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1. Introduction 
 

All remote sensing measurements acquired in space from space-borne imaging sensors in 

the solar domain turn out to be strongly dependent on the particular geometry of 

illumination and observation at the time these measurements are made. In other words, if 

the same geophysical environment had been observed from a different direction or if the 

Sun had been at a different location relative to the target of interest, the measurements 

would have been different. The proper interpretation of such observations must therefore 

take this variability into account. 

   A similar situation occurs in the spectral domain: different measurements are acquired 

when a target is observed in different spectral bands, and this variability is considered as 

a 'signature' that betrays the nature of the target. The interpretation of remote sensing 

measurements without understanding the spectral nature of the signals would lead to 

unrealistic and most probably erroneous results. In the same way, interpreting remote 

sensing measurements without understanding their directional nature can only lead to 

inaccurate or useless results. 

   The reflectance of a geophysical medium is thus dependent on both the direction of the 

Sun and the direction of the observer with respect to the target. Such a medium is called 

'anisotropic', and the reflectance is characterized as 'bidirectional'. By contrast, a perfectly 

reflecting, non-absorbing surface, i.e., a system that would reflect light equally in all 

directions, is called Lambertian (or isotropic if some absorption is allowed). 

   The fundamental mathematical concept describing this anisotropic reflectance is the so-

called Bidirectional Reflectance Distribution Function (BRDF). Because it is a distri-

bution (in the proper statistical meaning of the word), it cannot be measured. Indeed, all 

real sources of light, and all actual instruments have finite dimensions. As a result, the 

measurements are actually 'hemispheric conical': the target of interest is illuminated by 

solar radiation coming from the entire hemisphere above the target (often called direct 
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and diffuse radiation), and the light beam collected by the instrument is nominally 

coming from a small solid angle defined by the center of the target observed and the size 

of the detector. 

   For practical reasons (in particular for relative calibration purposes), the measured 

reflectance of a target is often normalized by the reflectance of a reference panel that is as 

close as possible to a Lambertian surface, illuminated and observed under identical 

geometrical conditions. The result of this normalization is then called a bidirectional 

reflectance factor (BRF). 

   A large panoply of models have been designed to describe the anisotropy of natural and 

man-made targets, including vegetation and soils, lakes and oceans, roofs and roads, ice 

and snow, as well as the many different atmospheric constituents that simultaneously 

affect the measurements, such as clouds and aerosols. Physically-based models attempt to 

explain the measured reflectance on the basis of the physical laws describing how solar 

light interacts with the elements of the environment. They are most useful to express our 

current understanding of the processes at work, or to get the most accurate results, but 

they can be very expensive to operate (in terms of their computer resource requirements). 

   In some cases, users need to be able to represent the shape of the BRF field only, but do 

not need to retrieve a physical description of the underlying processes. The computation 

of the albedo of a surface, for instance, requires the knowledge of the variability of the 

bidirectional reflectance but not necessarily of the causes for that variability. In such 

occasions, it is appropriate to use a computationally efficient parametric model capable of 

describing the shape and features of the BRF field in terms of a simple mathematical 

formula using as few parameters as possible. The RPV and MRPV models fall in that 

category. 

   The purpose of this software tool is to demonstrate how the shape of the BRF field 

changes as a function of the values of the parameters used by the RPV and MRPV 

models, and to help newcomers in this field with the concepts of bidirectionality and their 

impact on remote sensing measurements. 

 

 

2. Outline of the RPV model 
 

The label 'RPV' stands for 'Rahman, Pinty and Verstraete', after the names of the authors 

of the original publication on this model (Rahman et al. 1993). The basic idea behind this 

model is to provide as simple as possible a description of the general shape and main 

features of the anisotropic reflectance field of an arbitrary geophysical medium. 

   This model has a long history, rooted in astrophysics. Oepik proposed an initial 

formulation as early as the start of the 20th century. His suggestion was later improved by 

Minnaert in 1941, who imposed that the formula should verify the reciprocity principle. 

That formula has long been used to describe the reflectance of planetary surfaces, for 

instance. 

   The RPV model is a further development of those initial formulae, and is built as a 

product of simple mathematical functions, each using one new parameter. Symbolically: 

 

 0 1 2 3BRF f f f f=                                                          (1) 

where  
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• BRF  is the simulated bidirectional reflectance factor, i.e., the estimate of a 

particular measurement,  

• f0 is the model parameter that regulates the overall reflectance level, 

• f1 is a function that allows the representation of bowl-shape or bell-shape fields 

(see below), 

• f2 permits to preferentially increase the reflectance in the forward or backward 

directions (like for aerosols and vegetation, respectively), and 

• f3 is an optional function allowing the modification of the reflectance in the 

backward direction (the so-called hot spot). 

 

The analytical formulae for each of these functions is as follows:  

0f =                                                                         (2) 

where   is the first model parameter, 
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where 0  and   are the zenith angles of the illumination and observation directions, 

respectively, and k  is the second model parameter, 
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is the well-known Henyey-Greenstein phase function and HG  represents the third model 

parameter. Finally, 
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is the function that allows the representation of a local hot spot where HS  is an optional 

fourth parameter to improve the model performance in the hot spot region. In most cases, 

it is sufficient to impose that HS = . Setting HS  to values smaller than   will 

increase the hot spot, while larger values will decrease it. In these equations, the 

following geometrical relations apply: 

 

( )
1/ 2
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0 0 1 2tan tan 2 tan tan cosG       = + + −                        (6) 

and 

( )0 0 1 2cos cos cos sin sin cosg      = + −                                (7) 
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where 1  and 2  are the illumination and observation azimuth angles, and g  is the 

scattering angle, i.e., the angle between the vectorial directions of illumination (from Sun 

to target) and observation (from target to sensor). Hence, 0g =  for forward and 

180g =  for backward scattering. 

 

 

The general effect of each function is easily explained and visualized with AnisView: 

 

• f0, also known as the amplitude factor  , is a linear multiplier to the rest of the 

model, and therefore directly affects the overall reflectance level. If you only 

change the value of that parameter in AnisView, the shape of the function should 

remain identical, but the level should be adjusted. 

 

• f1 is a function of a parameter traditionally labeled the Minnaert parameter k. 

Generally speaking, values of k less than 1.0 are associated with bowl-shaped 

BRF distributions, where the bidirectional reflectance increases with the 

illumination and observation zenith angles. This is the most commonly observed 

situation in nature for reasonably homogeneous environments. Values of k larger 

than 1.0, on the other hand, tend to generate bell-shaped reflectance distributions, 

where the BRF decreases with increases in these zenith angles. This can be 

verified with AnisView by moving the cursor setting the numerical value of k. 

Geophysical situations that lead to such bell-shaped reflectance fields (k > 1.0) 

often include sparsely distributed absorbing vertical structures located over much 

brighter background surfaces. Examples include pine trees over dry soil or snow. 

 

• f2 is a function which accentuates the relative weight, so to speak, of the forward 

and backward scattering. In the RPV model, this function is implemented as the 

well-known Henyey-Greenstein phase function, which enhances forward 

scattering when its parameter HG  takes on positive values, and backward 

scattering when this parameter becomes negative. In the MRPV model, the 

parameter bM behaves similarly. Again, these tendencies can be experienced 

directly by modifying the appropriate parameter and visualizing the effect. 

 

• Finally, f3 is the function that allows a local increase of reflectance in the hot spot 

region. A properly formed hotspot cannot occur when the geophysical system is 

fully reflecting or totally absorbing. By default, it parameterizes this effect using 

the same value as f0 (or  ), but that can be changed manually by setting a separate 

hot spot parameter value different from  . 
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3. Outline of the MRPV model 
 

As it turns out, the RPV model is capable of accurately representing the general 

anisotropy of a wide range of geophysical systems. From a numerical point of view, 

however, the use of the Henyey-Greenstein phase function creates a difficulty, because 

this non-linear formula cannot be inverted analytically. Such an inversion can always be 

achieved numerically, but that can be costly, as it has to be done iteratively. 

   The MRPV model is a modified version of the RPV model where the function f2 is 

replaced by a new function, say '

2f , that implements a negative exponential formula 

instead of the traditional Henyey-Greenstein phase function. This new parameterization, 

suggested initially by John Martonchik of the NASA Jet Propulsion Laboratory in 

Pasadena, therefore replaces Equation (4) above by the following: 

 

( )'

2 exp cosMf b g= −                                                   (8) 

 

where bM is the MRPV model parameter that replaces HG in RPV. This new formulation 

was first published by Engelsen et al. (1996). 

   This substitution significantly accelerates the computations, especially in inverse mode, 

because the new model is now the product of 4 simple factors. The logarithm of the 

model is thus a sum, and the inversion of such a model against the logarithm of the 

measurements can be achieved quickly and efficiently without any need for iteration: 
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    (9) 

 

   Hence, in operational contexts where lots of data need to be processed, or whenever 

speed of computation is essential, this is the preferred model version to use. 
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