtained by the X.509 Authority Key identifier extension field (2.5.29.35). Note that
this function only returns the keyIdentifier field of the extension.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code in case of an error.

Since: 2.8.0

gnutls x509 crl get crt count

[Function]int gnutls_x509_crl_get_crt_count (gnutls x509 crl t crl)
crl: should contain a gnutls_x509_crl_t structure

Description: This function will return the number of revoked certificates in the given
CRL.

Returns: number of certificates, a negative error code on failure.

gnutls x509 crl get crt serial

[Function]int gnutls_x509_crl_get_crt_serial (gnutls x509 crl t crl , int
indx , unsigned char * serial , size t * serial_size , time t * t)

crl: should contain a gnutls_x509_crl_t structure

indx: the index of the certificate to extract (starting from 0)

serial: where the serial number will be copied

serial size: initially holds the size of serial

t: if non null, will hold the time this certificate was revoked

Description: This function will retrieve the serial number of the specified, by the
index, revoked certificate.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value. and a negative error code on error.

gnutls x509 crl get dn oid

[Function]int gnutls_x509_crl_get_dn_oid (gnutls x509 crl t crl , int indx ,
void * oid , size t * sizeof_oid)

crl: should contain a gnutls x509 crl t structure

indx: Specifies which DN OID to send. Use (0) to get the first one.

oid: a pointer to a structure to hold the name (may be null)

sizeof oid: initially holds the size of ’oid’

Appendix C: API reference 228

Description: This function will extract the requested OID of the name of the CRL
issuer, specified by the given index.

If oid is null then only the size will be filled.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the provided buffer is not long enough,
and in that case the sizeof oid will be updated with the required size. On success 0
is returned.

gnutls x509 crl get extension data

[Function]int gnutls_x509_crl_get_extension_data (gnutls x509 crl t crl ,
int indx , void * data , size t * sizeof_data)

crl: should contain a gnutls_x509_crl_t structure

indx: Specifies which extension OID to send. Use (0) to get the first one.

data: a pointer to a structure to hold the data (may be null)

sizeof data: initially holds the size of oid

Description: This function will return the requested extension data in the CRL. The
extension data will be stored as a string in the provided buffer.

Use gnutls_x509_crl_get_extension_info() to extract the OID and critical flag.
Use gnutls_x509_crl_get_extension_info() instead, if you want to get data in-
dexed by the extension OID rather than sequence.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code in case of an error. If your have reached the last extension available GNUTLS_E_
REQUESTED_DATA_NOT_AVAILABLE will be returned.

Since: 2.8.0

gnutls x509 crl get extension info

[Function]int gnutls_x509_crl_get_extension_info (gnutls x509 crl t crl ,
int indx , void * oid , size t * sizeof_oid , int * critical)

crl: should contain a gnutls_x509_crl_t structure

indx: Specifies which extension OID to send, use (0) to get the first one.

oid: a pointer to a structure to hold the OID

sizeof oid: initially holds the maximum size of oid, on return holds actual size of oid.

critical: output variable with critical flag, may be NULL.

Description: This function will return the requested extension OID in the CRL, and
the critical flag for it. The extension OID will be stored as a string in the provided
buffer. Use gnutls_x509_crl_get_extension_data() to extract the data.

If the buffer provided is not long enough to hold the output, then * sizeof_oidis
updated and GNUTLS_E_SHORT_MEMORY_BUFFER will be returned.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code in case of an error. If your have reached the last extension available GNUTLS_E_
REQUESTED_DATA_NOT_AVAILABLE will be returned.

Since: 2.8.0

Appendix C: API reference 229

gnutls x509 crl get extension oid

[Function]int gnutls_x509_crl_get_extension_oid (gnutls x509 crl t crl ,
int indx , void * oid , size t * sizeof_oid)

crl: should contain a gnutls_x509_crl_t structure

indx: Specifies which extension OID to send, use (0) to get the first one.

oid: a pointer to a structure to hold the OID (may be null)

sizeof oid: initially holds the size of oid

Description: This function will return the requested extension OID in the CRL. The
extension OID will be stored as a string in the provided buffer.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code in case of an error. If your have reached the last extension available GNUTLS_E_
REQUESTED_DATA_NOT_AVAILABLE will be returned.

Since: 2.8.0

gnutls x509 crl get issuer dn

[Function]int gnutls_x509_crl_get_issuer_dn (const gnutls x509 crl t crl ,
char * buf , size t * sizeof_buf)

crl: should contain a gnutls x509 crl t structure

buf : a pointer to a structure to hold the peer’s name (may be null)

sizeof buf : initially holds the size of buf

Description: This function will copy the name of the CRL issuer in the provided
buffer. The name will be in the form "C=xxxx,O=yyyy,CN=zzzz" as described in
RFC2253. The output string will be ASCII or UTF-8 encoded, depending on the
certificate data.

If buf is NULL then only the size will be filled.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the provided buffer is not long enough,
and in that case the sizeof buf will be updated with the required size, and 0 on success.

gnutls x509 crl get issuer dn by oid

[Function]int gnutls_x509_crl_get_issuer_dn_by_oid (gnutls x509 crl t
crl , const char * oid , int indx , unsigned int raw_flag , void * buf , size t *
sizeof_buf)

crl: should contain a gnutls x509 crl t structure

oid: holds an Object Identified in null terminated string

indx: In case multiple same OIDs exist in the RDN, this specifies which to send. Use
(0) to get the first one.

raw flag : If non (0) returns the raw DER data of the DN part.

buf : a pointer to a structure to hold the peer’s name (may be null)

sizeof buf : initially holds the size of buf

Description: This function will extract the part of the name of the CRL issuer spec-
ified by the given OID. The output will be encoded as described in RFC2253. The
output string will be ASCII or UTF-8 encoded, depending on the certificate data.

Appendix C: API reference 230

Some helper macros with popular OIDs can be found in gnutls/x509.h If raw flag
is (0), this function will only return known OIDs as text. Other OIDs will be DER
encoded, as described in RFC2253 – in hex format with a ’\#’ prefix. You can check
about known OIDs using gnutls_x509_dn_oid_known().

If buf is null then only the size will be filled.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the provided buffer is not long enough,
and in that case the sizeof buf will be updated with the required size, and 0 on success.

gnutls x509 crl get next update

[Function]time_t gnutls_x509_crl_get_next_update (gnutls x509 crl t crl)
crl: should contain a gnutls_x509_crl_t structure

Description: This function will return the time the next CRL will be issued. This
field is optional in a CRL so it might be normal to get an error instead.

Returns: when the next CRL will be issued, or (time t)-1 on error.

gnutls x509 crl get number

[Function]int gnutls_x509_crl_get_number (gnutls x509 crl t crl , void * ret ,
size t * ret_size , unsigned int * critical)

crl: should contain a gnutls_x509_crl_t structure

ret: The place where the number will be copied

ret size: Holds the size of the result field.

critical: will be non (0) if the extension is marked as critical (may be null)

Description: This function will return the CRL number extension. This is obtained
by the CRL Number extension field (2.5.29.20).

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code in case of an error.

Since: 2.8.0

gnutls x509 crl get raw issuer dn

[Function]int gnutls_x509_crl_get_raw_issuer_dn (gnutls x509 crl t crl ,
gnutls datum t * dn)

crl: should contain a gnutls x509 crl t structure

dn: will hold the starting point of the DN

Description: This function will return a pointer to the DER encoded DN structure
and the length.

Returns: a negative error code on error, and (0) on success.

Since: 2.12.0

Appendix C: API reference 231

gnutls x509 crl get signature

[Function]int gnutls_x509_crl_get_signature (gnutls x509 crl t crl , char *
sig , size t * sizeof_sig)

crl: should contain a gnutls x509 crl t structure

sig : a pointer where the signature part will be copied (may be null).

sizeof sig : initially holds the size of sig

Description: This function will extract the signature field of a CRL.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value. and a negative error code on error.

gnutls x509 crl get signature algorithm

[Function]int gnutls_x509_crl_get_signature_algorithm (gnutls x509 crl t
crl)

crl: should contain a gnutls_x509_crl_t structure

Description: This function will return a value of the gnutls_sign_algorithm_t enu-
meration that is the signature algorithm.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crl get this update

[Function]time_t gnutls_x509_crl_get_this_update (gnutls x509 crl t crl)
crl: should contain a gnutls_x509_crl_t structure

Description: This function will return the time this CRL was issued.

Returns: when the CRL was issued, or (time t)-1 on error.

gnutls x509 crl get version

[Function]int gnutls_x509_crl_get_version (gnutls x509 crl t crl)
crl: should contain a gnutls_x509_crl_t structure

Description: This function will return the version of the specified CRL.

Returns: The version number, or a negative error code on error.

gnutls x509 crl import

[Function]int gnutls_x509_crl_import (gnutls x509 crl t crl , const
gnutls datum t * data , gnutls x509 crt fmt t format)

crl: The structure to store the parsed CRL.

data: The DER or PEM encoded CRL.

format: One of DER or PEM

Description: This function will convert the given DER or PEM encoded CRL to the
native gnutls_x509_crl_t format. The output will be stored in ’crl’.

If the CRL is PEM encoded it should have a header of "X509 CRL".

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Appendix C: API reference 232

gnutls x509 crl init

[Function]int gnutls_x509_crl_init (gnutls x509 crl t * crl)
crl: The structure to be initialized

Description: This function will initialize a CRL structure. CRL stands for Certificate
Revocation List. A revocation list usually contains lists of certificate serial numbers
that have been revoked by an Authority. The revocation lists are always signed with
the authority’s private key.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crl list import

[Function]int gnutls_x509_crl_list_import (gnutls x509 crl t * crls ,
unsigned int * crl_max , const gnutls datum t * data , gnutls x509 crt fmt t
format , unsigned int flags)

crls: The structures to store the parsed CRLs. Must not be initialized.

crl max: Initially must hold the maximum number of crls. It will be updated with
the number of crls available.

data: The PEM encoded CRLs

format: One of DER or PEM.

flags: must be (0) or an OR’d sequence of gnutls certificate import flags.

Description: This function will convert the given PEM encoded CRL list to the
native gnutls x509 crl t format. The output will be stored in crls. They will be
automatically initialized.

If the Certificate is PEM encoded it should have a header of "X509 CRL".

Returns: the number of certificates read or a negative error value.

Since: 3.0.0

gnutls x509 crl list import2

[Function]int gnutls_x509_crl_list_import2 (gnutls x509 crl t ** crls ,
unsigned int * size , const gnutls datum t * data , gnutls x509 crt fmt t
format , unsigned int flags)

crls: The structures to store the parsed crl list. Must not be initialized.

size: It will contain the size of the list.

data: The PEM encoded CRL.

format: One of DER or PEM.

flags: must be (0) or an OR’d sequence of gnutls certificate import flags.

Description: This function will convert the given PEM encoded CRL list to the
native gnutls x509 crl t format. The output will be stored in crls. They will be
automatically initialized.

If the Certificate is PEM encoded it should have a header of "X509 CRL".

Returns: the number of certificates read or a negative error value.

Since: 3.0.0

Appendix C: API reference 233

gnutls x509 crl print

[Function]int gnutls_x509_crl_print (gnutls x509 crl t crl ,
gnutls certificate print formats t format , gnutls datum t * out)

crl: The structure to be printed

format: Indicate the format to use

out: Newly allocated datum with (0) terminated string.

Description: This function will pretty print a X.509 certificate revocation list, suitable
for display to a human.

The output outneeds to be deallocate using gnutls_free().

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crl set authority key id

[Function]int gnutls_x509_crl_set_authority_key_id (gnutls x509 crl t
crl , const void * id , size t id_size)

crl: a CRL of type gnutls_x509_crl_t

id: The key ID

id size: Holds the size of the serial field.

Description: This function will set the CRL’s authority key ID extension. Only the
keyIdentifier field can be set with this function. This may be used by an authority
that holds multiple private keys, to distinguish the used key.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.8.0

gnutls x509 crl set crt

[Function]int gnutls_x509_crl_set_crt (gnutls x509 crl t crl ,
gnutls x509 crt t crt , time t revocation_time)

crl: should contain a gnutls x509 crl t structure

crt: a certificate of type gnutls_x509_crt_t with the revoked certificate

revocation time: The time this certificate was revoked

Description: This function will set a revoked certificate’s serial number to the CRL.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crl set crt serial

[Function]int gnutls_x509_crl_set_crt_serial (gnutls x509 crl t crl , const
void * serial , size t serial_size , time t revocation_time)

crl: should contain a gnutls x509 crl t structure

serial: The revoked certificate’s serial number

serial size: Holds the size of the serial field.

Appendix C: API reference 234

revocation time: The time this certificate was revoked

Description: This function will set a revoked certificate’s serial number to the CRL.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crl set next update

[Function]int gnutls_x509_crl_set_next_update (gnutls x509 crl t crl ,
time t exp_time)

crl: should contain a gnutls x509 crl t structure

exp time: The actual time

Description: This function will set the time this CRL will be updated.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crl set number

[Function]int gnutls_x509_crl_set_number (gnutls x509 crl t crl , const void
* nr , size t nr_size)

crl: a CRL of type gnutls_x509_crl_t

nr: The CRL number

nr size: Holds the size of the nr field.

Description: This function will set the CRL’s number extension. This is to be used
as a unique and monotonic number assigned to the CRL by the authority.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.8.0

gnutls x509 crl set this update

[Function]int gnutls_x509_crl_set_this_update (gnutls x509 crl t crl ,
time t act_time)

crl: should contain a gnutls x509 crl t structure

act time: The actual time

Description: This function will set the time this CRL was issued.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crl set version

[Function]int gnutls_x509_crl_set_version (gnutls x509 crl t crl , unsigned
int version)

crl: should contain a gnutls x509 crl t structure

version: holds the version number. For CRLv1 crls must be 1.

Appendix C: API reference 235

Description: This function will set the version of the CRL. This must be one for CRL
version 1, and so on. The CRLs generated by gnutls should have a version number of
2.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crl sign2

[Function]int gnutls_x509_crl_sign2 (gnutls x509 crl t crl , gnutls x509 crt t
issuer , gnutls x509 privkey t issuer_key , gnutls digest algorithm t dig ,
unsigned int flags)

crl: should contain a gnutls x509 crl t structure

issuer: is the certificate of the certificate issuer

issuer key : holds the issuer’s private key

dig : The message digest to use. GNUTLS DIG SHA1 is the safe choice unless you
know what you’re doing.

flags: must be 0

Description: This function will sign the CRL with the issuer’s private key, and will
copy the issuer’s information into the CRL.

This must be the last step in a certificate CRL since all the previously set parameters
are now signed.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crl verify

[Function]int gnutls_x509_crl_verify (gnutls x509 crl t crl , const
gnutls x509 crt t * CA_list , int CA_list_length , unsigned int flags ,
unsigned int * verify)

crl: is the crl to be verified

CA list: is a certificate list that is considered to be trusted one

CA list length: holds the number of CA certificates in CA list

flags: Flags that may be used to change the verification algorithm. Use OR of the
gnutls certificate verify flags enumerations.

verify : will hold the crl verification output.

Description: This function will try to verify the given crl and return its status. See
gnutls_x509_crt_list_verify() for a detailed description of return values.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crq deinit

[Function]void gnutls_x509_crq_deinit (gnutls x509 crq t crq)
crq: The structure to be initialized

Description: This function will deinitialize a PKCS10 certificate request structure.

Appendix C: API reference 236

gnutls x509 crq export

[Function]int gnutls_x509_crq_export (gnutls x509 crq t crq ,
gnutls x509 crt fmt t format , void * output_data , size t *
output_data_size)

crq: should contain a gnutls_x509_crq_t structure

format: the format of output params. One of PEM or DER.

output data: will contain a certificate request PEM or DER encoded

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

Description: This function will export the certificate request to a PEM or DER
encoded PKCS10 structure.

If the buffer provided is not long enough to hold the output, then GNUTLS_E_SHORT_

MEMORY_BUFFER will be returned and * output_data_sizewill be updated.

If the structure is PEM encoded, it will have a header of "BEGIN NEW CERTIFI-
CATE REQUEST".

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crq get attribute by oid

[Function]int gnutls_x509_crq_get_attribute_by_oid (gnutls x509 crq t
crq , const char * oid , int indx , void * buf , size t * sizeof_buf)

crq: should contain a gnutls_x509_crq_t structure

oid: holds an Object Identified in (0)-terminated string

indx: In case multiple same OIDs exist in the attribute list, this specifies which to
send, use (0) to get the first one

buf : a pointer to a structure to hold the attribute data (may be NULL)

sizeof buf : initially holds the size of buf

Description: This function will return the attribute in the certificate request specified
by the given Object ID. The attribute will be DER encoded.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crq get attribute data

[Function]int gnutls_x509_crq_get_attribute_data (gnutls x509 crq t crq ,
int indx , void * data , size t * sizeof_data)

crq: should contain a gnutls_x509_crq_t structure

indx: Specifies which attribute OID to send. Use (0) to get the first one.

data: a pointer to a structure to hold the data (may be null)

sizeof data: initially holds the size of oid

Description: This function will return the requested attribute data in the certificate
request. The attribute data will be stored as a string in the provided buffer.

Appendix C: API reference 237

Use gnutls_x509_crq_get_attribute_info() to extract the OID. Use gnutls_

x509_crq_get_attribute_by_oid() instead, if you want to get data indexed by
the attribute OID rather than sequence.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code in case of an error. If your have reached the last extension available GNUTLS_E_
REQUESTED_DATA_NOT_AVAILABLE will be returned.

Since: 2.8.0

gnutls x509 crq get attribute info

[Function]int gnutls_x509_crq_get_attribute_info (gnutls x509 crq t crq ,
int indx , void * oid , size t * sizeof_oid)

crq: should contain a gnutls_x509_crq_t structure

indx: Specifies which attribute OID to send. Use (0) to get the first one.

oid: a pointer to a structure to hold the OID

sizeof oid: initially holds the maximum size of oid, on return holds actual size of oid.

Description: This function will return the requested attribute OID in the certificate,
and the critical flag for it. The attribute OID will be stored as a string in the provided
buffer. Use gnutls_x509_crq_get_attribute_data() to extract the data.

If the buffer provided is not long enough to hold the output, then * sizeof_oidis
updated and GNUTLS_E_SHORT_MEMORY_BUFFER will be returned.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code in case of an error. If your have reached the last extension available GNUTLS_E_
REQUESTED_DATA_NOT_AVAILABLE will be returned.

Since: 2.8.0

gnutls x509 crq get basic constraints

[Function]int gnutls_x509_crq_get_basic_constraints (gnutls x509 crq t
crq , unsigned int * critical , unsigned int * ca , int * pathlen)

crq: should contain a gnutls_x509_crq_t structure

critical: will be non (0) if the extension is marked as critical

ca: pointer to output integer indicating CA status, may be NULL, value is 1 if the
certificate CA flag is set, 0 otherwise.

pathlen: pointer to output integer indicating path length (may be NULL), non-
negative error codes indicate a present pathLenConstraint field and the actual value,
-1 indicate that the field is absent.

Description: This function will read the certificate’s basic constraints, and return the
certificates CA status. It reads the basicConstraints X.509 extension (2.5.29.19).

Returns: If the certificate is a CA a positive value will be returned, or (0) if the
certificate does not have CA flag set. A negative error code may be returned in case
of errors. If the certificate does not contain the basicConstraints extension GNUTLS_

E_REQUESTED_DATA_NOT_AVAILABLE will be returned.

Since: 2.8.0

Appendix C: API reference 238

gnutls x509 crq get challenge password

[Function]int gnutls_x509_crq_get_challenge_password (gnutls x509 crq t
crq , char * pass , size t * sizeof_pass)

crq: should contain a gnutls_x509_crq_t structure

pass: will hold a (0)-terminated password string

sizeof pass: Initially holds the size of pass.

Description: This function will return the challenge password in the request. The
challenge password is intended to be used for requesting a revocation of the certificate.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crq get dn

[Function]int gnutls_x509_crq_get_dn (gnutls x509 crq t crq , char * buf ,
size t * sizeof_buf)

crq: should contain a gnutls_x509_crq_t structure

buf : a pointer to a structure to hold the name (may be NULL)

sizeof buf : initially holds the size of buf

Description: This function will copy the name of the Certificate request subject to
the provided buffer. The name will be in the form "C=xxxx,O=yyyy,CN=zzzz" as
described in RFC 2253. The output string bufwill be ASCII or UTF-8 encoded,
depending on the certificate data.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the provided buffer is not long enough,
and in that case the * sizeof_bufwill be updated with the required size. On success
0 is returned.

gnutls x509 crq get dn by oid

[Function]int gnutls_x509_crq_get_dn_by_oid (gnutls x509 crq t crq , const
char * oid , int indx , unsigned int raw_flag , void * buf , size t *
sizeof_buf)

crq: should contain a gnutls x509 crq t structure

oid: holds an Object Identified in null terminated string

indx: In case multiple same OIDs exist in the RDN, this specifies which to send. Use
(0) to get the first one.

raw flag : If non (0) returns the raw DER data of the DN part.

buf : a pointer to a structure to hold the name (may be NULL)

sizeof buf : initially holds the size of buf

Description: This function will extract the part of the name of the Certificate request
subject, specified by the given OID. The output will be encoded as described in
RFC2253. The output string will be ASCII or UTF-8 encoded, depending on the
certificate data.

Some helper macros with popular OIDs can be found in gnutls/x509.h If raw flag
is (0), this function will only return known OIDs as text. Other OIDs will be DER

Appendix C: API reference 239

encoded, as described in RFC2253 – in hex format with a ’\#’ prefix. You can check
about known OIDs using gnutls_x509_dn_oid_known().

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the provided buffer is not long enough,
and in that case the * sizeof_bufwill be updated with the required size. On success
0 is returned.

gnutls x509 crq get dn oid

[Function]int gnutls_x509_crq_get_dn_oid (gnutls x509 crq t crq , int indx ,
void * oid , size t * sizeof_oid)

crq: should contain a gnutls x509 crq t structure

indx: Specifies which DN OID to send. Use (0) to get the first one.

oid: a pointer to a structure to hold the name (may be NULL)

sizeof oid: initially holds the size of oid

Description: This function will extract the requested OID of the name of the certifi-
cate request subject, specified by the given index.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the provided buffer is not long enough,
and in that case the * sizeof_oidwill be updated with the required size. On success
0 is returned.

gnutls x509 crq get extension by oid

[Function]int gnutls_x509_crq_get_extension_by_oid (gnutls x509 crq t
crq , const char * oid , int indx , void * buf , size t * sizeof_buf , unsigned
int * critical)

crq: should contain a gnutls_x509_crq_t structure

oid: holds an Object Identified in null terminated string

indx: In case multiple same OIDs exist in the extensions, this specifies which to send.
Use (0) to get the first one.

buf : a pointer to a structure to hold the name (may be null)

sizeof buf : initially holds the size of buf

critical: will be non (0) if the extension is marked as critical

Description: This function will return the extension specified by the OID in the
certificate. The extensions will be returned as binary data DER encoded, in the
provided buffer.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code in case of an error. If the certificate does not contain the specified extension
GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE will be returned.

Since: 2.8.0

gnutls x509 crq get extension data

[Function]int gnutls_x509_crq_get_extension_data (gnutls x509 crq t crq ,
int indx , void * data , size t * sizeof_data)

crq: should contain a gnutls_x509_crq_t structure

Appendix C: API reference 240

indx: Specifies which extension OID to send. Use (0) to get the first one.

data: a pointer to a structure to hold the data (may be null)

sizeof data: initially holds the size of oid

Description: This function will return the requested extension data in the certificate.
The extension data will be stored as a string in the provided buffer.

Use gnutls_x509_crq_get_extension_info() to extract the OID and critical flag.
Use gnutls_x509_crq_get_extension_by_oid() instead, if you want to get data
indexed by the extension OID rather than sequence.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code in case of an error. If your have reached the last extension available GNUTLS_E_
REQUESTED_DATA_NOT_AVAILABLE will be returned.

Since: 2.8.0

gnutls x509 crq get extension info

[Function]int gnutls_x509_crq_get_extension_info (gnutls x509 crq t crq ,
int indx , void * oid , size t * sizeof_oid , unsigned int * critical)

crq: should contain a gnutls_x509_crq_t structure

indx: Specifies which extension OID to send. Use (0) to get the first one.

oid: a pointer to a structure to hold the OID

sizeof oid: initially holds the maximum size of oid, on return holds actual size of oid.

critical: output variable with critical flag, may be NULL.

Description: This function will return the requested extension OID in the certificate,
and the critical flag for it. The extension OID will be stored as a string in the provided
buffer. Use gnutls_x509_crq_get_extension_data() to extract the data.

If the buffer provided is not long enough to hold the output, then * sizeof_oidis
updated and GNUTLS_E_SHORT_MEMORY_BUFFER will be returned.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code in case of an error. If your have reached the last extension available GNUTLS_E_
REQUESTED_DATA_NOT_AVAILABLE will be returned.

Since: 2.8.0

gnutls x509 crq get key id

[Function]int gnutls_x509_crq_get_key_id (gnutls x509 crq t crq , unsigned
int flags , unsigned char * output_data , size t * output_data_size)

crq: a certificate of type gnutls_x509_crq_t

flags: should be 0 for now

output data: will contain the key ID

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

Description: This function will return a unique ID the depends on the public key
parameters. This ID can be used in checking whether a certificate corresponds to the
given private key.

Appendix C: API reference 241

If the buffer provided is not long enough to hold the output, then * output_data_

sizeis updated and GNUTLS E SHORT MEMORY BUFFER will be returned.
The output will normally be a SHA-1 hash output, which is 20 bytes.

Returns: In case of failure a negative error code will be returned, and 0 on success.

Since: 2.8.0

gnutls x509 crq get key purpose oid

[Function]int gnutls_x509_crq_get_key_purpose_oid (gnutls x509 crq t crq ,
int indx , void * oid , size t * sizeof_oid , unsigned int * critical)

crq: should contain a gnutls_x509_crq_t structure

indx: This specifies which OID to return, use (0) to get the first one

oid: a pointer to a buffer to hold the OID (may be NULL)

sizeof oid: initially holds the size of oid

critical: output variable with critical flag, may be NULL.

Description: This function will extract the key purpose OIDs of the Certificate spec-
ified by the given index. These are stored in the Extended Key Usage extension
(2.5.29.37). See the GNUTLS KP * definitions for human readable names.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the provided buffer is not long enough,
and in that case the * sizeof_oidwill be updated with the required size. On success
0 is returned.

Since: 2.8.0

gnutls x509 crq get key rsa raw

[Function]int gnutls_x509_crq_get_key_rsa_raw (gnutls x509 crq t crq ,
gnutls datum t * m , gnutls datum t * e)

crq: Holds the certificate

m: will hold the modulus

e: will hold the public exponent

Description: This function will export the RSA public key’s parameters found in the
given structure. The new parameters will be allocated using gnutls_malloc() and
will be stored in the appropriate datum.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.8.0

gnutls x509 crq get key usage

[Function]int gnutls_x509_crq_get_key_usage (gnutls x509 crq t crq ,
unsigned int * key_usage , unsigned int * critical)

crq: should contain a gnutls_x509_crq_t structure

key usage: where the key usage bits will be stored

critical: will be non (0) if the extension is marked as critical

Appendix C: API reference 242

Description: This function will return certificate’s key usage, by reading the keyUsage
X.509 extension (2.5.29.15). The key usage value will

ORed values of the: GNUTLS_KEY_DIGITAL_SIGNATURE, GNUTLS_KEY_NON_

REPUDIATION, GNUTLS_KEY_KEY_ENCIPHERMENT, GNUTLS_KEY_DATA_ENCIPHERMENT,
GNUTLS_KEY_KEY_AGREEMENT, GNUTLS_KEY_KEY_CERT_SIGN, GNUTLS_KEY_CRL_SIGN,
GNUTLS_KEY_ENCIPHER_ONLY, GNUTLS_KEY_DECIPHER_ONLY.

Returns: the certificate key usage, or a negative error code in case of parsing error. If
the certificate does not contain the keyUsage extension GNUTLS_E_REQUESTED_DATA_

NOT_AVAILABLE will be returned.

Since: 2.8.0

gnutls x509 crq get pk algorithm

[Function]int gnutls_x509_crq_get_pk_algorithm (gnutls x509 crq t crq ,
unsigned int * bits)

crq: should contain a gnutls_x509_crq_t structure

bits: if bits is non-NULL it will hold the size of the parameters’ in bits

Description: This function will return the public key algorithm of a PKCS10 certifi-
cate request.

If bits is non-NULL, it should have enough size to hold the parameters size in bits. For
RSA the bits returned is the modulus. For DSA the bits returned are of the public
exponent.

Returns: a member of the gnutls_pk_algorithm_t enumeration on success, or a
negative error code on error.

gnutls x509 crq get subject alt name

[Function]int gnutls_x509_crq_get_subject_alt_name (gnutls x509 crq t
crq , unsigned int seq , void * ret , size t * ret_size , unsigned int *
ret_type , unsigned int * critical)

crq: should contain a gnutls_x509_crq_t structure

seq: specifies the sequence number of the alt name, 0 for the first one, 1 for the second
etc.

ret: is the place where the alternative name will be copied to

ret size: holds the size of ret.

ret type: holds the gnutls_x509_subject_alt_name_t name type

critical: will be non (0) if the extension is marked as critical (may be null)

Description: This function will return the alternative names, contained in the given
certificate. It is the same as gnutls_x509_crq_get_subject_alt_name() except for
the fact that it will return the type of the alternative name in ret_typeeven if the
function fails for some reason (i.e. the buffer provided is not enough).

Returns: the alternative subject name type on success, one of the enumerated
gnutls_x509_subject_alt_name_t. It will return GNUTLS_E_SHORT_MEMORY_

BUFFER if ret_sizeis not large enough to hold the value. In that case
ret_sizewill be updated with the required size. If the certificate request

Appendix C: API reference 243

does not have an Alternative name with the specified sequence number then
GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE is returned.

Since: 2.8.0

gnutls x509 crq get subject alt othername oid

[Function]int gnutls_x509_crq_get_subject_alt_othername_oid
(gnutls x509 crq t crq , unsigned int seq , void * ret , size t * ret_size)

crq: should contain a gnutls_x509_crq_t structure

seq: specifies the sequence number of the alt name (0 for the first one, 1 for the second
etc.)

ret: is the place where the otherName OID will be copied to

ret size: holds the size of ret.

Description: This function will extract the type OID of an otherName Subject Alter-
native Name, contained in the given certificate, and return the type as an enumerated
element.

This function is only useful if gnutls_x509_crq_get_subject_alt_name() returned
GNUTLS_SAN_OTHERNAME.

Returns: the alternative subject name type on success, one of the enumerated
gnutls x509 subject alt name t. For supported OIDs, it will return one of the virtual
(GNUTLS SAN OTHERNAME *) types, e.g. GNUTLS_SAN_OTHERNAME_XMPP,
and GNUTLS_SAN_OTHERNAME for unknown OIDs. It will return GNUTLS_E_SHORT_

MEMORY_BUFFER if ret_sizeis not large enough to hold the value. In that case
ret_sizewill be updated with the required size. If the certificate does not have an
Alternative name with the specified sequence number and with the otherName type
then GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE is returned.

Since: 2.8.0

gnutls x509 crq get version

[Function]int gnutls_x509_crq_get_version (gnutls x509 crq t crq)
crq: should contain a gnutls_x509_crq_t structure

Description: This function will return the version of the specified Certificate request.

Returns: version of certificate request, or a negative error code on error.

gnutls x509 crq import

[Function]int gnutls_x509_crq_import (gnutls x509 crq t crq , const
gnutls datum t * data , gnutls x509 crt fmt t format)

crq: The structure to store the parsed certificate request.

data: The DER or PEM encoded certificate.

format: One of DER or PEM

Description: This function will convert the given DER or PEM encoded certificate
request to a gnutls_x509_crq_t structure. The output will be stored in crq.

Appendix C: API reference 244

If the Certificate is PEM encoded it should have a header of "NEW CERTIFICATE
REQUEST".

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crq init

[Function]int gnutls_x509_crq_init (gnutls x509 crq t * crq)
crq: The structure to be initialized

Description: This function will initialize a PKCS10 certificate request structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crq print

[Function]int gnutls_x509_crq_print (gnutls x509 crq t crq ,
gnutls certificate print formats t format , gnutls datum t * out)

crq: The structure to be printed

format: Indicate the format to use

out: Newly allocated datum with (0) terminated string.

Description: This function will pretty print a certificate request, suitable for display
to a human.

The output outneeds to be deallocate using gnutls_free().

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.8.0

gnutls x509 crq set attribute by oid

[Function]int gnutls_x509_crq_set_attribute_by_oid (gnutls x509 crq t
crq , const char * oid , void * buf , size t sizeof_buf)

crq: should contain a gnutls_x509_crq_t structure

oid: holds an Object Identified in (0)-terminated string

buf : a pointer to a structure that holds the attribute data

sizeof buf : holds the size of buf

Description: This function will set the attribute in the certificate request specified by
the given Object ID. The attribute must be be DER encoded.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crq set basic constraints

[Function]int gnutls_x509_crq_set_basic_constraints (gnutls x509 crq t
crq , unsigned int ca , int pathLenConstraint)

crq: a certificate request of type gnutls_x509_crq_t

Appendix C: API reference 245

ca: true(1) or false(0) depending on the Certificate authority status.

pathLenConstraint: non-negative error codes indicate maximum length of path, and
negative error codes indicate that the pathLenConstraints field should not be present.

Description: This function will set the basicConstraints certificate extension.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.8.0

gnutls x509 crq set challenge password

[Function]int gnutls_x509_crq_set_challenge_password (gnutls x509 crq t
crq , const char * pass)

crq: should contain a gnutls_x509_crq_t structure

pass: holds a (0)-terminated password

Description: This function will set a challenge password to be used when revoking
the request.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crq set dn by oid

[Function]int gnutls_x509_crq_set_dn_by_oid (gnutls x509 crq t crq , const
char * oid , unsigned int raw_flag , const void * data , unsigned int
sizeof_data)

crq: should contain a gnutls_x509_crq_t structure

oid: holds an Object Identifier in a (0)-terminated string

raw flag : must be 0, or 1 if the data are DER encoded

data: a pointer to the input data

sizeof data: holds the size of data

Description: This function will set the part of the name of the Certificate request
subject, specified by the given OID. The input string should be ASCII or UTF-8
encoded.

Some helper macros with popular OIDs can be found in gnutls/x509.h With this
function you can only set the known OIDs. You can test for known OIDs using
gnutls_x509_dn_oid_known(). For OIDs that are not known (by gnutls) you should
properly DER encode your data, and call this function with raw flag set.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crq set key

[Function]int gnutls_x509_crq_set_key (gnutls x509 crq t crq ,
gnutls x509 privkey t key)

crq: should contain a gnutls_x509_crq_t structure

key : holds a private key

Appendix C: API reference 246

Description: This function will set the public parameters from the given private key
to the request.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crq set key purpose oid

[Function]int gnutls_x509_crq_set_key_purpose_oid (gnutls x509 crq t crq ,
const void * oid , unsigned int critical)

crq: a certificate of type gnutls_x509_crq_t

oid: a pointer to a (0)-terminated string that holds the OID

critical: Whether this extension will be critical or not

Description: This function will set the key purpose OIDs of the Certificate. These
are stored in the Extended Key Usage extension (2.5.29.37) See the GNUTLS KP *
definitions for human readable names.

Subsequent calls to this function will append OIDs to the OID list.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.8.0

gnutls x509 crq set key rsa raw

[Function]int gnutls_x509_crq_set_key_rsa_raw (gnutls x509 crq t crq ,
const gnutls datum t * m , const gnutls datum t * e)

crq: should contain a gnutls_x509_crq_t structure

m: holds the modulus

e: holds the public exponent

Description: This function will set the public parameters from the given private key
to the request. Only RSA keys are currently supported.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.6.0

gnutls x509 crq set key usage

[Function]int gnutls_x509_crq_set_key_usage (gnutls x509 crq t crq ,
unsigned int usage)

crq: a certificate request of type gnutls_x509_crq_t

usage: an ORed sequence of the GNUTLS KEY * elements.

Description: This function will set the keyUsage certificate extension.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.8.0

Appendix C: API reference 247

gnutls x509 crq set subject alt name

[Function]int gnutls_x509_crq_set_subject_alt_name (gnutls x509 crq t
crq , gnutls x509 subject alt name t nt , const void * data , unsigned int
data_size , unsigned int flags)

crq: a certificate request of type gnutls_x509_crq_t

nt: is one of the gnutls_x509_subject_alt_name_t enumerations

data: The data to be set

data size: The size of data to be set

flags: GNUTLS_FSAN_SET to clear previous data or GNUTLS_FSAN_APPEND to append.

Description: This function will set the subject alternative name certificate extension.
It can set the following types:

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.8.0

gnutls x509 crq set version

[Function]int gnutls_x509_crq_set_version (gnutls x509 crq t crq , unsigned
int version)

crq: should contain a gnutls_x509_crq_t structure

version: holds the version number, for v1 Requests must be 1

Description: This function will set the version of the certificate request. For version
1 requests this must be one.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crq sign2

[Function]int gnutls_x509_crq_sign2 (gnutls x509 crq t crq ,
gnutls x509 privkey t key , gnutls digest algorithm t dig , unsigned int
flags)

crq: should contain a gnutls_x509_crq_t structure

key : holds a private key

dig : The message digest to use, i.e., GNUTLS_DIG_SHA1

flags: must be 0

Description: This function will sign the certificate request with a private key. This
must be the same key as the one used in gnutls_x509_crt_set_key() since a cer-
tificate request is self signed.

This must be the last step in a certificate request generation since all the previously
set parameters are now signed.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code. GNUTLS_E_
ASN1_VALUE_NOT_FOUND is returned if you didn’t set all information in the certificate
request (e.g., the version using gnutls_x509_crq_set_version()).

Appendix C: API reference 248

gnutls x509 crq verify

[Function]int gnutls_x509_crq_verify (gnutls x509 crq t crq , unsigned int
flags)

crq: is the crq to be verified

flags: Flags that may be used to change the verification algorithm. Use OR of the
gnutls certificate verify flags enumerations.

Description: This function will verify self signature in the certificate request and
return its status.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, GNUTLS_E_PK_SIG_VERIFY_
FAILED if verification failed, otherwise a negative error value.

Since 2.12.0

gnutls x509 crt check hostname

[Function]int gnutls_x509_crt_check_hostname (gnutls x509 crt t cert ,
const char * hostname)

cert: should contain an gnutls x509 crt t structure

hostname: A null terminated string that contains a DNS name

Description: This function will check if the given certificate’s subject matches the
given hostname. This is a basic implementation of the matching described in RFC2818
(HTTPS), which takes into account wildcards, and the DNSName/IPAddress subject
alternative name PKIX extension.

Returns: non (0) for a successful match, and (0) on failure.

gnutls x509 crt check issuer

[Function]int gnutls_x509_crt_check_issuer (gnutls x509 crt t cert ,
gnutls x509 crt t issuer)

cert: is the certificate to be checked

issuer: is the certificate of a possible issuer

Description: This function will check if the given certificate was issued by the given
issuer.

Returns: It will return true (1) if the given certificate is issued by the given issuer,
and false (0) if not. A negative error code is returned in case of an error.

gnutls x509 crt check revocation

[Function]int gnutls_x509_crt_check_revocation (gnutls x509 crt t cert ,
const gnutls x509 crl t * crl_list , int crl_list_length)

cert: should contain a gnutls_x509_crt_t structure

crl list: should contain a list of gnutls x509 crl t structures

crl list length: the length of the crl list

Description: This function will return check if the given certificate is revoked. It is
assumed that the CRLs have been verified before.

Returns: 0 if the certificate is NOT revoked, and 1 if it is. A negative error code is
returned on error.

Appendix C: API reference 249

gnutls x509 crt cpy crl dist points

[Function]int gnutls_x509_crt_cpy_crl_dist_points (gnutls x509 crt t dst ,
gnutls x509 crt t src)

dst: a certificate of type gnutls_x509_crt_t

src: the certificate where the dist points will be copied from

Description: This function will copy the CRL distribution points certificate extension,
from the source to the destination certificate. This may be useful to copy from a CA
certificate to issued ones.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt deinit

[Function]void gnutls_x509_crt_deinit (gnutls x509 crt t cert)
cert: The structure to be deinitialized

Description: This function will deinitialize a certificate structure.

gnutls x509 crt export

[Function]int gnutls_x509_crt_export (gnutls x509 crt t cert ,
gnutls x509 crt fmt t format , void * output_data , size t *
output_data_size)

cert: Holds the certificate

format: the format of output params. One of PEM or DER.

output data: will contain a certificate PEM or DER encoded

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

Description: This function will export the certificate to DER or PEM format.

If the buffer provided is not long enough to hold the output, then *output data size
is updated and GNUTLS E SHORT MEMORY BUFFER will be returned.

If the structure is PEM encoded, it will have a header of "BEGIN CERTIFICATE".

Returns: In case of failure a negative error code will be returned, and 0 on success.

gnutls x509 crt get activation time

[Function]time_t gnutls_x509_crt_get_activation_time (gnutls x509 crt t
cert)

cert: should contain a gnutls_x509_crt_t structure

Description: This function will return the time this Certificate was or will be acti-
vated.

Returns: activation time, or (time t)-1 on error.

Appendix C: API reference 250

gnutls x509 crt get authority info access

[Function]int gnutls_x509_crt_get_authority_info_access
(gnutls x509 crt t crt , unsigned int seq , int what , gnutls datum t * data ,
int * critical)

crt: Holds the certificate

seq: specifies the sequence number of the access descriptor (0 for the first one, 1 for
the second etc.)

what: what data to get, a gnutls_info_access_what_t type.

data: output data to be freed with gnutls_free().

critical: pointer to output integer that is set to non-0 if the extension is marked as
critical (may be NULL)

Description: This function extracts the Authority Information Access (AIA) exten-
sion, see RFC 5280 section 4.2.2.1 for more information. The AIA extension holds a
sequence of AccessDescription (AD) data:

<informalexample><programlisting>

AuthorityInfoAccessSyntax : := SEQUENCE SIZE (1..MAX) OF AccessDescription

AccessDescription : := SEQUENCE { accessMethod OBJECT IDENTIFIER, ac-
cessLocation GeneralName } </programlisting></informalexample>

The seqinput parameter is used to indicate which member of the sequence the caller
is interested in. The first member is 0, the second member 1 and so on. When the
seqvalue is out of bounds, GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE is returned.

The type of data returned in datais specified via whatwhich should be gnutls_info_
access_what_t values.

If whatis GNUTLS_IA_ACCESSMETHOD_OID then datawill hold the accessMethod OID
(e.g., "1.3.6.1.5.5.7.48.1").

If whatis GNUTLS_IA_ACCESSLOCATION_GENERALNAME_TYPE, datawill hold the access-
Location GeneralName type (e.g., "uniformResourceIdentifier").

If whatis GNUTLS_IA_URI, datawill hold the accessLocation URI data. Requesting
this whatvalue leads to an error if the accessLocation is not of the "uniformResour-
ceIdentifier" type.

If whatis GNUTLS_IA_OCSP_URI, datawill hold the OCSP URI. Requesting this
whatvalue leads to an error if the accessMethod is not 1.3.6.1.5.5.7.48.1 aka OSCP,
or if accessLocation is not of the "uniformResourceIdentifier" type.

If whatis GNUTLS_IA_CAISSUERS_URI, datawill hold the caIssuers URI. Requesting
this whatvalue leads to an error if the accessMethod is not 1.3.6.1.5.5.7.48.2 aka
caIssuers, or if accessLocation is not of the "uniformResourceIdentifier" type.

More whatvalues may be allocated in the future as needed.

If datais NULL, the function does the same without storing the output data, that is,
it will set criticaland do error checking as usual.

The value of the critical flag is returned in * critical. Supply a NULL criticalif
you want the function to make sure the extension is non-critical, as required by RFC
5280.

Appendix C: API reference 251

Returns: GNUTLS_E_SUCCESS on success, GNUTLS_E_INVALID_REQUEST on invalid crt,
GNUTLS_E_CONSTRAINT_ERROR if the extension is incorrectly marked as critical (use
a non-NULL criticalto override), GNUTLS_E_UNKNOWN_ALGORITHM if the requested
OID does not match (e.g., when using GNUTLS_IA_OCSP_URI), otherwise a negative
error code.

Since: 3.0.0

gnutls x509 crt get authority key id

[Function]int gnutls_x509_crt_get_authority_key_id (gnutls x509 crt t
cert , void * ret , size t * ret_size , unsigned int * critical)

cert: should contain a gnutls_x509_crt_t structure

ret: The place where the identifier will be copied

ret size: Holds the size of the result field.

critical: will be non (0) if the extension is marked as critical (may be null)

Description: This function will return the X.509v3 certificate authority’s key identi-
fier. This is obtained by the X.509 Authority Key identifier extension field (2.5.29.35).
Note that this function only returns the keyIdentifier field of the extension.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt get basic constraints

[Function]int gnutls_x509_crt_get_basic_constraints (gnutls x509 crt t
cert , unsigned int * critical , unsigned int * ca , int * pathlen)

cert: should contain a gnutls_x509_crt_t structure

critical: will be non (0) if the extension is marked as critical

ca: pointer to output integer indicating CA status, may be NULL, value is 1 if the
certificate CA flag is set, 0 otherwise.

pathlen: pointer to output integer indicating path length (may be NULL), non-
negative error codes indicate a present pathLenConstraint field and the actual value,
-1 indicate that the field is absent.

Description: This function will read the certificate’s basic constraints, and return the
certificates CA status. It reads the basicConstraints X.509 extension (2.5.29.19).

Returns: If the certificate is a CA a positive value will be returned, or (0) if the
certificate does not have CA flag set. A negative error code may be returned in
case of errors. If the certificate does not contain the basicConstraints extension
GNUTLS E REQUESTED DATA NOT AVAILABLE will be returned.

gnutls x509 crt get ca status

[Function]int gnutls_x509_crt_get_ca_status (gnutls x509 crt t cert ,
unsigned int * critical)

cert: should contain a gnutls_x509_crt_t structure

critical: will be non (0) if the extension is marked as critical

Appendix C: API reference 252

Description: This function will return certificates CA status, by reading the basic-
Constraints X.509 extension (2.5.29.19). If the certificate is a CA a positive value will
be returned, or (0) if the certificate does not have CA flag set.

Use gnutls_x509_crt_get_basic_constraints() if you want to read the pathLen-
Constraint field too.

Returns: A negative error code may be returned in case of parsing error. If the
certificate does not contain the basicConstraints extension GNUTLS_E_REQUESTED_

DATA_NOT_AVAILABLE will be returned.

gnutls x509 crt get crl dist points

[Function]int gnutls_x509_crt_get_crl_dist_points (gnutls x509 crt t
cert , unsigned int seq , void * ret , size t * ret_size , unsigned int *
reason_flags , unsigned int * critical)

cert: should contain a gnutls_x509_crt_t structure

seq: specifies the sequence number of the distribution point (0 for the first one, 1 for
the second etc.)

ret: is the place where the distribution point will be copied to

ret size: holds the size of ret.

reason flags: Revocation reasons flags.

critical: will be non (0) if the extension is marked as critical (may be null)

Description: This function retrieves the CRL distribution points (2.5.29.31), con-
tained in the given certificate in the X509v3 Certificate Extensions.

reason_flagsshould be an ORed sequence of GNUTLS_CRL_REASON_UNUSED, GNUTLS_
CRL_REASON_KEY_COMPROMISE, GNUTLS_CRL_REASON_CA_COMPROMISE, GNUTLS_

CRL_REASON_AFFILIATION_CHANGED, GNUTLS_CRL_REASON_SUPERSEEDED, GNUTLS_

CRL_REASON_CESSATION_OF_OPERATION, GNUTLS_CRL_REASON_CERTIFICATE_HOLD,
GNUTLS_CRL_REASON_PRIVILEGE_WITHDRAWN, GNUTLS_CRL_REASON_AA_COMPROMISE,
or (0) for all possible reasons.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER and updates ret_sizeif ret_sizeis not
enough to hold the distribution point, or the type of the distribution point if every-
thing was ok. The type is one of the enumerated gnutls_x509_subject_alt_name_t.
If the certificate does not have an Alternative name with the specified sequence num-
ber then GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE is returned.

gnutls x509 crt get dn

[Function]int gnutls_x509_crt_get_dn (gnutls x509 crt t cert , char * buf ,
size t * buf_size)

cert: should contain a gnutls_x509_crt_t structure

buf : a pointer to a structure to hold the name (may be null)

buf size: initially holds the size of buf

Description: This function will copy the name of the Certificate in the provided buffer.
The name will be in the form "C=xxxx,O=yyyy,CN=zzzz" as described in RFC2253.
The output string will be ASCII or UTF-8 encoded, depending on the certificate data.

Appendix C: API reference 253

If bufis null then only the size will be filled. If the raw_flagis not specified the output
is always null terminated, although the buf_sizewill not include the null character.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the provided buffer is not long enough,
and in that case the buf_sizewill be updated with the required size. On success 0 is
returned.

gnutls x509 crt get dn by oid

[Function]int gnutls_x509_crt_get_dn_by_oid (gnutls x509 crt t cert , const
char * oid , int indx , unsigned int raw_flag , void * buf , size t * buf_size)

cert: should contain a gnutls_x509_crt_t structure

oid: holds an Object Identified in null terminated string

indx: In case multiple same OIDs exist in the RDN, this specifies which to send. Use
(0) to get the first one.

raw flag : If non (0) returns the raw DER data of the DN part.

buf : a pointer where the DN part will be copied (may be null).

buf size: initially holds the size of buf

Description: This function will extract the part of the name of the Certificate subject
specified by the given OID. The output, if the raw flag is not used, will be encoded
as described in RFC2253. Thus a string that is ASCII or UTF-8 encoded, depending
on the certificate data.

Some helper macros with popular OIDs can be found in gnutls/x509.h If raw flag
is (0), this function will only return known OIDs as text. Other OIDs will be DER
encoded, as described in RFC2253 – in hex format with a ’\#’ prefix. You can check
about known OIDs using gnutls_x509_dn_oid_known().

If bufis null then only the size will be filled. If the raw_flagis not specified the output
is always null terminated, although the buf_sizewill not include the null character.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the provided buffer is not long enough,
and in that case the *buf size will be updated with the required size. On success 0 is
returned.

gnutls x509 crt get dn oid

[Function]int gnutls_x509_crt_get_dn_oid (gnutls x509 crt t cert , int indx ,
void * oid , size t * oid_size)

cert: should contain a gnutls_x509_crt_t structure

indx: This specifies which OID to return. Use (0) to get the first one.

oid: a pointer to a buffer to hold the OID (may be null)

oid size: initially holds the size of oid

Description: This function will extract the OIDs of the name of the Certificate subject
specified by the given index.

If oidis null then only the size will be filled. If the raw_flagis not specified the output
is always null terminated, although the oid_sizewill not include the null character.

Appendix C: API reference 254

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the provided buffer is not long enough,
and in that case the oid_sizewill be updated with the required size. On success 0 is
returned.

gnutls x509 crt get expiration time

[Function]time_t gnutls_x509_crt_get_expiration_time (gnutls x509 crt t
cert)

cert: should contain a gnutls_x509_crt_t structure

Description: This function will return the time this Certificate was or will be expired.

Returns: expiration time, or (time t)-1 on error.

gnutls x509 crt get extension by oid

[Function]int gnutls_x509_crt_get_extension_by_oid (gnutls x509 crt t
cert , const char * oid , int indx , void * buf , size t * buf_size , unsigned
int * critical)

cert: should contain a gnutls_x509_crt_t structure

oid: holds an Object Identified in null terminated string

indx: In case multiple same OIDs exist in the extensions, this specifies which to send.
Use (0) to get the first one.

buf : a pointer to a structure to hold the name (may be null)

buf size: initially holds the size of buf

critical: will be non (0) if the extension is marked as critical

Description: This function will return the extension specified by the OID in the
certificate. The extensions will be returned as binary data DER encoded, in the
provided buffer.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative er-
ror code is returned. If the certificate does not contain the specified extension
GNUTLS E REQUESTED DATA NOT AVAILABLE will be returned.

gnutls x509 crt get extension data

[Function]int gnutls_x509_crt_get_extension_data (gnutls x509 crt t cert ,
int indx , void * data , size t * sizeof_data)

cert: should contain a gnutls_x509_crt_t structure

indx: Specifies which extension OID to send. Use (0) to get the first one.

data: a pointer to a structure to hold the data (may be null)

sizeof data: initially holds the size of oid

Description: This function will return the requested extension data in the certificate.
The extension data will be stored as a string in the provided buffer.

Use gnutls_x509_crt_get_extension_info() to extract the OID and critical flag.
Use gnutls_x509_crt_get_extension_by_oid() instead, if you want to get data
indexed by the extension OID rather than sequence.

Appendix C: API reference 255

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative er-
ror code is returned. If you have reached the last extension available GNUTLS_E_

REQUESTED_DATA_NOT_AVAILABLE will be returned.

gnutls x509 crt get extension info

[Function]int gnutls_x509_crt_get_extension_info (gnutls x509 crt t cert ,
int indx , void * oid , size t * oid_size , unsigned int * critical)

cert: should contain a gnutls_x509_crt_t structure

indx: Specifies which extension OID to send. Use (0) to get the first one.

oid: a pointer to a structure to hold the OID

oid size: initially holds the maximum size of oid, on return holds actual size of oid.

critical: output variable with critical flag, may be NULL.

Description: This function will return the requested extension OID in the certificate,
and the critical flag for it. The extension OID will be stored as a string in the provided
buffer. Use gnutls_x509_crt_get_extension_data() to extract the data.

If the buffer provided is not long enough to hold the output, then * oid_sizeis
updated and GNUTLS_E_SHORT_MEMORY_BUFFER will be returned.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative er-
ror code is returned. If you have reached the last extension available GNUTLS_E_

REQUESTED_DATA_NOT_AVAILABLE will be returned.

gnutls x509 crt get extension oid

[Function]int gnutls_x509_crt_get_extension_oid (gnutls x509 crt t cert ,
int indx , void * oid , size t * oid_size)

cert: should contain a gnutls_x509_crt_t structure

indx: Specifies which extension OID to send. Use (0) to get the first one.

oid: a pointer to a structure to hold the OID (may be null)

oid size: initially holds the size of oid

Description: This function will return the requested extension OID in the certificate.
The extension OID will be stored as a string in the provided buffer.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative er-
ror code is returned. If you have reached the last extension available GNUTLS_E_

REQUESTED_DATA_NOT_AVAILABLE will be returned.

gnutls x509 crt get fingerprint

[Function]int gnutls_x509_crt_get_fingerprint (gnutls x509 crt t cert ,
gnutls digest algorithm t algo , void * buf , size t * buf_size)

cert: should contain a gnutls_x509_crt_t structure

algo: is a digest algorithm

buf : a pointer to a structure to hold the fingerprint (may be null)

buf size: initially holds the size of buf

Appendix C: API reference 256

Description: This function will calculate and copy the certificate’s fingerprint in the
provided buffer.

If the buffer is null then only the size will be filled.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the provided buffer is not long enough,
and in that case the *buf size will be updated with the required size. On success 0 is
returned.

gnutls x509 crt get issuer

[Function]int gnutls_x509_crt_get_issuer (gnutls x509 crt t cert ,
gnutls x509 dn t * dn)

cert: should contain a gnutls_x509_crt_t structure

dn: output variable with pointer to opaque DN

Description: Return the Certificate’s Issuer DN as an opaque data type. You may
use gnutls_x509_dn_get_rdn_ava() to decode the DN.

Note that dnshould be treated as constant. Because points into the certobject, you
may not deallocate certand continue to access dn.

Returns: Returns 0 on success, or an error code.

gnutls x509 crt get issuer alt name

[Function]int gnutls_x509_crt_get_issuer_alt_name (gnutls x509 crt t
cert , unsigned int seq , void * ret , size t * ret_size , unsigned int *
critical)

cert: should contain a gnutls_x509_crt_t structure

seq: specifies the sequence number of the alt name (0 for the first one, 1 for the second
etc.)

ret: is the place where the alternative name will be copied to

ret size: holds the size of ret.

critical: will be non (0) if the extension is marked as critical (may be null)

Description: This function retrieves the Issuer Alternative Name (2.5.29.18), con-
tained in the given certificate in the X509v3 Certificate Extensions.

When the SAN type is otherName, it will extract the data in the otherName’s value
field, and GNUTLS_SAN_OTHERNAME is returned. You may use gnutls_x509_crt_get_
subject_alt_othername_oid() to get the corresponding OID and the "virtual" SAN
types (e.g., GNUTLS_SAN_OTHERNAME_XMPP).

If an otherName OID is known, the data will be decoded. Otherwise the returned
data will be DER encoded, and you will have to decode it yourself. Currently, only
the RFC 3920 id-on-xmppAddr Issuer AltName is recognized.

Returns: the alternative issuer name type on success, one of the enumerated gnutls_

x509_subject_alt_name_t. It will return GNUTLS_E_SHORT_MEMORY_BUFFER if ret_
sizeis not large enough to hold the value. In that case ret_sizewill be updated
with the required size. If the certificate does not have an Alternative name with
the specified sequence number then GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE is
returned.

Since: 2.10.0

Appendix C: API reference 257

gnutls x509 crt get issuer alt name2

[Function]int gnutls_x509_crt_get_issuer_alt_name2 (gnutls x509 crt t
cert , unsigned int seq , void * ret , size t * ret_size , unsigned int *
ret_type , unsigned int * critical)

cert: should contain a gnutls_x509_crt_t structure

seq: specifies the sequence number of the alt name (0 for the first one, 1 for the second
etc.)

ret: is the place where the alternative name will be copied to

ret size: holds the size of ret.

ret type: holds the type of the alternative name (one of gnutls x509 subject alt name t).

critical: will be non (0) if the extension is marked as critical (may be null)

Description: This function will return the alternative names, contained in the given
certificate. It is the same as gnutls_x509_crt_get_issuer_alt_name() except for
the fact that it will return the type of the alternative name in ret_typeeven if the
function fails for some reason (i.e. the buffer provided is not enough).

Returns: the alternative issuer name type on success, one of the enumerated gnutls_

x509_subject_alt_name_t. It will return GNUTLS_E_SHORT_MEMORY_BUFFER if ret_
sizeis not large enough to hold the value. In that case ret_sizewill be updated
with the required size. If the certificate does not have an Alternative name with
the specified sequence number then GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE is
returned.

Since: 2.10.0

gnutls x509 crt get issuer alt othername oid

[Function]int gnutls_x509_crt_get_issuer_alt_othername_oid
(gnutls x509 crt t cert , unsigned int seq , void * ret , size t * ret_size)

cert: should contain a gnutls_x509_crt_t structure

seq: specifies the sequence number of the alt name (0 for the first one, 1 for the second
etc.)

ret: is the place where the otherName OID will be copied to

ret size: holds the size of ret.

Description: This function will extract the type OID of an otherName Subject Alter-
native Name, contained in the given certificate, and return the type as an enumerated
element.

If oidis null then only the size will be filled. If the raw_flagis not specified the output
is always null terminated, although the oid_sizewill not include the null character.

This function is only useful if gnutls_x509_crt_get_issuer_alt_name() returned
GNUTLS_SAN_OTHERNAME.

Returns: the alternative issuer name type on success, one of the enumerated
gnutls x509 subject alt name t. For supported OIDs, it will return one of the virtual
(GNUTLS SAN OTHERNAME *) types, e.g. GNUTLS_SAN_OTHERNAME_XMPP,

Appendix C: API reference 258

and GNUTLS_SAN_OTHERNAME for unknown OIDs. It will return GNUTLS_E_SHORT_

MEMORY_BUFFER if ret_sizeis not large enough to hold the value. In that case
ret_sizewill be updated with the required size. If the certificate does not have an
Alternative name with the specified sequence number and with the otherName type
then GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE is returned.

Since: 2.10.0

gnutls x509 crt get issuer dn

[Function]int gnutls_x509_crt_get_issuer_dn (gnutls x509 crt t cert , char *
buf , size t * buf_size)

cert: should contain a gnutls_x509_crt_t structure

buf : a pointer to a structure to hold the name (may be null)

buf size: initially holds the size of buf

Description: This function will copy the name of the Certificate issuer in the provided
buffer. The name will be in the form "C=xxxx,O=yyyy,CN=zzzz" as described in
RFC2253. The output string will be ASCII or UTF-8 encoded, depending on the
certificate data.

If bufis null then only the size will be filled. If the raw_flagis not specified the output
is always null terminated, although the buf_sizewill not include the null character.

Returns: GNUTLS E SHORT MEMORY BUFFER if the provided buffer is not
long enough, and in that case the buf_sizewill be updated with the required size.
On success 0 is returned.

gnutls x509 crt get issuer dn by oid

[Function]int gnutls_x509_crt_get_issuer_dn_by_oid (gnutls x509 crt t
cert , const char * oid , int indx , unsigned int raw_flag , void * buf , size t
* buf_size)

cert: should contain a gnutls_x509_crt_t structure

oid: holds an Object Identified in null terminated string

indx: In case multiple same OIDs exist in the RDN, this specifies which to send. Use
(0) to get the first one.

raw flag : If non (0) returns the raw DER data of the DN part.

buf : a pointer to a structure to hold the name (may be null)

buf size: initially holds the size of buf

Description: This function will extract the part of the name of the Certificate issuer
specified by the given OID. The output, if the raw flag is not used, will be encoded
as described in RFC2253. Thus a string that is ASCII or UTF-8 encoded, depending
on the certificate data.

Some helper macros with popular OIDs can be found in gnutls/x509.h If raw flag
is (0), this function will only return known OIDs as text. Other OIDs will be DER
encoded, as described in RFC2253 – in hex format with a ’\#’ prefix. You can check
about known OIDs using gnutls_x509_dn_oid_known().

Appendix C: API reference 259

If bufis null then only the size will be filled. If the raw_flagis not specified the output
is always null terminated, although the buf_sizewill not include the null character.

Returns: GNUTLS E SHORT MEMORY BUFFER if the provided buffer is not
long enough, and in that case the buf_sizewill be updated with the required size.
On success 0 is returned.

gnutls x509 crt get issuer dn oid

[Function]int gnutls_x509_crt_get_issuer_dn_oid (gnutls x509 crt t cert ,
int indx , void * oid , size t * oid_size)

cert: should contain a gnutls_x509_crt_t structure

indx: This specifies which OID to return. Use (0) to get the first one.

oid: a pointer to a buffer to hold the OID (may be null)

oid size: initially holds the size of oid

Description: This function will extract the OIDs of the name of the Certificate issuer
specified by the given index.

If oidis null then only the size will be filled. If the raw_flagis not specified the output
is always null terminated, although the oid_sizewill not include the null character.

Returns: GNUTLS E SHORT MEMORY BUFFER if the provided buffer is not
long enough, and in that case the oid_sizewill be updated with the required size.
On success 0 is returned.

gnutls x509 crt get issuer unique id

[Function]int gnutls_x509_crt_get_issuer_unique_id (gnutls x509 crt t
crt , char * buf , size t * buf_size)

crt: Holds the certificate

buf : user allocated memory buffer, will hold the unique id

buf size: size of user allocated memory buffer (on input), will hold actual size of the
unique ID on return.

Description: This function will extract the issuerUniqueID value (if present) for the
given certificate.

If the user allocated memory buffer is not large enough to hold the full subjectU-
niqueID, then a GNUTLS E SHORT MEMORY BUFFER error will be returned,
and buf size will be set to the actual length.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

Since: 2.12.0

gnutls x509 crt get key id

[Function]int gnutls_x509_crt_get_key_id (gnutls x509 crt t crt , unsigned
int flags , unsigned char * output_data , size t * output_data_size)

crt: Holds the certificate

flags: should be 0 for now

output data: will contain the key ID

Appendix C: API reference 260

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

Description: This function will return a unique ID the depends on the public key
parameters. This ID can be used in checking whether a certificate corresponds to the
given private key.

If the buffer provided is not long enough to hold the output, then *output data size
is updated and GNUTLS E SHORT MEMORY BUFFER will be returned. The
output will normally be a SHA-1 hash output, which is 20 bytes.

Returns: In case of failure a negative error code will be returned, and 0 on success.

gnutls x509 crt get key purpose oid

[Function]int gnutls_x509_crt_get_key_purpose_oid (gnutls x509 crt t
cert , int indx , void * oid , size t * oid_size , unsigned int * critical)

cert: should contain a gnutls_x509_crt_t structure

indx: This specifies which OID to return. Use (0) to get the first one.

oid: a pointer to a buffer to hold the OID (may be null)

oid size: initially holds the size of oid

critical: output flag to indicate criticality of extension

Description: This function will extract the key purpose OIDs of the Certificate spec-
ified by the given index. These are stored in the Extended Key Usage extension
(2.5.29.37) See the GNUTLS KP * definitions for human readable names.

If oidis null then only the size will be filled. If the raw_flagis not specified the output
is always null terminated, although the oid_sizewill not include the null character.

Returns: GNUTLS_E_SHORT_MEMORY_BUFFER if the provided buffer is not long enough,
and in that case the *oid size will be updated with the required size. On success 0 is
returned.

gnutls x509 crt get key usage

[Function]int gnutls_x509_crt_get_key_usage (gnutls x509 crt t cert ,
unsigned int * key_usage , unsigned int * critical)

cert: should contain a gnutls_x509_crt_t structure

key usage: where the key usage bits will be stored

critical: will be non (0) if the extension is marked as critical

Description: This function will return certificate’s key usage, by reading the
keyUsage X.509 extension (2.5.29.15). The key usage value will ORed values
of the: GNUTLS_KEY_DIGITAL_SIGNATURE, GNUTLS_KEY_NON_REPUDIATION,
GNUTLS_KEY_KEY_ENCIPHERMENT, GNUTLS_KEY_DATA_ENCIPHERMENT, GNUTLS_

KEY_KEY_AGREEMENT, GNUTLS_KEY_KEY_CERT_SIGN, GNUTLS_KEY_CRL_SIGN,
GNUTLS_KEY_ENCIPHER_ONLY, GNUTLS_KEY_DECIPHER_ONLY.

Returns: the certificate key usage, or a negative error code in case of parsing error. If
the certificate does not contain the keyUsage extension GNUTLS_E_REQUESTED_DATA_

NOT_AVAILABLE will be returned.

Appendix C: API reference 261

gnutls x509 crt get pk algorithm

[Function]int gnutls_x509_crt_get_pk_algorithm (gnutls x509 crt t cert ,
unsigned int * bits)

cert: should contain a gnutls_x509_crt_t structure

bits: if bits is non null it will hold the size of the parameters’ in bits

Description: This function will return the public key algorithm of an X.509 certificate.

If bits is non null, it should have enough size to hold the parameters size in bits. For
RSA the bits returned is the modulus. For DSA the bits returned are of the public
exponent.

Returns: a member of the gnutls_pk_algorithm_t enumeration on success, or a
negative error code on error.

gnutls x509 crt get pk dsa raw

[Function]int gnutls_x509_crt_get_pk_dsa_raw (gnutls x509 crt t crt ,
gnutls datum t * p , gnutls datum t * q , gnutls datum t * g , gnutls datum t
* y)

crt: Holds the certificate

p: will hold the p

q: will hold the q

g : will hold the g

y : will hold the y

Description: This function will export the DSA public key’s parameters found in the
given certificate. The new parameters will be allocated using gnutls_malloc() and
will be stored in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

gnutls x509 crt get pk rsa raw

[Function]int gnutls_x509_crt_get_pk_rsa_raw (gnutls x509 crt t crt ,
gnutls datum t * m , gnutls datum t * e)

crt: Holds the certificate

m: will hold the modulus

e: will hold the public exponent

Description: This function will export the RSA public key’s parameters found in the
given structure. The new parameters will be allocated using gnutls_malloc() and
will be stored in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

gnutls x509 crt get proxy

[Function]int gnutls_x509_crt_get_proxy (gnutls x509 crt t cert , unsigned
int * critical , int * pathlen , char ** policyLanguage , char ** policy ,
size t * sizeof_policy)

cert: should contain a gnutls_x509_crt_t structure

Appendix C: API reference 262

critical: will be non (0) if the extension is marked as critical

pathlen: pointer to output integer indicating path length (may be NULL), non-
negative error codes indicate a present pCPathLenConstraint field and the actual
value, -1 indicate that the field is absent.

policyLanguage: output variable with OID of policy language

policy : output variable with policy data

sizeof policy : output variable size of policy data

Description: This function will get information from a proxy certificate. It reads the
ProxyCertInfo X.509 extension (1.3.6.1.5.5.7.1.14).

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

gnutls x509 crt get raw dn

[Function]int gnutls_x509_crt_get_raw_dn (gnutls x509 crt t cert ,
gnutls datum t * start)

cert: should contain a gnutls_x509_crt_t structure

start: will hold the starting point of the DN

Description: This function will return a pointer to the DER encoded DN structure
and the length.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value. or a negative error code on error.

gnutls x509 crt get raw issuer dn

[Function]int gnutls_x509_crt_get_raw_issuer_dn (gnutls x509 crt t cert ,
gnutls datum t * start)

cert: should contain a gnutls_x509_crt_t structure

start: will hold the starting point of the DN

Description: This function will return a pointer to the DER encoded DN structure
and the length.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.or a negative error code on error.

gnutls x509 crt get serial

[Function]int gnutls_x509_crt_get_serial (gnutls x509 crt t cert , void *
result , size t * result_size)

cert: should contain a gnutls_x509_crt_t structure

result: The place where the serial number will be copied

result size: Holds the size of the result field.

Description: This function will return the X.509 certificate’s serial number. This is
obtained by the X509 Certificate serialNumber field. Serial is not always a 32 or
64bit number. Some CAs use large serial numbers, thus it may be wise to handle it
as something opaque.

Appendix C: API reference 263

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt get signature

[Function]int gnutls_x509_crt_get_signature (gnutls x509 crt t cert , char *
sig , size t * sizeof_sig)

cert: should contain a gnutls_x509_crt_t structure

sig : a pointer where the signature part will be copied (may be null).

sizeof sig : initially holds the size of sig

Description: This function will extract the signature field of a certificate.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value. and a negative error code on error.

gnutls x509 crt get signature algorithm

[Function]int gnutls_x509_crt_get_signature_algorithm (gnutls x509 crt t
cert)

cert: should contain a gnutls_x509_crt_t structure

Description: This function will return a value of the gnutls_sign_algorithm_t enu-
meration that is the signature algorithm that has been used to sign this certificate.

Returns: a gnutls_sign_algorithm_t value, or a negative error code on error.

gnutls x509 crt get subject

[Function]int gnutls_x509_crt_get_subject (gnutls x509 crt t cert ,
gnutls x509 dn t * dn)

cert: should contain a gnutls_x509_crt_t structure

dn: output variable with pointer to opaque DN.

Description: Return the Certificate’s Subject DN as an opaque data type. You may
use gnutls_x509_dn_get_rdn_ava() to decode the DN.

Note that dnshould be treated as constant. Because points into the certobject, you
may not deallocate certand continue to access dn.

Returns: Returns 0 on success, or an error code.

gnutls x509 crt get subject alt name

[Function]int gnutls_x509_crt_get_subject_alt_name (gnutls x509 crt t
cert , unsigned int seq , void * ret , size t * ret_size , unsigned int *
critical)

cert: should contain a gnutls_x509_crt_t structure

seq: specifies the sequence number of the alt name (0 for the first one, 1 for the second
etc.)

ret: is the place where the alternative name will be copied to

ret size: holds the size of ret.

Appendix C: API reference 264

critical: will be non (0) if the extension is marked as critical (may be null)

Description: This function retrieves the Alternative Name (2.5.29.17), contained in
the given certificate in the X509v3 Certificate Extensions.

When the SAN type is otherName, it will extract the data in the otherName’s value
field, and GNUTLS_SAN_OTHERNAME is returned. You may use gnutls_x509_crt_get_
subject_alt_othername_oid() to get the corresponding OID and the "virtual" SAN
types (e.g., GNUTLS_SAN_OTHERNAME_XMPP).

If an otherName OID is known, the data will be decoded. Otherwise the returned
data will be DER encoded, and you will have to decode it yourself. Currently, only
the RFC 3920 id-on-xmppAddr SAN is recognized.

Returns: the alternative subject name type on success, one of the enumerated
gnutls_x509_subject_alt_name_t. It will return GNUTLS_E_SHORT_MEMORY_BUFFER

if ret_sizeis not large enough to hold the value. In that case ret_sizewill be up-
dated with the required size. If the certificate does not have an Alternative name with
the specified sequence number then GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE is
returned.

gnutls x509 crt get subject alt name2

[Function]int gnutls_x509_crt_get_subject_alt_name2 (gnutls x509 crt t
cert , unsigned int seq , void * ret , size t * ret_size , unsigned int *
ret_type , unsigned int * critical)

cert: should contain a gnutls_x509_crt_t structure

seq: specifies the sequence number of the alt name (0 for the first one, 1 for the second
etc.)

ret: is the place where the alternative name will be copied to

ret size: holds the size of ret.

ret type: holds the type of the alternative name (one of gnutls x509 subject alt name t).

critical: will be non (0) if the extension is marked as critical (may be null)

Description: This function will return the alternative names, contained in the given
certificate. It is the same as gnutls_x509_crt_get_subject_alt_name() except for
the fact that it will return the type of the alternative name in ret_typeeven if the
function fails for some reason (i.e. the buffer provided is not enough).

Returns: the alternative subject name type on success, one of the enumerated
gnutls_x509_subject_alt_name_t. It will return GNUTLS_E_SHORT_MEMORY_BUFFER

if ret_sizeis not large enough to hold the value. In that case ret_sizewill be up-
dated with the required size. If the certificate does not have an Alternative name with
the specified sequence number then GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE is
returned.

gnutls x509 crt get subject alt othername oid

[Function]int gnutls_x509_crt_get_subject_alt_othername_oid
(gnutls x509 crt t cert , unsigned int seq , void * oid , size t * oid_size)

cert: should contain a gnutls_x509_crt_t structure

Appendix C: API reference 265

seq: specifies the sequence number of the alt name (0 for the first one, 1 for the second
etc.)

oid: is the place where the otherName OID will be copied to

oid size: holds the size of ret.

Description: This function will extract the type OID of an otherName Subject Alter-
native Name, contained in the given certificate, and return the type as an enumerated
element.

This function is only useful if gnutls_x509_crt_get_subject_alt_name() returned
GNUTLS_SAN_OTHERNAME.

If oidis null then only the size will be filled. If the raw_flagis not specified the output
is always null terminated, although the oid_sizewill not include the null character.

Returns: the alternative subject name type on success, one of the enumerated
gnutls x509 subject alt name t. For supported OIDs, it will return one of the virtual
(GNUTLS SAN OTHERNAME *) types, e.g. GNUTLS_SAN_OTHERNAME_XMPP,
and GNUTLS_SAN_OTHERNAME for unknown OIDs. It will return GNUTLS_E_SHORT_

MEMORY_BUFFER if ret_sizeis not large enough to hold the value. In that case
ret_sizewill be updated with the required size. If the certificate does not have an
Alternative name with the specified sequence number and with the otherName type
then GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE is returned.

gnutls x509 crt get subject key id

[Function]int gnutls_x509_crt_get_subject_key_id (gnutls x509 crt t cert ,
void * ret , size t * ret_size , unsigned int * critical)

cert: should contain a gnutls_x509_crt_t structure

ret: The place where the identifier will be copied

ret size: Holds the size of the result field.

critical: will be non (0) if the extension is marked as critical (may be null)

Description: This function will return the X.509v3 certificate’s subject key identifier.
This is obtained by the X.509 Subject Key identifier extension field (2.5.29.14).

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt get subject unique id

[Function]int gnutls_x509_crt_get_subject_unique_id (gnutls x509 crt t
crt , char * buf , size t * buf_size)

crt: Holds the certificate

buf : user allocated memory buffer, will hold the unique id

buf size: size of user allocated memory buffer (on input), will hold actual size of the
unique ID on return.

Description: This function will extract the subjectUniqueID value (if present) for the
given certificate.

Appendix C: API reference 266

If the user allocated memory buffer is not large enough to hold the full subjectU-
niqueID, then a GNUTLS E SHORT MEMORY BUFFER error will be returned,
and buf size will be set to the actual length.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

gnutls x509 crt get version

[Function]int gnutls_x509_crt_get_version (gnutls x509 crt t cert)
cert: should contain a gnutls_x509_crt_t structure

Description: This function will return the version of the specified Certificate.

Returns: version of certificate, or a negative error code on error.

gnutls x509 crt import

[Function]int gnutls_x509_crt_import (gnutls x509 crt t cert , const
gnutls datum t * data , gnutls x509 crt fmt t format)

cert: The structure to store the parsed certificate.

data: The DER or PEM encoded certificate.

format: One of DER or PEM

Description: This function will convert the given DER or PEM encoded Certificate
to the native gnutls x509 crt t format. The output will be stored in cert.

If the Certificate is PEM encoded it should have a header of "X509 CERTIFICATE",
or "CERTIFICATE".

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt init

[Function]int gnutls_x509_crt_init (gnutls x509 crt t * cert)
cert: The structure to be initialized

Description: This function will initialize an X.509 certificate structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt list import

[Function]int gnutls_x509_crt_list_import (gnutls x509 crt t * certs ,
unsigned int * cert_max , const gnutls datum t * data , gnutls x509 crt fmt t
format , unsigned int flags)

certs: The structures to store the parsed certificate. Must not be initialized.

cert max: Initially must hold the maximum number of certs. It will be updated with
the number of certs available.

data: The PEM encoded certificate.

format: One of DER or PEM.

flags: must be (0) or an OR’d sequence of gnutls certificate import flags.

Appendix C: API reference 267

Description: This function will convert the given PEM encoded certificate list to the
native gnutls x509 crt t format. The output will be stored in certs. They will be
automatically initialized.

The flag GNUTLS_X509_CRT_LIST_IMPORT_FAIL_IF_EXCEED will cause import to fail
if the certificates in the provided buffer are more than the available structures. The
GNUTLS_X509_CRT_LIST_FAIL_IF_UNSORTED flag will cause the function to fail if the
provided list is not sorted from subject to issuer.

If the Certificate is PEM encoded it should have a header of "X509 CERTIFICATE",
or "CERTIFICATE".

Returns: the number of certificates read or a negative error value.

gnutls x509 crt list import2

[Function]int gnutls_x509_crt_list_import2 (gnutls x509 crt t ** certs ,
unsigned int * size , const gnutls datum t * data , gnutls x509 crt fmt t
format , unsigned int flags)

certs: The structures to store the parsed certificate. Must not be initialized.

size: It will contain the size of the list.

data: The PEM encoded certificate.

format: One of DER or PEM.

flags: must be (0) or an OR’d sequence of gnutls certificate import flags.

Description: This function will convert the given PEM encoded certificate list to the
native gnutls x509 crt t format. The output will be stored in certs. They will be
automatically initialized.

If the Certificate is PEM encoded it should have a header of "X509 CERTIFICATE",
or "CERTIFICATE".

Returns: the number of certificates read or a negative error value.

Since: 3.0.0

gnutls x509 crt list verify

[Function]int gnutls_x509_crt_list_verify (const gnutls x509 crt t *
cert_list , int cert_list_length , const gnutls x509 crt t * CA_list , int
CA_list_length , const gnutls x509 crl t * CRL_list , int
CRL_list_length , unsigned int flags , unsigned int * verify)

cert list: is the certificate list to be verified

cert list length: holds the number of certificate in cert list

CA list: is the CA list which will be used in verification

CA list length: holds the number of CA certificate in CA list

CRL list: holds a list of CRLs.

CRL list length: the length of CRL list.

flags: Flags that may be used to change the verification algorithm. Use OR of the
gnutls certificate verify flags enumerations.

verify : will hold the certificate verification output.

Appendix C: API reference 268

Description: This function will try to verify the given certificate list and return
its status. If no flags are specified (0), this function will use the basicConstraints
(2.5.29.19) PKIX extension. This means that only a certificate authority is allowed
to sign a certificate.

You must also check the peer’s name in order to check if the verified certificate belongs
to the actual peer.

The certificate verification output will be put in verifyand will be one or more of
the gnutls certificate status t enumerated elements bitwise or’d. For a more detailed
verification status use gnutls_x509_crt_verify() per list element.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt print

[Function]int gnutls_x509_crt_print (gnutls x509 crt t cert ,
gnutls certificate print formats t format , gnutls datum t * out)

cert: The structure to be printed

format: Indicate the format to use

out: Newly allocated datum with (0) terminated string.

Description: This function will pretty print a X.509 certificate, suitable for display
to a human.

If the format is GNUTLS_CRT_PRINT_FULL then all fields of the certificate will be
output, on multiple lines. The GNUTLS_CRT_PRINT_ONELINE format will generate
one line with some selected fields, which is useful for logging purposes.

The output outneeds to be deallocate using gnutls_free().

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt set activation time

[Function]int gnutls_x509_crt_set_activation_time (gnutls x509 crt t
cert , time t act_time)

cert: a certificate of type gnutls_x509_crt_t

act time: The actual time

Description: This function will set the time this Certificate was or will be activated.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt set authority key id

[Function]int gnutls_x509_crt_set_authority_key_id (gnutls x509 crt t
cert , const void * id , size t id_size)

cert: a certificate of type gnutls_x509_crt_t

id: The key ID

id size: Holds the size of the serial field.

Appendix C: API reference 269

Description: This function will set the X.509 certificate’s authority key ID extension.
Only the keyIdentifier field can be set with this function.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt set basic constraints

[Function]int gnutls_x509_crt_set_basic_constraints (gnutls x509 crt t
crt , unsigned int ca , int pathLenConstraint)

crt: a certificate of type gnutls_x509_crt_t

ca: true(1) or false(0). Depending on the Certificate authority status.

pathLenConstraint: non-negative error codes indicate maximum length of path, and
negative error codes indicate that the pathLenConstraints field should not be present.

Description: This function will set the basicConstraints certificate extension.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt set ca status

[Function]int gnutls_x509_crt_set_ca_status (gnutls x509 crt t crt ,
unsigned int ca)

crt: a certificate of type gnutls_x509_crt_t

ca: true(1) or false(0). Depending on the Certificate authority status.

Description: This function will set the basicConstraints certificate extension. Use
gnutls_x509_crt_set_basic_constraints() if you want to control the pathLen-
Constraint field too.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt set crl dist points

[Function]int gnutls_x509_crt_set_crl_dist_points (gnutls x509 crt t crt ,
gnutls x509 subject alt name t type , const void * data_string , unsigned
int reason_flags)

crt: a certificate of type gnutls_x509_crt_t

type: is one of the gnutls x509 subject alt name t enumerations

data string : The data to be set

reason flags: revocation reasons

Description: This function will set the CRL distribution points certificate extension.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Appendix C: API reference 270

gnutls x509 crt set crl dist points2

[Function]int gnutls_x509_crt_set_crl_dist_points2 (gnutls x509 crt t
crt , gnutls x509 subject alt name t type , const void * data , unsigned int
data_size , unsigned int reason_flags)

crt: a certificate of type gnutls_x509_crt_t

type: is one of the gnutls x509 subject alt name t enumerations

data: The data to be set

data size: The data size

reason flags: revocation reasons

Description: This function will set the CRL distribution points certificate extension.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.6.0

gnutls x509 crt set crq

[Function]int gnutls_x509_crt_set_crq (gnutls x509 crt t crt ,
gnutls x509 crq t crq)

crt: a certificate of type gnutls_x509_crt_t

crq: holds a certificate request

Description: This function will set the name and public parameters as well as the
extensions from the given certificate request to the certificate. Only RSA keys are
currently supported.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt set crq extensions

[Function]int gnutls_x509_crt_set_crq_extensions (gnutls x509 crt t crt ,
gnutls x509 crq t crq)

crt: a certificate of type gnutls_x509_crt_t

crq: holds a certificate request

Description: This function will set extensions from the given request to the certificate.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.8.0

gnutls x509 crt set dn by oid

[Function]int gnutls_x509_crt_set_dn_by_oid (gnutls x509 crt t crt , const
char * oid , unsigned int raw_flag , const void * name , unsigned int
sizeof_name)

crt: a certificate of type gnutls_x509_crt_t

oid: holds an Object Identifier in a null terminated string

Appendix C: API reference 271

raw flag : must be 0, or 1 if the data are DER encoded

name: a pointer to the name

sizeof name: holds the size of name

Description: This function will set the part of the name of the Certificate subject,
specified by the given OID. The input string should be ASCII or UTF-8 encoded.

Some helper macros with popular OIDs can be found in gnutls/x509.h With this
function you can only set the known OIDs. You can test for known OIDs using
gnutls_x509_dn_oid_known(). For OIDs that are not known (by gnutls) you should
properly DER encode your data, and call this function with raw_flagset.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt set expiration time

[Function]int gnutls_x509_crt_set_expiration_time (gnutls x509 crt t
cert , time t exp_time)

cert: a certificate of type gnutls_x509_crt_t

exp time: The actual time

Description: This function will set the time this Certificate will expire.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt set extension by oid

[Function]int gnutls_x509_crt_set_extension_by_oid (gnutls x509 crt t
crt , const char * oid , const void * buf , size t sizeof_buf , unsigned int
critical)

crt: a certificate of type gnutls_x509_crt_t

oid: holds an Object Identified in null terminated string

buf : a pointer to a DER encoded data

sizeof buf : holds the size of buf

critical: should be non (0) if the extension is to be marked as critical

Description: This function will set an the extension, by the specified OID, in the
certificate. The extension data should be binary data DER encoded.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt set issuer dn by oid

[Function]int gnutls_x509_crt_set_issuer_dn_by_oid (gnutls x509 crt t
crt , const char * oid , unsigned int raw_flag , const void * name , unsigned
int sizeof_name)

crt: a certificate of type gnutls_x509_crt_t

oid: holds an Object Identifier in a null terminated string

raw flag : must be 0, or 1 if the data are DER encoded

Appendix C: API reference 272

name: a pointer to the name

sizeof name: holds the size of name

Description: This function will set the part of the name of the Certificate issuer,
specified by the given OID. The input string should be ASCII or UTF-8 encoded.

Some helper macros with popular OIDs can be found in gnutls/x509.h With this
function you can only set the known OIDs. You can test for known OIDs using
gnutls_x509_dn_oid_known(). For OIDs that are not known (by gnutls) you should
properly DER encode your data, and call this function with raw_flagset.

Normally you do not need to call this function, since the signing operation will copy
the signer’s name as the issuer of the certificate.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt set key

[Function]int gnutls_x509_crt_set_key (gnutls x509 crt t crt ,
gnutls x509 privkey t key)

crt: a certificate of type gnutls_x509_crt_t

key : holds a private key

Description: This function will set the public parameters from the given private key
to the certificate. Only RSA keys are currently supported.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt set key purpose oid

[Function]int gnutls_x509_crt_set_key_purpose_oid (gnutls x509 crt t
cert , const void * oid , unsigned int critical)

cert: a certificate of type gnutls_x509_crt_t

oid: a pointer to a null terminated string that holds the OID

critical: Whether this extension will be critical or not

Description: This function will set the key purpose OIDs of the Certificate. These
are stored in the Extended Key Usage extension (2.5.29.37) See the GNUTLS KP *
definitions for human readable names.

Subsequent calls to this function will append OIDs to the OID list.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

gnutls x509 crt set key usage

[Function]int gnutls_x509_crt_set_key_usage (gnutls x509 crt t crt ,
unsigned int usage)

crt: a certificate of type gnutls_x509_crt_t

usage: an ORed sequence of the GNUTLS KEY * elements.

Description: This function will set the keyUsage certificate extension.

Appendix C: API reference 273

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt set proxy

[Function]int gnutls_x509_crt_set_proxy (gnutls x509 crt t crt , int
pathLenConstraint , const char * policyLanguage , const char * policy ,
size t sizeof_policy)

crt: a certificate of type gnutls_x509_crt_t

pathLenConstraint: non-negative error codes indicate maximum length of path, and
negative error codes indicate that the pathLenConstraints field should not be present.

policyLanguage: OID describing the language of policy.

policy : opaque byte array with policy language, can be NULL

sizeof policy : size of policy.

Description: This function will set the proxyCertInfo extension.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt set proxy dn

[Function]int gnutls_x509_crt_set_proxy_dn (gnutls x509 crt t crt ,
gnutls x509 crt t eecrt , unsigned int raw_flag , const void * name , unsigned
int sizeof_name)

crt: a gnutls x509 crt t structure with the new proxy cert

eecrt: the end entity certificate that will be issuing the proxy

raw flag : must be 0, or 1 if the CN is DER encoded

name: a pointer to the CN name, may be NULL (but MUST then be added later)

sizeof name: holds the size of name

Description: This function will set the subject in crtto the end entity’s eecrtsubject
name, and add a single Common Name component nameof size sizeof_name. This
corresponds to the required proxy certificate naming style. Note that if nameis NULL,
you MUST set it later by using gnutls_x509_crt_set_dn_by_oid() or similar.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt set serial

[Function]int gnutls_x509_crt_set_serial (gnutls x509 crt t cert , const void
* serial , size t serial_size)

cert: a certificate of type gnutls_x509_crt_t

serial: The serial number

serial size: Holds the size of the serial field.

Description: This function will set the X.509 certificate’s serial number. Serial is not
always a 32 or 64bit number. Some CAs use large serial numbers, thus it may be wise
to handle it as something opaque.

Appendix C: API reference 274

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt set subject alternative name

[Function]int gnutls_x509_crt_set_subject_alternative_name
(gnutls x509 crt t crt , gnutls x509 subject alt name t type , const char *
data_string)

crt: a certificate of type gnutls_x509_crt_t

type: is one of the gnutls x509 subject alt name t enumerations

data string : The data to be set, a (0) terminated string

Description: This function will set the subject alternative name certificate extension.
This function assumes that data can be expressed as a null terminated string.

The name of the function is unfortunate since it is incosistent with gnutls_x509_

crt_get_subject_alt_name().

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt set subject alt name

[Function]int gnutls_x509_crt_set_subject_alt_name (gnutls x509 crt t
crt , gnutls x509 subject alt name t type , const void * data , unsigned int
data_size , unsigned int flags)

crt: a certificate of type gnutls_x509_crt_t

type: is one of the gnutls x509 subject alt name t enumerations

data: The data to be set

data size: The size of data to be set

flags: GNUTLS FSAN SET to clear previous data or GNUTLS FSAN APPEND to
append.

Description: This function will set the subject alternative name certificate extension.
It can set the following types:

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.6.0

gnutls x509 crt set subject key id

[Function]int gnutls_x509_crt_set_subject_key_id (gnutls x509 crt t cert ,
const void * id , size t id_size)

cert: a certificate of type gnutls_x509_crt_t

id: The key ID

id size: Holds the size of the serial field.

Description: This function will set the X.509 certificate’s subject key ID extension.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Appendix C: API reference 275

gnutls x509 crt set version

[Function]int gnutls_x509_crt_set_version (gnutls x509 crt t crt , unsigned
int version)

crt: a certificate of type gnutls_x509_crt_t

version: holds the version number. For X.509v1 certificates must be 1.

Description: This function will set the version of the certificate. This must be one for
X.509 version 1, and so on. Plain certificates without extensions must have version
set to one.

To create well-formed certificates, you must specify version 3 if you use any certifi-
cate extensions. Extensions are created by functions such as gnutls_x509_crt_set_
subject_alt_name() or gnutls_x509_crt_set_key_usage().

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt sign

[Function]int gnutls_x509_crt_sign (gnutls x509 crt t crt , gnutls x509 crt t
issuer , gnutls x509 privkey t issuer_key)

crt: a certificate of type gnutls_x509_crt_t

issuer: is the certificate of the certificate issuer

issuer key : holds the issuer’s private key

Description: This function is the same a gnutls_x509_crt_sign2() with no flags,
and SHA1 as the hash algorithm.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt sign2

[Function]int gnutls_x509_crt_sign2 (gnutls x509 crt t crt , gnutls x509 crt t
issuer , gnutls x509 privkey t issuer_key , gnutls digest algorithm t dig ,
unsigned int flags)

crt: a certificate of type gnutls_x509_crt_t

issuer: is the certificate of the certificate issuer

issuer key : holds the issuer’s private key

dig : The message digest to use, GNUTLS_DIG_SHA1 is a safe choice

flags: must be 0

Description: This function will sign the certificate with the issuer’s private key, and
will copy the issuer’s information into the certificate.

This must be the last step in a certificate generation since all the previously set
parameters are now signed.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Appendix C: API reference 276

gnutls x509 crt verify

[Function]int gnutls_x509_crt_verify (gnutls x509 crt t cert , const
gnutls x509 crt t * CA_list , int CA_list_length , unsigned int flags ,
unsigned int * verify)

cert: is the certificate to be verified

CA list: is one certificate that is considered to be trusted one

CA list length: holds the number of CA certificate in CA list

flags: Flags that may be used to change the verification algorithm. Use OR of the
gnutls certificate verify flags enumerations.

verify : will hold the certificate verification output.

Description: This function will try to verify the given certificate and return its status.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 dn deinit

[Function]void gnutls_x509_dn_deinit (gnutls x509 dn t dn)
dn: a DN opaque object pointer.

Description: This function deallocates the DN object as returned by gnutls_x509_

dn_import().

Since: 2.4.0

gnutls x509 dn export

[Function]int gnutls_x509_dn_export (gnutls x509 dn t dn ,
gnutls x509 crt fmt t format , void * output_data , size t *
output_data_size)

dn: Holds the opaque DN object

format: the format of output params. One of PEM or DER.

output data: will contain a DN PEM or DER encoded

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

Description: This function will export the DN to DER or PEM format.

If the buffer provided is not long enough to hold the output, then * output_data_

sizeis updated and GNUTLS_E_SHORT_MEMORY_BUFFER will be returned.

If the structure is PEM encoded, it will have a header of "BEGIN NAME".

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 dn get rdn ava

[Function]int gnutls_x509_dn_get_rdn_ava (gnutls x509 dn t dn , int irdn ,
int iava , gnutls x509 ava st * ava)

dn: input variable with opaque DN pointer

Appendix C: API reference 277

irdn: index of RDN

iava: index of AVA.

ava: Pointer to structure which will hold output information.

Description: Get pointers to data within the DN.

Note that avawill contain pointers into the dnstructure, so you should not modify any
data or deallocate it. Note also that the DN in turn points into the original certificate
structure, and thus you may not deallocate the certificate and continue to access dn.

Returns: Returns 0 on success, or an error code.

gnutls x509 dn import

[Function]int gnutls_x509_dn_import (gnutls x509 dn t dn , const
gnutls datum t * data)

dn: the structure that will hold the imported DN

data: should contain a DER encoded RDN sequence

Description: This function parses an RDN sequence and stores the result to a gnutls_
x509_dn_t structure. The structure must have been initialized with gnutls_x509_

dn_init(). You may use gnutls_x509_dn_get_rdn_ava() to decode the DN.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.4.0

gnutls x509 dn init

[Function]int gnutls_x509_dn_init (gnutls x509 dn t * dn)
dn: the object to be initialized

Description: This function initializes a gnutls_x509_dn_t structure.

The object returned must be deallocated using gnutls_x509_dn_deinit().

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.4.0

gnutls x509 dn oid known

[Function]int gnutls_x509_dn_oid_known (const char * oid)
oid: holds an Object Identifier in a null terminated string

Description: This function will inform about known DN OIDs. This is useful since
functions like gnutls_x509_crt_set_dn_by_oid() use the information on known
OIDs to properly encode their input. Object Identifiers that are not known are not
encoded by these functions, and their input is stored directly into the ASN.1 structure.
In that case of unknown OIDs, you have the responsibility of DER encoding your data.

Returns: 1 on known OIDs and 0 otherwise.

Appendix C: API reference 278

gnutls x509 privkey cpy

[Function]int gnutls_x509_privkey_cpy (gnutls x509 privkey t dst ,
gnutls x509 privkey t src)

dst: The destination key, which should be initialized.

src: The source key

Description: This function will copy a private key from source to destination key.
Destination has to be initialized.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 privkey deinit

[Function]void gnutls_x509_privkey_deinit (gnutls x509 privkey t key)
key : The structure to be deinitialized

Description: This function will deinitialize a private key structure.

gnutls x509 privkey export

[Function]int gnutls_x509_privkey_export (gnutls x509 privkey t key ,
gnutls x509 crt fmt t format , void * output_data , size t *
output_data_size)

key : Holds the key

format: the format of output params. One of PEM or DER.

output data: will contain a private key PEM or DER encoded

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

Description: This function will export the private key to a PKCS1 structure for RSA
keys, or an integer sequence for DSA keys. The DSA keys are in the same format
with the parameters used by openssl.

If the buffer provided is not long enough to hold the output, then * output_data_

sizeis updated and GNUTLS_E_SHORT_MEMORY_BUFFER will be returned.

If the structure is PEM encoded, it will have a header of "BEGIN RSA PRIVATE
KEY".

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 privkey export dsa raw

[Function]int gnutls_x509_privkey_export_dsa_raw (gnutls x509 privkey t
key , gnutls datum t * p , gnutls datum t * q , gnutls datum t * g ,
gnutls datum t * y , gnutls datum t * x)

key : a structure that holds the DSA parameters

p: will hold the p

q: will hold the q

Appendix C: API reference 279

g : will hold the g

y : will hold the y

x: will hold the x

Description: This function will export the DSA private key’s parameters found in the
given structure. The new parameters will be allocated using gnutls_malloc() and
will be stored in the appropriate datum.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 privkey export ecc raw

[Function]int gnutls_x509_privkey_export_ecc_raw (gnutls x509 privkey t
key , gnutls ecc curve t * curve , gnutls datum t * x , gnutls datum t * y ,
gnutls datum t* k)

key : a structure that holds the rsa parameters

curve: will hold the curve

x: will hold the x coordinate

y : will hold the y coordinate

k: will hold the private key

Description: This function will export the ECC private key’s parameters found in the
given structure. The new parameters will be allocated using gnutls_malloc() and
will be stored in the appropriate datum.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0.0

gnutls x509 privkey export pkcs8

[Function]int gnutls_x509_privkey_export_pkcs8 (gnutls x509 privkey t
key , gnutls x509 crt fmt t format , const char * password , unsigned int
flags , void * output_data , size t * output_data_size)

key : Holds the key

format: the format of output params. One of PEM or DER.

password: the password that will be used to encrypt the key.

flags: an ORed sequence of gnutls pkcs encrypt flags t

output data: will contain a private key PEM or DER encoded

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

Description: This function will export the private key to a PKCS8 structure. Both
RSA and DSA keys can be exported. For DSA keys we use PKCS 11 definitions. If
the flags do not specify the encryption cipher, then the default 3DES (PBES2) will
be used.

The passwordcan be either ASCII or UTF-8 in the default PBES2 encryption
schemas, or ASCII for the PKCS12 schemas.

Appendix C: API reference 280

If the buffer provided is not long enough to hold the output, then *output data size
is updated and GNUTLS E SHORT MEMORY BUFFER will be returned.

If the structure is PEM encoded, it will have a header of "BEGIN ENCRYPTED
PRIVATE KEY" or "BEGIN PRIVATE KEY" if encryption is not used.

Returns: In case of failure a negative error code will be returned, and 0 on success.

gnutls x509 privkey export rsa raw

[Function]int gnutls_x509_privkey_export_rsa_raw (gnutls x509 privkey t
key , gnutls datum t * m , gnutls datum t * e , gnutls datum t * d ,
gnutls datum t * p , gnutls datum t * q , gnutls datum t * u)

key : a structure that holds the rsa parameters

m: will hold the modulus

e: will hold the public exponent

d: will hold the private exponent

p: will hold the first prime (p)

q: will hold the second prime (q)

u: will hold the coefficient

Description: This function will export the RSA private key’s parameters found in the
given structure. The new parameters will be allocated using gnutls_malloc() and
will be stored in the appropriate datum.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 privkey export rsa raw2

[Function]int gnutls_x509_privkey_export_rsa_raw2 (gnutls x509 privkey t
key , gnutls datum t * m , gnutls datum t * e , gnutls datum t * d ,
gnutls datum t * p , gnutls datum t * q , gnutls datum t * u , gnutls datum t
* e1 , gnutls datum t * e2)

key : a structure that holds the rsa parameters

m: will hold the modulus

e: will hold the public exponent

d: will hold the private exponent

p: will hold the first prime (p)

q: will hold the second prime (q)

u: will hold the coefficient

e1: will hold e1 = d mod (p-1)

e2: will hold e2 = d mod (q-1)

Description: This function will export the RSA private key’s parameters found in the
given structure. The new parameters will be allocated using gnutls_malloc() and
will be stored in the appropriate datum.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

Appendix C: API reference 281

gnutls x509 privkey fix

[Function]int gnutls_x509_privkey_fix (gnutls x509 privkey t key)
key : Holds the key

Description: This function will recalculate the secondary parameters in a key. In
RSA keys, this can be the coefficient and exponent1,2.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 privkey generate

[Function]int gnutls_x509_privkey_generate (gnutls x509 privkey t key ,
gnutls pk algorithm t algo , unsigned int bits , unsigned int flags)

key : should contain a gnutls_x509_privkey_t structure

algo: is one of the algorithms in gnutls_pk_algorithm_t.

bits: the size of the modulus

flags: unused for now. Must be 0.

Description: This function will generate a random private key. Note that this function
must be called on an empty private key.

Do not set the number of bits directly, use gnutls_sec_param_to_pk_bits().

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 privkey get key id

[Function]int gnutls_x509_privkey_get_key_id (gnutls x509 privkey t key ,
unsigned int flags , unsigned char * output_data , size t *
output_data_size)

key : Holds the key

flags: should be 0 for now

output data: will contain the key ID

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

Description: This function will return a unique ID the depends on the public key
parameters. This ID can be used in checking whether a certificate corresponds to the
given key.

If the buffer provided is not long enough to hold the output, then * output_data_

sizeis updated and GNUTLS_E_SHORT_MEMORY_BUFFER will be returned. The output
will normally be a SHA-1 hash output, which is 20 bytes.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Appendix C: API reference 282

gnutls x509 privkey get pk algorithm

[Function]int gnutls_x509_privkey_get_pk_algorithm (gnutls x509 privkey t
key)

key : should contain a gnutls_x509_privkey_t structure

Description: This function will return the public key algorithm of a private key.

Returns: a member of the gnutls_pk_algorithm_t enumeration on success, or a
negative error code on error.

gnutls x509 privkey import

[Function]int gnutls_x509_privkey_import (gnutls x509 privkey t key , const
gnutls datum t * data , gnutls x509 crt fmt t format)

key : The structure to store the parsed key

data: The DER or PEM encoded certificate.

format: One of DER or PEM

Description: This function will convert the given DER or PEM encoded key to the
native gnutls_x509_privkey_t format. The output will be stored in key.

If the key is PEM encoded it should have a header of "RSA PRIVATE KEY", or
"DSA PRIVATE KEY".

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 privkey import dsa raw

[Function]int gnutls_x509_privkey_import_dsa_raw (gnutls x509 privkey t
key , const gnutls datum t * p , const gnutls datum t * q , const
gnutls datum t * g , const gnutls datum t * y , const gnutls datum t * x)

key : The structure to store the parsed key

p: holds the p

q: holds the q

g : holds the g

y : holds the y

x: holds the x

Description: This function will convert the given DSA raw parameters to the native
gnutls_x509_privkey_t format. The output will be stored in key.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 privkey import ecc raw

[Function]int gnutls_x509_privkey_import_ecc_raw (gnutls x509 privkey t
key , gnutls ecc curve t curve , const gnutls datum t * x , const
gnutls datum t * y , const gnutls datum t * k)

key : The structure to store the parsed key

Appendix C: API reference 283

curve: holds the curve

x: holds the x

y : holds the y

k: holds the k

Description: This function will convert the given elliptic curve parameters to the
native gnutls_x509_privkey_t format. The output will be stored in key.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0.0

gnutls x509 privkey import pkcs8

[Function]int gnutls_x509_privkey_import_pkcs8 (gnutls x509 privkey t
key , const gnutls datum t * data , gnutls x509 crt fmt t format , const char
* password , unsigned int flags)

key : The structure to store the parsed key

data: The DER or PEM encoded key.

format: One of DER or PEM

password: the password to decrypt the key (if it is encrypted).

flags: 0 if encrypted or GNUTLS PKCS PLAIN if not encrypted.

Description: This function will convert the given DER or PEM encoded PKCS8 2.0
encrypted key to the native gnutls x509 privkey t format. The output will be stored
in key. Both RSA and DSA keys can be imported, and flags can only be used to
indicate an unencrypted key.

The passwordcan be either ASCII or UTF-8 in the default PBES2 encryption
schemas, or ASCII for the PKCS12 schemas.

If the Certificate is PEM encoded it should have a header of "ENCRYPTED PRI-
VATE KEY", or "PRIVATE KEY". You only need to specify the flags if the key is
DER encoded, since in that case the encryption status cannot be auto-detected.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 privkey import rsa raw

[Function]int gnutls_x509_privkey_import_rsa_raw (gnutls x509 privkey t
key , const gnutls datum t * m , const gnutls datum t * e , const
gnutls datum t * d , const gnutls datum t * p , const gnutls datum t * q , const
gnutls datum t * u)

key : The structure to store the parsed key

m: holds the modulus

e: holds the public exponent

d: holds the private exponent

p: holds the first prime (p)

Appendix C: API reference 284

q: holds the second prime (q)

u: holds the coefficient

Description: This function will convert the given RSA raw parameters to the native
gnutls_x509_privkey_t format. The output will be stored in key.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 privkey import rsa raw2

[Function]int gnutls_x509_privkey_import_rsa_raw2 (gnutls x509 privkey t
key , const gnutls datum t * m , const gnutls datum t * e , const
gnutls datum t * d , const gnutls datum t * p , const gnutls datum t * q , const
gnutls datum t * u , const gnutls datum t * e1 , const gnutls datum t * e2)

key : The structure to store the parsed key

m: holds the modulus

e: holds the public exponent

d: holds the private exponent

p: holds the first prime (p)

q: holds the second prime (q)

u: holds the coefficient

e1: holds e1 = d mod (p-1)

e2: holds e2 = d mod (q-1)

Description: This function will convert the given RSA raw parameters to the native
gnutls_x509_privkey_t format. The output will be stored in key.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 privkey init

[Function]int gnutls_x509_privkey_init (gnutls x509 privkey t * key)
key : The structure to be initialized

Description: This function will initialize an private key structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 privkey sec param

[Function]gnutls_sec_param_t gnutls_x509_privkey_sec_param
(gnutls x509 privkey t key)

key : a key structure

Description: This function will return the security parameter appropriate with this
private key.

Returns: On success, a valid security parameter is returned otherwise GNUTLS_SEC_

PARAM_UNKNOWN is returned.

Since: 2.12.0

Appendix C: API reference 285

gnutls x509 privkey verify params

[Function]int gnutls_x509_privkey_verify_params (gnutls x509 privkey t
key)

key : should contain a gnutls_x509_privkey_t structure

Description: This function will verify the private key parameters.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 rdn get

[Function]int gnutls_x509_rdn_get (const gnutls datum t * idn , char * buf ,
size t * sizeof_buf)

idn: should contain a DER encoded RDN sequence

buf : a pointer to a structure to hold the peer’s name

sizeof buf : holds the size of buf

Description: This function will return the name of the given RDN sequence. The
name will be in the form "C=xxxx,O=yyyy,CN=zzzz" as described in RFC2253.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or GNUTLS_E_SHORT_

MEMORY_BUFFER is returned and * sizeof_bufis updated if the provided buffer is not
long enough, otherwise a negative error value.

gnutls x509 rdn get by oid

[Function]int gnutls_x509_rdn_get_by_oid (const gnutls datum t * idn , const
char * oid , int indx , unsigned int raw_flag , void * buf , size t *
sizeof_buf)

idn: should contain a DER encoded RDN sequence

oid: an Object Identifier

indx: In case multiple same OIDs exist in the RDN indicates which to send. Use 0
for the first one.

raw flag : If non (0) then the raw DER data are returned.

buf : a pointer to a structure to hold the peer’s name

sizeof buf : holds the size of buf

Description: This function will return the name of the given Object identifier, of the
RDN sequence. The name will be encoded using the rules from RFC2253.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or GNUTLS_E_SHORT_

MEMORY_BUFFER is returned and * sizeof_bufis updated if the provided buffer is not
long enough, otherwise a negative error value.

gnutls x509 rdn get oid

[Function]int gnutls_x509_rdn_get_oid (const gnutls datum t * idn , int
indx , void * buf , size t * sizeof_buf)

idn: should contain a DER encoded RDN sequence

Appendix C: API reference 286

indx: Indicates which OID to return. Use 0 for the first one.

buf : a pointer to a structure to hold the peer’s name OID

sizeof buf : holds the size of buf

Description: This function will return the specified Object identifier, of the RDN
sequence.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, or GNUTLS_E_SHORT_

MEMORY_BUFFER is returned and * sizeof_bufis updated if the provided buffer is not
long enough, otherwise a negative error value.

Since: 2.4.0

gnutls x509 trust list add cas

[Function]int gnutls_x509_trust_list_add_cas (gnutls x509 trust list t
list , const gnutls x509 crt t * clist , int clist_size , unsigned int flags)

list: The structure of the list

clist: A list of CAs

clist size: The length of the CA list

flags: should be 0.

Description: This function will add the given certificate authorities to the trusted
list. The list of CAs must not be deinitialized during this structure’s lifetime.

Returns: The number of added elements is returned.

Since: 3.0.0

gnutls x509 trust list add crls

[Function]int gnutls_x509_trust_list_add_crls (gnutls x509 trust list t
list , const gnutls x509 crl t * crl_list , int crl_size , unsigned int
flags , unsigned int verification_flags)

list: The structure of the list

crl list: A list of CRLs

crl size: The length of the CRL list

flags: if GNUTLS TL VERIFY CRL is given the CRLs will be verified before being
added.

verification flags: gnutls certificate verify flags if flags specifies GNUTLS TL VERIFY CRL

Description: This function will add the given certificate revocation lists to the trusted
list. The list of CRLs must not be deinitialized during this structure’s lifetime.

This function must be called after gnutls_x509_trust_list_add_cas() to allow
verifying the CRLs for validity.

Returns: The number of added elements is returned.

Since: 3.0.0

Appendix C: API reference 287

gnutls x509 trust list add named crt

[Function]int gnutls_x509_trust_list_add_named_crt
(gnutls x509 trust list t list , gnutls x509 crt t cert , const void * name ,
size t name_size , unsigned int flags)

list: The structure of the list

cert: A certificate

name: An identifier for the certificate

name size: The size of the identifier

flags: should be 0.

Description: This function will add the given certificate to the trusted list and as-
sociate it with a name. The certificate will not be be used for verification with
gnutls_x509_trust_list_verify_crt() but only with gnutls_x509_trust_list_

verify_named_crt().

In principle this function can be used to set individual "server" certificates that are
trusted by the user for that specific server but for no other purposes.

The certificate must not be deinitialized during the lifetime of the trusted list.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0.0

gnutls x509 trust list deinit

[Function]void gnutls_x509_trust_list_deinit (gnutls x509 trust list t
list , unsigned int all)

list: The structure to be deinitialized

all: if non-(0) it will deinitialize all the certificates and CRLs contained in the struc-
ture.

Description: This function will deinitialize a trust list.

Since: 3.0.0

gnutls x509 trust list get issuer

[Function]int gnutls_x509_trust_list_get_issuer (gnutls x509 trust list t
list , gnutls x509 crt t cert , gnutls x509 crt t * issuer , unsigned int
flags)

list: The structure of the list

cert: is the certificate to find issuer for

issuer: Will hold the issuer if any. Should be treated as constant.

flags: Use (0).

Description: This function will attempt to find the issuer of the given certificate.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0.0

Appendix C: API reference 288

gnutls x509 trust list init

[Function]int gnutls_x509_trust_list_init (gnutls x509 trust list t * list ,
unsigned int size)

list: The structure to be initialized

size: The size of the internal hash table. Use (0) for default size.

Description: This function will initialize an X.509 trust list structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0.0

gnutls x509 trust list verify crt

[Function]int gnutls_x509_trust_list_verify_crt (gnutls x509 trust list t
list , gnutls x509 crt t * cert_list , unsigned int cert_list_size ,
unsigned int flags , unsigned int * verify , gnutls verify output function
func)

list: The structure of the list

cert list: is the certificate list to be verified

cert list size: is the certificate list size

flags: Flags that may be used to change the verification algorithm. Use OR of the
gnutls certificate verify flags enumerations.

verify : will hold the certificate verification output.

func: If non-null will be called on each chain element verification with the output.

Description: This function will try to verify the given certificate and return its status.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0.0

gnutls x509 trust list verify named crt

[Function]int gnutls_x509_trust_list_verify_named_crt
(gnutls x509 trust list t list , gnutls x509 crt t cert , const void * name ,
size t name_size , unsigned int flags , unsigned int * verify ,
gnutls verify output function func)

list: The structure of the list

cert: is the certificate to be verified

name: is the certificate’s name

name size: is the certificate’s name size

flags: Flags that may be used to change the verification algorithm. Use OR of the
gnutls certificate verify flags enumerations.

verify : will hold the certificate verification output.

func: If non-null will be called on each chain element verification with the output.

Appendix C: API reference 289

Description: This function will try to find a matching named certificate. If a match
is found the certificate is considered valid. In addition to that this function will also
check CRLs.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0.0

C.4 OpenPGP API

The following functions are to be used for OpenPGP certificate handling. Their prototypes
lie in ‘gnutls/openpgp.h’.

gnutls certificate set openpgp key

[Function]int gnutls_certificate_set_openpgp_key
(gnutls certificate credentials t res , gnutls openpgp crt t crt ,
gnutls openpgp privkey t pkey)

res: is a gnutls_certificate_credentials_t structure.

crt: contains an openpgp public key

pkey : is an openpgp private key

Description: This function sets a certificate/private key pair in the
gnutls certificate credentials t structure. This function may be called more
than once (in case multiple keys/certificates exist for the server).

Note that this function requires that the preferred key ids have been set and be used.
See gnutls_openpgp_crt_set_preferred_key_id(). Otherwise the master key will
be used.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

gnutls certificate set openpgp key file

[Function]int gnutls_certificate_set_openpgp_key_file
(gnutls certificate credentials t res , const char * certfile , const char *
keyfile , gnutls openpgp crt fmt t format)

res: the destination context to save the data.

certfile: the file that contains the public key.

keyfile: the file that contains the secret key.

format: the format of the keys

Description: This funtion is used to load OpenPGP keys into the GnuTLS credentials
structure. The file should contain at least one valid non encrypted subkey.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Appendix C: API reference 290

gnutls certificate set openpgp key file2

[Function]int gnutls_certificate_set_openpgp_key_file2
(gnutls certificate credentials t res , const char * certfile , const char *
keyfile , const char * subkey_id , gnutls openpgp crt fmt t format)

res: the destination context to save the data.

certfile: the file that contains the public key.

keyfile: the file that contains the secret key.

subkey id: a hex encoded subkey id

format: the format of the keys

Description: This funtion is used to load OpenPGP keys into the GnuTLS credential
structure. The file should contain at least one valid non encrypted subkey.

The special keyword "auto" is also accepted as subkey_id. In that case the gnutls_
openpgp_crt_get_auth_subkey() will be used to retrieve the subkey.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.4.0

gnutls certificate set openpgp key mem

[Function]int gnutls_certificate_set_openpgp_key_mem
(gnutls certificate credentials t res , const gnutls datum t * cert , const
gnutls datum t * key , gnutls openpgp crt fmt t format)

res: the destination context to save the data.

cert: the datum that contains the public key.

key : the datum that contains the secret key.

format: the format of the keys

Description: This funtion is used to load OpenPGP keys into the GnuTLS credential
structure. The datum should contain at least one valid non encrypted subkey.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls certificate set openpgp key mem2

[Function]int gnutls_certificate_set_openpgp_key_mem2
(gnutls certificate credentials t res , const gnutls datum t * cert , const
gnutls datum t * key , const char * subkey_id , gnutls openpgp crt fmt t
format)

res: the destination context to save the data.

cert: the datum that contains the public key.

key : the datum that contains the secret key.

subkey id: a hex encoded subkey id

format: the format of the keys

Appendix C: API reference 291

Description: This funtion is used to load OpenPGP keys into the GnuTLS credentials
structure. The datum should contain at least one valid non encrypted subkey.

The special keyword "auto" is also accepted as subkey_id. In that case the gnutls_
openpgp_crt_get_auth_subkey() will be used to retrieve the subkey.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.4.0

gnutls certificate set openpgp keyring file

[Function]int gnutls_certificate_set_openpgp_keyring_file
(gnutls certificate credentials t c , const char * file ,
gnutls openpgp crt fmt t format)

c: A certificate credentials structure

file: filename of the keyring.

format: format of keyring.

Description: The function is used to set keyrings that will be used internally by
various OpenPGP functions. For example to find a key when it is needed for an
operations. The keyring will also be used at the verification functions.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls certificate set openpgp keyring mem

[Function]int gnutls_certificate_set_openpgp_keyring_mem
(gnutls certificate credentials t c , const opaque * data , size t dlen ,
gnutls openpgp crt fmt t format)

c: A certificate credentials structure

data: buffer with keyring data.

dlen: length of data buffer.

format: the format of the keyring

Description: The function is used to set keyrings that will be used internally by
various OpenPGP functions. For example to find a key when it is needed for an
operations. The keyring will also be used at the verification functions.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls openpgp crt check hostname

[Function]int gnutls_openpgp_crt_check_hostname (gnutls openpgp crt t
key , const char * hostname)

key : should contain a gnutls_openpgp_crt_t structure

hostname: A null terminated string that contains a DNS name

Description: This function will check if the given key’s owner matches the given
hostname. This is a basic implementation of the matching described in RFC2818
(HTTPS), which takes into account wildcards.

Appendix C: API reference 292

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls openpgp crt deinit

[Function]void gnutls_openpgp_crt_deinit (gnutls openpgp crt t key)
key : The structure to be initialized

Description: This function will deinitialize a key structure.

gnutls openpgp crt export

[Function]int gnutls_openpgp_crt_export (gnutls openpgp crt t key ,
gnutls openpgp crt fmt t format , void * output_data , size t *
output_data_size)

key : Holds the key.

format: One of gnutls openpgp crt fmt t elements.

output data: will contain the key base64 encoded or raw

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

Description: This function will convert the given key to RAW or Base64 format. If
the buffer provided is not long enough to hold the output, then GNUTLS_E_SHORT_

MEMORY_BUFFER will be returned.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls openpgp crt get auth subkey

[Function]int gnutls_openpgp_crt_get_auth_subkey (gnutls openpgp crt t
crt , gnutls openpgp keyid t keyid , unsigned int flag)

crt: the structure that contains the OpenPGP public key.

keyid: the struct to save the keyid.

flag : Non (0) indicates that a valid subkey is always returned.

Description: Returns the 64-bit keyID of the first valid OpenPGP subkey marked for
authentication. If flag is non (0) and no authentication subkey exists, then a valid
subkey will be returned even if it is not marked for authentication. Returns the 64-bit
keyID of the first valid OpenPGP subkey marked for authentication. If flag is non
(0) and no authentication subkey exists, then a valid subkey will be returned even if
it is not marked for authentication.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls openpgp crt get creation time

[Function]time_t gnutls_openpgp_crt_get_creation_time
(gnutls openpgp crt t key)

key : the structure that contains the OpenPGP public key.

Description: Get key creation time.

Returns: the timestamp when the OpenPGP key was created.

Appendix C: API reference 293

gnutls openpgp crt get expiration time

[Function]time_t gnutls_openpgp_crt_get_expiration_time
(gnutls openpgp crt t key)

key : the structure that contains the OpenPGP public key.

Description: Get key expiration time. A value of ’0’ means that the key doesn’t
expire at all.

Returns: the time when the OpenPGP key expires.

gnutls openpgp crt get fingerprint

[Function]int gnutls_openpgp_crt_get_fingerprint (gnutls openpgp crt t
key , void * fpr , size t * fprlen)

key : the raw data that contains the OpenPGP public key.

fpr: the buffer to save the fingerprint, must hold at least 20 bytes.

fprlen: the integer to save the length of the fingerprint.

Description: Get key fingerprint. Depending on the algorithm, the fingerprint can be
16 or 20 bytes.

Returns: On success, 0 is returned. Otherwise, an error code.

gnutls openpgp crt get key id

[Function]int gnutls_openpgp_crt_get_key_id (gnutls openpgp crt t key ,
gnutls openpgp keyid t keyid)

key : the structure that contains the OpenPGP public key.

keyid: the buffer to save the keyid.

Description: Get key id string.

Returns: the 64-bit keyID of the OpenPGP key.

Since: 2.4.0

gnutls openpgp crt get key usage

[Function]int gnutls_openpgp_crt_get_key_usage (gnutls openpgp crt t key ,
unsigned int * key_usage)

key : should contain a gnutls openpgp crt t structure

key usage: where the key usage bits will be stored

Description: This function will return certificate’s key usage, by checking the key
algorithm. The key usage value will ORed values of the: GNUTLS_KEY_DIGITAL_

SIGNATURE, GNUTLS_KEY_KEY_ENCIPHERMENT.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls openpgp crt get name

[Function]int gnutls_openpgp_crt_get_name (gnutls openpgp crt t key , int
idx , char * buf , size t * sizeof_buf)

key : the structure that contains the OpenPGP public key.

Appendix C: API reference 294

idx: the index of the ID to extract

buf : a pointer to a structure to hold the name, may be NULL to only get the sizeof_
buf.

sizeof buf : holds the maximum size of buf, on return hold the actual/required size
of buf.

Description: Extracts the userID from the parsed OpenPGP key.

Returns: GNUTLS_E_SUCCESS on success, and if the index of the ID does not exist
GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE, or an error code.

gnutls openpgp crt get pk algorithm

[Function]gnutls_pk_algorithm_t gnutls_openpgp_crt_get_pk_algorithm
(gnutls openpgp crt t key , unsigned int * bits)

key : is an OpenPGP key

bits: if bits is non null it will hold the size of the parameters’ in bits

Description: This function will return the public key algorithm of an OpenPGP
certificate.

If bits is non null, it should have enough size to hold the parameters size in bits. For
RSA the bits returned is the modulus. For DSA the bits returned are of the public
exponent.

Returns: a member of the gnutls_pk_algorithm_t enumeration on success, or
GNUTLS PK UNKNOWN on error.

gnutls openpgp crt get pk dsa raw

[Function]int gnutls_openpgp_crt_get_pk_dsa_raw (gnutls openpgp crt t
crt , gnutls datum t * p , gnutls datum t * q , gnutls datum t * g ,
gnutls datum t * y)

crt: Holds the certificate

p: will hold the p

q: will hold the q

g : will hold the g

y : will hold the y

Description: This function will export the DSA public key’s parameters found in the
given certificate. The new parameters will be allocated using gnutls_malloc() and
will be stored in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

Since: 2.4.0

gnutls openpgp crt get pk rsa raw

[Function]int gnutls_openpgp_crt_get_pk_rsa_raw (gnutls openpgp crt t
crt , gnutls datum t * m , gnutls datum t * e)

crt: Holds the certificate

m: will hold the modulus

Appendix C: API reference 295

e: will hold the public exponent

Description: This function will export the RSA public key’s parameters found in the
given structure. The new parameters will be allocated using gnutls_malloc() and
will be stored in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

Since: 2.4.0

gnutls openpgp crt get preferred key id

[Function]int gnutls_openpgp_crt_get_preferred_key_id
(gnutls openpgp crt t key , gnutls openpgp keyid t keyid)

key : the structure that contains the OpenPGP public key.

keyid: the struct to save the keyid.

Description: Get preferred key id. If it hasn’t been set it returns GNUTLS_E_INVALID_
REQUEST.

Returns: the 64-bit preferred keyID of the OpenPGP key.

gnutls openpgp crt get revoked status

[Function]int gnutls_openpgp_crt_get_revoked_status
(gnutls openpgp crt t key)

key : the structure that contains the OpenPGP public key.

Description: Get revocation status of key.

Returns: true (1) if the key has been revoked, or false (0) if it has not.

Since: 2.4.0

gnutls openpgp crt get subkey count

[Function]int gnutls_openpgp_crt_get_subkey_count (gnutls openpgp crt t
key)

key : is an OpenPGP key

Description: This function will return the number of subkeys present in the given
OpenPGP certificate.

Returns: the number of subkeys, or a negative error code on error.

Since: 2.4.0

gnutls openpgp crt get subkey creation time

[Function]time_t gnutls_openpgp_crt_get_subkey_creation_time
(gnutls openpgp crt t key , unsigned int idx)

key : the structure that contains the OpenPGP public key.

idx: the subkey index

Description: Get subkey creation time.

Returns: the timestamp when the OpenPGP sub-key was created.

Since: 2.4.0

Appendix C: API reference 296

gnutls openpgp crt get subkey expiration time

[Function]time_t gnutls_openpgp_crt_get_subkey_expiration_time
(gnutls openpgp crt t key , unsigned int idx)

key : the structure that contains the OpenPGP public key.

idx: the subkey index

Description: Get subkey expiration time. A value of ’0’ means that the key doesn’t
expire at all.

Returns: the time when the OpenPGP key expires.

Since: 2.4.0

gnutls openpgp crt get subkey fingerprint

[Function]int gnutls_openpgp_crt_get_subkey_fingerprint
(gnutls openpgp crt t key , unsigned int idx , void * fpr , size t * fprlen)

key : the raw data that contains the OpenPGP public key.

idx: the subkey index

fpr: the buffer to save the fingerprint, must hold at least 20 bytes.

fprlen: the integer to save the length of the fingerprint.

Description: Get key fingerprint of a subkey. Depending on the algorithm, the fin-
gerprint can be 16 or 20 bytes.

Returns: On success, 0 is returned. Otherwise, an error code.

Since: 2.4.0

gnutls openpgp crt get subkey id

[Function]int gnutls_openpgp_crt_get_subkey_id (gnutls openpgp crt t key ,
unsigned int idx , gnutls openpgp keyid t keyid)

key : the structure that contains the OpenPGP public key.

idx: the subkey index

keyid: the buffer to save the keyid.

Description: Get the subkey’s key-id.

Returns: the 64-bit keyID of the OpenPGP key.

gnutls openpgp crt get subkey idx

[Function]int gnutls_openpgp_crt_get_subkey_idx (gnutls openpgp crt t
key , const gnutls openpgp keyid t keyid)

key : the structure that contains the OpenPGP public key.

keyid: the keyid.

Description: Get subkey’s index.

Returns: the index of the subkey or a negative error value.

Since: 2.4.0

Appendix C: API reference 297

gnutls openpgp crt get subkey pk algorithm

[Function]gnutls_pk_algorithm_t
gnutls_openpgp_crt_get_subkey_pk_algorithm (gnutls openpgp crt t
key , unsigned int idx , unsigned int * bits)

key : is an OpenPGP key

idx: is the subkey index

bits: if bits is non null it will hold the size of the parameters’ in bits

Description: This function will return the public key algorithm of a subkey of an
OpenPGP certificate.

If bits is non null, it should have enough size to hold the parameters size in bits. For
RSA the bits returned is the modulus. For DSA the bits returned are of the public
exponent.

Returns: a member of the gnutls_pk_algorithm_t enumeration on success, or
GNUTLS PK UNKNOWN on error.

Since: 2.4.0

gnutls openpgp crt get subkey pk dsa raw

[Function]int gnutls_openpgp_crt_get_subkey_pk_dsa_raw
(gnutls openpgp crt t crt , unsigned int idx , gnutls datum t * p ,
gnutls datum t * q , gnutls datum t * g , gnutls datum t * y)

crt: Holds the certificate

idx: Is the subkey index

p: will hold the p

q: will hold the q

g : will hold the g

y : will hold the y

Description: This function will export the DSA public key’s parameters found in the
given certificate. The new parameters will be allocated using gnutls_malloc() and
will be stored in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

Since: 2.4.0

gnutls openpgp crt get subkey pk rsa raw

[Function]int gnutls_openpgp_crt_get_subkey_pk_rsa_raw
(gnutls openpgp crt t crt , unsigned int idx , gnutls datum t * m ,
gnutls datum t * e)

crt: Holds the certificate

idx: Is the subkey index

m: will hold the modulus

e: will hold the public exponent

Appendix C: API reference 298

Description: This function will export the RSA public key’s parameters found in the
given structure. The new parameters will be allocated using gnutls_malloc() and
will be stored in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

Since: 2.4.0

gnutls openpgp crt get subkey revoked status

[Function]int gnutls_openpgp_crt_get_subkey_revoked_status
(gnutls openpgp crt t key , unsigned int idx)

key : the structure that contains the OpenPGP public key.

idx: is the subkey index

Description: Get subkey revocation status. A negative error code indicates an error.

Returns: true (1) if the key has been revoked, or false (0) if it has not.

Since: 2.4.0

gnutls openpgp crt get subkey usage

[Function]int gnutls_openpgp_crt_get_subkey_usage (gnutls openpgp crt t
key , unsigned int idx , unsigned int * key_usage)

key : should contain a gnutls openpgp crt t structure

idx: the subkey index

key usage: where the key usage bits will be stored

Description: This function will return certificate’s key usage, by checking the key
algorithm. The key usage value will ORed values of GNUTLS_KEY_DIGITAL_SIGNATURE
or GNUTLS_KEY_KEY_ENCIPHERMENT.

A negative error code may be returned in case of parsing error.

Returns: key usage value.

Since: 2.4.0

gnutls openpgp crt get version

[Function]int gnutls_openpgp_crt_get_version (gnutls openpgp crt t key)
key : the structure that contains the OpenPGP public key.

Description: Extract the version of the OpenPGP key.

Returns: the version number is returned, or a negative error code on errors.

gnutls openpgp crt import

[Function]int gnutls_openpgp_crt_import (gnutls openpgp crt t key , const
gnutls datum t * data , gnutls openpgp crt fmt t format)

key : The structure to store the parsed key.

data: The RAW or BASE64 encoded key.

format: One of gnutls openpgp crt fmt t elements.

Description: This function will convert the given RAW or Base64 encoded key to the
native gnutls_openpgp_crt_t format. The output will be stored in ’key’.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

Appendix C: API reference 299

gnutls openpgp crt init

[Function]int gnutls_openpgp_crt_init (gnutls openpgp crt t * key)
key : The structure to be initialized

Description: This function will initialize an OpenPGP key structure.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls openpgp crt print

[Function]int gnutls_openpgp_crt_print (gnutls openpgp crt t cert ,
gnutls certificate print formats t format , gnutls datum t * out)

cert: The structure to be printed

format: Indicate the format to use

out: Newly allocated datum with (0) terminated string.

Description: This function will pretty print an OpenPGP certificate, suitable for
display to a human.

The format should be (0) for future compatibility.

The output outneeds to be deallocate using gnutls_free().

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls openpgp crt set preferred key id

[Function]int gnutls_openpgp_crt_set_preferred_key_id
(gnutls openpgp crt t key , const gnutls openpgp keyid t keyid)

key : the structure that contains the OpenPGP public key.

keyid: the selected keyid

Description: This allows setting a preferred key id for the given certificate. This key
will be used by functions that involve key handling.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

gnutls openpgp crt verify ring

[Function]int gnutls_openpgp_crt_verify_ring (gnutls openpgp crt t key ,
gnutls openpgp keyring t keyring , unsigned int flags , unsigned int *
verify)

key : the structure that holds the key.

keyring : holds the keyring to check against

flags: unused (should be 0)

verify : will hold the certificate verification output.

Description: Verify all signatures in the key, using the given set of keys (keyring).

The key verification output will be put in verifyand will be one or more of the
gnutls_certificate_status_t enumerated elements bitwise or’d.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

Appendix C: API reference 300

gnutls openpgp crt verify self

[Function]int gnutls_openpgp_crt_verify_self (gnutls openpgp crt t key ,
unsigned int flags , unsigned int * verify)

key : the structure that holds the key.

flags: unused (should be 0)

verify : will hold the key verification output.

Description: Verifies the self signature in the key. The key verification output will be
put in verifyand will be one or more of the gnutls certificate status t enumerated
elements bitwise or’d.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls openpgp keyring check id

[Function]int gnutls_openpgp_keyring_check_id (gnutls openpgp keyring t
ring , const gnutls openpgp keyid t keyid , unsigned int flags)

ring : holds the keyring to check against

keyid: will hold the keyid to check for.

flags: unused (should be 0)

Description: Check if a given key ID exists in the keyring.

Returns: GNUTLS_E_SUCCESS on success (if keyid exists) and a negative error code on
failure.

gnutls openpgp keyring deinit

[Function]void gnutls_openpgp_keyring_deinit (gnutls openpgp keyring t
keyring)

keyring : The structure to be initialized

Description: This function will deinitialize a keyring structure.

gnutls openpgp keyring get crt

[Function]int gnutls_openpgp_keyring_get_crt (gnutls openpgp keyring t
ring , unsigned int idx , gnutls openpgp crt t * cert)

ring : Holds the keyring.

idx: the index of the certificate to export

cert: An uninitialized gnutls_openpgp_crt_t structure

Description: This function will extract an OpenPGP certificate from the
given keyring. If the index given is out of range GNUTLS_E_REQUESTED_

DATA_NOT_AVAILABLE will be returned. The returned structure needs to be
deinited.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

Appendix C: API reference 301

gnutls openpgp keyring get crt count

[Function]int gnutls_openpgp_keyring_get_crt_count
(gnutls openpgp keyring t ring)

ring : is an OpenPGP key ring

Description: This function will return the number of OpenPGP certificates present
in the given keyring.

Returns: the number of subkeys, or a negative error code on error.

gnutls openpgp keyring import

[Function]int gnutls_openpgp_keyring_import (gnutls openpgp keyring t
keyring , const gnutls datum t * data , gnutls openpgp crt fmt t format)

keyring : The structure to store the parsed key.

data: The RAW or BASE64 encoded keyring.

format: One of gnutls_openpgp_keyring_fmt elements.

Description: This function will convert the given RAW or Base64 encoded keyring
to the native gnutls_openpgp_keyring_t format. The output will be stored in
’keyring’.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls openpgp keyring init

[Function]int gnutls_openpgp_keyring_init (gnutls openpgp keyring t *
keyring)

keyring : The structure to be initialized

Description: This function will initialize an keyring structure.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls openpgp privkey deinit

[Function]void gnutls_openpgp_privkey_deinit (gnutls openpgp privkey t
key)

key : The structure to be initialized

Description: This function will deinitialize a key structure.

gnutls openpgp privkey export

[Function]int gnutls_openpgp_privkey_export (gnutls openpgp privkey t
key , gnutls openpgp crt fmt t format , const char * password , unsigned int
flags , void * output_data , size t * output_data_size)

key : Holds the key.

format: One of gnutls openpgp crt fmt t elements.

password: the password that will be used to encrypt the key. (unused for now)

flags: (0) for future compatibility

output data: will contain the key base64 encoded or raw

Appendix C: API reference 302

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

Description: This function will convert the given key to RAW or Base64
format. If the buffer provided is not long enough to hold the output, then
GNUTLS E SHORT MEMORY BUFFER will be returned.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

Since: 2.4.0

gnutls openpgp privkey export dsa raw

[Function]int gnutls_openpgp_privkey_export_dsa_raw
(gnutls openpgp privkey t pkey , gnutls datum t * p , gnutls datum t * q ,
gnutls datum t * g , gnutls datum t * y , gnutls datum t * x)

pkey : Holds the certificate

p: will hold the p

q: will hold the q

g : will hold the g

y : will hold the y

x: will hold the x

Description: This function will export the DSA private key’s parameters found in the
given certificate. The new parameters will be allocated using gnutls_malloc() and
will be stored in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

Since: 2.4.0

gnutls openpgp privkey export rsa raw

[Function]int gnutls_openpgp_privkey_export_rsa_raw
(gnutls openpgp privkey t pkey , gnutls datum t * m , gnutls datum t * e ,
gnutls datum t * d , gnutls datum t * p , gnutls datum t * q , gnutls datum t
* u)

pkey : Holds the certificate

m: will hold the modulus

e: will hold the public exponent

d: will hold the private exponent

p: will hold the first prime (p)

q: will hold the second prime (q)

u: will hold the coefficient

Description: This function will export the RSA private key’s parameters found in the
given structure. The new parameters will be allocated using gnutls_malloc() and
will be stored in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

Since: 2.4.0

Appendix C: API reference 303

gnutls openpgp privkey export subkey dsa raw

[Function]int gnutls_openpgp_privkey_export_subkey_dsa_raw
(gnutls openpgp privkey t pkey , unsigned int idx , gnutls datum t * p ,
gnutls datum t * q , gnutls datum t * g , gnutls datum t * y , gnutls datum t
* x)

pkey : Holds the certificate

idx: Is the subkey index

p: will hold the p

q: will hold the q

g : will hold the g

y : will hold the y

x: will hold the x

Description: This function will export the DSA private key’s parameters found in the
given certificate. The new parameters will be allocated using gnutls_malloc() and
will be stored in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

Since: 2.4.0

gnutls openpgp privkey export subkey rsa raw

[Function]int gnutls_openpgp_privkey_export_subkey_rsa_raw
(gnutls openpgp privkey t pkey , unsigned int idx , gnutls datum t * m ,
gnutls datum t * e , gnutls datum t * d , gnutls datum t * p , gnutls datum t
* q , gnutls datum t * u)

pkey : Holds the certificate

idx: Is the subkey index

m: will hold the modulus

e: will hold the public exponent

d: will hold the private exponent

p: will hold the first prime (p)

q: will hold the second prime (q)

u: will hold the coefficient

Description: This function will export the RSA private key’s parameters found in the
given structure. The new parameters will be allocated using gnutls_malloc() and
will be stored in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

Since: 2.4.0

Appendix C: API reference 304

gnutls openpgp privkey get fingerprint

[Function]int gnutls_openpgp_privkey_get_fingerprint
(gnutls openpgp privkey t key , void * fpr , size t * fprlen)

key : the raw data that contains the OpenPGP secret key.

fpr: the buffer to save the fingerprint, must hold at least 20 bytes.

fprlen: the integer to save the length of the fingerprint.

Description: Get the fingerprint of the OpenPGP key. Depends on the algorithm,
the fingerprint can be 16 or 20 bytes.

Returns: On success, 0 is returned, or an error code.

Since: 2.4.0

gnutls openpgp privkey get key id

[Function]int gnutls_openpgp_privkey_get_key_id (gnutls openpgp privkey t
key , gnutls openpgp keyid t keyid)

key : the structure that contains the OpenPGP secret key.

keyid: the buffer to save the keyid.

Description: Get key-id.

Returns: the 64-bit keyID of the OpenPGP key.

Since: 2.4.0

gnutls openpgp privkey get pk algorithm

[Function]gnutls_pk_algorithm_t
gnutls_openpgp_privkey_get_pk_algorithm (gnutls openpgp privkey t
key , unsigned int * bits)

key : is an OpenPGP key

bits: if bits is non null it will hold the size of the parameters’ in bits

Description: This function will return the public key algorithm of an OpenPGP
certificate.

If bits is non null, it should have enough size to hold the parameters size in bits. For
RSA the bits returned is the modulus. For DSA the bits returned are of the public
exponent.

Returns: a member of the gnutls_pk_algorithm_t enumeration on success, or a
negative error code on error.

Since: 2.4.0

gnutls openpgp privkey get preferred key id

[Function]int gnutls_openpgp_privkey_get_preferred_key_id
(gnutls openpgp privkey t key , gnutls openpgp keyid t keyid)

key : the structure that contains the OpenPGP public key.

keyid: the struct to save the keyid.

Description: Get the preferred key-id for the key.

Appendix C: API reference 305

Returns: the 64-bit preferred keyID of the OpenPGP key, or if it hasn’t been set it
returns GNUTLS_E_INVALID_REQUEST.

gnutls openpgp privkey get revoked status

[Function]int gnutls_openpgp_privkey_get_revoked_status
(gnutls openpgp privkey t key)

key : the structure that contains the OpenPGP private key.

Description: Get revocation status of key.

Returns: true (1) if the key has been revoked, or false (0) if it has not, or a negative
error code indicates an error.

Since: 2.4.0

gnutls openpgp privkey get subkey count

[Function]int gnutls_openpgp_privkey_get_subkey_count
(gnutls openpgp privkey t key)

key : is an OpenPGP key

Description: This function will return the number of subkeys present in the given
OpenPGP certificate.

Returns: the number of subkeys, or a negative error code on error.

Since: 2.4.0

gnutls openpgp privkey get subkey creation time

[Function]time_t gnutls_openpgp_privkey_get_subkey_creation_time
(gnutls openpgp privkey t key , unsigned int idx)

key : the structure that contains the OpenPGP private key.

idx: the subkey index

Description: Get subkey creation time.

Returns: the timestamp when the OpenPGP key was created.

Since: 2.4.0

gnutls openpgp privkey get subkey fingerprint

[Function]int gnutls_openpgp_privkey_get_subkey_fingerprint
(gnutls openpgp privkey t key , unsigned int idx , void * fpr , size t *
fprlen)

key : the raw data that contains the OpenPGP secret key.

idx: the subkey index

fpr: the buffer to save the fingerprint, must hold at least 20 bytes.

fprlen: the integer to save the length of the fingerprint.

Description: Get the fingerprint of an OpenPGP subkey. Depends on the algorithm,
the fingerprint can be 16 or 20 bytes.

Returns: On success, 0 is returned, or an error code.

Since: 2.4.0

Appendix C: API reference 306

gnutls openpgp privkey get subkey id

[Function]int gnutls_openpgp_privkey_get_subkey_id
(gnutls openpgp privkey t key , unsigned int idx , gnutls openpgp keyid t
keyid)

key : the structure that contains the OpenPGP secret key.

idx: the subkey index

keyid: the buffer to save the keyid.

Description: Get the key-id for the subkey.

Returns: the 64-bit keyID of the OpenPGP key.

Since: 2.4.0

gnutls openpgp privkey get subkey idx

[Function]int gnutls_openpgp_privkey_get_subkey_idx
(gnutls openpgp privkey t key , const gnutls openpgp keyid t keyid)

key : the structure that contains the OpenPGP private key.

keyid: the keyid.

Description: Get index of subkey.

Returns: the index of the subkey or a negative error value.

Since: 2.4.0

gnutls openpgp privkey get subkey pk algorithm

[Function]gnutls_pk_algorithm_t
gnutls_openpgp_privkey_get_subkey_pk_algorithm
(gnutls openpgp privkey t key , unsigned int idx , unsigned int * bits)

key : is an OpenPGP key

idx: is the subkey index

bits: if bits is non null it will hold the size of the parameters’ in bits

Description: This function will return the public key algorithm of a subkey of an
OpenPGP certificate.

If bits is non null, it should have enough size to hold the parameters size in bits. For
RSA the bits returned is the modulus. For DSA the bits returned are of the public
exponent.

Returns: a member of the gnutls_pk_algorithm_t enumeration on success, or a
negative error code on error.

Since: 2.4.0

gnutls openpgp privkey get subkey revoked status

[Function]int gnutls_openpgp_privkey_get_subkey_revoked_status
(gnutls openpgp privkey t key , unsigned int idx)

key : the structure that contains the OpenPGP private key.

idx: is the subkey index

Appendix C: API reference 307

Description: Get revocation status of key.

Returns: true (1) if the key has been revoked, or false (0) if it has not, or a negative
error code indicates an error.

Since: 2.4.0

gnutls openpgp privkey import

[Function]int gnutls_openpgp_privkey_import (gnutls openpgp privkey t
key , const gnutls datum t * data , gnutls openpgp crt fmt t format , const
char * password , unsigned int flags)

key : The structure to store the parsed key.

data: The RAW or BASE64 encoded key.

format: One of gnutls_openpgp_crt_fmt_t elements.

password: not used for now

flags: should be (0)

Description: This function will convert the given RAW or Base64 encoded key to the
native gnutls openpgp privkey t format. The output will be stored in ’key’.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls openpgp privkey init

[Function]int gnutls_openpgp_privkey_init (gnutls openpgp privkey t * key)
key : The structure to be initialized

Description: This function will initialize an OpenPGP key structure.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls openpgp privkey sec param

[Function]gnutls_sec_param_t gnutls_openpgp_privkey_sec_param
(gnutls openpgp privkey t key)

key : a key structure

Description: This function will return the security parameter appropriate with this
private key.

Returns: On success, a valid security parameter is returned otherwise GNUTLS_SEC_

PARAM_UNKNOWN is returned.

Since: 2.12.0

gnutls openpgp privkey set preferred key id

[Function]int gnutls_openpgp_privkey_set_preferred_key_id
(gnutls openpgp privkey t key , const gnutls openpgp keyid t keyid)

key : the structure that contains the OpenPGP public key.

keyid: the selected keyid

Description: This allows setting a preferred key id for the given certificate. This key
will be used by functions that involve key handling.

Returns: On success, 0 is returned, or an error code.

Appendix C: API reference 308

gnutls openpgp set recv key function

[Function]void gnutls_openpgp_set_recv_key_function (gnutls session t
session , gnutls openpgp recv key func func)

session: a TLS session

func: the callback

Description: This funtion will set a key retrieval function for OpenPGP keys. This
callback is only useful in server side, and will be used if the peer sent a key fingerprint
instead of a full key.

C.5 PKCS 12 API

The following functions are to be used for PKCS 12 handling. Their prototypes lie in
‘gnutls/pkcs12.h’.

gnutls pkcs12 bag decrypt

[Function]int gnutls_pkcs12_bag_decrypt (gnutls pkcs12 bag t bag , const
char * pass)

bag : The bag

pass: The password used for encryption, must be ASCII.

Description: This function will decrypt the given encrypted bag and return 0 on
success.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

gnutls pkcs12 bag deinit

[Function]void gnutls_pkcs12_bag_deinit (gnutls pkcs12 bag t bag)
bag : The structure to be initialized

Description: This function will deinitialize a PKCS12 Bag structure.

gnutls pkcs12 bag encrypt

[Function]int gnutls_pkcs12_bag_encrypt (gnutls pkcs12 bag t bag , const
char * pass , unsigned int flags)

bag : The bag

pass: The password used for encryption, must be ASCII

flags: should be one of gnutls_pkcs_encrypt_flags_t elements bitwise or’d

Description: This function will encrypt the given bag.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
code is returned.

Appendix C: API reference 309

gnutls pkcs12 bag get count

[Function]int gnutls_pkcs12_bag_get_count (gnutls pkcs12 bag t bag)
bag : The bag

Description: This function will return the number of the elements withing the bag.

Returns: Number of elements in bag, or an negative error code on error.

gnutls pkcs12 bag get data

[Function]int gnutls_pkcs12_bag_get_data (gnutls pkcs12 bag t bag , int
indx , gnutls datum t * data)

bag : The bag

indx: The element of the bag to get the data from

data: where the bag’s data will be. Should be treated as constant.

Description: This function will return the bag’s data. The data is a constant that is
stored into the bag. Should not be accessed after the bag is deleted.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls pkcs12 bag get friendly name

[Function]int gnutls_pkcs12_bag_get_friendly_name (gnutls pkcs12 bag t
bag , int indx , char ** name)

bag : The bag

indx: The bag’s element to add the id

name: will hold a pointer to the name (to be treated as const)

Description: This function will return the friendly name, of the specified bag element.
The key ID is usually used to distinguish the local private key and the certificate pair.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value. or a negative error code on error.

gnutls pkcs12 bag get key id

[Function]int gnutls_pkcs12_bag_get_key_id (gnutls pkcs12 bag t bag , int
indx , gnutls datum t * id)

bag : The bag

indx: The bag’s element to add the id

id: where the ID will be copied (to be treated as const)

Description: This function will return the key ID, of the specified bag element. The
key ID is usually used to distinguish the local private key and the certificate pair.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value. or a negative error code on error.

Appendix C: API reference 310

gnutls pkcs12 bag get type

[Function]gnutls_pkcs12_bag_type_t gnutls_pkcs12_bag_get_type
(gnutls pkcs12 bag t bag , int indx)

bag : The bag

indx: The element of the bag to get the type

Description: This function will return the bag’s type.

Returns: One of the gnutls_pkcs12_bag_type_t enumerations.

gnutls pkcs12 bag init

[Function]int gnutls_pkcs12_bag_init (gnutls pkcs12 bag t * bag)
bag : The structure to be initialized

Description: This function will initialize a PKCS12 bag structure. PKCS12 Bags usu-
ally contain private keys, lists of X.509 Certificates and X.509 Certificate revocation
lists.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls pkcs12 bag set crl

[Function]int gnutls_pkcs12_bag_set_crl (gnutls pkcs12 bag t bag ,
gnutls x509 crl t crl)

bag : The bag

crl: the CRL to be copied.

Description: This function will insert the given CRL into the bag. This is just a
wrapper over gnutls_pkcs12_bag_set_data().

Returns: the index of the added bag on success, or a negative error code on failure.

gnutls pkcs12 bag set crt

[Function]int gnutls_pkcs12_bag_set_crt (gnutls pkcs12 bag t bag ,
gnutls x509 crt t crt)

bag : The bag

crt: the certificate to be copied.

Description: This function will insert the given certificate into the bag. This is just
a wrapper over gnutls_pkcs12_bag_set_data().

Returns: the index of the added bag on success, or a negative value on failure.

gnutls pkcs12 bag set data

[Function]int gnutls_pkcs12_bag_set_data (gnutls pkcs12 bag t bag ,
gnutls pkcs12 bag type t type , const gnutls datum t * data)

bag : The bag

type: The data’s type

data: the data to be copied.

Appendix C: API reference 311

Description: This function will insert the given data of the given type into the bag.

Returns: the index of the added bag on success, or a negative value on error.

gnutls pkcs12 bag set friendly name

[Function]int gnutls_pkcs12_bag_set_friendly_name (gnutls pkcs12 bag t
bag , int indx , const char * name)

bag : The bag

indx: The bag’s element to add the id

name: the name

Description: This function will add the given key friendly name, to the specified, by
the index, bag element. The name will be encoded as a ’Friendly name’ bag attribute,
which is usually used to set a user name to the local private key and the certificate
pair.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value. or a negative error code on error.

gnutls pkcs12 bag set key id

[Function]int gnutls_pkcs12_bag_set_key_id (gnutls pkcs12 bag t bag , int
indx , const gnutls datum t * id)

bag : The bag

indx: The bag’s element to add the id

id: the ID

Description: This function will add the given key ID, to the specified, by the index,
bag element. The key ID will be encoded as a ’Local key identifier’ bag attribute,
which is usually used to distinguish the local private key and the certificate pair.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value. or a negative error code on error.

gnutls pkcs12 deinit

[Function]void gnutls_pkcs12_deinit (gnutls pkcs12 t pkcs12)
pkcs12: The structure to be initialized

Description: This function will deinitialize a PKCS12 structure.

gnutls pkcs12 export

[Function]int gnutls_pkcs12_export (gnutls pkcs12 t pkcs12 ,
gnutls x509 crt fmt t format , void * output_data , size t *
output_data_size)

pkcs12: Holds the pkcs12 structure

format: the format of output params. One of PEM or DER.

output data: will contain a structure PEM or DER encoded

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

Appendix C: API reference 312

Description: This function will export the pkcs12 structure to DER or PEM format.

If the buffer provided is not long enough to hold the output, then *output data size
will be updated and GNUTLS E SHORT MEMORY BUFFER will be returned.

If the structure is PEM encoded, it will have a header of "BEGIN PKCS12".

Returns: In case of failure a negative error code will be returned, and 0 on success.

gnutls pkcs12 generate mac

[Function]int gnutls_pkcs12_generate_mac (gnutls pkcs12 t pkcs12 , const
char * pass)

pkcs12: should contain a gnutls pkcs12 t structure

pass: The password for the MAC

Description: This function will generate a MAC for the PKCS12 structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls pkcs12 get bag

[Function]int gnutls_pkcs12_get_bag (gnutls pkcs12 t pkcs12 , int indx ,
gnutls pkcs12 bag t bag)

pkcs12: should contain a gnutls pkcs12 t structure

indx: contains the index of the bag to extract

bag : An initialized bag, where the contents of the bag will be copied

Description: This function will return a Bag from the PKCS12 structure.

After the last Bag has been read GNUTLS_E_REQUESTED_DATA_NOT_AVAILABLE will be
returned.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls pkcs12 import

[Function]int gnutls_pkcs12_import (gnutls pkcs12 t pkcs12 , const
gnutls datum t * data , gnutls x509 crt fmt t format , unsigned int flags)

pkcs12: The structure to store the parsed PKCS12.

data: The DER or PEM encoded PKCS12.

format: One of DER or PEM

flags: an ORed sequence of gnutls privkey pkcs8 flags

Description: This function will convert the given DER or PEM encoded PKCS12 to
the native gnutls pkcs12 t format. The output will be stored in ’pkcs12’.

If the PKCS12 is PEM encoded it should have a header of "PKCS12".

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Appendix C: API reference 313

gnutls pkcs12 init

[Function]int gnutls_pkcs12_init (gnutls pkcs12 t * pkcs12)
pkcs12: The structure to be initialized

Description: This function will initialize a PKCS12 structure. PKCS12 structures
usually contain lists of X.509 Certificates and X.509 Certificate revocation lists.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls pkcs12 set bag

[Function]int gnutls_pkcs12_set_bag (gnutls pkcs12 t pkcs12 ,
gnutls pkcs12 bag t bag)

pkcs12: should contain a gnutls pkcs12 t structure

bag : An initialized bag

Description: This function will insert a Bag into the PKCS12 structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls pkcs12 verify mac

[Function]int gnutls_pkcs12_verify_mac (gnutls pkcs12 t pkcs12 , const char
* pass)

pkcs12: should contain a gnutls pkcs12 t structure

pass: The password for the MAC

Description: This function will verify the MAC for the PKCS12 structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

C.6 Hardware token via PKCS 11 API

The following functions are to be used for PKCS 11 handling. Their prototypes lie in
‘gnutls/pkcs11.h’.

gnutls pkcs11 add provider

[Function]int gnutls_pkcs11_add_provider (const char * name , const char *
params)

name: The filename of the module

params: should be NULL

This function will load and add a PKCS 11 module to the module list used in gnutls.
After this function is called the module will be used for PKCS 11 operations.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

Appendix C: API reference 314

gnutls pkcs11 copy secret key

[Function]int gnutls_pkcs11_copy_secret_key (const char * token_url ,
gnutls datum t * key , const char * label , unsigned int key_usage , unsigned
int flags)

token url: A PKCS 11 URL specifying a token

key : The raw key

label: A name to be used for the stored data

key usage: One of GNUTLS KEY *

flags: One of GNUTLS PKCS11 OBJ FLAG *

This function will copy a raw secret (symmetric) key into a PKCS 11 token specified
by a URL. The key can be marked as sensitive or not.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls pkcs11 copy x509 crt

[Function]int gnutls_pkcs11_copy_x509_crt (const char * token_url ,
gnutls x509 crt t crt , const char * label , unsigned int flags)

token url: A PKCS 11 URL specifying a token

crt: A certificate

label: A name to be used for the stored data

flags: One of GNUTLS PKCS11 OBJ FLAG *

This function will copy a certificate into a PKCS 11 token specified by a URL. The
certificate can be marked as trusted or not.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls pkcs11 copy x509 privkey

[Function]int gnutls_pkcs11_copy_x509_privkey (const char * token_url ,
gnutls x509 privkey t key , const char * label , unsigned int key_usage ,
unsigned int flags)

token url: A PKCS 11 URL specifying a token

key : A private key

label: A name to be used for the stored data

key usage: One of GNUTLS KEY *

flags: One of GNUTLS PKCS11 OBJ * flags

This function will copy a private key into a PKCS 11 token specified by a URL. It
is highly recommended flags to contain GNUTLS_PKCS11_OBJ_FLAG_MARK_SENSITIVE

unless there is a strong reason not to.

Appendix C: API reference 315

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls pkcs11 deinit

[Function]void gnutls_pkcs11_deinit (void)
This function will deinitialize the PKCS 11 subsystem in gnutls.

Since: 2.12.0

gnutls pkcs11 delete url

[Function]int gnutls_pkcs11_delete_url (const char * object_url , unsigned
int flags)

object url: The URL of the object to delete.

flags: One of GNUTLS PKCS11 OBJ * flags

This function will delete objects matching the given URL. Note that not all tokens
support the delete operation.

Returns: On success, the number of objects deleted is returned, otherwise a negative
error value.

Since: 2.12.0

gnutls pkcs11 init

[Function]int gnutls_pkcs11_init (unsigned int flags , const char *
deprecated_config_file)

flags: GNUTLS_PKCS11_FLAG_MANUAL or GNUTLS_PKCS11_FLAG_AUTO

deprecated config file: either NULL or the location of a deprecated configuration file

This function will initialize the PKCS 11 subsystem in gnutls. It will read configu-
ration files if GNUTLS_PKCS11_FLAG_AUTO is used or allow you to independently load
PKCS 11 modules using gnutls_pkcs11_add_provider() if GNUTLS_PKCS11_FLAG_
MANUAL is specified.

Normally you don’t need to call this function since it is being called by gnutls_

global_init() using the GNUTLS_PKCS11_FLAG_AUTO. If other option is required
then it must be called before it.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls pkcs11 obj deinit

[Function]void gnutls_pkcs11_obj_deinit (gnutls pkcs11 obj t obj)
obj: The structure to be initialized

This function will deinitialize a certificate structure.

Since: 2.12.0

Appendix C: API reference 316

gnutls pkcs11 obj export

[Function]int gnutls_pkcs11_obj_export (gnutls pkcs11 obj t obj , void *
output_data , size t * output_data_size)

obj: Holds the object

output data: will contain a certificate PEM or DER encoded

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will export the PKCS11 object data. It is normal for data to be inac-
cesible and in that case GNUTLS_E_INVALID_REQUEST will be returned.

If the buffer provided is not long enough to hold the output, then *output data size
is updated and GNUTLS E SHORT MEMORY BUFFER will be returned.

If the structure is PEM encoded, it will have a header of "BEGIN CERTIFICATE".

Returns: In case of failure a negative error code will be returned, and GNUTLS_E_

SUCCESS (0) on success.

Since: 2.12.0

gnutls pkcs11 obj export url

[Function]int gnutls_pkcs11_obj_export_url (gnutls pkcs11 obj t obj ,
gnutls pkcs11 url type t detailed , char ** url)

obj: Holds the PKCS 11 certificate

detailed: non zero if a detailed URL is required

url: will contain an allocated url

This function will export a URL identifying the given certificate.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls pkcs11 obj get info

[Function]int gnutls_pkcs11_obj_get_info (gnutls pkcs11 obj t crt ,
gnutls pkcs11 obj info t itype , void * output , size t * output_size)

crt: should contain a gnutls_pkcs11_obj_t structure

itype: Denotes the type of information requested

output: where output will be stored

output size: contains the maximum size of the output and will be overwritten with
actual

This function will return information about the PKCS11 certificate such as the label,
id as well as token information where the key is stored. When output is text it returns
null terminated string although output_sizecontains the size of the actual data only.

Returns: GNUTLS_E_SUCCESS (0) on success or a negative error code on error.

Since: 2.12.0

Appendix C: API reference 317

gnutls pkcs11 obj get type

[Function]gnutls_pkcs11_obj_type_t gnutls_pkcs11_obj_get_type
(gnutls pkcs11 obj t obj)

obj: Holds the PKCS 11 object

This function will return the type of the certificate being stored in the structure.

Returns: The type of the certificate.

Since: 2.12.0

gnutls pkcs11 obj import url

[Function]int gnutls_pkcs11_obj_import_url (gnutls pkcs11 obj t cert ,
const char * url , unsigned int flags)

cert: The structure to store the parsed certificate

url: a PKCS 11 url identifying the key

flags: One of GNUTLS PKCS11 OBJ * flags

This function will "import" a PKCS 11 URL identifying a certificate key to the
gnutls_pkcs11_obj_t structure. This does not involve any parsing (such as X.509
or OpenPGP) since the gnutls_pkcs11_obj_t is format agnostic. Only data are
transferred.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls pkcs11 obj init

[Function]int gnutls_pkcs11_obj_init (gnutls pkcs11 obj t * obj)
obj: The structure to be initialized

This function will initialize a pkcs11 certificate structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls pkcs11 obj list import url

[Function]int gnutls_pkcs11_obj_list_import_url (gnutls pkcs11 obj t *
p_list , unsigned int * n_list , const char * url , gnutls pkcs11 obj attr t
attrs , unsigned int flags)

p list: An uninitialized object list (may be NULL)

n list: initially should hold the maximum size of the list. Will contain the actual size.

url: A PKCS 11 url identifying a set of objects

attrs: Attributes of type gnutls_pkcs11_obj_attr_t that can be used to limit out-
put

flags: One of GNUTLS PKCS11 OBJ * flags

Appendix C: API reference 318

This function will initialize and set values to an object list by using all objects iden-
tified by a PKCS 11 URL.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls pkcs11 privkey deinit

[Function]void gnutls_pkcs11_privkey_deinit (gnutls pkcs11 privkey t key)
key : The structure to be initialized

This function will deinitialize a private key structure.

gnutls pkcs11 privkey export url

[Function]int gnutls_pkcs11_privkey_export_url (gnutls pkcs11 privkey t
key , gnutls pkcs11 url type t detailed , char ** url)

key : Holds the PKCS 11 key

detailed: non zero if a detailed URL is required

url: will contain an allocated url

This function will export a URL identifying the given key.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls pkcs11 privkey generate

[Function]int gnutls_pkcs11_privkey_generate (const char* url ,
gnutls pk algorithm t pk , unsigned int bits , const char* label , unsigned int
flags)

url: a token URL

pk: the public key algorithm

bits: the security bits

label: a label

flags: should be zero

This function will generate a private key in the specified by the urltoken. The pivate
key will be generate within the token and will not be exportable.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0.0

gnutls pkcs11 privkey get info

[Function]int gnutls_pkcs11_privkey_get_info (gnutls pkcs11 privkey t
pkey , gnutls pkcs11 obj info t itype , void * output , size t * output_size)

pkey : should contain a gnutls_pkcs11_privkey_t structure

itype: Denotes the type of information requested

Appendix C: API reference 319

output: where output will be stored

output size: contains the maximum size of the output and will be overwritten with
actual

This function will return information about the PKCS 11 private key such as the
label, id as well as token information where the key is stored. When output is text it
returns null terminated string although output_size contains the size of the actual
data only.

Returns: GNUTLS_E_SUCCESS (0) on success or a negative error code on error.

gnutls pkcs11 privkey get pk algorithm

[Function]int gnutls_pkcs11_privkey_get_pk_algorithm
(gnutls pkcs11 privkey t key , unsigned int * bits)

key : should contain a gnutls_pkcs11_privkey_t structure

bits: if bits is non null it will hold the size of the parameters’ in bits

This function will return the public key algorithm of a private key.

Returns: a member of the gnutls_pk_algorithm_t enumeration on success, or a
negative error code on error.

gnutls pkcs11 privkey import url

[Function]int gnutls_pkcs11_privkey_import_url (gnutls pkcs11 privkey t
pkey , const char * url , unsigned int flags)

pkey : The structure to store the parsed key

url: a PKCS 11 url identifying the key

flags: sequence of GNUTLS PKCS PRIVKEY *

This function will "import" a PKCS 11 URL identifying a private key to the gnutls_
pkcs11_privkey_t structure. In reality since in most cases keys cannot be exported,
the private key structure is being associated with the available operations on the
token.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls pkcs11 privkey init

[Function]int gnutls_pkcs11_privkey_init (gnutls pkcs11 privkey t * key)
key : The structure to be initialized

This function will initialize an private key structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls pkcs11 set pin function

[Function]void gnutls_pkcs11_set_pin_function
(gnutls pkcs11 pin callback t fn , void * userdata)

fn: The PIN callback, a gnutls_pkcs11_pin_callback_t() function.

Appendix C: API reference 320

userdata: data to be supplied to callback

This function will set a callback function to be used when a PIN is required for PKCS
11 operations. See gnutls_pkcs11_pin_callback_t() on how the callback should
behave.

Since: 2.12.0

gnutls pkcs11 set token function

[Function]void gnutls_pkcs11_set_token_function
(gnutls pkcs11 token callback t fn , void * userdata)

fn: The token callback

userdata: data to be supplied to callback

This function will set a callback function to be used when a token needs to be inserted
to continue PKCS 11 operations.

Since: 2.12.0

gnutls pkcs11 token get flags

[Function]int gnutls_pkcs11_token_get_flags (const char * url , unsigned int
* flags)

url: should contain a PKCS 11 URL

flags: The output flags (GNUTLS PKCS11 TOKEN *)

This function will return information about the PKCS 11 token flags. The flags from
the gnutls_pkcs11_token_info_t enumeration.

Returns: GNUTLS_E_SUCCESS (0) on success or a negative error code on error.

Since: 2.12.0

gnutls pkcs11 token get info

[Function]int gnutls_pkcs11_token_get_info (const char * url ,
gnutls pkcs11 token info t ttype , void * output , size t * output_size)

url: should contain a PKCS 11 URL

ttype: Denotes the type of information requested

output: where output will be stored

output size: contains the maximum size of the output and will be overwritten with
actual

This function will return information about the PKCS 11 token such as the label, id,
etc.

Returns: GNUTLS_E_SUCCESS (0) on success or a negative error code on error.

Since: 2.12.0

Appendix C: API reference 321

gnutls pkcs11 token get mechanism

[Function]int gnutls_pkcs11_token_get_mechanism (const char * url , int
idx , unsigned long * mechanism)

url: should contain a PKCS 11 URL

idx: The index of the mechanism

mechanism: The PKCS 11 mechanism ID

This function will return the names of the supported mechanisms by
the token. It should be called with an increasing index until it return
GNUTLS E REQUESTED DATA NOT AVAILABLE.

Returns: GNUTLS_E_SUCCESS (0) on success or a negative error code on error.

Since: 2.12.0

gnutls pkcs11 token get url

[Function]int gnutls_pkcs11_token_get_url (unsigned int seq ,
gnutls pkcs11 url type t detailed , char ** url)

seq: sequence number starting from 0

detailed: non zero if a detailed URL is required

url: will contain an allocated url

This function will return the URL for each token available in system. The url has to
be released using gnutls_free()

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, GNUTLS_E_REQUESTED_

DATA_NOT_AVAILABLE if the sequence number exceeds the available tokens, otherwise
a negative error value.

Since: 2.12.0

gnutls pkcs11 token init

[Function]int gnutls_pkcs11_token_init (const char * token_url , const char
* so_pin , const char * label)

token url: A PKCS 11 URL specifying a token

so pin: Security Officer’s PIN

label: A name to be used for the token

This function will initialize (format) a token. If the token is at a factory defaults
state the security officer’s PIN given will be set to be the default. Otherwise it should
match the officer’s PIN.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls pkcs11 token set pin

[Function]int gnutls_pkcs11_token_set_pin (const char * token_url , const
char * oldpin , const char * newpin , unsigned int flags)

token url: A PKCS 11 URL specifying a token

Appendix C: API reference 322

oldpin: old user’s PIN

newpin: new user’s PIN

flags: one of gnutls_pkcs11_pin_flag_t.

This function will modify or set a user’s PIN for the given token. If it is called to set
a user pin for first time the oldpin must be NULL.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls pkcs11 type get name

[Function]const char * gnutls_pkcs11_type_get_name
(gnutls pkcs11 obj type t type)

type: Holds the PKCS 11 object type, a gnutls_pkcs11_obj_type_t.

This function will return a human readable description of the PKCS11 object type
obj. It will return "Unknown" for unknown types.

Returns: human readable string labeling the PKCS11 object type type.

Since: 2.12.0

gnutls x509 crt import pkcs11

[Function]int gnutls_x509_crt_import_pkcs11 (gnutls x509 crt t crt ,
gnutls pkcs11 obj t pkcs11_crt)

crt: A certificate of type gnutls_x509_crt_t

pkcs11 crt: A PKCS 11 object that contains a certificate

This function will import a PKCS 11 certificate to a gnutls_x509_crt_t structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls x509 crt import pkcs11 url

[Function]int gnutls_x509_crt_import_pkcs11_url (gnutls x509 crt t crt ,
const char * url , unsigned int flags)

crt: A certificate of type gnutls_x509_crt_t

url: A PKCS 11 url

flags: One of GNUTLS PKCS11 OBJ * flags

This function will import a PKCS 11 certificate directly from a token without in-
volving the gnutls_pkcs11_obj_t structure. This function will fail if the certificate
stored is not of X.509 type.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

Appendix C: API reference 323

gnutls x509 crt list import pkcs11

[Function]int gnutls_x509_crt_list_import_pkcs11 (gnutls x509 crt t *
certs , unsigned int cert_max , gnutls pkcs11 obj t * const objs , unsigned
int flags)

certs: A list of certificates of type gnutls_x509_crt_t

cert max: The maximum size of the list

objs: A list of PKCS 11 objects

flags: 0 for now

This function will import a PKCS 11 certificate list to a list of gnutls_x509_crt_t
structure. These must not be initialized.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

C.7 Abstract key API

The following functions are to be used for abstract key handling. Their prototypes lie in
‘gnutls/abstract.h’.

gnutls certificate set key

[Function]int gnutls_certificate_set_key (gnutls certificate credentials t
res , const char** names , int names_size , gnutls pcert st * pcert_list ,
int pcert_list_size , gnutls privkey t key)

res: is a gnutls_certificate_credentials_t structure.

names: is an array of DNS name of the certificate (NULL if none)

names size: holds the size of the names list

pcert list: contains a certificate list (path) for the specified private key

pcert list size: holds the size of the certificate list

key : is a gnutls x509 privkey t key

This function sets a certificate/private key pair in the gnutls certificate credentials t
structure. This function may be called more than once, in case multiple
keys/certificates exist for the server. For clients that wants to send more than its
own end entity certificate (e.g., also an intermediate CA cert) then put the certificate
chain in pcert_list. The pcert_listand keywill become part of the credentials
structure and must not be deallocated. They will be automatically deallocated when
resis deinitialized.

Returns: GNUTLS_E_SUCCESS (0) on success, or a negative error code.

Since: 3.0.0

gnutls pcert deinit

[Function]void gnutls_pcert_deinit (gnutls pcert st * pcert)
pcert: The structure to be deinitialized

Appendix C: API reference 324

This function will deinitialize a pcert structure.

Since: 3.0.0

gnutls pcert import openpgp

[Function]int gnutls_pcert_import_openpgp (gnutls pcert st* pcert ,
gnutls openpgp crt t crt , unsigned int flags)

pcert: The pcert structure

crt: The raw certificate to be imported

flags: zero for now

This convenience function will import the given certificate to a gnutls_

pcert_st structure. The structure must be deinitialized afterwards using
gnutls_pcert_deinit();

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0.0

gnutls pcert import openpgp raw

[Function]int gnutls_pcert_import_openpgp_raw (gnutls pcert st * pcert ,
const gnutls datum t* cert , gnutls openpgp crt fmt t format ,
gnutls openpgp keyid t keyid , unsigned int flags)

pcert: The pcert structure

cert: The raw certificate to be imported

format: The format of the certificate

keyid: The key ID to use (NULL for the master key)

flags: zero for now

This convenience function will import the given certificate to a gnutls_

pcert_st structure. The structure must be deinitialized afterwards using
gnutls_pcert_deinit();

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0.0

gnutls pcert import x509

[Function]int gnutls_pcert_import_x509 (gnutls pcert st* pcert ,
gnutls x509 crt t crt , unsigned int flags)

pcert: The pcert structure

crt: The raw certificate to be imported

flags: zero for now

This convenience function will import the given certificate to a gnutls_

pcert_st structure. The structure must be deinitialized afterwards using
gnutls_pcert_deinit();

Appendix C: API reference 325

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0.0

gnutls pcert import x509 raw

[Function]int gnutls_pcert_import_x509_raw (gnutls pcert st * pcert , const
gnutls datum t* cert , gnutls x509 crt fmt t format , unsigned int flags)

pcert: The pcert structure

cert: The raw certificate to be imported

format: The format of the certificate

flags: zero for now

This convenience function will import the given certificate to a gnutls_

pcert_st structure. The structure must be deinitialized afterwards using
gnutls_pcert_deinit();

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0.0

gnutls pcert list import x509 raw

[Function]int gnutls_pcert_list_import_x509_raw (gnutls pcert st *
pcerts , unsigned int * pcert_max , const gnutls datum t * data ,
gnutls x509 crt fmt t format , unsigned int flags)

pcerts: The structures to store the parsed certificate. Must not be initialized.

pcert max: Initially must hold the maximum number of certs. It will be updated
with the number of certs available.

data: The certificates.

format: One of DER or PEM.

flags: must be (0) or an OR’d sequence of gnutls certificate import flags.

This function will convert the given PEM encoded certificate list to the native
gnutls x509 crt t format. The output will be stored in certs. They will be
automatically initialized.

If the Certificate is PEM encoded it should have a header of "X509 CERTIFICATE",
or "CERTIFICATE".

Returns: the number of certificates read or a negative error value.

Since: 3.0.0

gnutls privkey decrypt data

[Function]int gnutls_privkey_decrypt_data (gnutls privkey t key , unsigned
int flags , const gnutls datum t * ciphertext , gnutls datum t *
plaintext)

key : Holds the key

flags: zero for now

Appendix C: API reference 326

ciphertext: holds the data to be decrypted

plaintext: will contain the decrypted data, allocated with gnutls_malloc()

This function will decrypt the given data using the algorithm supported by the private
key.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls privkey deinit

[Function]void gnutls_privkey_deinit (gnutls privkey t key)
key : The structure to be deinitialized

This function will deinitialize a private key structure.

Since: 2.12.0

gnutls privkey get pk algorithm

[Function]int gnutls_privkey_get_pk_algorithm (gnutls privkey t key ,
unsigned int * bits)

key : should contain a gnutls_privkey_t structure

bits: If set will return the number of bits of the parameters (may be NULL)

This function will return the public key algorithm of a private key and if possible will
return a number of bits that indicates the security parameter of the key.

Returns: a member of the gnutls_pk_algorithm_t enumeration on success, or a
negative error code on error.

Since: 2.12.0

gnutls privkey get type

[Function]gnutls_privkey_type_t gnutls_privkey_get_type
(gnutls privkey t key)

key : should contain a gnutls_privkey_t structure

This function will return the type of the private key. This is actually the type of the
subsystem used to set this private key.

Returns: a member of the gnutls_privkey_type_t enumeration on success, or a
negative error code on error.

Since: 2.12.0

gnutls privkey import ext

[Function]int gnutls_privkey_import_ext (gnutls privkey t pkey ,
gnutls pk algorithm t pk , void* userdata , gnutls privkey sign func
sign_func , gnutls privkey decrypt func decrypt_func , unsigned int
flags)

pkey : The private key

Appendix C: API reference 327

pk: The public key algorithm

userdata: private data to be provided to the callbacks

sign func: callback for signature operations

decrypt func: callback for decryption operations

flags: Flags for the import

This function will associate the given callbacks with the gnutls_privkey_t structure.
At least one of the two callbacks must be non-null.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0.0

gnutls privkey import openpgp

[Function]int gnutls_privkey_import_openpgp (gnutls privkey t pkey ,
gnutls openpgp privkey t key , unsigned int flags)

pkey : The private key

key : The private key to be imported

flags: Flags for the import

This function will import the given private key to the abstract gnutls_privkey_t

structure.

The gnutls_openpgp_privkey_t object must not be deallocated during the lifetime
of this structure. The subkey set as preferred will be used, or the master key otherwise.

flagsmight be zero or one of GNUTLS_PRIVKEY_IMPORT_AUTO_RELEASE and GNUTLS_

PRIVKEY_IMPORT_COPY.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls privkey import pkcs11

[Function]int gnutls_privkey_import_pkcs11 (gnutls privkey t pkey ,
gnutls pkcs11 privkey t key , unsigned int flags)

pkey : The private key

key : The private key to be imported

flags: Flags for the import

This function will import the given private key to the abstract gnutls_privkey_t

structure.

The gnutls_pkcs11_privkey_t object must not be deallocated during the lifetime
of this structure.

flagsmight be zero or one of GNUTLS_PRIVKEY_IMPORT_AUTO_RELEASE and GNUTLS_

PRIVKEY_IMPORT_COPY.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

Appendix C: API reference 328

gnutls privkey import x509

[Function]int gnutls_privkey_import_x509 (gnutls privkey t pkey ,
gnutls x509 privkey t key , unsigned int flags)

pkey : The private key

key : The private key to be imported

flags: Flags for the import

This function will import the given private key to the abstract gnutls_privkey_t

structure.

The gnutls_x509_privkey_t object must not be deallocated during the lifetime of
this structure.

flagsmight be zero or one of GNUTLS_PRIVKEY_IMPORT_AUTO_RELEASE and GNUTLS_

PRIVKEY_IMPORT_COPY.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls privkey init

[Function]int gnutls_privkey_init (gnutls privkey t * key)
key : The structure to be initialized

This function will initialize an private key structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls privkey sign data

[Function]int gnutls_privkey_sign_data (gnutls privkey t signer ,
gnutls digest algorithm t hash , unsigned int flags , const gnutls datum t *
data , gnutls datum t * signature)

signer: Holds the key

hash: should be a digest algorithm

flags: should be 0 for now

data: holds the data to be signed

signature: will contain the signature allocate with gnutls_malloc()

This function will sign the given data using a signature algorithm supported by the
private key. Signature algorithms are always used together with a hash functions.
Different hash functions may be used for the RSA algorithm, but only the SHA
family for the DSA keys.

Use gnutls_pubkey_get_preferred_hash_algorithm() to determine the hash al-
gorithm.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

Appendix C: API reference 329

gnutls privkey sign hash

[Function]int gnutls_privkey_sign_hash (gnutls privkey t signer ,
gnutls digest algorithm t hash_algo , unsigned int flags , const
gnutls datum t * hash_data , gnutls datum t * signature)

signer: Holds the signer’s key

hash algo: The hash algorithm used

flags: zero for now

hash data: holds the data to be signed

signature: will contain newly allocated signature

This function will sign the given hashed data using a signature algorithm supported by
the private key. Signature algorithms are always used together with a hash functions.
Different hash functions may be used for the RSA algorithm, but only SHA-XXX for
the DSA keys.

Use gnutls_pubkey_get_preferred_hash_algorithm() to determine the hash al-
gorithm.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls pubkey deinit

[Function]void gnutls_pubkey_deinit (gnutls pubkey t key)
key : The structure to be deinitialized

This function will deinitialize a public key structure.

Since: 2.12.0

gnutls pubkey export

[Function]int gnutls_pubkey_export (gnutls pubkey t key ,
gnutls x509 crt fmt t format , void * output_data , size t *
output_data_size)

key : Holds the certificate

format: the format of output params. One of PEM or DER.

output data: will contain a certificate PEM or DER encoded

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will export the certificate to DER or PEM format.

If the buffer provided is not long enough to hold the output, then *output data size
is updated and GNUTLS_E_SHORT_MEMORY_BUFFER will be returned.

If the structure is PEM encoded, it will have a header of "BEGIN CERTIFICATE".

Returns: In case of failure a negative error code will be returned, and 0 on success.

Since: 2.12.0

Appendix C: API reference 330

gnutls pubkey get key id

[Function]int gnutls_pubkey_get_key_id (gnutls pubkey t key , unsigned int
flags , unsigned char * output_data , size t * output_data_size)

key : Holds the public key

flags: should be 0 for now

output data: will contain the key ID

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

This function will return a unique ID the depends on the public key parameters. This
ID can be used in checking whether a certificate corresponds to the given public key.

If the buffer provided is not long enough to hold the output, then *output data size
is updated and GNUTLS_E_SHORT_MEMORY_BUFFER will be returned. The output will
normally be a SHA-1 hash output, which is 20 bytes.

Returns: In case of failure a negative error code will be returned, and 0 on success.

Since: 2.12.0

gnutls pubkey get key usage

[Function]int gnutls_pubkey_get_key_usage (gnutls pubkey t key , unsigned
int * usage)

key : should contain a gnutls_pubkey_t structure

usage: If set will return the number of bits of the parameters (may be NULL)

This function will return the key usage of the public key.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls pubkey get openpgp key id

[Function]int gnutls_pubkey_get_openpgp_key_id (gnutls pubkey t key ,
unsigned int flags , unsigned char * output_data , size t *
output_data_size , unsigned int * subkey)

key : Holds the public key

flags: should be 0 for now

output data: will contain the key ID

output data size: holds the size of output data (and will be replaced by the actual
size of parameters)

subkey : Will be non zero if the key ID corresponds to a subkey

This function will return a unique ID the depends on the public key parameters. This
ID can be used in checking whether a certificate corresponds to the given public key.

If the buffer provided is not long enough to hold the output, then *output data size
is updated and GNUTLS_E_SHORT_MEMORY_BUFFER will be returned. The output will
normally be a SHA-1 hash output, which is 20 bytes.

Appendix C: API reference 331

Returns: In case of failure a negative error code will be returned, and 0 on success.

Since: 3.0.0

gnutls pubkey get pk algorithm

[Function]int gnutls_pubkey_get_pk_algorithm (gnutls pubkey t key ,
unsigned int * bits)

key : should contain a gnutls_pubkey_t structure

bits: If set will return the number of bits of the parameters (may be NULL)

This function will return the public key algorithm of a public key and if possible will
return a number of bits that indicates the security parameter of the key.

Returns: a member of the gnutls_pk_algorithm_t enumeration on success, or a
negative error code on error.

Since: 2.12.0

gnutls pubkey get pk dsa raw

[Function]int gnutls_pubkey_get_pk_dsa_raw (gnutls pubkey t key ,
gnutls datum t * p , gnutls datum t * q , gnutls datum t * g , gnutls datum t
* y)

key : Holds the public key

p: will hold the p

q: will hold the q

g : will hold the g

y : will hold the y

This function will export the DSA public key’s parameters found in the given cer-
tificate. The new parameters will be allocated using gnutls_malloc() and will be
stored in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

Since: 2.12.0

gnutls pubkey get pk ecc raw

[Function]int gnutls_pubkey_get_pk_ecc_raw (gnutls pubkey t key ,
gnutls ecc curve t * curve , gnutls datum t * x , gnutls datum t * y)

key : Holds the public key

curve: will hold the curve

x: will hold x

y : will hold y

This function will export the ECC public key’s parameters found in the given cer-
tificate. The new parameters will be allocated using gnutls_malloc() and will be
stored in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

Since: 3.0.0

Appendix C: API reference 332

gnutls pubkey get pk ecc x962

[Function]int gnutls_pubkey_get_pk_ecc_x962 (gnutls pubkey t key ,
gnutls datum t* parameters , gnutls datum t * ecpoint)

key : Holds the public key

parameters: DER encoding of an ANSI X9.62 parameters

ecpoint: DER encoding of ANSI X9.62 ECPoint

This function will export the ECC public key’s parameters found in the given cer-
tificate. The new parameters will be allocated using gnutls_malloc() and will be
stored in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

Since: 3.0.0

gnutls pubkey get pk rsa raw

[Function]int gnutls_pubkey_get_pk_rsa_raw (gnutls pubkey t key ,
gnutls datum t * m , gnutls datum t * e)

key : Holds the certificate

m: will hold the modulus

e: will hold the public exponent

This function will export the RSA public key’s parameters found in the given struc-
ture. The new parameters will be allocated using gnutls_malloc() and will be stored
in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code.

Since: 2.12.0

gnutls pubkey get preferred hash algorithm

[Function]int gnutls_pubkey_get_preferred_hash_algorithm
(gnutls pubkey t key , gnutls digest algorithm t * hash , unsigned int * mand)

key : Holds the certificate

hash: The result of the call with the hash algorithm used for signature

mand: If non zero it means that the algorithm MUST use this hash. May be NULL.

This function will read the certifcate and return the appropriate digest algorithm to
use for signing with this certificate. Some certificates (i.e. DSA might not be able to
sign without the preferred algorithm).

Returns: the 0 if the hash algorithm is found. A negative error code is returned on
error.

Since: 2.12.0

gnutls pubkey get verify algorithm

[Function]int gnutls_pubkey_get_verify_algorithm (gnutls pubkey t key ,
const gnutls datum t * signature , gnutls digest algorithm t * hash)

key : Holds the certificate

Appendix C: API reference 333

signature: contains the signature

hash: The result of the call with the hash algorithm used for signature

This function will read the certifcate and the signed data to determine the hash
algorithm used to generate the signature.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls pubkey import

[Function]int gnutls_pubkey_import (gnutls pubkey t key , const
gnutls datum t * data , gnutls x509 crt fmt t format)

key : The structure to store the parsed public key.

data: The DER or PEM encoded certificate.

format: One of DER or PEM

This function will convert the given DER or PEM encoded Public key to the native
gnutls pubkey t format.The output will be stored in key. If the Certificate is PEM
encoded it should have a header of "PUBLIC KEY".

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls pubkey import dsa raw

[Function]int gnutls_pubkey_import_dsa_raw (gnutls pubkey t key , const
gnutls datum t * p , const gnutls datum t * q , const gnutls datum t * g , const
gnutls datum t * y)

key : The structure to store the parsed key

p: holds the p

q: holds the q

g : holds the g

y : holds the y

This function will convert the given DSA raw parameters to the native gnutls_

pubkey_t format. The output will be stored in key.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls pubkey import ecc raw

[Function]int gnutls_pubkey_import_ecc_raw (gnutls pubkey t key ,
gnutls ecc curve t curve , const gnutls datum t * x , const gnutls datum t *
y)

key : The structure to store the parsed key

Appendix C: API reference 334

curve: holds the curve

x: holds the x

y : holds the y

This function will convert the given elliptic curve parameters to a gnutls_pubkey_t.
The output will be stored in key.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0.0

gnutls pubkey import ecc x962

[Function]int gnutls_pubkey_import_ecc_x962 (gnutls pubkey t key , const
gnutls datum t * parameters , const gnutls datum t * ecpoint)

key : The structure to store the parsed key

parameters: DER encoding of an ANSI X9.62 parameters

ecpoint: DER encoding of ANSI X9.62 ECPoint

This function will convert the given elliptic curve parameters to a gnutls_pubkey_t.
The output will be stored in key.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 3.0.0

gnutls pubkey import openpgp

[Function]int gnutls_pubkey_import_openpgp (gnutls pubkey t key ,
gnutls openpgp crt t crt , unsigned int flags)

key : The public key

crt: The certificate to be imported

flags: should be zero

Imports a public key from an openpgp key. This function will import the given public
key to the abstract gnutls_pubkey_t structure. The subkey set as preferred will be
imported or the master key otherwise.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls pubkey import pkcs11

[Function]int gnutls_pubkey_import_pkcs11 (gnutls pubkey t key ,
gnutls pkcs11 obj t obj , unsigned int flags)

key : The public key

obj: The parameters to be imported

flags: should be zero

Appendix C: API reference 335

Imports a public key from a pkcs11 key. This function will import the given public
key to the abstract gnutls_pubkey_t structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls pubkey import pkcs11 url

[Function]int gnutls_pubkey_import_pkcs11_url (gnutls pubkey t key , const
char * url , unsigned int flags)

key : A key of type gnutls_pubkey_t

url: A PKCS 11 url

flags: One of GNUTLS PKCS11 OBJ * flags

This function will import a PKCS 11 certificate to a gnutls_pubkey_t structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls pubkey import privkey

[Function]int gnutls_pubkey_import_privkey (gnutls pubkey t key ,
gnutls privkey t pkey , unsigned int usage , unsigned int flags)

key : The public key

pkey : The private key

usage: GNUTLS KEY * key usage flags.

flags: should be zero

Imports the public key from a private. This function will import the given public key
to the abstract gnutls_pubkey_t structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls pubkey import rsa raw

[Function]int gnutls_pubkey_import_rsa_raw (gnutls pubkey t key , const
gnutls datum t * m , const gnutls datum t * e)

key : Is a structure will hold the parameters

m: holds the modulus

e: holds the public exponent

This function will replace the parameters in the given structure. The new parameters
should be stored in the appropriate gnutls datum.

Returns: GNUTLS_E_SUCCESS on success, or an negative error code.

Since: 2.12.0

Appendix C: API reference 336

gnutls pubkey import x509

[Function]int gnutls_pubkey_import_x509 (gnutls pubkey t key ,
gnutls x509 crt t crt , unsigned int flags)

key : The public key

crt: The certificate to be imported

flags: should be zero

This function will import the given public key to the abstract gnutls_pubkey_t

structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls pubkey init

[Function]int gnutls_pubkey_init (gnutls pubkey t * key)
key : The structure to be initialized

This function will initialize an public key structure.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls pubkey set key usage

[Function]int gnutls_pubkey_set_key_usage (gnutls pubkey t key , unsigned
int usage)

key : a certificate of type gnutls_x509_crt_t

usage: an ORed sequence of the GNUTLS KEY * elements.

This function will set the key usage flags of the public key. This is only useful if the
key is to be exported to a certificate or certificate request.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls pubkey verify data

[Function]int gnutls_pubkey_verify_data (gnutls pubkey t pubkey , unsigned
int flags , const gnutls datum t * data , const gnutls datum t * signature)

pubkey : Holds the public key

flags: should be 0 for now

data: holds the signed data

signature: contains the signature

This function will verify the given signed data, using the parameters from the certifi-
cate.

Appendix C: API reference 337

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value (GNUTLS_E_PK_SIG_VERIFY_FAILED in verification failure).

Since: 2.12.0

gnutls pubkey verify data2

[Function]int gnutls_pubkey_verify_data2 (gnutls pubkey t pubkey ,
gnutls sign algorithm t algo , unsigned int flags , const gnutls datum t *
data , const gnutls datum t * signature)

pubkey : Holds the public key

algo: The signature algorithm used

flags: should be 0 for now

data: holds the signed data

signature: contains the signature

This function will verify the given signed data, using the parameters from the certifi-
cate.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value (GNUTLS_E_PK_SIG_VERIFY_FAILED in verification failure).

Since: 3.0.0

gnutls pubkey verify hash

[Function]int gnutls_pubkey_verify_hash (gnutls pubkey t key , unsigned int
flags , const gnutls datum t * hash , const gnutls datum t * signature)

key : Holds the certificate

flags: should be 0 for now

hash: holds the hash digest to be verified

signature: contains the signature

This function will verify the given signed digest, using the parameters from the cer-
tificate.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value (GNUTLS_E_PK_SIG_VERIFY_FAILED in verification failure).

Since: 2.12.0

gnutls x509 crl privkey sign

[Function]int gnutls_x509_crl_privkey_sign (gnutls x509 crl t crl ,
gnutls x509 crt t issuer , gnutls privkey t issuer_key ,
gnutls digest algorithm t dig , unsigned int flags)

crl: should contain a gnutls x509 crl t structure

issuer: is the certificate of the certificate issuer

issuer key : holds the issuer’s private key

dig : The message digest to use. GNUTLS DIG SHA1 is the safe choice unless you
know what you’re doing.

Appendix C: API reference 338

flags: must be 0

This function will sign the CRL with the issuer’s private key, and will copy the issuer’s
information into the CRL.

This must be the last step in a certificate CRL since all the previously set parameters
are now signed.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since 2.12.0

gnutls x509 crq privkey sign

[Function]int gnutls_x509_crq_privkey_sign (gnutls x509 crq t crq ,
gnutls privkey t key , gnutls digest algorithm t dig , unsigned int flags)

crq: should contain a gnutls_x509_crq_t structure

key : holds a private key

dig : The message digest to use, i.e., GNUTLS_DIG_SHA1

flags: must be 0

This function will sign the certificate request with a private key. This must be the
same key as the one used in gnutls_x509_crt_set_key() since a certificate request
is self signed.

This must be the last step in a certificate request generation since all the previously
set parameters are now signed.

Returns: GNUTLS_E_SUCCESS on success, otherwise a negative error code. GNUTLS_E_
ASN1_VALUE_NOT_FOUND is returned if you didn’t set all information in the certificate
request (e.g., the version using gnutls_x509_crq_set_version()).

Since: 2.12.0

gnutls x509 crq set pubkey

[Function]int gnutls_x509_crq_set_pubkey (gnutls x509 crq t crq ,
gnutls pubkey t key)

crq: should contain a gnutls_x509_crq_t structure

key : holds a public key

This function will set the public parameters from the given public key to the request.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

gnutls x509 crt privkey sign

[Function]int gnutls_x509_crt_privkey_sign (gnutls x509 crt t crt ,
gnutls x509 crt t issuer , gnutls privkey t issuer_key ,
gnutls digest algorithm t dig , unsigned int flags)

crt: a certificate of type gnutls_x509_crt_t

issuer: is the certificate of the certificate issuer

Appendix C: API reference 339

issuer key : holds the issuer’s private key

dig : The message digest to use, GNUTLS_DIG_SHA1 is a safe choice

flags: must be 0

This function will sign the certificate with the issuer’s private key, and will copy the
issuer’s information into the certificate.

This must be the last step in a certificate generation since all the previously set
parameters are now signed.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

gnutls x509 crt set pubkey

[Function]int gnutls_x509_crt_set_pubkey (gnutls x509 crt t crt ,
gnutls pubkey t key)

crt: should contain a gnutls_x509_crt_t structure

key : holds a public key

This function will set the public parameters from the given public key to the request.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Since: 2.12.0

C.8 Cryptographic API

The following functions are to be used for low-level cryptographic operations. Their proto-
types lie in ‘gnutls/crypto.h’.

gnutls cipher add auth

[Function]int gnutls_cipher_add_auth (gnutls cipher hd t handle , const void
* text , size t text_size)

handle: is a gnutls_cipher_hd_t structure.

text: the data to be authenticated

text size: The length of the data

Description: This function operates on authenticated encryption with associated data
(AEAD) ciphers and authenticate the input data. This function can only be called
once and before any encryption operations.

Returns: Zero or a negative error code on error.

Since: 3.0.0

gnutls cipher decrypt

[Function]int gnutls_cipher_decrypt (gnutls cipher hd t handle , void *
ciphertext , size t ciphertextlen)

handle: is a gnutls_cipher_hd_t structure.

ciphertext: the data to encrypt

Appendix C: API reference 340

ciphertextlen: The length of data to encrypt

Description: This function will decrypt the given data using the algorithm specified
by the context.

Returns: Zero or a negative error code on error.

Since: 2.10.0

gnutls cipher decrypt2

[Function]int gnutls_cipher_decrypt2 (gnutls cipher hd t handle , const void
* ciphertext , size t ciphertextlen , void * text , size t textlen)

handle: is a gnutls_cipher_hd_t structure.

ciphertext: the data to encrypt

ciphertextlen: The length of data to encrypt

text: the decrypted data

textlen: The available length for decrypted data

Description: This function will decrypt the given data using the algorithm specified
by the context.

Returns: Zero or a negative error code on error.

Since: 2.12.0

gnutls cipher deinit

[Function]void gnutls_cipher_deinit (gnutls cipher hd t handle)
handle: is a gnutls_cipher_hd_t structure.

Description: This function will deinitialize all resources occupied by the given en-
cryption context.

Since: 2.10.0

gnutls cipher encrypt

[Function]int gnutls_cipher_encrypt (gnutls cipher hd t handle , void *
text , size t textlen)

handle: is a gnutls_cipher_hd_t structure.

text: the data to encrypt

textlen: The length of data to encrypt

Description: This function will encrypt the given data using the algorithm specified
by the context.

Returns: Zero or a negative error code on error.

Since: 2.10.0

Appendix C: API reference 341

gnutls cipher encrypt2

[Function]int gnutls_cipher_encrypt2 (gnutls cipher hd t handle , const void
* text , size t textlen , void * ciphertext , size t ciphertextlen)

handle: is a gnutls_cipher_hd_t structure.

text: the data to encrypt

textlen: The length of data to encrypt

ciphertext: the encrypted data

ciphertextlen: The available length for encrypted data

Description: This function will encrypt the given data using the algorithm specified
by the context.

Returns: Zero or a negative error code on error.

Since: 2.12.0

gnutls cipher get block size

[Function]int gnutls_cipher_get_block_size (gnutls cipher algorithm t
algorithm)

algorithm: is an encryption algorithm

Description: Get block size for encryption algorithm.

Returns: block size for encryption algorithm.

Since: 2.10.0

gnutls cipher init

[Function]int gnutls_cipher_init (gnutls cipher hd t * handle ,
gnutls cipher algorithm t cipher , const gnutls datum t * key , const
gnutls datum t * iv)

handle: is a gnutls_cipher_hd_t structure.

cipher: the encryption algorithm to use

key : The key to be used for encryption

iv : The IV to use (if not applicable set NULL)

Description: This function will initialize an context that can be used for encryp-
tion/decryption of data. This will effectively use the current crypto backend in use
by gnutls or the cryptographic accelerator in use.

Returns: Zero or a negative error code on error.

Since: 2.10.0

gnutls cipher set iv

[Function]void gnutls_cipher_set_iv (gnutls cipher hd t handle , void * iv ,
size t ivlen)

handle: is a gnutls_cipher_hd_t structure.

iv : the IV to set

Appendix C: API reference 342

ivlen: The length of the IV

Description: This function will set the IV to be used for the next encryption block.

Since: 3.0.0

gnutls cipher tag

[Function]int gnutls_cipher_tag (gnutls cipher hd t handle , void * tag , size t
tag_size)

handle: is a gnutls_cipher_hd_t structure.

tag : will hold the tag

tag size: The length of the tag to return

Description: This function operates on authenticated encryption with associated data
(AEAD) ciphers and will return the output tag.

Returns: Zero or a negative error code on error.

Since: 3.0.0

gnutls hash

[Function]int gnutls_hash (gnutls hash hd t handle , const void * text , size t
textlen)

handle: is a gnutls_cipher_hd_t structure.

text: the data to hash

textlen: The length of data to hash

Description: This function will hash the given data using the algorithm specified by
the context.

Returns: Zero or a negative error code on error.

Since: 2.10.0

gnutls hash deinit

[Function]void gnutls_hash_deinit (gnutls hash hd t handle , void * digest)
handle: is a gnutls_hash_hd_t structure.

digest: is the output value of the hash

Description: This function will deinitialize all resources occupied by the given hash
context.

Since: 2.10.0

gnutls hash fast

[Function]int gnutls_hash_fast (gnutls digest algorithm t algorithm , const
void * text , size t textlen , void * digest)

algorithm: the hash algorithm to use

text: the data to hash

textlen: The length of data to hash

digest: is the output value of the hash

Appendix C: API reference 343

Description: This convenience function will hash the given data and return output
on a single call.

Returns: Zero or a negative error code on error.

Since: 2.10.0

gnutls hash get len

[Function]int gnutls_hash_get_len (gnutls digest algorithm t algorithm)
algorithm: the hash algorithm to use

Description: This function will return the length of the output data of the given hash
algorithm.

Returns: The length or zero on error.

Since: 2.10.0

gnutls hash init

[Function]int gnutls_hash_init (gnutls hash hd t * dig ,
gnutls digest algorithm t algorithm)

dig : is a gnutls_hash_hd_t structure.

algorithm: the hash algorithm to use

Description: This function will initialize an context that can be used to produce a
Message Digest of data. This will effectively use the current crypto backend in use
by gnutls or the cryptographic accelerator in use.

Returns: Zero or a negative error code on error.

Since: 2.10.0

gnutls hash output

[Function]void gnutls_hash_output (gnutls hash hd t handle , void * digest)
handle: is a gnutls_hash_hd_t structure.

digest: is the output value of the hash

Description: This function will output the current hash value.

Since: 2.10.0

gnutls hmac

[Function]int gnutls_hmac (gnutls hmac hd t handle , const void * text , size t
textlen)

handle: is a gnutls_cipher_hd_t structure.

text: the data to hash

textlen: The length of data to hash

Description: This function will hash the given data using the algorithm specified by
the context.

Returns: Zero or a negative error code on error.

Since: 2.10.0

Appendix C: API reference 344

gnutls hmac deinit

[Function]void gnutls_hmac_deinit (gnutls hmac hd t handle , void * digest)
handle: is a gnutls_hmac_hd_t structure.

digest: is the output value of the MAC

Description: This function will deinitialize all resources occupied by the given hmac
context.

Since: 2.10.0

gnutls hmac fast

[Function]int gnutls_hmac_fast (gnutls mac algorithm t algorithm , const void
* key , size t keylen , const void * text , size t textlen , void * digest)

algorithm: the hash algorithm to use

key : the key to use

keylen: The length of the key

text: the data to hash

textlen: The length of data to hash

digest: is the output value of the hash

Description: This convenience function will hash the given data and return output
on a single call.

Returns: Zero or a negative error code on error.

Since: 2.10.0

gnutls hmac get len

[Function]int gnutls_hmac_get_len (gnutls mac algorithm t algorithm)
algorithm: the hmac algorithm to use

Description: This function will return the length of the output data of the given hmac
algorithm.

Returns: The length or zero on error.

Since: 2.10.0

gnutls hmac init

[Function]int gnutls_hmac_init (gnutls hmac hd t * dig ,
gnutls digest algorithm t algorithm , const void * key , size t keylen)

dig : is a gnutls_hmac_hd_t structure.

algorithm: the HMAC algorithm to use

key : The key to be used for encryption

keylen: The length of the key

Description: This function will initialize an context that can be used to produce a
Message Authentication Code (MAC) of data. This will effectively use the current
crypto backend in use by gnutls or the cryptographic accelerator in use.

Returns: Zero or a negative error code on error.

Since: 2.10.0

Appendix C: API reference 345

gnutls hmac output

[Function]void gnutls_hmac_output (gnutls hmac hd t handle , void * digest)
handle: is a gnutls_hmac_hd_t structure.

digest: is the output value of the MAC

Description: This function will output the current MAC value.

Since: 2.10.0

gnutls rnd

[Function]int gnutls_rnd (gnutls rnd level t level , void * data , size t len)
level: a security level

data: place to store random bytes

len: The requested size

Description: This function will generate random data and store it to output buffer.

Returns: Zero or a negative error code on error.

Since: 2.12.0

C.9 Compatibility API

The following functions are carried over from old GnuTLS released. They might be removed
at a later version. Their prototypes lie in ‘gnutls/compat.h’.

gnutls certificate set rsa export params

[Function]void gnutls_certificate_set_rsa_export_params
(gnutls certificate credentials t res , gnutls rsa params t rsa_params)

res: is a gnutls certificate credentials t structure

rsa params: is a structure that holds temporary RSA parameters.

Description: This function will set the temporary RSA parameters for a certificate
server to use. These parameters will be used in RSA-EXPORT cipher suites.

gnutls certificate type set priority

[Function]int gnutls_certificate_type_set_priority (gnutls session t
session , const int * list)

session: is a gnutls_session_t structure.

list: is a 0 terminated list of gnutls certificate type t elements.

Description: Sets the priority on the certificate types supported by gnutls. Priority
is higher for elements specified before others. After specifying the types you want,
you must append a 0. Note that the certificate type priority is set on the client. The
server does not use the cert type priority except for disabling types that were not
specified.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

Appendix C: API reference 346

gnutls cipher set priority

[Function]int gnutls_cipher_set_priority (gnutls session t session , const
int * list)

session: is a gnutls_session_t structure.

list: is a 0 terminated list of gnutls cipher algorithm t elements.

Description: Sets the priority on the ciphers supported by gnutls. Priority is higher
for elements specified before others. After specifying the ciphers you want, you must
append a 0. Note that the priority is set on the client. The server does not use the
algorithm’s priority except for disabling algorithms that were not specified.

Returns: GNUTLS_E_SUCCESS (0) on success, or a negative error code.

gnutls compression set priority

[Function]int gnutls_compression_set_priority (gnutls session t session ,
const int * list)

session: is a gnutls_session_t structure.

list: is a 0 terminated list of gnutls compression method t elements.

Description: Sets the priority on the compression algorithms supported by gnutls.
Priority is higher for elements specified before others. After specifying the algorithms
you want, you must append a 0. Note that the priority is set on the client. The server
does not use the algorithm’s priority except for disabling algorithms that were not
specified.

TLS 1.0 does not define any compression algorithms except NULL. Other compression
algorithms are to be considered as gnutls extensions.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls kx set priority

[Function]int gnutls_kx_set_priority (gnutls session t session , const int *
list)

session: is a gnutls_session_t structure.

list: is a 0 terminated list of gnutls kx algorithm t elements.

Description: Sets the priority on the key exchange algorithms supported by gnutls.
Priority is higher for elements specified before others. After specifying the algorithms
you want, you must append a 0. Note that the priority is set on the client. The server
does not use the algorithm’s priority except for disabling algorithms that were not
specified.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls mac set priority

[Function]int gnutls_mac_set_priority (gnutls session t session , const int *
list)

session: is a gnutls_session_t structure.

list: is a 0 terminated list of gnutls mac algorithm t elements.

Appendix C: API reference 347

Description: Sets the priority on the mac algorithms supported by gnutls. Priority is
higher for elements specified before others. After specifying the algorithms you want,
you must append a 0. Note that the priority is set on the client. The server does not
use the algorithm’s priority except for disabling algorithms that were not specified.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls openpgp privkey sign hash

[Function]int gnutls_openpgp_privkey_sign_hash (gnutls openpgp privkey t
key , const gnutls datum t * hash , gnutls datum t * signature)

key : Holds the key

hash: holds the data to be signed

signature: will contain newly allocated signature

Description: This function will sign the given hash using the private key. You should
use gnutls_openpgp_privkey_set_preferred_key_id() before calling this function
to set the subkey to use.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Deprecated: Use gnutls_privkey_sign_hash() instead.

gnutls protocol set priority

[Function]int gnutls_protocol_set_priority (gnutls session t session , const
int * list)

session: is a gnutls_session_t structure.

list: is a 0 terminated list of gnutls protocol t elements.

Description: Sets the priority on the protocol versions supported by gnutls. This
function actually enables or disables protocols. Newer protocol versions always have
highest priority.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls rsa export get modulus bits

[Function]int gnutls_rsa_export_get_modulus_bits (gnutls session t
session)

session: is a gnutls session

Description: Get the export RSA parameter’s modulus size.

Returns: The bits used in the last RSA-EXPORT key exchange with the peer, or a
negative error code in case of error.

gnutls rsa export get pubkey

[Function]int gnutls_rsa_export_get_pubkey (gnutls session t session ,
gnutls datum t * exponent , gnutls datum t * modulus)

session: is a gnutls session

exponent: will hold the exponent.

Appendix C: API reference 348

modulus: will hold the modulus.

Description: This function will return the peer’s public key exponent and modulus
used in the last RSA-EXPORT authentication. The output parameters must be freed
with gnutls_free().

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise an error code is
returned.

gnutls rsa params cpy

[Function]int gnutls_rsa_params_cpy (gnutls rsa params t dst ,
gnutls rsa params t src)

dst: Is the destination structure, which should be initialized.

src: Is the source structure

Description: This function will copy the RSA parameters structure from source to
destination.

Returns: GNUTLS_E_SUCCESS on success, or an negative error code.

gnutls rsa params deinit

[Function]void gnutls_rsa_params_deinit (gnutls rsa params t rsa_params)
rsa params: Is a structure that holds the parameters

Description: This function will deinitialize the RSA parameters structure.

gnutls rsa params export pkcs1

[Function]int gnutls_rsa_params_export_pkcs1 (gnutls rsa params t params ,
gnutls x509 crt fmt t format , unsigned char * params_data , size t *
params_data_size)

params: Holds the RSA parameters

format: the format of output params. One of PEM or DER.

params data: will contain a PKCS1 RSAPublicKey structure PEM or DER encoded

params data size: holds the size of params data (and will be replaced by the actual
size of parameters)

Description: This function will export the given RSA parameters to a PKCS1 RSA-
PublicKey structure. If the buffer provided is not long enough to hold the output,
then GNUTLS E SHORT MEMORY BUFFER will be returned.

If the structure is PEM encoded, it will have a header of "BEGIN RSA PRIVATE
KEY".

Returns: GNUTLS_E_SUCCESS on success, or an negative error code.

gnutls rsa params export raw

[Function]int gnutls_rsa_params_export_raw (gnutls rsa params t rsa ,
gnutls datum t * m , gnutls datum t * e , gnutls datum t * d , gnutls datum t
* p , gnutls datum t * q , gnutls datum t * u , unsigned int * bits)

rsa: a structure that holds the rsa parameters

Appendix C: API reference 349

m: will hold the modulus

e: will hold the public exponent

d: will hold the private exponent

p: will hold the first prime (p)

q: will hold the second prime (q)

u: will hold the coefficient

bits: if non null will hold the prime’s number of bits

Description: This function will export the RSA parameters found in the given struc-
ture. The new parameters will be allocated using gnutls_malloc() and will be stored
in the appropriate datum.

Returns: GNUTLS_E_SUCCESS on success, or an negative error code.

gnutls rsa params generate2

[Function]int gnutls_rsa_params_generate2 (gnutls rsa params t params ,
unsigned int bits)

params: The structure where the parameters will be stored

bits: is the prime’s number of bits

Description: This function will generate new temporary RSA parameters for use in
RSA-EXPORT ciphersuites. This function is normally slow.

Note that if the parameters are to be used in export cipher suites the bits value should
be 512 or less. Also note that the generation of new RSA parameters is only useful
to servers. Clients use the parameters sent by the server, thus it’s no use calling this
in client side.

Returns: GNUTLS_E_SUCCESS on success, or an negative error code.

gnutls rsa params import pkcs1

[Function]int gnutls_rsa_params_import_pkcs1 (gnutls rsa params t params ,
const gnutls datum t * pkcs1_params , gnutls x509 crt fmt t format)

params: A structure where the parameters will be copied to

pkcs1 params: should contain a PKCS1 RSAPublicKey structure PEM or DER en-
coded

format: the format of params. PEM or DER.

Description: This function will extract the RSAPublicKey found in a PKCS1 format-
ted structure.

If the structure is PEM encoded, it should have a header of "BEGIN RSA PRIVATE
KEY".

Returns: GNUTLS_E_SUCCESS on success, or an negative error code.

Appendix C: API reference 350

gnutls rsa params import raw

[Function]int gnutls_rsa_params_import_raw (gnutls rsa params t
rsa_params , const gnutls datum t * m , const gnutls datum t * e , const
gnutls datum t * d , const gnutls datum t * p , const gnutls datum t * q , const
gnutls datum t * u)

rsa params: Is a structure will hold the parameters

m: holds the modulus

e: holds the public exponent

d: holds the private exponent

p: holds the first prime (p)

q: holds the second prime (q)

u: holds the coefficient

Description: This function will replace the parameters in the given structure. The
new parameters should be stored in the appropriate gnutls datum.

Returns: GNUTLS_E_SUCCESS on success, or an negative error code.

gnutls rsa params init

[Function]int gnutls_rsa_params_init (gnutls rsa params t * rsa_params)
rsa params: Is a structure that will hold the parameters

Description: This function will initialize the temporary RSA parameters structure.

Returns: GNUTLS_E_SUCCESS on success, or an negative error code.

gnutls set default export priority

[Function]int gnutls_set_default_export_priority (gnutls session t
session)

session: is a gnutls_session_t structure.

Description: Sets some default priority on the ciphers, key exchange methods, macs
and compression methods. This function also includes weak algorithms.

This is the same as calling: gnutls priority set direct (session, "EXPORT", NULL);

This function is kept around for backwards compatibility, but because of its wide use
it is still fully supported. If you wish to allow users to provide a string that specify
which ciphers to use (which is recommended), you should use gnutls_priority_set_
direct() or gnutls_priority_set() instead.

Returns: GNUTLS_E_SUCCESS on success, or an error code.

gnutls sign callback get

[Function]gnutls_sign_func gnutls_sign_callback_get (gnutls session t
session , void ** userdata)

session: is a gnutls session

userdata: if non-NULL, will be set to abstract callback pointer.

Description: Retrieve the callback function, and its userdata pointer.

Appendix C: API reference 351

Returns: The function pointer set by gnutls_sign_callback_set(), or if not set,
NULL.

Deprecated: Use the PKCS 11 interfaces instead.

gnutls sign callback set

[Function]void gnutls_sign_callback_set (gnutls session t session ,
gnutls sign func sign_func , void * userdata)

session: is a gnutls session

sign func: function pointer to application’s sign callback.

userdata: void pointer that will be passed to sign callback.

Description: Set the callback function. The function must have this prototype:

typedef int (*gnutls sign func) (gnutls session t session, void *userdata,
gnutls certificate type t cert type, const gnutls datum t * cert, const
gnutls datum t * hash, gnutls datum t * signature);

The userdataparameter is passed to the sign_funcverbatim, and can be used to
store application-specific data needed in the callback function. See also gnutls_

sign_callback_get().

Deprecated: Use the PKCS 11 or gnutls_privkey_t interfacess like gnutls_

privkey_import_ext() instead.

gnutls x509 crl sign

[Function]int gnutls_x509_crl_sign (gnutls x509 crl t crl , gnutls x509 crt t
issuer , gnutls x509 privkey t issuer_key)

crl: should contain a gnutls x509 crl t structure

issuer: is the certificate of the certificate issuer

issuer key : holds the issuer’s private key

Description: This function is the same a gnutls_x509_crl_sign2() with no flags,
and SHA1 as the hash algorithm.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Deprecated: Use gnutls_x509_crl_privkey_sign().

gnutls x509 crq sign

[Function]int gnutls_x509_crq_sign (gnutls x509 crq t crq ,
gnutls x509 privkey t key)

crq: should contain a gnutls_x509_crq_t structure

key : holds a private key

Description: This function is the same a gnutls_x509_crq_sign2() with no flags,
and SHA1 as the hash algorithm.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Deprecated: Use gnutls_x509_crq_privkey_sign() instead.

Appendix C: API reference 352

gnutls x509 crt get preferred hash algorithm

[Function]int gnutls_x509_crt_get_preferred_hash_algorithm
(gnutls x509 crt t crt , gnutls digest algorithm t * hash , unsigned int *
mand)

crt: Holds the certificate

hash: The result of the call with the hash algorithm used for signature

mand: If non (0) it means that the algorithm MUST use this hash. May be NULL.

Description: This function will read the certifcate and return the appropriate digest
algorithm to use for signing with this certificate. Some certificates (i.e. DSA might
not be able to sign without the preferred algorithm).

Deprecated: Please use gnutls_pubkey_get_preferred_hash_algorithm().

Returns: the 0 if the hash algorithm is found. A negative error code is returned on
error.

Since: 2.12.0

gnutls x509 crt get verify algorithm

[Function]int gnutls_x509_crt_get_verify_algorithm (gnutls x509 crt t
crt , const gnutls datum t * signature , gnutls digest algorithm t * hash)

crt: Holds the certificate

signature: contains the signature

hash: The result of the call with the hash algorithm used for signature

Description: This function will read the certifcate and the signed data to determine
the hash algorithm used to generate the signature.

Deprecated: Use gnutls_pubkey_get_verify_algorithm() instead.

Returns: the 0 if the hash algorithm is found. A negative error code is returned on
error.

Since: 2.8.0

gnutls x509 crt verify data

[Function]int gnutls_x509_crt_verify_data (gnutls x509 crt t crt , unsigned
int flags , const gnutls datum t * data , const gnutls datum t * signature)

crt: Holds the certificate

flags: should be 0 for now

data: holds the data to be signed

signature: contains the signature

Description: This function will verify the given signed data, using the parameters
from the certificate.

Deprecated. Please use gnutls_pubkey_verify_data().

Returns: In case of a verification failure GNUTLS_E_PK_SIG_VERIFY_FAILED is re-
turned, and a positive code on success.

Appendix C: API reference 353

gnutls x509 crt verify hash

[Function]int gnutls_x509_crt_verify_hash (gnutls x509 crt t crt , unsigned
int flags , const gnutls datum t * hash , const gnutls datum t * signature)

crt: Holds the certificate

flags: should be 0 for now

hash: holds the hash digest to be verified

signature: contains the signature

Description: This function will verify the given signed digest, using the parameters
from the certificate.

Deprecated. Please use gnutls_pubkey_verify_data().

Returns: In case of a verification failure GNUTLS_E_PK_SIG_VERIFY_FAILED is re-
turned, and a positive code on success.

gnutls x509 privkey sign data

[Function]int gnutls_x509_privkey_sign_data (gnutls x509 privkey t key ,
gnutls digest algorithm t digest , unsigned int flags , const gnutls datum t
* data , void * signature , size t * signature_size)

key : Holds the key

digest: should be MD5 or SHA1

flags: should be 0 for now

data: holds the data to be signed

signature: will contain the signature

signature size: holds the size of signature (and will be replaced by the new size)

Description: This function will sign the given data using a signature algorithm sup-
ported by the private key. Signature algorithms are always used together with a hash
functions. Different hash functions may be used for the RSA algorithm, but only
SHA-1 for the DSA keys.

If the buffer provided is not long enough to hold the output, then * signature_sizeis
updated and GNUTLS_E_SHORT_MEMORY_BUFFER will be returned.

Use gnutls_x509_crt_get_preferred_hash_algorithm() to determine the hash al-
gorithm.

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Deprecated: Use gnutls_privkey_sign_data().

gnutls x509 privkey sign hash

[Function]int gnutls_x509_privkey_sign_hash (gnutls x509 privkey t key ,
const gnutls datum t * hash , gnutls datum t * signature)

key : Holds the key

hash: holds the data to be signed

signature: will contain newly allocated signature

Appendix C: API reference 354

Description: This function will sign the given hash using the private key. Do not use
this function directly unless you know what it is. Typical signing requires the data
to be hashed and stored in special formats (e.g. BER Digest-Info for RSA).

Returns: On success, GNUTLS_E_SUCCESS (0) is returned, otherwise a negative error
value.

Deprecated in: 2.12.0

Appendix D: Supported Ciphersuites 355

Appendix D Supported Ciphersuites

Available cipher suites:

TLS DH ANON ARCFOUR MD5 0x00 0x18 SSL3.0
TLS DH ANON 3DES EDE CBC SHA1 0x00 0x1B SSL3.0
TLS DH ANON AES 128 CBC SHA1 0x00 0x34 SSL3.0
TLS DH ANON AES 256 CBC SHA1 0x00 0x3A SSL3.0
TLS DH ANON CAMELLIA 128 CBC SHA1 0x00 0x46 TLS1.0
TLS DH ANON CAMELLIA 256 CBC SHA1 0x00 0x89 TLS1.0
TLS DH ANON AES 128 CBC SHA256 0x00 0x6C TLS1.2
TLS DH ANON AES 256 CBC SHA256 0x00 0x6D TLS1.2
TLS PSK SHA ARCFOUR SHA1 0x00 0x8A TLS1.0
TLS PSK SHA 3DES EDE CBC SHA1 0x00 0x8B TLS1.0
TLS PSK SHA AES 128 CBC SHA1 0x00 0x8C TLS1.0
TLS PSK SHA AES 256 CBC SHA1 0x00 0x8D TLS1.0
TLS PSK AES 128 CBC SHA256 0x00 0xAE TLS1.0
TLS PSK AES 128 GCM SHA256 0x00 0xA8 TLS1.2
TLS PSK NULL SHA256 0x00 0xB0 TLS1.0
TLS DHE PSK SHA ARCFOUR SHA1 0x00 0x8E TLS1.0
TLS DHE PSK SHA 3DES EDE CBC SHA1 0x00 0x8F TLS1.0
TLS DHE PSK SHA AES 128 CBC SHA1 0x00 0x90 TLS1.0
TLS DHE PSK SHA AES 256 CBC SHA1 0x00 0x91 TLS1.0
TLS DHE PSK AES 128 CBC SHA256 0x00 0xB2 TLS1.0
TLS DHE PSK AES 128 GCM SHA256 0x00 0xAA TLS1.2
TLS DHE PSK NULL SHA256 0x00 0xB4 TLS1.0
TLS SRP SHA 3DES EDE CBC SHA1 0xC0 0x1A TLS1.0
TLS SRP SHA AES 128 CBC SHA1 0xC0 0x1D TLS1.0
TLS SRP SHA AES 256 CBC SHA1 0xC0 0x20 TLS1.0
TLS SRP SHA DSS 3DES EDE CBC SHA1 0xC0 0x1C TLS1.0
TLS SRP SHA RSA 3DES EDE CBC SHA1 0xC0 0x1B TLS1.0
TLS SRP SHA DSS AES 128 CBC SHA1 0xC0 0x1F TLS1.0
TLS SRP SHA RSA AES 128 CBC SHA1 0xC0 0x1E TLS1.0
TLS SRP SHA DSS AES 256 CBC SHA1 0xC0 0x22 TLS1.0
TLS SRP SHA RSA AES 256 CBC SHA1 0xC0 0x21 TLS1.0
TLS DHE DSS ARCFOUR SHA1 0x00 0x66 TLS1.0
TLS DHE DSS 3DES EDE CBC SHA1 0x00 0x13 SSL3.0
TLS DHE DSS AES 128 CBC SHA1 0x00 0x32 SSL3.0
TLS DHE DSS AES 256 CBC SHA1 0x00 0x38 SSL3.0
TLS DHE DSS CAMELLIA 128 CBC SHA1 0x00 0x44 TLS1.0
TLS DHE DSS CAMELLIA 256 CBC SHA1 0x00 0x87 TLS1.0
TLS DHE DSS AES 128 CBC SHA256 0x00 0x40 TLS1.2
TLS DHE DSS AES 256 CBC SHA256 0x00 0x6A TLS1.2
TLS DHE RSA 3DES EDE CBC SHA1 0x00 0x16 SSL3.0
TLS DHE RSA AES 128 CBC SHA1 0x00 0x33 SSL3.0
TLS DHE RSA AES 256 CBC SHA1 0x00 0x39 SSL3.0
TLS DHE RSA CAMELLIA 128 CBC SHA1 0x00 0x45 TLS1.0
TLS DHE RSA CAMELLIA 256 CBC SHA1 0x00 0x88 TLS1.0

Appendix D: Supported Ciphersuites 356

TLS DHE RSA AES 128 CBC SHA256 0x00 0x67 TLS1.2
TLS DHE RSA AES 256 CBC SHA256 0x00 0x6B TLS1.2
TLS RSA NULL MD5 0x00 0x01 SSL3.0
TLS RSA NULL SHA1 0x00 0x02 SSL3.0
TLS RSA NULL SHA256 0x00 0x3B TLS1.2
TLS RSA EXPORT ARCFOUR 40 MD5 0x00 0x03 SSL3.0
TLS RSA ARCFOUR SHA1 0x00 0x05 SSL3.0
TLS RSA ARCFOUR MD5 0x00 0x04 SSL3.0
TLS RSA 3DES EDE CBC SHA1 0x00 0x0A SSL3.0
TLS RSA AES 128 CBC SHA1 0x00 0x2F SSL3.0
TLS RSA AES 256 CBC SHA1 0x00 0x35 SSL3.0
TLS RSA CAMELLIA 128 CBC SHA1 0x00 0x41 TLS1.0
TLS RSA CAMELLIA 256 CBC SHA1 0x00 0x84 TLS1.0
TLS RSA AES 128 CBC SHA256 0x00 0x3C TLS1.2
TLS RSA AES 256 CBC SHA256 0x00 0x3D TLS1.2
TLS RSA AES 128 GCM SHA256 0x00 0x9C TLS1.2
TLS DHE RSA AES 128 GCM SHA256 0x00 0x9E TLS1.2
TLS DHE DSS AES 128 GCM SHA256 0x00 0xA2 TLS1.2
TLS DH ANON AES 128 GCM SHA256 0x00 0xA6 TLS1.2
TLS ECDH ANON NULL SHA1 0xC0 0x15 TLS1.0
TLS ECDH ANON 3DES EDE CBC SHA1 0xC0 0x17 TLS1.0
TLS ECDH ANON AES 128 CBC SHA1 0xC0 0x18 TLS1.0
TLS ECDH ANON AES 256 CBC SHA1 0xC0 0x19 TLS1.0
TLS ECDHE RSA NULL SHA1 0xC0 0x10 TLS1.0
TLS ECDHE RSA 3DES EDE CBC SHA1 0xC0 0x12 TLS1.0
TLS ECDHE RSA AES 128 CBC SHA1 0xC0 0x13 TLS1.0
TLS ECDHE RSA AES 256 CBC SHA1 0xC0 0x14 TLS1.0
TLS ECDHE ECDSA NULL SHA1 0xC0 0x06 TLS1.0
TLS ECDHE ECDSA 3DES EDE CBC SHA1 0xC0 0x08 TLS1.0
TLS ECDHE ECDSA AES 128 CBC SHA1 0xC0 0x09 TLS1.0
TLS ECDHE ECDSA AES 256 CBC SHA1 0xC0 0x0A TLS1.0
TLS ECDHE ECDSA AES 128 CBC SHA256 0xC0 0x23 TLS1.2
TLS ECDHE RSA AES 128 CBC SHA256 0xC0 0x27 TLS1.2
TLS ECDHE ECDSA AES 128 GCM SHA256 0xC0 0x2B TLS1.2
TLS ECDHE RSA AES 128 GCM SHA256 0xC0 0x2F TLS1.2
TLS ECDHE PSK 3DES EDE CBC SHA1 0xC0 0x34 TLS1.0
TLS ECDHE PSK AES 128 CBC SHA1 0xC0 0x35 TLS1.0
TLS ECDHE PSK AES 256 CBC SHA1 0xC0 0x36 TLS1.0
TLS ECDHE PSK AES 128 CBC SHA256 0xC0 0x37 TLS1.0
TLS ECDHE PSK AES 256 CBC SHA384 0xC0 0x38 TLS1.0
TLS ECDHE PSK NULL SHA256 0xC0 0x3A TLS1.0
TLS ECDHE PSK NULL SHA384 0xC0 0x3B TLS1.0
TLS ECDHE ECDSA AES 256 GCM SHA384 0xC0 0x2E TLS1.2
TLS ECDHE RSA AES 256 GCM SHA384 0xC0 0x30 TLS1.2
TLS ECDHE ECDSA AES 256 CBC SHA384 0xC0 0x24 TLS1.2
TLS PSK WITH AES 256 GCM SHA384 0x00 0xA9 TLS1.2
TLS DHE PSK WITH AES 256 GCM SHA384 0x00 0xAB TLS1.2

Appendix D: Supported Ciphersuites 357

Available certificate types:

• X.509

• OPENPGP

Available protocols:

• SSL3.0

• TLS1.0

• TLS1.1

• TLS1.2

• DTLS1.0

Available ciphers:

• AES-256-CBC

• AES-192-CBC

• AES-128-CBC

• AES-128-GCM

• AES-256-GCM

• 3DES-CBC

• DES-CBC

• ARCFOUR-128

• ARCFOUR-40

• RC2-40

• CAMELLIA-256-CBC

• CAMELLIA-128-CBC

• IDEA-PGP-CFB

• 3DES-PGP-CFB

• CAST5-PGP-CFB

• BLOWFISH-PGP-CFB

• SAFER-SK128-PGP-CFB

• AES-128-PGP-CFB

• AES-192-PGP-CFB

• AES-256-PGP-CFB

• TWOFISH-PGP-CFB

• NULL

Available MAC algorithms:

• SHA1

• MD5

• SHA256

• SHA384

• SHA512

Appendix D: Supported Ciphersuites 358

• SHA224

• AEAD

• MD2

• RIPEMD160

• MAC-NULL

Available key exchange methods:

• ANON-DH

• ANON-ECDH

• RSA

• RSA-EXPORT

• DHE-RSA

• ECDHE-RSA

• ECDHE-ECDSA

• DHE-DSS

• SRP-DSS

• SRP-RSA

• SRP

• PSK

• DHE-PSK

• ECDHE-PSK

Available public key algorithms:

• RSA

• DSA

• EC

Available public key signature algorithms:

• RSA-SHA1

• RSA-SHA224

• RSA-SHA256

• RSA-SHA384

• RSA-SHA512

• RSA-RMD160

• DSA-SHA1

• DSA-SHA224

• DSA-SHA256

• RSA-MD5

• RSA-MD2

• ECDSA-SHA1

• ECDSA-SHA224

Appendix D: Supported Ciphersuites 359

• ECDSA-SHA256

• ECDSA-SHA384

• ECDSA-SHA512

Available compression methods:

• DEFLATE

• NULL

Appendix E: Copying Information 360

Appendix E Copying Information

GNU Free Documentation License
Version 1.3, 3 November 2008

Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

http://fsf.org/

Appendix E: Copying Information 361

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed
for human modification. Examples of transparent image formats include PNG, XCF
and JPG. Opaque formats include proprietary formats that can be read and edited
only by proprietary word processors, SGML or XML for which the DTD and/or pro-
cessing tools are not generally available, and the machine-generated HTML, PostScript
or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document
to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.

Appendix E: Copying Information 362

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

Appendix E: Copying Information 363

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at

Appendix E: Copying Information 364

your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.

Appendix E: Copying Information 365

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or
distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.

Appendix E: Copying Information 366

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation. If the Document specifies that a proxy can decide which future
versions of this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide
Web server that publishes copyrightable works and also provides prominent facilities
for anybody to edit those works. A public wiki that anybody can edit is an example of
such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the
site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part
of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works
that were first published under this License somewhere other than this MMC, and
subsequently incorporated in whole or in part into the MMC, (1) had no cover texts
or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.

http://www.gnu.org/copyleft/

Appendix E: Copying Information 367

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover

Texts. A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with

the Front-Cover Texts being list, and with the Back-Cover Texts

being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

Bibliography 368

Bibliography

[CBCATT]
Bodo Moeller, "Security of CBC Ciphersuites in SSL/TLS: Problems and Coun-
termeasures", 2002, available from http://www.openssl.org/~bodo/tls-cbc.txt.

[GPGH] Mike Ashley, "The GNU Privacy Handbook", 2002, available from
http://www.gnupg.org/gph/en/manual.pdf.

[GUTPKI]
Peter Gutmann, "Everything you never wanted to know about PKI but were
forced to find out", Available from http://www.cs.auckland.ac.nz/~pgut001/.

[NISTSP80057]
NIST Special Publication 800-57, "Recommendation for Key Man-
agement - Part 1: General (Revised)", March 2007, available from
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_

Mar08-2007.pdf.

[RFC2246]
Tim Dierks and Christopher Allen, "The TLS Protocol Version 1.0", January
1999, Available from http://www.ietf.org/rfc/rfc2246.txt.

[RFC4346]
Tim Dierks and Eric Rescorla, "The TLS Protocol Version 1.1", Match 2006,
Available from http://www.ietf.org/rfc/rfc4346.txt.

[RFC4347]
Eric Rescorla and Nagendra Modadugu, "Datagram Transport Layer Security",
April 2006, Available from http://www.ietf.org/rfc/rfc4347.txt.

[RFC5246]
Tim Dierks and Eric Rescorla, "The TLS Protocol Version 1.2", August 2008,
Available from http://www.ietf.org/rfc/rfc5246.txt.

[RFC2440]
Jon Callas, Lutz Donnerhacke, Hal Finney and Rodney Thayer,
"OpenPGP Message Format", November 1998, Available from
http://www.ietf.org/rfc/rfc2440.txt.

[RFC4880]
Jon Callas, Lutz Donnerhacke, Hal Finney, David Shaw and Rodney
Thayer, "OpenPGP Message Format", November 2007, Available from
http://www.ietf.org/rfc/rfc4880.txt.

[RFC4211]
J. Schaad, "Internet X.509 Public Key Infrastructure Certificate Re-
quest Message Format (CRMF)", September 2005, Available from
http://www.ietf.org/rfc/rfc4211.txt.

[RFC2817]
Rohit Khare and Scott Lawrence, "Upgrading to TLS Within HTTP/1.1", May
2000, Available from http://www.ietf.org/rfc/rfc2817.txt

http://www.openssl.org/~bodo/tls-cbc.txt
http://www.gnupg.org/gph/en/manual.pdf
http://www.cs.auckland.ac.nz/~pgut001/
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf
http://csrc.nist.gov/publications/nistpubs/800-57/sp800-57-Part1-revised2_Mar08-2007.pdf
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc4347.txt
http://www.ietf.org/rfc/rfc5246.txt
http://www.ietf.org/rfc/rfc2440.txt
http://www.ietf.org/rfc/rfc4880.txt
http://www.ietf.org/rfc/rfc4211.txt
http://www.ietf.org/rfc/rfc2817.txt

Bibliography 369

[RFC2818]
Eric Rescorla, "HTTP Over TLS", May 2000, Available from
http://www.ietf/rfc/rfc2818.txt.

[RFC2945]
Tom Wu, "The SRP Authentication and Key Exchange System", September
2000, Available from http://www.ietf.org/rfc/rfc2945.txt.

[RFC2986]
Magnus Nystrom and Burt Kaliski, "PKCS 10 v1.7: Certification
Request Syntax Specification", November 2000, Available from
http://www.ietf.org/rfc/rfc2986.txt.

[PKIX] D. Cooper, S. Santesson, S. Farrel, S. Boeyen, R. Housley, W.
Polk, "Internet X.509 Public Key Infrastructure Certificate and Cer-
tificate Revocation List (CRL) Profile", May 2008, available from
http://www.ietf.org/rfc/rfc5280.txt.

[RFC3749]
Scott Hollenbeck, "Transport Layer Security Protocol Compression Methods",
May 2004, available from http://www.ietf.org/rfc/rfc3749.txt.

[RFC3820]
Steven Tuecke, Von Welch, Doug Engert, Laura Pearlman, and Mary Thomp-
son, "Internet X.509 Public Key Infrastructure (PKI) Proxy Certificate Pro-
file", June 2004, available from http://www.ietf.org/rfc/rfc3820.

[RFC5746]
E. Rescorla, M. Ray, S. Dispensa, and N. Oskov, "Transport Layer Secu-
rity (TLS) Renegotiation Indication Extension", February 2010, available from
http://www.ietf.org/rfc/rfc5746.

[TLSTKT]
Joseph Salowey, Hao Zhou, Pasi Eronen, Hannes Tschofenig, "Transport Layer
Security (TLS) Session Resumption without Server-Side State", January 2008,
available from http://www.ietf.org/rfc/rfc5077.

[PKCS12] RSA Laboratories, "PKCS 12 v1.0: Personal Information Exchange Syntax",
June 1999, Available from http://www.rsa.com.

[PKCS11] RSA Laboratories, "PKCS #11 Base Functionality v2.30: Cryptoki Draft 4",
July 2009, Available from http://www.rsa.com.

[RESCORLA]
Eric Rescorla, "SSL and TLS: Designing and Building Secure Systems", 2001

[SELKEY]
Arjen Lenstra and Eric Verheul, "Selecting Cryptographic Key Sizes", 2003,
available from http://www.win.tue.nl/~klenstra/key.pdf.

[SSL3] Alan Freier, Philip Karlton and Paul Kocher, "The Secure Sockets
Layer (SSL) Protocol Version 3.0", August 2011, Available from
http://www.ietf.org/rfc/rfc6101.txt.

http://www.ietf/rfc/rfc2818.txt
http://www.ietf.org/rfc/rfc2945.txt
http://www.ietf.org/rfc/rfc2986.txt
http://www.ietf.org/rfc/rfc5280.txt
http://www.ietf.org/rfc/rfc3749.txt
http://www.ietf.org/rfc/rfc3820
http://www.ietf.org/rfc/rfc5746
http://www.ietf.org/rfc/rfc5077
http://www.rsa.com
http://www.rsa.com
http://www.win.tue.nl/~klenstra/key.pdf
http://www.ietf.org/rfc/rfc6101.txt

Bibliography 370

[STEVENS]
Richard Stevens, "UNIX Network Programming, Volume 1", Prentice Hall
PTR, January 1998

[TLSEXT] Simon Blake-Wilson, Magnus Nystrom, David Hopwood, Jan Mikkelsen and
Tim Wright, "Transport Layer Security (TLS) Extensions", June 2003, Avail-
able from http://www.ietf.org/rfc/rfc3546.txt.

[TLSPGP] Nikos Mavrogiannopoulos, "Using OpenPGP keys for TLS authentication",
January 2011. Available from http://www.ietf.org/rfc/rfc6091.txt.

[TLSSRP] David Taylor, Trevor Perrin, Tom Wu and Nikos Mavrogiannopoulos,
"Using SRP for TLS Authentication", November 2007. Available from
http://www.ietf.org/rfc/rfc5054.txt.

[TLSPSK] Pasi Eronen and Hannes Tschofenig, "Pre-shared key Ciphersuites for TLS",
December 2005, Available from http://www.ietf.org/rfc/rfc4279.txt.

[TOMSRP]
Tom Wu, "The Stanford SRP Authentication Project", Available at
http://srp.stanford.edu/.

[WEGER] Arjen Lenstra and Xiaoyun Wang and Benne de Weger, "Colliding X.509
Certificates", Cryptology ePrint Archive, Report 2005/067, Available at
http://eprint.iacr.org/.

[ECRYPT]
European Network of Excellence in Cryptology II, "ECRYPT II
Yearly Report on Algorithms and Keysizes (2009-2010)", Available at
http://www.ecrypt.eu.org/documents/D.SPA.13.pdf.

[RFC5056]
N. Williams, "On the Use of Channel Bindings to Secure Channels", November
2007, available from http://www.ietf.org/rfc/rfc5056.

[RFC5929]
J. Altman, N. Williams, L. Zhu, "Channel Bindings for TLS", July 2010, avail-
able from http://www.ietf.org/rfc/rfc5929.

[PKCS11URI]
J. Pechanec, D. Moffat, "The PKCS#11 URI Scheme", August 2011, Work in
progress, available from http://tools.ietf.org/html/draft-pechanec-pkcs11uri-05.

[ANDERSON]
R. J. Anderson, "Security Engineering: A Guide to Building Dependable Dis-
tributed Systems", John Wiley \& Sons, Inc., 2001.

[RFC4821]
M. Mathis, J. Heffner, "Packetization Layer Path MTU Discovery", March
2007, available from http://www.ietf.org/rfc/rfc4821.txt.

http://www.ietf.org/rfc/rfc3546.txt
http://www.ietf.org/rfc/rfc6091.txt
http://www.ietf.org/rfc/rfc5054.txt
http://www.ietf.org/rfc/rfc4279.txt
http://srp.stanford.edu/
http://eprint.iacr.org/
http://www.ecrypt.eu.org/documents/D.SPA.13.pdf
http://www.ietf.org/rfc/rfc5056
http://www.ietf.org/rfc/rfc5929
http://tools.ietf.org/html/draft-pechanec-pkcs11uri-05
http://www.ietf.org/rfc/rfc4821.txt

Function and Data Index 371

Function and Data Index

gnutls_alert_get . 162
gnutls_alert_get_name . 162
gnutls_alert_get_strname 162
gnutls_alert_send . 162
gnutls_alert_send_appropriate 163
gnutls_anon_allocate_client_credentials

. 163
gnutls_anon_allocate_server_credentials

. 163
gnutls_anon_free_client_credentials 163
gnutls_anon_free_server_credentials 164
gnutls_anon_set_params_function 164
gnutls_anon_set_server_dh_params 164
gnutls_anon_set_server_params_function . . 164
gnutls_auth_client_get_type 164
gnutls_auth_get_type . 165
gnutls_auth_server_get_type 165
gnutls_bye . 165
gnutls_certificate_activation_time_peers

. 166
gnutls_certificate_allocate_credentials

. 166
gnutls_certificate_client_get_request_

status . 166
gnutls_certificate_expiration_time_peers

. 166
gnutls_certificate_free_ca_names 166
gnutls_certificate_free_cas 167
gnutls_certificate_free_credentials 167
gnutls_certificate_free_crls 167
gnutls_certificate_free_keys 167
gnutls_certificate_get_issuer 167
gnutls_certificate_get_ours 168
gnutls_certificate_get_peers 168
gnutls_certificate_send_x509_rdn_sequence

. 168
gnutls_certificate_server_set_request . . . 168
gnutls_certificate_set_dh_params 169
gnutls_certificate_set_key 323
gnutls_certificate_set_openpgp_key 289
gnutls_certificate_set_openpgp_key_file

. 289
gnutls_certificate_set_openpgp_key_file2

. 290
gnutls_certificate_set_openpgp_key_mem . . 290
gnutls_certificate_set_openpgp_key_mem2

. 290
gnutls_certificate_set_openpgp_keyring_file

. 291
gnutls_certificate_set_openpgp_keyring_mem

. 291
gnutls_certificate_set_params_function . . 169
gnutls_certificate_set_retrieve_function

. 169

gnutls_certificate_set_rsa_export_params

. 345
gnutls_certificate_set_verify_flags 170
gnutls_certificate_set_verify_function . . 170
gnutls_certificate_set_verify_limits 170
gnutls_certificate_set_x509_crl 171
gnutls_certificate_set_x509_crl_file 171
gnutls_certificate_set_x509_crl_mem 171
gnutls_certificate_set_x509_key 172
gnutls_certificate_set_x509_key_file 172
gnutls_certificate_set_x509_key_mem 172
gnutls_certificate_set_x509_trust 173
gnutls_certificate_set_x509_trust_file . . 173
gnutls_certificate_set_x509_trust_mem . . . 174
gnutls_certificate_type_get 174
gnutls_certificate_type_get_id 174
gnutls_certificate_type_get_name 174
gnutls_certificate_type_list 175
gnutls_certificate_type_set_priority 345
gnutls_certificate_verify_flags 20
gnutls_certificate_verify_peers2 175
gnutls_check_version . 175
gnutls_cipher_add_auth . 339
gnutls_cipher_decrypt . 339
gnutls_cipher_decrypt2 . 340
gnutls_cipher_deinit . 340
gnutls_cipher_encrypt . 340
gnutls_cipher_encrypt2 . 341
gnutls_cipher_get . 175
gnutls_cipher_get_block_size 341
gnutls_cipher_get_id . 176
gnutls_cipher_get_key_size 176
gnutls_cipher_get_name . 176
gnutls_cipher_init . 341
gnutls_cipher_list . 176
gnutls_cipher_set_iv . 341
gnutls_cipher_set_priority 346
gnutls_cipher_suite_get_name 176
gnutls_cipher_suite_info 177
gnutls_cipher_tag . 342
gnutls_compression_get . 177
gnutls_compression_get_id 177
gnutls_compression_get_name 177
gnutls_compression_list 178
gnutls_compression_set_priority 346
gnutls_credentials_clear 178
gnutls_credentials_set . 178
gnutls_db_check_entry . 178
gnutls_db_get_ptr . 179
gnutls_db_remove_session 179
gnutls_db_set_cache_expiration 179
gnutls_db_set_ptr . 179
gnutls_db_set_remove_function 179
gnutls_db_set_retrieve_function 180
gnutls_db_set_store_function 180

Function and Data Index 372

gnutls_deinit . 180
gnutls_dh_get_group . 180
gnutls_dh_get_peers_public_bits 181
gnutls_dh_get_prime_bits 181
gnutls_dh_get_pubkey . 181
gnutls_dh_get_secret_bits 181
gnutls_dh_params_cpy . 181
gnutls_dh_params_deinit 182
gnutls_dh_params_export_pkcs3 182
gnutls_dh_params_export_raw 182
gnutls_dh_params_generate2 183
gnutls_dh_params_import_pkcs3 183
gnutls_dh_params_import_raw 183
gnutls_dh_params_init . 184
gnutls_dh_set_prime_bits 184
gnutls_dtls_cookie_send 220
gnutls_dtls_cookie_verify 221
gnutls_dtls_get_data_mtu 221
gnutls_dtls_get_mtu . 221
gnutls_dtls_prestate_set 221
gnutls_dtls_set_mtu . 222
gnutls_dtls_set_timeouts 222
gnutls_ecc_curve_get . 184
gnutls_ecc_curve_get_name 184
gnutls_ecc_curve_get_size 184
gnutls_error_is_fatal . 185
gnutls_error_to_alert . 185
gnutls_fingerprint . 185
gnutls_global_deinit . 186
gnutls_global_init . 186
gnutls_global_set_audit_log_function 186
gnutls_global_set_log_function 186
gnutls_global_set_log_level 187
gnutls_global_set_mem_functions 187
gnutls_global_set_mutex 187
gnutls_global_set_time_function 188
gnutls_handshake . 188
gnutls_handshake_get_last_in 188
gnutls_handshake_get_last_out 189
gnutls_handshake_set_max_packet_length . . 189
gnutls_handshake_set_post_client_hello_

function . 189
gnutls_handshake_set_private_extensions

. 190
gnutls_hash . 342
gnutls_hash_deinit . 342
gnutls_hash_fast . 342
gnutls_hash_get_len . 343
gnutls_hash_init . 343
gnutls_hash_output . 343
gnutls_hex_decode . 190
gnutls_hex_encode . 190
gnutls_hex2bin . 190
gnutls_hmac . 343
gnutls_hmac_deinit . 344
gnutls_hmac_fast . 344
gnutls_hmac_get_len . 344
gnutls_hmac_init . 344

gnutls_hmac_output . 345
gnutls_init . 191
gnutls_key_generate . 191
gnutls_kx_get . 191
gnutls_kx_get_id . 191
gnutls_kx_get_name . 192
gnutls_kx_list . 192
gnutls_kx_set_priority . 346
gnutls_mac_get . 192
gnutls_mac_get_id . 192
gnutls_mac_get_key_size 192
gnutls_mac_get_name . 193
gnutls_mac_list . 193
gnutls_mac_set_priority 346
gnutls_openpgp_crt_check_hostname 291
gnutls_openpgp_crt_deinit 292
gnutls_openpgp_crt_export 292
gnutls_openpgp_crt_get_auth_subkey 292
gnutls_openpgp_crt_get_creation_time 292
gnutls_openpgp_crt_get_expiration_time . . 293
gnutls_openpgp_crt_get_fingerprint 293
gnutls_openpgp_crt_get_key_id 293
gnutls_openpgp_crt_get_key_usage 293
gnutls_openpgp_crt_get_name 293
gnutls_openpgp_crt_get_pk_algorithm 294
gnutls_openpgp_crt_get_pk_dsa_raw 294
gnutls_openpgp_crt_get_pk_rsa_raw 294
gnutls_openpgp_crt_get_preferred_key_id

. 295
gnutls_openpgp_crt_get_revoked_status . . . 295
gnutls_openpgp_crt_get_subkey_count 295
gnutls_openpgp_crt_get_subkey_creation_time

. 295
gnutls_openpgp_crt_get_subkey_expiration_

time . 296
gnutls_openpgp_crt_get_subkey_fingerprint

. 296
gnutls_openpgp_crt_get_subkey_id 296
gnutls_openpgp_crt_get_subkey_idx 296
gnutls_openpgp_crt_get_subkey_pk_algorithm

. 297
gnutls_openpgp_crt_get_subkey_pk_dsa_raw

. 297
gnutls_openpgp_crt_get_subkey_pk_rsa_raw

. 297
gnutls_openpgp_crt_get_subkey_revoked_

status . 298
gnutls_openpgp_crt_get_subkey_usage 298
gnutls_openpgp_crt_get_version 298
gnutls_openpgp_crt_import 298
gnutls_openpgp_crt_init 299
gnutls_openpgp_crt_print 299
gnutls_openpgp_crt_set_preferred_key_id

. 299
gnutls_openpgp_crt_verify_ring 299
gnutls_openpgp_crt_verify_self 300
gnutls_openpgp_keyring_check_id 300
gnutls_openpgp_keyring_deinit 300

Function and Data Index 373

gnutls_openpgp_keyring_get_crt 300
gnutls_openpgp_keyring_get_crt_count 301
gnutls_openpgp_keyring_import 301
gnutls_openpgp_keyring_init 301
gnutls_openpgp_privkey_deinit 301
gnutls_openpgp_privkey_export 301
gnutls_openpgp_privkey_export_dsa_raw . . . 302
gnutls_openpgp_privkey_export_rsa_raw . . . 302
gnutls_openpgp_privkey_export_subkey_dsa_

raw . 303
gnutls_openpgp_privkey_export_subkey_rsa_

raw . 303
gnutls_openpgp_privkey_get_fingerprint . . 304
gnutls_openpgp_privkey_get_key_id 304
gnutls_openpgp_privkey_get_pk_algorithm

. 304
gnutls_openpgp_privkey_get_preferred_key_id

. 304
gnutls_openpgp_privkey_get_revoked_status

. 305
gnutls_openpgp_privkey_get_subkey_count

. 305
gnutls_openpgp_privkey_get_subkey_creation_

time . 305
gnutls_openpgp_privkey_get_subkey_

fingerprint . 305
gnutls_openpgp_privkey_get_subkey_id 306
gnutls_openpgp_privkey_get_subkey_idx . . . 306
gnutls_openpgp_privkey_get_subkey_pk_

algorithm . 306
gnutls_openpgp_privkey_get_subkey_revoked_

status . 306
gnutls_openpgp_privkey_import 307
gnutls_openpgp_privkey_init 307
gnutls_openpgp_privkey_sec_param 307
gnutls_openpgp_privkey_set_preferred_key_id

. 307
gnutls_openpgp_privkey_sign_hash 347
gnutls_openpgp_send_cert 193
gnutls_openpgp_set_recv_key_function 308
gnutls_pcert_deinit . 323
gnutls_pcert_import_openpgp 324
gnutls_pcert_import_openpgp_raw 324
gnutls_pcert_import_x509 324
gnutls_pcert_import_x509_raw 325
gnutls_pcert_list_import_x509_raw 325
gnutls_pem_base64_decode 193
gnutls_pem_base64_decode_alloc 193
gnutls_pem_base64_encode 194
gnutls_pem_base64_encode_alloc 194
gnutls_perror . 194
gnutls_pk_algorithm_get_name 195
gnutls_pk_bits_to_sec_param 195
gnutls_pk_get_id . 195
gnutls_pk_get_name . 195
gnutls_pk_list . 195
gnutls_pkcs11_add_provider 313
gnutls_pkcs11_copy_secret_key 314

gnutls_pkcs11_copy_x509_crt 314
gnutls_pkcs11_copy_x509_privkey 314
gnutls_pkcs11_deinit . 315
gnutls_pkcs11_delete_url 315
gnutls_pkcs11_init . 315
gnutls_pkcs11_obj_deinit 315
gnutls_pkcs11_obj_export 316
gnutls_pkcs11_obj_export_url 316
gnutls_pkcs11_obj_get_info 316
gnutls_pkcs11_obj_get_type 317
gnutls_pkcs11_obj_import_url 317
gnutls_pkcs11_obj_init . 317
gnutls_pkcs11_obj_list_import_url 317
gnutls_pkcs11_privkey_deinit 318
gnutls_pkcs11_privkey_export_url 318
gnutls_pkcs11_privkey_generate 318
gnutls_pkcs11_privkey_get_info 318
gnutls_pkcs11_privkey_get_pk_algorithm . . 319
gnutls_pkcs11_privkey_import_url 319
gnutls_pkcs11_privkey_init 319
gnutls_pkcs11_set_pin_function 319
gnutls_pkcs11_set_token_function 320
gnutls_pkcs11_token_get_flags 320
gnutls_pkcs11_token_get_info 320
gnutls_pkcs11_token_get_mechanism 321
gnutls_pkcs11_token_get_url 321
gnutls_pkcs11_token_init 321
gnutls_pkcs11_token_set_pin 321
gnutls_pkcs11_type_get_name 322
gnutls_pkcs12_bag_decrypt 308
gnutls_pkcs12_bag_deinit 308
gnutls_pkcs12_bag_encrypt 308
gnutls_pkcs12_bag_get_count 309
gnutls_pkcs12_bag_get_data 309
gnutls_pkcs12_bag_get_friendly_name 309
gnutls_pkcs12_bag_get_key_id 309
gnutls_pkcs12_bag_get_type 310
gnutls_pkcs12_bag_init . 310
gnutls_pkcs12_bag_set_crl 310
gnutls_pkcs12_bag_set_crt 310
gnutls_pkcs12_bag_set_data 310
gnutls_pkcs12_bag_set_friendly_name 311
gnutls_pkcs12_bag_set_key_id 311
gnutls_pkcs12_deinit . 311
gnutls_pkcs12_export . 311
gnutls_pkcs12_generate_mac 312
gnutls_pkcs12_get_bag . 312
gnutls_pkcs12_import . 312
gnutls_pkcs12_init . 313
gnutls_pkcs12_set_bag . 313
gnutls_pkcs12_verify_mac 313
gnutls_pkcs7_deinit . 222
gnutls_pkcs7_delete_crl 223
gnutls_pkcs7_delete_crt 223
gnutls_pkcs7_export . 223
gnutls_pkcs7_get_crl_count 223
gnutls_pkcs7_get_crl_raw 224
gnutls_pkcs7_get_crt_count 224

Function and Data Index 374

gnutls_pkcs7_get_crt_raw 224
gnutls_pkcs7_import . 224
gnutls_pkcs7_init . 225
gnutls_pkcs7_set_crl . 225
gnutls_pkcs7_set_crl_raw 225
gnutls_pkcs7_set_crt . 225
gnutls_pkcs7_set_crt_raw 226
gnutls_prf . 196
gnutls_prf_raw . 196
gnutls_priority_deinit . 197
gnutls_priority_get_cipher_suite_index . . 197
gnutls_priority_init . 197
gnutls_priority_set . 198
gnutls_priority_set_direct 198
gnutls_privkey_decrypt_data 325
gnutls_privkey_deinit . 326
gnutls_privkey_get_pk_algorithm 326
gnutls_privkey_get_type 326
gnutls_privkey_import_ext 326
gnutls_privkey_import_openpgp 327
gnutls_privkey_import_pkcs11 327
gnutls_privkey_import_x509 328
gnutls_privkey_init . 328
gnutls_privkey_sign_data 328
gnutls_privkey_sign_hash 329
gnutls_protocol_get_id . 199
gnutls_protocol_get_name 199
gnutls_protocol_get_version 199
gnutls_protocol_list . 199
gnutls_protocol_set_priority 347
gnutls_psk_allocate_client_credentials . . 199
gnutls_psk_allocate_server_credentials . . 200
gnutls_psk_client_get_hint 200
gnutls_psk_free_client_credentials 200
gnutls_psk_free_server_credentials 200
gnutls_psk_server_get_username 200
gnutls_psk_set_client_credentials 201
gnutls_psk_set_client_credentials_function

. 201
gnutls_psk_set_params_function 201
gnutls_psk_set_server_credentials_file . . 202
gnutls_psk_set_server_credentials_function

. 202
gnutls_psk_set_server_credentials_hint . . 202
gnutls_psk_set_server_dh_params 203
gnutls_psk_set_server_params_function . . . 203
gnutls_pubkey_deinit . 329
gnutls_pubkey_export . 329
gnutls_pubkey_get_key_id 330
gnutls_pubkey_get_key_usage 330
gnutls_pubkey_get_openpgp_key_id 330
gnutls_pubkey_get_pk_algorithm 331
gnutls_pubkey_get_pk_dsa_raw 331
gnutls_pubkey_get_pk_ecc_raw 331
gnutls_pubkey_get_pk_ecc_x962 332
gnutls_pubkey_get_pk_rsa_raw 332
gnutls_pubkey_get_preferred_hash_algorithm

. 332

gnutls_pubkey_get_verify_algorithm 332
gnutls_pubkey_import . 333
gnutls_pubkey_import_dsa_raw 333
gnutls_pubkey_import_ecc_raw 333
gnutls_pubkey_import_ecc_x962 334
gnutls_pubkey_import_openpgp 334
gnutls_pubkey_import_pkcs11 334
gnutls_pubkey_import_pkcs11_url 335
gnutls_pubkey_import_privkey 335
gnutls_pubkey_import_rsa_raw 335
gnutls_pubkey_import_x509 336
gnutls_pubkey_init . 336
gnutls_pubkey_set_key_usage 336
gnutls_pubkey_verify_data 336
gnutls_pubkey_verify_data2 337
gnutls_pubkey_verify_hash 337
gnutls_random_art . 203
gnutls_record_check_pending 203
gnutls_record_disable_padding 204
gnutls_record_get_direction 204
gnutls_record_get_discarded 222
gnutls_record_get_max_size 204
gnutls_record_recv . 204
gnutls_record_recv_seq . 205
gnutls_record_send . 205
gnutls_record_set_max_size 206
gnutls_rehandshake . 206
gnutls_rnd . 345
gnutls_rsa_export_get_modulus_bits 347
gnutls_rsa_export_get_pubkey 347
gnutls_rsa_params_cpy . 348
gnutls_rsa_params_deinit 348
gnutls_rsa_params_export_pkcs1 348
gnutls_rsa_params_export_raw 348
gnutls_rsa_params_generate2 349
gnutls_rsa_params_import_pkcs1 349
gnutls_rsa_params_import_raw 350
gnutls_rsa_params_init . 350
gnutls_safe_renegotiation_status 206
gnutls_sec_param_get_name 207
gnutls_sec_param_to_pk_bits 207
gnutls_server_name_get . 207
gnutls_server_name_set . 208
gnutls_session_channel_binding 208
gnutls_session_enable_compatibility_mode

. 208
gnutls_session_get_data 208
gnutls_session_get_data2 209
gnutls_session_get_id . 209
gnutls_session_get_ptr . 209
gnutls_session_is_resumed 210
gnutls_session_set_data 210
gnutls_session_set_ptr . 210
gnutls_session_ticket_enable_client 210
gnutls_session_ticket_enable_server 211
gnutls_session_ticket_key_generate 211
gnutls_set_default_export_priority 350
gnutls_set_default_priority 211

Function and Data Index 375

gnutls_sign_algorithm_get_requested 211
gnutls_sign_callback_get 350
gnutls_sign_callback_set 351
gnutls_sign_get_id . 212
gnutls_sign_get_name . 212
gnutls_sign_list . 212
gnutls_srp_allocate_client_credentials . . 212
gnutls_srp_allocate_server_credentials . . 212
gnutls_srp_base64_decode 213
gnutls_srp_base64_decode_alloc 213
gnutls_srp_base64_encode 213
gnutls_srp_base64_encode_alloc 214
gnutls_srp_free_client_credentials 214
gnutls_srp_free_server_credentials 214
gnutls_srp_server_get_username 214
gnutls_srp_set_client_credentials 214
gnutls_srp_set_client_credentials_function

. 215
gnutls_srp_set_prime_bits 215
gnutls_srp_set_server_credentials_file . . 215
gnutls_srp_set_server_credentials_function

. 216
gnutls_srp_verifier . 216
gnutls_strerror . 217
gnutls_strerror_name . 217
gnutls_supplemental_get_name 217
gnutls_transport_get_ptr 217
gnutls_transport_get_ptr2 218
gnutls_transport_set_errno 218
gnutls_transport_set_errno_function 218
gnutls_transport_set_ptr 218
gnutls_transport_set_ptr2 219
gnutls_transport_set_pull_function 219
gnutls_transport_set_pull_timeout_function

. 219
gnutls_transport_set_push_function 219
gnutls_transport_set_vec_push_function . . 220
gnutls_x509_crl_check_issuer 226
gnutls_x509_crl_deinit . 226
gnutls_x509_crl_export . 226
gnutls_x509_crl_get_authority_key_id 227
gnutls_x509_crl_get_crt_count 227
gnutls_x509_crl_get_crt_serial 227
gnutls_x509_crl_get_dn_oid 227
gnutls_x509_crl_get_extension_data 228
gnutls_x509_crl_get_extension_info 228
gnutls_x509_crl_get_extension_oid 229
gnutls_x509_crl_get_issuer_dn 229
gnutls_x509_crl_get_issuer_dn_by_oid 229
gnutls_x509_crl_get_next_update 230
gnutls_x509_crl_get_number 230
gnutls_x509_crl_get_raw_issuer_dn 230
gnutls_x509_crl_get_signature 231
gnutls_x509_crl_get_signature_algorithm

. 231
gnutls_x509_crl_get_this_update 231
gnutls_x509_crl_get_version 231
gnutls_x509_crl_import . 231

gnutls_x509_crl_init . 232
gnutls_x509_crl_list_import 232
gnutls_x509_crl_list_import2 232
gnutls_x509_crl_print . 233
gnutls_x509_crl_privkey_sign 337
gnutls_x509_crl_set_authority_key_id 233
gnutls_x509_crl_set_crt 233
gnutls_x509_crl_set_crt_serial 233
gnutls_x509_crl_set_next_update 234
gnutls_x509_crl_set_number 234
gnutls_x509_crl_set_this_update 234
gnutls_x509_crl_set_version 234
gnutls_x509_crl_sign . 351
gnutls_x509_crl_sign2 . 235
gnutls_x509_crl_verify . 235
gnutls_x509_crq_deinit . 235
gnutls_x509_crq_export . 236
gnutls_x509_crq_get_attribute_by_oid 236
gnutls_x509_crq_get_attribute_data 236
gnutls_x509_crq_get_attribute_info 237
gnutls_x509_crq_get_basic_constraints . . . 237
gnutls_x509_crq_get_challenge_password . . 238
gnutls_x509_crq_get_dn . 238
gnutls_x509_crq_get_dn_by_oid 238
gnutls_x509_crq_get_dn_oid 239
gnutls_x509_crq_get_extension_by_oid 239
gnutls_x509_crq_get_extension_data 239
gnutls_x509_crq_get_extension_info 240
gnutls_x509_crq_get_key_id 240
gnutls_x509_crq_get_key_purpose_oid 241
gnutls_x509_crq_get_key_rsa_raw 241
gnutls_x509_crq_get_key_usage 241
gnutls_x509_crq_get_pk_algorithm 242
gnutls_x509_crq_get_subject_alt_name 242
gnutls_x509_crq_get_subject_alt_othername_

oid . 243
gnutls_x509_crq_get_version 243
gnutls_x509_crq_import . 243
gnutls_x509_crq_init . 244
gnutls_x509_crq_print . 244
gnutls_x509_crq_privkey_sign 338
gnutls_x509_crq_set_attribute_by_oid 244
gnutls_x509_crq_set_basic_constraints . . . 244
gnutls_x509_crq_set_challenge_password . . 245
gnutls_x509_crq_set_dn_by_oid 245
gnutls_x509_crq_set_key 245
gnutls_x509_crq_set_key_purpose_oid 246
gnutls_x509_crq_set_key_rsa_raw 246
gnutls_x509_crq_set_key_usage 246
gnutls_x509_crq_set_pubkey 338
gnutls_x509_crq_set_subject_alt_name 247
gnutls_x509_crq_set_version 247
gnutls_x509_crq_sign . 351
gnutls_x509_crq_sign2 . 247
gnutls_x509_crq_verify . 248
gnutls_x509_crt_check_hostname 248
gnutls_x509_crt_check_issuer 248
gnutls_x509_crt_check_revocation 248

Function and Data Index 376

gnutls_x509_crt_cpy_crl_dist_points 249
gnutls_x509_crt_deinit . 249
gnutls_x509_crt_export . 249
gnutls_x509_crt_get_activation_time 249
gnutls_x509_crt_get_authority_info_access

. 250
gnutls_x509_crt_get_authority_key_id 251
gnutls_x509_crt_get_basic_constraints . . . 251
gnutls_x509_crt_get_ca_status 251
gnutls_x509_crt_get_crl_dist_points 252
gnutls_x509_crt_get_dn . 252
gnutls_x509_crt_get_dn_by_oid 253
gnutls_x509_crt_get_dn_oid 253
gnutls_x509_crt_get_expiration_time 254
gnutls_x509_crt_get_extension_by_oid 254
gnutls_x509_crt_get_extension_data 254
gnutls_x509_crt_get_extension_info 255
gnutls_x509_crt_get_extension_oid 255
gnutls_x509_crt_get_fingerprint 255
gnutls_x509_crt_get_issuer 256
gnutls_x509_crt_get_issuer_alt_name 256
gnutls_x509_crt_get_issuer_alt_name2 257
gnutls_x509_crt_get_issuer_alt_othername_

oid . 257
gnutls_x509_crt_get_issuer_dn 258
gnutls_x509_crt_get_issuer_dn_by_oid 258
gnutls_x509_crt_get_issuer_dn_oid 259
gnutls_x509_crt_get_issuer_unique_id 259
gnutls_x509_crt_get_key_id 259
gnutls_x509_crt_get_key_purpose_oid 260
gnutls_x509_crt_get_key_usage 260
gnutls_x509_crt_get_pk_algorithm 261
gnutls_x509_crt_get_pk_dsa_raw 261
gnutls_x509_crt_get_pk_rsa_raw 261
gnutls_x509_crt_get_preferred_hash_

algorithm . 352
gnutls_x509_crt_get_proxy 261
gnutls_x509_crt_get_raw_dn 262
gnutls_x509_crt_get_raw_issuer_dn 262
gnutls_x509_crt_get_serial 262
gnutls_x509_crt_get_signature 263
gnutls_x509_crt_get_signature_algorithm

. 263
gnutls_x509_crt_get_subject 263
gnutls_x509_crt_get_subject_alt_name 263
gnutls_x509_crt_get_subject_alt_name2 . . . 264
gnutls_x509_crt_get_subject_alt_othername_

oid . 264
gnutls_x509_crt_get_subject_key_id 265
gnutls_x509_crt_get_subject_unique_id . . . 265
gnutls_x509_crt_get_verify_algorithm 352
gnutls_x509_crt_get_version 266
gnutls_x509_crt_import . 266
gnutls_x509_crt_import_pkcs11 322
gnutls_x509_crt_import_pkcs11_url 322
gnutls_x509_crt_init . 266
gnutls_x509_crt_list_import 266
gnutls_x509_crt_list_import_pkcs11 323

gnutls_x509_crt_list_import2 267
gnutls_x509_crt_list_verify 267
gnutls_x509_crt_print . 268
gnutls_x509_crt_privkey_sign 338
gnutls_x509_crt_set_activation_time 268
gnutls_x509_crt_set_authority_key_id 268
gnutls_x509_crt_set_basic_constraints . . . 269
gnutls_x509_crt_set_ca_status 269
gnutls_x509_crt_set_crl_dist_points 269
gnutls_x509_crt_set_crl_dist_points2 270
gnutls_x509_crt_set_crq 270
gnutls_x509_crt_set_crq_extensions 270
gnutls_x509_crt_set_dn_by_oid 270
gnutls_x509_crt_set_expiration_time 271
gnutls_x509_crt_set_extension_by_oid 271
gnutls_x509_crt_set_issuer_dn_by_oid 271
gnutls_x509_crt_set_key 272
gnutls_x509_crt_set_key_purpose_oid 272
gnutls_x509_crt_set_key_usage 272
gnutls_x509_crt_set_proxy 273
gnutls_x509_crt_set_proxy_dn 273
gnutls_x509_crt_set_pubkey 339
gnutls_x509_crt_set_serial 273
gnutls_x509_crt_set_subject_alt_name 274
gnutls_x509_crt_set_subject_alternative_

name . 274
gnutls_x509_crt_set_subject_key_id 274
gnutls_x509_crt_set_version 275
gnutls_x509_crt_sign . 275
gnutls_x509_crt_sign2 . 275
gnutls_x509_crt_verify . 276
gnutls_x509_crt_verify_data 352
gnutls_x509_crt_verify_hash 353
gnutls_x509_dn_deinit . 276
gnutls_x509_dn_export . 276
gnutls_x509_dn_get_rdn_ava 276
gnutls_x509_dn_import . 277
gnutls_x509_dn_init . 277
gnutls_x509_dn_oid_known 277
gnutls_x509_privkey_cpy 278
gnutls_x509_privkey_deinit 278
gnutls_x509_privkey_export 278
gnutls_x509_privkey_export_dsa_raw 278
gnutls_x509_privkey_export_ecc_raw 279
gnutls_x509_privkey_export_pkcs8 279
gnutls_x509_privkey_export_rsa_raw 280
gnutls_x509_privkey_export_rsa_raw2 280
gnutls_x509_privkey_fix 281
gnutls_x509_privkey_generate 281
gnutls_x509_privkey_get_key_id 281
gnutls_x509_privkey_get_pk_algorithm 282
gnutls_x509_privkey_import 282
gnutls_x509_privkey_import_dsa_raw 282
gnutls_x509_privkey_import_ecc_raw 282
gnutls_x509_privkey_import_pkcs8 283
gnutls_x509_privkey_import_rsa_raw 283
gnutls_x509_privkey_import_rsa_raw2 284
gnutls_x509_privkey_init 284

Function and Data Index 377

gnutls_x509_privkey_sec_param 284
gnutls_x509_privkey_sign_data 353
gnutls_x509_privkey_sign_hash 353
gnutls_x509_privkey_verify_params 285
gnutls_x509_rdn_get . 285
gnutls_x509_rdn_get_by_oid 285
gnutls_x509_rdn_get_oid 285
gnutls_x509_trust_list_add_cas 286

gnutls_x509_trust_list_add_crls 286
gnutls_x509_trust_list_add_named_crt 287
gnutls_x509_trust_list_deinit 287
gnutls_x509_trust_list_get_issuer 287
gnutls_x509_trust_list_init 288
gnutls_x509_trust_list_verify_crt 288
gnutls_x509_trust_list_verify_named_crt

. 288

Concept Index 378

Concept Index

A
abstract types . 46
alert protocol . 8
anonymous authentication . 26
API reference . 162

B
bad record mac . 7

C
callback functions . 51
certificate authentication 17, 27
certificate requests . 27
certificate revocation lists . 29
certtool . 34
channel bindings . 65
ciphersuites . 355
client certificate authentication 11
compression algorithms . 7
contributing . 153
CRL . 29

D
debug server . 139
digital signatures . 22
download . 2

E
Encrypted keys . 30
error codes . 154
example programs . 69
examples . 69
exporting keying material . 64

F
FDL, GNU Free Documentation License 360

G
generating parameters . 64
gnutls-cli . 136
gnutls-cli-debug . 141
gnutls-serv . 137

H
hacking . 153
handshake protocol . 9
hardware security modules . 40

hardware tokens . 40
hash functions . 66
HMAC functions . 66
HTTPS server . 139

I
installation . 2
internal architecture . 143

K
key sizes . 67
keying material exporters . 64

M
maximum fragment length . 12

O
OpenPGP API . 289
OpenPGP certificates . 20
OpenPGP server . 110
OpenSSL . 66

P
p11tool . 44
parameter generation . 64
PCT . 16
PKCS #10 . 27
PKCS #11 tokens . 40
PKCS #12 . 31
PKCS #8 . 31
PSK authentication . 25
PSK client . 137
psktool . 25

R
random numbers . 67
record padding . 7
record protocol . 5
renegotiation . 12
reporting bugs . 152
resuming sessions . 11, 63

S
safe renegotiation . 12
server name indication . 12
session resumption . 11, 63

Concept Index 379

session tickets . 12
Smart card example . 91
smart cards . 40
SRP authentication . 24
srptool . 24
SSL 2 . 15
symmetric cryptography . 66
symmetric encryption algorithms 5

T
thread safety . 50
tickets . 12

TLS extensions . 11, 12
TLS layers . 4
transport layer . 4
transport protocol . 4

V
verifying certificate paths 19, 20

X
X.509 certificates . 17
X.509 Functions . 222

	Preface
	Introduction to GnuTLS
	Downloading and installing
	Overview

	Introduction to TLS and DTLS
	TLS layers
	The transport layer
	The TLS record protocol
	Encryption algorithms used in the record layer
	Compression algorithms used in the record layer
	Weaknesses and countermeasures
	On record padding

	The TLS alert protocol
	The TLS handshake protocol
	TLS ciphersuites
	Authentication
	Client authentication
	Resuming sessions

	TLS extensions
	Maximum fragment length negotiation
	Server name indication
	Session tickets
	Safe renegotiation

	How to use TLS in application protocols
	Separate ports
	Upward negotiation

	On SSL 2 and older protocols

	Certificate authentication
	X.509 certificates
	X.509 certificate structure
	Verifying X.509 certificate paths
	Verifying a certificate in the context of TLS session

	OpenPGP certificates
	OpenPGP certificate structure
	Verifying an OpenPGP certificate
	Verifying a certificate in the context of a TLS session

	Digital signatures
	Trading security for interoperability

	Shared-key and anonymous authentication
	SRP authentication
	Authentication using SRP
	Invoking srptool

	PSK authentication
	Authentication using PSK
	Invoking psktool

	Anonymous authentication

	More on certificate authentication
	PKCS #10 certificate requests
	PKIX certificate revocation lists
	Managing encrypted keys
	The certtool application
	Smart cards and HSMs
	Initialization
	Reading objects
	Writing objects
	Using a PKCS #11 token with TLS
	The p11tool application

	Abstract key types
	Public keys
	Private keys
	Operations

	How to use GnuTLS in applications
	Introduction
	General idea
	Error handling
	Debugging and auditing
	Thread safety
	Callback functions

	Preparation
	Headers
	Initialization
	Version check
	Building the source

	Session initialization
	Associating the credentials
	Certificates
	SRP
	PSK
	Anonymous

	Setting up the transport layer
	Asynchronous operation
	DTLS sessions

	TLS handshake
	Data transfer and termination
	Handling alerts
	Priority strings
	Advanced and other topics
	Session resumption
	Parameter generation
	Keying material exporters
	Channel bindings
	Interoperability
	Compatibility with the OpenSSL library

	Using the cryptographic library
	Symmetric cryptography
	Hash and HMAC functions
	Random number generation

	Selecting cryptographic key sizes

	GnuTLS application examples
	Client examples
	Simple client example with anonymous authentication
	Simple client example with X.509 certificate support
	Simple datagram TLS client example
	Obtaining session information
	Using a callback to select the certificate to use
	Verifying a certificate
	Using a smart card with TLS
	Client with resume capability example
	Simple client example with SRP authentication
	Simple client example using the C++ API
	Helper functions for TCP connections
	Helper functions for UDP connections

	Server examples
	Echo server with X.509 authentication
	Echo server with OpenPGP authentication
	Echo server with SRP authentication
	Echo server with anonymous authentication
	DTLS echo server with X.509 authentication

	Miscellaneous examples
	Checking for an alert
	X.509 certificate parsing example

	Other included programs
	The gnutls-cli tool
	The gnutls-serv tool
	The gnutls-cli-debug tool

	Internal Architecture of GnuTLS
	The TLS Protocol
	TLS Handshake Protocol
	TLS Authentication Methods
	TLS Extension Handling
	Cryptographic Backend

	Support
	Getting Help
	Commercial Support
	Bug Reports
	Contributing

	Error Codes and Descriptions
	API reference
	Core TLS API
	Datagram TLS API
	X.509 certificate API
	OpenPGP API
	PKCS 12 API
	Hardware token via PKCS 11 API
	Abstract key API
	Cryptographic API
	Compatibility API

	Supported Ciphersuites
	Copying Information
	Bibliography
	Function and Data Index
	Concept Index

