/* $NetBSD: lfs_cleanerd.c,v 1.58.18.1 2019/09/02 16:16:56 martin Exp $ */ /*- * Copyright (c) 2005 The NetBSD Foundation, Inc. * All rights reserved. * * This code is derived from software contributed to The NetBSD Foundation * by Konrad E. Schroder . * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ /* * The cleaner daemon for the NetBSD Log-structured File System. * Only tested for use with version 2 LFSs. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "bufcache.h" #include "vnode.h" #include "lfs_user.h" #include "fdfs.h" #include "cleaner.h" #include "kernelops.h" #include "mount_lfs.h" /* * Global variables. */ /* XXX these top few should really be fs-specific */ int use_fs_idle; /* Use fs idle rather than cpu idle time */ int use_bytes; /* Use bytes written rather than segments cleaned */ double load_threshold; /* How idle is idle (CPU idle) */ int atatime; /* How many segments (bytes) to clean at a time */ int nfss; /* Number of filesystems monitored by this cleanerd */ struct clfs **fsp; /* Array of extended filesystem structures */ int segwait_timeout; /* Time to wait in lfs_segwait() */ int do_quit; /* Quit after one cleaning loop */ int do_coalesce; /* Coalesce filesystem */ int do_small; /* Use small writes through markv */ char *do_asdevice; /* Use this as the raw device */ char *copylog_filename; /* File to use for fs debugging analysis */ int inval_segment; /* Segment to invalidate */ int stat_report; /* Report statistics for this period of cycles */ int debug; /* Turn on debugging */ struct cleaner_stats { double util_tot; double util_sos; off_t bytes_read; off_t bytes_written; off_t segs_cleaned; off_t segs_empty; off_t segs_error; } cleaner_stats; extern u_int32_t cksum(void *, size_t); extern u_int32_t lfs_sb_cksum(struct dlfs *); extern u_int32_t lfs_cksum_part(void *, size_t, u_int32_t); extern int ulfs_getlbns(struct lfs *, struct uvnode *, daddr_t, struct indir *, int *); /* Ugh */ #define FSMNT_SIZE MAX(sizeof(((struct dlfs *)0)->dlfs_fsmnt), \ sizeof(((struct dlfs64 *)0)->dlfs_fsmnt)) /* Compat */ void pwarn(const char *unused, ...) { /* Does nothing */ }; /* * Log a message if debugging is turned on. */ void dlog(const char *fmt, ...) { va_list ap; if (debug == 0) return; va_start(ap, fmt); vsyslog(LOG_DEBUG, fmt, ap); va_end(ap); } /* * Remove the specified filesystem from the list, due to its having * become unmounted or other error condition. */ void handle_error(struct clfs **cfsp, int n) { syslog(LOG_NOTICE, "%s: detaching cleaner", lfs_sb_getfsmnt(cfsp[n])); free(cfsp[n]); if (n != nfss - 1) cfsp[n] = cfsp[nfss - 1]; --nfss; } /* * Reinitialize a filesystem if, e.g., its size changed. */ int reinit_fs(struct clfs *fs) { char fsname[FSMNT_SIZE]; memcpy(fsname, lfs_sb_getfsmnt(fs), sizeof(fsname)); fsname[sizeof(fsname) - 1] = '\0'; kops.ko_close(fs->clfs_ifilefd); kops.ko_close(fs->clfs_devfd); fd_reclaim(fs->clfs_devvp); fd_reclaim(fs->lfs_ivnode); free(fs->clfs_dev); free(fs->clfs_segtab); free(fs->clfs_segtabp); return init_fs(fs, fsname); } #ifdef REPAIR_ZERO_FINFO /* * Use fsck's lfs routines to load the Ifile from an unmounted fs. * We interpret "fsname" as the name of the raw disk device. */ int init_unmounted_fs(struct clfs *fs, char *fsname) { struct lfs *disc_fs; int i; fs->clfs_dev = fsname; if ((fs->clfs_devfd = kops.ko_open(fs->clfs_dev, O_RDWR)) < 0) { syslog(LOG_ERR, "couldn't open device %s read/write", fs->clfs_dev); return -1; } disc_fs = lfs_init(fs->clfs_devfd, 0, 0, 0, 0); fs->lfs_dlfs = disc_fs->lfs_dlfs; /* Structure copy */ strncpy(fs->lfs_fsmnt, fsname, MNAMELEN); fs->lfs_ivnode = (struct uvnode *)disc_fs->lfs_ivnode; fs->clfs_devvp = fd_vget(fs->clfs_devfd, fs->lfs_fsize, fs->lfs_ssize, atatime); /* Allocate and clear segtab */ fs->clfs_segtab = (struct clfs_seguse *)malloc(lfs_sb_getnseg(fs) * sizeof(*fs->clfs_segtab)); fs->clfs_segtabp = (struct clfs_seguse **)malloc(lfs_sb_getnseg(fs) * sizeof(*fs->clfs_segtabp)); for (i = 0; i < lfs_sb_getnseg(fs); i++) { fs->clfs_segtabp[i] = &(fs->clfs_segtab[i]); fs->clfs_segtab[i].flags = 0x0; } syslog(LOG_NOTICE, "%s: unmounted cleaner starting", fsname); return 0; } #endif /* * Set up the file descriptors, including the Ifile descriptor. * If we can't get the Ifile, this is not an LFS (or the kernel is * too old to support the fcntl). * XXX Merge this and init_unmounted_fs, switching on whether * XXX "fsname" is a dir or a char special device. Should * XXX also be able to read unmounted devices out of fstab, the way * XXX fsck does. */ int init_fs(struct clfs *fs, char *fsname) { char mnttmp[FSMNT_SIZE]; struct statvfs sf; int rootfd; int i; void *sbuf; size_t mlen; if (do_asdevice != NULL) { fs->clfs_dev = strndup(do_asdevice,strlen(do_asdevice) + 2); if (fs->clfs_dev == NULL) { syslog(LOG_ERR, "couldn't malloc device name string: %m"); return -1; } } else { /* * Get the raw device from the block device. * XXX this is ugly. Is there a way to discover the raw device * XXX for a given mount point? */ if (kops.ko_statvfs(fsname, &sf, ST_WAIT) < 0) return -1; mlen = strlen(sf.f_mntfromname) + 2; fs->clfs_dev = malloc(mlen); if (fs->clfs_dev == NULL) { syslog(LOG_ERR, "couldn't malloc device name string: %m"); return -1; } if (getdiskrawname(fs->clfs_dev, mlen, sf.f_mntfromname) == NULL) { syslog(LOG_ERR, "couldn't convert '%s' to raw name: %m", sf.f_mntfromname); return -1; } } if ((fs->clfs_devfd = kops.ko_open(fs->clfs_dev, O_RDONLY, 0)) < 0) { syslog(LOG_ERR, "couldn't open device %s for reading: %m", fs->clfs_dev); return -1; } /* Find the Ifile and open it */ if ((rootfd = kops.ko_open(fsname, O_RDONLY, 0)) < 0) return -2; if (kops.ko_fcntl(rootfd, LFCNIFILEFH, &fs->clfs_ifilefh) < 0) return -3; if ((fs->clfs_ifilefd = kops.ko_fhopen(&fs->clfs_ifilefh, sizeof(fs->clfs_ifilefh), O_RDONLY)) < 0) return -4; kops.ko_close(rootfd); sbuf = malloc(LFS_SBPAD); if (sbuf == NULL) { syslog(LOG_ERR, "couldn't malloc superblock buffer"); return -1; } /* Load in the superblock */ if (kops.ko_pread(fs->clfs_devfd, sbuf, LFS_SBPAD, LFS_LABELPAD) < 0) { free(sbuf); return -1; } __CTASSERT(sizeof(struct dlfs) == sizeof(struct dlfs64)); memcpy(&fs->lfs_dlfs_u, sbuf, sizeof(struct dlfs)); free(sbuf); /* If it is not LFS, complain and exit! */ switch (fs->lfs_dlfs_u.u_32.dlfs_magic) { case LFS_MAGIC: fs->lfs_is64 = false; fs->lfs_dobyteswap = false; break; case LFS_MAGIC_SWAPPED: fs->lfs_is64 = false; fs->lfs_dobyteswap = true; break; case LFS64_MAGIC: fs->lfs_is64 = true; fs->lfs_dobyteswap = false; break; case LFS64_MAGIC_SWAPPED: fs->lfs_is64 = true; fs->lfs_dobyteswap = true; break; default: syslog(LOG_ERR, "%s: not LFS", fsname); return -1; } /* XXX: can this ever need to be set? does the cleaner even care? */ fs->lfs_hasolddirfmt = 0; /* If this is not a version 2 filesystem, complain and exit */ if (lfs_sb_getversion(fs) != 2) { syslog(LOG_ERR, "%s: not a version 2 LFS", fsname); return -1; } /* Assume fsname is the mounted name */ strncpy(mnttmp, fsname, sizeof(mnttmp)); mnttmp[sizeof(mnttmp) - 1] = '\0'; lfs_sb_setfsmnt(fs, mnttmp); /* Set up vnodes for Ifile and raw device */ fs->lfs_ivnode = fd_vget(fs->clfs_ifilefd, lfs_sb_getbsize(fs), 0, 0); fs->clfs_devvp = fd_vget(fs->clfs_devfd, lfs_sb_getfsize(fs), lfs_sb_getssize(fs), atatime); /* Allocate and clear segtab */ fs->clfs_segtab = (struct clfs_seguse *)malloc(lfs_sb_getnseg(fs) * sizeof(*fs->clfs_segtab)); fs->clfs_segtabp = (struct clfs_seguse **)malloc(lfs_sb_getnseg(fs) * sizeof(*fs->clfs_segtabp)); if (fs->clfs_segtab == NULL || fs->clfs_segtabp == NULL) { syslog(LOG_ERR, "%s: couldn't malloc segment table: %m", fs->clfs_dev); return -1; } for (i = 0; i < lfs_sb_getnseg(fs); i++) { fs->clfs_segtabp[i] = &(fs->clfs_segtab[i]); fs->clfs_segtab[i].flags = 0x0; } syslog(LOG_NOTICE, "%s: attaching cleaner", fsname); return 0; } /* * Invalidate all the currently held Ifile blocks so they will be * reread when we clean. Check the size while we're at it, and * resize the buffer cache if necessary. */ void reload_ifile(struct clfs *fs) { struct ubuf *bp; struct stat st; int ohashmax; extern int hashmax; while ((bp = LIST_FIRST(&fs->lfs_ivnode->v_dirtyblkhd)) != NULL) { bremfree(bp); buf_destroy(bp); } while ((bp = LIST_FIRST(&fs->lfs_ivnode->v_cleanblkhd)) != NULL) { bremfree(bp); buf_destroy(bp); } /* If Ifile is larger than buffer cache, rehash */ fstat(fs->clfs_ifilefd, &st); if (st.st_size / lfs_sb_getbsize(fs) > hashmax) { ohashmax = hashmax; bufrehash(st.st_size / lfs_sb_getbsize(fs)); dlog("%s: resized buffer hash from %d to %d", lfs_sb_getfsmnt(fs), ohashmax, hashmax); } } /* * Get IFILE entry for the given inode, store in ifpp. The buffer * which contains that data is returned in bpp, and must be brelse()d * by the caller. * * XXX this is cutpaste of LFS_IENTRY from lfs.h; unify the two. */ void lfs_ientry(IFILE **ifpp, struct clfs *fs, ino_t ino, struct ubuf **bpp) { IFILE64 *ifp64; IFILE32 *ifp32; IFILE_V1 *ifp_v1; int error; error = bread(fs->lfs_ivnode, ino / lfs_sb_getifpb(fs) + lfs_sb_getcleansz(fs) + lfs_sb_getsegtabsz(fs), lfs_sb_getbsize(fs), 0, bpp); if (error) syslog(LOG_ERR, "%s: ientry failed for ino %d", lfs_sb_getfsmnt(fs), (int)ino); if (fs->lfs_is64) { ifp64 = (IFILE64 *)(*bpp)->b_data; ifp64 += ino % lfs_sb_getifpb(fs); *ifpp = (IFILE *)ifp64; } else if (lfs_sb_getversion(fs) > 1) { ifp32 = (IFILE32 *)(*bpp)->b_data; ifp32 += ino % lfs_sb_getifpb(fs); *ifpp = (IFILE *)ifp32; } else { ifp_v1 = (IFILE_V1 *)(*bpp)->b_data; ifp_v1 += ino % lfs_sb_getifpb(fs); *ifpp = (IFILE *)ifp_v1; } return; } #ifdef TEST_PATTERN /* * Check ULFS_ROOTINO for file data. The assumption is that we are running * the "twofiles" test with the rest of the filesystem empty. Files * created by "twofiles" match the test pattern, but ULFS_ROOTINO and the * executable itself (assumed to be inode 3) should not match. */ static void check_test_pattern(BLOCK_INFO *bip) { int j; unsigned char *cp = bip->bi_bp; /* Check inode sanity */ if (bip->bi_lbn == LFS_UNUSED_LBN) { assert(((struct ulfs1_dinode *)bip->bi_bp)->di_inumber == bip->bi_inode); } /* These can have the test pattern and it's all good */ if (bip->bi_inode > 3) return; for (j = 0; j < bip->bi_size; j++) { if (cp[j] != (j & 0xff)) break; } assert(j < bip->bi_size); } #endif /* TEST_PATTERN */ /* * Parse the partial segment at daddr, adding its information to * bip. Return the address of the next partial segment to read. */ static daddr_t parse_pseg(struct clfs *fs, daddr_t daddr, BLOCK_INFO **bipp, int *bic) { SEGSUM *ssp; IFILE *ifp; BLOCK_INFO *bip, *nbip; daddr_t idaddr, odaddr; FINFO *fip; IINFO *iip; struct ubuf *ifbp; union lfs_dinode *dip; u_int32_t ck, vers; int fic, inoc, obic; size_t sumstart; int i; char *cp; odaddr = daddr; obic = *bic; bip = *bipp; /* * Retrieve the segment header, set up the SEGSUM pointer * as well as the first FINFO and inode address pointer. */ cp = fd_ptrget(fs->clfs_devvp, daddr); ssp = (SEGSUM *)cp; iip = SEGSUM_IINFOSTART(fs, cp); fip = SEGSUM_FINFOBASE(fs, cp); /* * Check segment header magic and checksum */ if (lfs_ss_getmagic(fs, ssp) != SS_MAGIC) { syslog(LOG_WARNING, "%s: sumsum magic number bad at 0x%jx:" " read 0x%x, expected 0x%x", lfs_sb_getfsmnt(fs), (intmax_t)daddr, lfs_ss_getmagic(fs, ssp), SS_MAGIC); return 0x0; } sumstart = lfs_ss_getsumstart(fs); ck = cksum((char *)ssp + sumstart, lfs_sb_getsumsize(fs) - sumstart); if (ck != lfs_ss_getsumsum(fs, ssp)) { syslog(LOG_WARNING, "%s: sumsum checksum mismatch at 0x%jx:" " read 0x%x, computed 0x%x", lfs_sb_getfsmnt(fs), (intmax_t)daddr, lfs_ss_getsumsum(fs, ssp), ck); return 0x0; } /* Initialize data sum */ ck = 0; /* Point daddr at next block after segment summary */ ++daddr; /* * Loop over file info and inode pointers. We always move daddr * forward here because we are also computing the data checksum * as we go. */ fic = inoc = 0; while (fic < lfs_ss_getnfinfo(fs, ssp) || inoc < lfs_ss_getninos(fs, ssp)) { /* * We must have either a file block or an inode block. * If we don't have either one, it's an error. */ if (fic >= lfs_ss_getnfinfo(fs, ssp) && lfs_ii_getblock(fs, iip) != daddr) { syslog(LOG_WARNING, "%s: bad pseg at %jx (seg %d)", lfs_sb_getfsmnt(fs), (intmax_t)odaddr, lfs_dtosn(fs, odaddr)); *bipp = bip; return 0x0; } /* * Note each inode from the inode blocks */ if (inoc < lfs_ss_getninos(fs, ssp) && lfs_ii_getblock(fs, iip) == daddr) { cp = fd_ptrget(fs->clfs_devvp, daddr); ck = lfs_cksum_part(cp, sizeof(u_int32_t), ck); for (i = 0; i < lfs_sb_getinopb(fs); i++) { dip = DINO_IN_BLOCK(fs, cp, i); if (lfs_dino_getinumber(fs, dip) == 0) break; /* * Check currency before adding it */ #ifndef REPAIR_ZERO_FINFO lfs_ientry(&ifp, fs, lfs_dino_getinumber(fs, dip), &ifbp); idaddr = lfs_if_getdaddr(fs, ifp); brelse(ifbp, 0); if (idaddr != daddr) #endif continue; /* * A current inode. Add it. */ ++*bic; nbip = (BLOCK_INFO *)realloc(bip, *bic * sizeof(*bip)); if (nbip) bip = nbip; else { --*bic; *bipp = bip; return 0x0; } bip[*bic - 1].bi_inode = lfs_dino_getinumber(fs, dip); bip[*bic - 1].bi_lbn = LFS_UNUSED_LBN; bip[*bic - 1].bi_daddr = daddr; bip[*bic - 1].bi_segcreate = lfs_ss_getcreate(fs, ssp); bip[*bic - 1].bi_version = lfs_dino_getgen(fs, dip); bip[*bic - 1].bi_bp = dip; bip[*bic - 1].bi_size = DINOSIZE(fs); } inoc += i; daddr += lfs_btofsb(fs, lfs_sb_getibsize(fs)); iip = NEXTLOWER_IINFO(fs, iip); continue; } /* * Note each file block from the finfo blocks */ if (fic >= lfs_ss_getnfinfo(fs, ssp)) continue; /* Count this finfo, whether or not we use it */ ++fic; /* * If this finfo has nblocks==0, it was written wrong. * Kernels with this problem always wrote this zero-sized * finfo last, so just ignore it. */ if (lfs_fi_getnblocks(fs, fip) == 0) { #ifdef REPAIR_ZERO_FINFO struct ubuf *nbp; SEGSUM *nssp; syslog(LOG_WARNING, "fixing short FINFO at %jx (seg %d)", (intmax_t)odaddr, lfs_dtosn(fs, odaddr)); bread(fs->clfs_devvp, odaddr, lfs_sb_getfsize(fs), 0, &nbp); nssp = (SEGSUM *)nbp->b_data; --nssp->ss_nfinfo; nssp->ss_sumsum = cksum(&nssp->ss_datasum, lfs_sb_getsumsize(fs) - sizeof(nssp->ss_sumsum)); bwrite(nbp); #endif syslog(LOG_WARNING, "zero-length FINFO at %jx (seg %d)", (intmax_t)odaddr, lfs_dtosn(fs, odaddr)); continue; } /* * Check currency before adding blocks */ #ifdef REPAIR_ZERO_FINFO vers = -1; #else lfs_ientry(&ifp, fs, lfs_fi_getino(fs, fip), &ifbp); vers = lfs_if_getversion(fs, ifp); brelse(ifbp, 0); #endif if (vers != lfs_fi_getversion(fs, fip)) { size_t size; /* Read all the blocks from the data summary */ for (i = 0; i < lfs_fi_getnblocks(fs, fip); i++) { size = (i == lfs_fi_getnblocks(fs, fip) - 1) ? lfs_fi_getlastlength(fs, fip) : lfs_sb_getbsize(fs); cp = fd_ptrget(fs->clfs_devvp, daddr); ck = lfs_cksum_part(cp, sizeof(u_int32_t), ck); daddr += lfs_btofsb(fs, size); } fip = NEXT_FINFO(fs, fip); continue; } /* Add all the blocks from the finfos (current or not) */ nbip = (BLOCK_INFO *)realloc(bip, (*bic + lfs_fi_getnblocks(fs, fip)) * sizeof(*bip)); if (nbip) bip = nbip; else { *bipp = bip; return 0x0; } for (i = 0; i < lfs_fi_getnblocks(fs, fip); i++) { bip[*bic + i].bi_inode = lfs_fi_getino(fs, fip); bip[*bic + i].bi_lbn = lfs_fi_getblock(fs, fip, i); bip[*bic + i].bi_daddr = daddr; bip[*bic + i].bi_segcreate = lfs_ss_getcreate(fs, ssp); bip[*bic + i].bi_version = lfs_fi_getversion(fs, fip); bip[*bic + i].bi_size = (i == lfs_fi_getnblocks(fs, fip) - 1) ? lfs_fi_getlastlength(fs, fip) : lfs_sb_getbsize(fs); cp = fd_ptrget(fs->clfs_devvp, daddr); ck = lfs_cksum_part(cp, sizeof(u_int32_t), ck); bip[*bic + i].bi_bp = cp; daddr += lfs_btofsb(fs, bip[*bic + i].bi_size); #ifdef TEST_PATTERN check_test_pattern(bip + *bic + i); /* XXXDEBUG */ #endif } *bic += lfs_fi_getnblocks(fs, fip); fip = NEXT_FINFO(fs, fip); } #ifndef REPAIR_ZERO_FINFO if (lfs_ss_getdatasum(fs, ssp) != ck) { syslog(LOG_WARNING, "%s: data checksum bad at 0x%jx:" " read 0x%x, computed 0x%x", lfs_sb_getfsmnt(fs), (intmax_t)odaddr, lfs_ss_getdatasum(fs, ssp), ck); *bic = obic; return 0x0; } #endif *bipp = bip; return daddr; } static void log_segment_read(struct clfs *fs, int sn) { FILE *fp; char *cp; /* * Write the segment read, and its contents, into a log file in * the current directory. We don't need to log the location of * the segment, since that can be inferred from the segments up * to this point (ss_nextseg field of the previously written segment). * * We can use this info later to reconstruct the filesystem at any * given point in time for analysis, by replaying the log forward * indexed by the segment serial numbers; but it is not suitable * for everyday use since the copylog will be simply enormous. */ cp = fd_ptrget(fs->clfs_devvp, lfs_sntod(fs, sn)); fp = fopen(copylog_filename, "ab"); if (fp != NULL) { if (fwrite(cp, (size_t)lfs_sb_getssize(fs), 1, fp) != 1) { perror("writing segment to copy log"); } } fclose(fp); } /* * Read a segment to populate the BLOCK_INFO structures. * Return the number of partial segments read and parsed. */ int load_segment(struct clfs *fs, int sn, BLOCK_INFO **bipp, int *bic) { daddr_t daddr; int i, npseg; daddr = lfs_sntod(fs, sn); if (daddr < lfs_btofsb(fs, LFS_LABELPAD)) daddr = lfs_btofsb(fs, LFS_LABELPAD); for (i = 0; i < LFS_MAXNUMSB; i++) { if (lfs_sb_getsboff(fs, i) == daddr) { daddr += lfs_btofsb(fs, LFS_SBPAD); break; } } /* Preload the segment buffer */ if (fd_preload(fs->clfs_devvp, lfs_sntod(fs, sn)) < 0) return -1; if (copylog_filename) log_segment_read(fs, sn); /* Note bytes read for stats */ cleaner_stats.segs_cleaned++; cleaner_stats.bytes_read += lfs_sb_getssize(fs); ++fs->clfs_nactive; npseg = 0; while(lfs_dtosn(fs, daddr) == sn && lfs_dtosn(fs, daddr + lfs_btofsb(fs, lfs_sb_getbsize(fs))) == sn) { daddr = parse_pseg(fs, daddr, bipp, bic); if (daddr == 0x0) { ++cleaner_stats.segs_error; break; } ++npseg; } return npseg; } void calc_cb(struct clfs *fs, int sn, struct clfs_seguse *t) { time_t now; int64_t age, benefit, cost; time(&now); age = (now < t->lastmod ? 0 : now - t->lastmod); /* Under no circumstances clean active or already-clean segments */ if ((t->flags & SEGUSE_ACTIVE) || !(t->flags & SEGUSE_DIRTY)) { t->priority = 0; return; } /* * If the segment is empty, there is no reason to clean it. * Clear its error condition, if any, since we are never going to * try to parse this one. */ if (t->nbytes == 0) { t->flags &= ~SEGUSE_ERROR; /* Strip error once empty */ t->priority = 0; return; } if (t->flags & SEGUSE_ERROR) { /* No good if not already empty */ /* No benefit */ t->priority = 0; return; } if (t->nbytes > lfs_sb_getssize(fs)) { /* Another type of error */ syslog(LOG_WARNING, "segment %d: bad seguse count %d", sn, t->nbytes); t->flags |= SEGUSE_ERROR; t->priority = 0; return; } /* * The non-degenerate case. Use Rosenblum's cost-benefit algorithm. * Calculate the benefit from cleaning this segment (one segment, * minus fragmentation, dirty blocks and a segment summary block) * and weigh that against the cost (bytes read plus bytes written). * We count the summary headers as "dirty" to avoid cleaning very * old and very full segments. */ benefit = (int64_t)lfs_sb_getssize(fs) - t->nbytes - (t->nsums + 1) * lfs_sb_getfsize(fs); if (lfs_sb_getbsize(fs) > lfs_sb_getfsize(fs)) /* fragmentation */ benefit -= (lfs_sb_getbsize(fs) / 2); if (benefit <= 0) { t->priority = 0; return; } cost = lfs_sb_getssize(fs) + t->nbytes; t->priority = (256 * benefit * age) / cost; return; } /* * Comparator for BLOCK_INFO structures. Anything not in one of the segments * we're looking at sorts higher; after that we sort first by inode number * and then by block number (unsigned, i.e., negative sorts higher) *but* * sort inodes before data blocks. */ static int bi_comparator(const void *va, const void *vb) { const BLOCK_INFO *a, *b; a = (const BLOCK_INFO *)va; b = (const BLOCK_INFO *)vb; /* Check for out-of-place block */ if (a->bi_segcreate == a->bi_daddr && b->bi_segcreate != b->bi_daddr) return -1; if (a->bi_segcreate != a->bi_daddr && b->bi_segcreate == b->bi_daddr) return 1; if (a->bi_size <= 0 && b->bi_size > 0) return 1; if (b->bi_size <= 0 && a->bi_size > 0) return -1; /* Check inode number */ if (a->bi_inode != b->bi_inode) return a->bi_inode - b->bi_inode; /* Check lbn */ if (a->bi_lbn == LFS_UNUSED_LBN) /* Inodes sort lower than blocks */ return -1; if (b->bi_lbn == LFS_UNUSED_LBN) return 1; if ((u_int64_t)a->bi_lbn > (u_int64_t)b->bi_lbn) return 1; else return -1; return 0; } /* * Comparator for sort_segments: cost-benefit equation. */ static int cb_comparator(const void *va, const void *vb) { const struct clfs_seguse *a, *b; a = *(const struct clfs_seguse * const *)va; b = *(const struct clfs_seguse * const *)vb; return a->priority > b->priority ? -1 : 1; } void toss_old_blocks(struct clfs *fs, BLOCK_INFO **bipp, blkcnt_t *bic, int *sizep) { blkcnt_t i; int r; BLOCK_INFO *bip = *bipp; struct lfs_fcntl_markv /* { BLOCK_INFO *blkiov; int blkcnt; } */ lim; if (bic == 0 || bip == NULL) return; /* * Kludge: Store the disk address in segcreate so we know which * ones to toss. */ for (i = 0; i < *bic; i++) bip[i].bi_segcreate = bip[i].bi_daddr; /* * XXX: blkcnt_t is 64 bits, so *bic might overflow size_t * (the argument type of heapsort's number argument) on a * 32-bit platform. However, if so we won't have got this far * because we'll have failed trying to allocate the array. So * while *bic here might cause a 64->32 truncation, it's safe. */ /* Sort the blocks */ heapsort(bip, *bic, sizeof(BLOCK_INFO), bi_comparator); /* Use bmapv to locate the blocks */ lim.blkiov = bip; lim.blkcnt = *bic; if ((r = kops.ko_fcntl(fs->clfs_ifilefd, LFCNBMAPV, &lim)) < 0) { syslog(LOG_WARNING, "%s: bmapv returned %d (%m)", lfs_sb_getfsmnt(fs), r); return; } /* Toss blocks not in this segment */ heapsort(bip, *bic, sizeof(BLOCK_INFO), bi_comparator); /* Get rid of stale blocks */ if (sizep) *sizep = 0; for (i = 0; i < *bic; i++) { if (bip[i].bi_segcreate != bip[i].bi_daddr) break; if (sizep) *sizep += bip[i].bi_size; } *bic = i; /* XXX should we shrink bip? */ *bipp = bip; return; } /* * Clean a segment and mark it invalid. */ int invalidate_segment(struct clfs *fs, int sn) { BLOCK_INFO *bip; int i, r, bic; blkcnt_t widebic; off_t nb; double util; struct lfs_fcntl_markv /* { BLOCK_INFO *blkiov; int blkcnt; } */ lim; dlog("%s: inval seg %d", lfs_sb_getfsmnt(fs), sn); bip = NULL; bic = 0; fs->clfs_nactive = 0; if (load_segment(fs, sn, &bip, &bic) <= 0) return -1; widebic = bic; toss_old_blocks(fs, &bip, &widebic, NULL); bic = widebic; /* Record statistics */ for (i = nb = 0; i < bic; i++) nb += bip[i].bi_size; util = ((double)nb) / (fs->clfs_nactive * lfs_sb_getssize(fs)); cleaner_stats.util_tot += util; cleaner_stats.util_sos += util * util; cleaner_stats.bytes_written += nb; /* * Use markv to move the blocks. */ lim.blkiov = bip; lim.blkcnt = bic; if ((r = kops.ko_fcntl(fs->clfs_ifilefd, LFCNMARKV, &lim)) < 0) { syslog(LOG_WARNING, "%s: markv returned %d (%m) " "for seg %d", lfs_sb_getfsmnt(fs), r, sn); return r; } /* * Finally call invalidate to invalidate the segment. */ if ((r = kops.ko_fcntl(fs->clfs_ifilefd, LFCNINVAL, &sn)) < 0) { syslog(LOG_WARNING, "%s: inval returned %d (%m) " "for seg %d", lfs_sb_getfsmnt(fs), r, sn); return r; } return 0; } /* * Check to see if the given ino/lbn pair is represented in the BLOCK_INFO * array we are sending to the kernel, or if the kernel will have to add it. * The kernel will only add each such pair once, though, so keep track of * previous requests in a separate "extra" BLOCK_INFO array. Returns 1 * if the block needs to be added, 0 if it is already represented. */ static int check_or_add(ino_t ino, daddr_t lbn, BLOCK_INFO *bip, int bic, BLOCK_INFO **ebipp, int *ebicp) { BLOCK_INFO *t, *ebip = *ebipp; int ebic = *ebicp; int k; for (k = 0; k < bic; k++) { if (bip[k].bi_inode != ino) break; if (bip[k].bi_lbn == lbn) { return 0; } } /* Look on the list of extra blocks, too */ for (k = 0; k < ebic; k++) { if (ebip[k].bi_inode == ino && ebip[k].bi_lbn == lbn) { return 0; } } ++ebic; t = realloc(ebip, ebic * sizeof(BLOCK_INFO)); if (t == NULL) return 1; /* Note *ebicp is unchanged */ ebip = t; ebip[ebic - 1].bi_inode = ino; ebip[ebic - 1].bi_lbn = lbn; *ebipp = ebip; *ebicp = ebic; return 1; } /* * Look for indirect blocks we will have to write which are not * contained in this collection of blocks. This constitutes * a hidden cleaning cost, since we are unaware of it until we * have already read the segments. Return the total cost, and fill * in *ifc with the part of that cost due to rewriting the Ifile. */ static off_t check_hidden_cost(struct clfs *fs, BLOCK_INFO *bip, int bic, off_t *ifc) { int start; struct indir in[ULFS_NIADDR + 1]; int num; int i, j, ebic; BLOCK_INFO *ebip; daddr_t lbn; start = 0; ebip = NULL; ebic = 0; for (i = 0; i < bic; i++) { if (i == 0 || bip[i].bi_inode != bip[start].bi_inode) { start = i; /* * Look for IFILE blocks, unless this is the Ifile. */ if (bip[i].bi_inode != LFS_IFILE_INUM) { lbn = lfs_sb_getcleansz(fs) + bip[i].bi_inode / lfs_sb_getifpb(fs); *ifc += check_or_add(LFS_IFILE_INUM, lbn, bip, bic, &ebip, &ebic); } } if (bip[i].bi_lbn == LFS_UNUSED_LBN) continue; if (bip[i].bi_lbn < ULFS_NDADDR) continue; /* XXX the struct lfs cast is completely wrong/unsafe */ ulfs_getlbns((struct lfs *)fs, NULL, (daddr_t)bip[i].bi_lbn, in, &num); for (j = 0; j < num; j++) { check_or_add(bip[i].bi_inode, in[j].in_lbn, bip + start, bic - start, &ebip, &ebic); } } return ebic; } /* * Select segments to clean, add blocks from these segments to a cleaning * list, and send this list through lfs_markv() to move them to new * locations on disk. */ static int clean_fs(struct clfs *fs, const CLEANERINFO64 *cip) { int i, j, ngood, sn, bic, r, npos; blkcnt_t widebic; int bytes, totbytes; struct ubuf *bp; SEGUSE *sup; static BLOCK_INFO *bip; struct lfs_fcntl_markv /* { BLOCK_INFO *blkiov; int blkcnt; } */ lim; int mc; BLOCK_INFO *mbip; int inc; off_t nb; off_t goal; off_t extra, if_extra; double util; /* Read the segment table into our private structure */ npos = 0; for (i = 0; i < lfs_sb_getnseg(fs); i+= lfs_sb_getsepb(fs)) { bread(fs->lfs_ivnode, lfs_sb_getcleansz(fs) + i / lfs_sb_getsepb(fs), lfs_sb_getbsize(fs), 0, &bp); for (j = 0; j < lfs_sb_getsepb(fs) && i + j < lfs_sb_getnseg(fs); j++) { sup = ((SEGUSE *)bp->b_data) + j; fs->clfs_segtab[i + j].nbytes = sup->su_nbytes; fs->clfs_segtab[i + j].nsums = sup->su_nsums; fs->clfs_segtab[i + j].lastmod = sup->su_lastmod; /* Keep error status but renew other flags */ fs->clfs_segtab[i + j].flags &= SEGUSE_ERROR; fs->clfs_segtab[i + j].flags |= sup->su_flags; /* Compute cost-benefit coefficient */ calc_cb(fs, i + j, fs->clfs_segtab + i + j); if (fs->clfs_segtab[i + j].priority > 0) ++npos; } brelse(bp, 0); } /* Sort segments based on cleanliness, fulness, and condition */ heapsort(fs->clfs_segtabp, lfs_sb_getnseg(fs), sizeof(struct clfs_seguse *), cb_comparator); /* If no segment is cleanable, just return */ if (fs->clfs_segtabp[0]->priority == 0) { dlog("%s: no segment cleanable", lfs_sb_getfsmnt(fs)); return 0; } /* Load some segments' blocks into bip */ bic = 0; fs->clfs_nactive = 0; ngood = 0; if (use_bytes) { /* Set attainable goal */ goal = lfs_sb_getssize(fs) * atatime; if (goal > (cip->clean - 1) * lfs_sb_getssize(fs) / 2) goal = MAX((cip->clean - 1) * lfs_sb_getssize(fs), lfs_sb_getssize(fs)) / 2; dlog("%s: cleaning with goal %" PRId64 " bytes (%d segs clean, %d cleanable)", lfs_sb_getfsmnt(fs), goal, cip->clean, npos); syslog(LOG_INFO, "%s: cleaning with goal %" PRId64 " bytes (%d segs clean, %d cleanable)", lfs_sb_getfsmnt(fs), goal, cip->clean, npos); totbytes = 0; for (i = 0; i < lfs_sb_getnseg(fs) && totbytes < goal; i++) { if (fs->clfs_segtabp[i]->priority == 0) break; /* Upper bound on number of segments at once */ if (ngood * lfs_sb_getssize(fs) > 4 * goal) break; sn = (fs->clfs_segtabp[i] - fs->clfs_segtab); dlog("%s: add seg %d prio %" PRIu64 " containing %ld bytes", lfs_sb_getfsmnt(fs), sn, fs->clfs_segtabp[i]->priority, fs->clfs_segtabp[i]->nbytes); if ((r = load_segment(fs, sn, &bip, &bic)) > 0) { ++ngood; widebic = bic; toss_old_blocks(fs, &bip, &widebic, &bytes); bic = widebic; totbytes += bytes; } else if (r == 0) fd_release(fs->clfs_devvp); else break; } } else { /* Set attainable goal */ goal = atatime; if (goal > cip->clean - 1) goal = MAX(cip->clean - 1, 1); dlog("%s: cleaning with goal %d segments (%d clean, %d cleanable)", lfs_sb_getfsmnt(fs), (int)goal, cip->clean, npos); for (i = 0; i < lfs_sb_getnseg(fs) && ngood < goal; i++) { if (fs->clfs_segtabp[i]->priority == 0) break; sn = (fs->clfs_segtabp[i] - fs->clfs_segtab); dlog("%s: add seg %d prio %" PRIu64, lfs_sb_getfsmnt(fs), sn, fs->clfs_segtabp[i]->priority); if ((r = load_segment(fs, sn, &bip, &bic)) > 0) ++ngood; else if (r == 0) fd_release(fs->clfs_devvp); else break; } widebic = bic; toss_old_blocks(fs, &bip, &widebic, NULL); bic = widebic; } /* If there is nothing to do, try again later. */ if (bic == 0) { dlog("%s: no blocks to clean in %d cleanable segments", lfs_sb_getfsmnt(fs), (int)ngood); fd_release_all(fs->clfs_devvp); return 0; } /* Record statistics */ for (i = nb = 0; i < bic; i++) nb += bip[i].bi_size; util = ((double)nb) / (fs->clfs_nactive * lfs_sb_getssize(fs)); cleaner_stats.util_tot += util; cleaner_stats.util_sos += util * util; cleaner_stats.bytes_written += nb; /* * Check out our blocks to see if there are hidden cleaning costs. * If there are, we might be cleaning ourselves deeper into a hole * rather than doing anything useful. * XXX do something about this. */ if_extra = 0; extra = lfs_sb_getbsize(fs) * (off_t)check_hidden_cost(fs, bip, bic, &if_extra); if_extra *= lfs_sb_getbsize(fs); /* * Use markv to move the blocks. */ if (do_small) inc = MAXPHYS / lfs_sb_getbsize(fs) - 1; else inc = LFS_MARKV_MAXBLKCNT / 2; for (mc = 0, mbip = bip; mc < bic; mc += inc, mbip += inc) { lim.blkiov = mbip; lim.blkcnt = (bic - mc > inc ? inc : bic - mc); #ifdef TEST_PATTERN dlog("checking blocks %d-%d", mc, mc + lim.blkcnt - 1); for (i = 0; i < lim.blkcnt; i++) { check_test_pattern(mbip + i); } #endif /* TEST_PATTERN */ dlog("sending blocks %d-%d", mc, mc + lim.blkcnt - 1); if ((r = kops.ko_fcntl(fs->clfs_ifilefd, LFCNMARKV, &lim))<0) { int oerrno = errno; syslog(LOG_WARNING, "%s: markv returned %d (errno %d, %m)", lfs_sb_getfsmnt(fs), r, errno); if (oerrno != EAGAIN && oerrno != ESHUTDOWN) { syslog(LOG_DEBUG, "%s: errno %d, returning", lfs_sb_getfsmnt(fs), oerrno); fd_release_all(fs->clfs_devvp); return r; } if (oerrno == ESHUTDOWN) { syslog(LOG_NOTICE, "%s: filesystem unmounted", lfs_sb_getfsmnt(fs)); fd_release_all(fs->clfs_devvp); return r; } } } /* * Report progress (or lack thereof) */ syslog(LOG_INFO, "%s: wrote %" PRId64 " dirty + %" PRId64 " supporting indirect + %" PRId64 " supporting Ifile = %" PRId64 " bytes to clean %d segs (%" PRId64 "%% recovery)", lfs_sb_getfsmnt(fs), (int64_t)nb, (int64_t)(extra - if_extra), (int64_t)if_extra, (int64_t)(nb + extra), ngood, (ngood ? (int64_t)(100 - (100 * (nb + extra)) / (ngood * lfs_sb_getssize(fs))) : (int64_t)0)); if (nb + extra >= ngood * lfs_sb_getssize(fs)) syslog(LOG_WARNING, "%s: cleaner not making forward progress", lfs_sb_getfsmnt(fs)); /* * Finally call reclaim to prompt cleaning of the segments. */ kops.ko_fcntl(fs->clfs_ifilefd, LFCNRECLAIM, NULL); fd_release_all(fs->clfs_devvp); return 0; } /* * Read the cleanerinfo block and apply cleaning policy to determine whether * the given filesystem needs to be cleaned. Returns 1 if it does, 0 if it * does not, or -1 on error. */ static int needs_cleaning(struct clfs *fs, CLEANERINFO64 *cip) { CLEANERINFO *cipu; struct ubuf *bp; struct stat st; daddr_t fsb_per_seg, max_free_segs; time_t now; double loadavg; /* If this fs is "on hold", don't clean it. */ if (fs->clfs_onhold) { #if defined(__GNUC__) && \ (__GNUC__ > 4 || (__GNUC__ == 4 && __GNUC_MINOR__ >= 8)) && \ defined(__OPTIMIZE_SIZE__) /* * XXX: Work around apparent bug with GCC >= 4.8 and -Os: it * claims that ci.clean is uninitialized in clean_fs (at one * of the several uses of it, which is neither the first nor * last use) -- this doesn't happen with plain -O2. * * Hopefully in the future further rearrangements will allow * removing this hack. */ cip->clean = 0; #endif return 0; } /* * Read the cleanerinfo block from the Ifile. We don't want * the cached information, so invalidate the buffer before * handing it back. */ if (bread(fs->lfs_ivnode, 0, lfs_sb_getbsize(fs), 0, &bp)) { syslog(LOG_ERR, "%s: can't read inode", lfs_sb_getfsmnt(fs)); return -1; } cipu = (CLEANERINFO *)bp->b_data; if (fs->lfs_is64) { /* Structure copy */ *cip = cipu->u_64; } else { /* Copy the fields and promote to 64 bit */ cip->clean = cipu->u_32.clean; cip->dirty = cipu->u_32.dirty; cip->bfree = cipu->u_32.bfree; cip->avail = cipu->u_32.avail; cip->free_head = cipu->u_32.free_head; cip->free_tail = cipu->u_32.free_tail; cip->flags = cipu->u_32.flags; } brelse(bp, B_INVAL); cleaner_stats.bytes_read += lfs_sb_getbsize(fs); /* * If the number of segments changed under us, reinit. * We don't have to start over from scratch, however, * since we don't hold any buffers. */ if (lfs_sb_getnseg(fs) != cip->clean + cip->dirty) { if (reinit_fs(fs) < 0) { /* The normal case for unmount */ syslog(LOG_NOTICE, "%s: filesystem unmounted", lfs_sb_getfsmnt(fs)); return -1; } syslog(LOG_NOTICE, "%s: nsegs changed", lfs_sb_getfsmnt(fs)); } /* Compute theoretical "free segments" maximum based on usage */ fsb_per_seg = lfs_segtod(fs, 1); max_free_segs = MAX(cip->bfree, 0) / fsb_per_seg + lfs_sb_getminfreeseg(fs); dlog("%s: bfree = %d, avail = %d, clean = %d/%d", lfs_sb_getfsmnt(fs), cip->bfree, cip->avail, cip->clean, lfs_sb_getnseg(fs)); /* If the writer is waiting on us, clean it */ if (cip->clean <= lfs_sb_getminfreeseg(fs) || (cip->flags & LFS_CLEANER_MUST_CLEAN)) return 1; /* If there are enough segments, don't clean it */ if (cip->bfree - cip->avail <= fsb_per_seg && cip->avail > fsb_per_seg) return 0; /* If we are in dire straits, clean it */ if (cip->bfree - cip->avail > fsb_per_seg && cip->avail <= fsb_per_seg) return 1; /* If under busy threshold, clean regardless of load */ if (cip->clean < max_free_segs * BUSY_LIM) return 1; /* Check busy status; clean if idle and under idle limit */ if (use_fs_idle) { /* Filesystem idle */ time(&now); if (fstat(fs->clfs_ifilefd, &st) < 0) { syslog(LOG_ERR, "%s: failed to stat ifile", lfs_sb_getfsmnt(fs)); return -1; } if (now - st.st_mtime > segwait_timeout && cip->clean < max_free_segs * IDLE_LIM) return 1; } else { /* CPU idle - use one-minute load avg */ if (getloadavg(&loadavg, 1) == -1) { syslog(LOG_ERR, "%s: failed to get load avg", lfs_sb_getfsmnt(fs)); return -1; } if (loadavg < load_threshold && cip->clean < max_free_segs * IDLE_LIM) return 1; } return 0; } /* * Report statistics. If the signal was SIGUSR2, clear the statistics too. * If the signal was SIGINT, exit. */ static void sig_report(int sig) { double avg = 0.0, stddev; avg = cleaner_stats.util_tot / MAX(cleaner_stats.segs_cleaned, 1.0); stddev = cleaner_stats.util_sos / MAX(cleaner_stats.segs_cleaned - avg * avg, 1.0); syslog(LOG_INFO, "bytes read: %" PRId64, cleaner_stats.bytes_read); syslog(LOG_INFO, "bytes written: %" PRId64, cleaner_stats.bytes_written); syslog(LOG_INFO, "segments cleaned: %" PRId64, cleaner_stats.segs_cleaned); #if 0 /* "Empty segments" is meaningless, since the kernel handles those */ syslog(LOG_INFO, "empty segments: %" PRId64, cleaner_stats.segs_empty); #endif syslog(LOG_INFO, "error segments: %" PRId64, cleaner_stats.segs_error); syslog(LOG_INFO, "utilization total: %g", cleaner_stats.util_tot); syslog(LOG_INFO, "utilization sos: %g", cleaner_stats.util_sos); syslog(LOG_INFO, "utilization avg: %4.2f", avg); syslog(LOG_INFO, "utilization sdev: %9.6f", stddev); if (debug) bufstats(); if (sig == SIGUSR2) memset(&cleaner_stats, 0, sizeof(cleaner_stats)); if (sig == SIGINT) exit(0); } static void sig_exit(int sig) { exit(0); } static void usage(void) { fprintf(stderr, "usage: lfs_cleanerd [-bcdfmqsJ] [-i segnum] [-l load] " "[-n nsegs] [-r report_freq] [-t timeout] fs_name ..."); } #ifndef LFS_CLEANER_AS_LIB /* * Main. */ int main(int argc, char **argv) { return lfs_cleaner_main(argc, argv); } #endif int lfs_cleaner_main(int argc, char **argv) { int i, opt, error, r, loopcount, nodetach; struct timeval tv; #ifdef LFS_CLEANER_AS_LIB sem_t *semaddr = NULL; #endif CLEANERINFO64 ci; #ifndef USE_CLIENT_SERVER char *cp, *pidname; #endif /* * Set up defaults */ atatime = 1; segwait_timeout = 300; /* Five minutes */ load_threshold = 0.2; stat_report = 0; inval_segment = -1; copylog_filename = NULL; nodetach = 0; do_asdevice = NULL; /* * Parse command-line arguments */ while ((opt = getopt(argc, argv, "bC:cdDfi:J:l:mn:qr:sS:t:")) != -1) { switch (opt) { case 'b': /* Use bytes written, not segments read */ use_bytes = 1; break; case 'C': /* copy log */ copylog_filename = optarg; break; case 'c': /* Coalesce files */ do_coalesce++; break; case 'd': /* Debug mode. */ nodetach++; debug++; break; case 'D': /* stay-on-foreground */ nodetach++; break; case 'f': /* Use fs idle time rather than cpu idle */ use_fs_idle = 1; break; case 'i': /* Invalidate this segment */ inval_segment = atoi(optarg); break; case 'l': /* Load below which to clean */ load_threshold = atof(optarg); break; case 'm': /* [compat only] */ break; case 'n': /* How many segs to clean at once */ atatime = atoi(optarg); break; case 'q': /* Quit after one run */ do_quit = 1; break; case 'r': /* Report every stat_report segments */ stat_report = atoi(optarg); break; case 's': /* Small writes */ do_small = 1; break; #ifdef LFS_CLEANER_AS_LIB case 'S': /* semaphore */ semaddr = (void*)(uintptr_t)strtoull(optarg,NULL,0); break; #endif case 't': /* timeout */ segwait_timeout = atoi(optarg); break; case 'J': /* do as a device */ do_asdevice = optarg; break; default: usage(); /* NOTREACHED */ } } argc -= optind; argv += optind; if (argc < 1) usage(); if (inval_segment >= 0 && argc != 1) { errx(1, "lfs_cleanerd: may only specify one filesystem when " "using -i flag"); } if (do_coalesce) { errx(1, "lfs_cleanerd: -c disabled due to reports of file " "corruption; you may re-enable it by rebuilding the " "cleaner"); } /* * Set up daemon mode or foreground mode */ if (nodetach) { openlog("lfs_cleanerd", LOG_NDELAY | LOG_PID | LOG_PERROR, LOG_DAEMON); signal(SIGINT, sig_report); } else { if (daemon(0, 0) == -1) err(1, "lfs_cleanerd: couldn't become a daemon!"); openlog("lfs_cleanerd", LOG_NDELAY | LOG_PID, LOG_DAEMON); signal(SIGINT, sig_exit); } /* * Look for an already-running master daemon. If there is one, * send it our filesystems to add to its list and exit. * If there is none, become the master. */ #ifdef USE_CLIENT_SERVER try_to_become_master(argc, argv); #else /* XXX think about this */ asprintf(&pidname, "lfs_cleanerd:m:%s", argv[0]); if (pidname == NULL) { syslog(LOG_ERR, "malloc failed: %m"); exit(1); } for (cp = pidname; cp != NULL; cp = strchr(cp, '/')) *cp = '|'; pidfile(pidname); #endif /* * Signals mean daemon should report its statistics */ memset(&cleaner_stats, 0, sizeof(cleaner_stats)); signal(SIGUSR1, sig_report); signal(SIGUSR2, sig_report); /* * Start up buffer cache. We only use this for the Ifile, * and we will resize it if necessary, so it can start small. */ bufinit(4); #ifdef REPAIR_ZERO_FINFO { BLOCK_INFO *bip = NULL; int bic = 0; nfss = 1; fsp = (struct clfs **)malloc(sizeof(*fsp)); fsp[0] = (struct clfs *)calloc(1, sizeof(**fsp)); if (init_unmounted_fs(fsp[0], argv[0]) < 0) { err(1, "init_unmounted_fs"); } dlog("Filesystem has %d segments", fsp[0]->lfs_nseg); for (i = 0; i < fsp[0]->lfs_nseg; i++) { load_segment(fsp[0], i, &bip, &bic); bic = 0; } exit(0); } #endif /* * Initialize cleaning structures, open devices, etc. */ nfss = argc; fsp = (struct clfs **)malloc(nfss * sizeof(*fsp)); if (fsp == NULL) { syslog(LOG_ERR, "couldn't allocate fs table: %m"); exit(1); } for (i = 0; i < nfss; i++) { fsp[i] = (struct clfs *)calloc(1, sizeof(**fsp)); if ((r = init_fs(fsp[i], argv[i])) < 0) { syslog(LOG_ERR, "%s: couldn't init: error code %d", argv[i], r); handle_error(fsp, i); --i; /* Do the new #i over again */ } } /* * If asked to coalesce, do so and exit. */ if (do_coalesce) { for (i = 0; i < nfss; i++) clean_all_inodes(fsp[i]); exit(0); } /* * If asked to invalidate a segment, do that and exit. */ if (inval_segment >= 0) { invalidate_segment(fsp[0], inval_segment); exit(0); } /* * Main cleaning loop. */ loopcount = 0; #ifdef LFS_CLEANER_AS_LIB if (semaddr) sem_post(semaddr); #endif error = 0; while (nfss > 0) { int cleaned_one; do { #ifdef USE_CLIENT_SERVER check_control_socket(); #endif cleaned_one = 0; for (i = 0; i < nfss; i++) { if ((error = needs_cleaning(fsp[i], &ci)) < 0) { syslog(LOG_DEBUG, "%s: needs_cleaning returned %d", getprogname(), error); handle_error(fsp, i); continue; } if (error == 0) /* No need to clean */ continue; reload_ifile(fsp[i]); if ((error = clean_fs(fsp[i], &ci)) < 0) { syslog(LOG_DEBUG, "%s: clean_fs returned %d", getprogname(), error); handle_error(fsp, i); continue; } ++cleaned_one; } ++loopcount; if (stat_report && loopcount % stat_report == 0) sig_report(0); if (do_quit) exit(0); } while(cleaned_one); tv.tv_sec = segwait_timeout; tv.tv_usec = 0; /* XXX: why couldn't others work if fsp socket is shutdown? */ error = kops.ko_fcntl(fsp[0]->clfs_ifilefd,LFCNSEGWAITALL,&tv); if (error) { if (errno == ESHUTDOWN) { for (i = 0; i < nfss; i++) { syslog(LOG_INFO, "%s: shutdown", getprogname()); handle_error(fsp, i); assert(nfss == 0); } } else { #ifdef LFS_CLEANER_AS_LIB error = ESHUTDOWN; break; #else err(1, "LFCNSEGWAITALL"); #endif } } } /* NOTREACHED */ return error; }