Package ‘twdtw’

August 8, 2023
Title Time-Weighted Dynamic Time Warping
Version 1.0-1

Description Implements Time-Weighted Dynamic Time Warping (TWDTW),
a measure for quantifying time series similarity. The TWDTW algorithm,
described in Maus et al. (2016) <doi:10.1109/JSTARS.2016.2517118> and
Maus et al. (2019) <doi:10.18637/jss.v088.105>, is applicable to multi-dimensional
time series of various resolutions. It is particularly suitable for comparing
time series with seasonality for environmental and ecological data analysis,
covering domains such as remote sensing imagery, climate data, hydrology,
and animal movement. The 'twdtw' package offers a user-friendly 'R’ interface,
efficient 'Fortran' routines for TWDTW calculations, flexible time weighting
definitions, as well as utilities for time series preprocessing and visualization.

License GPL (>= 3)
URL https://github.com/vwmaus/twdtw/

BugReports https://github.com/vwmaus/twdtw/issues/
Encoding UTF-8

RoxygenNote 7.2.3

Imports Rcpp, proxy

Suggests rbenchmark, testthat (>= 3.0.0)

LinkingTo Rcpp

Collate 'RcppExports.R' 'convert_date_to_numeric.R' 'init.R'
'plot_cost_matrix.R' 'twdtw.R' 'zzz.R'

Config/testthat/edition 3

NeedsCompilation yes

Author Victor Maus [aut, cre] (<https://orcid.org/0000-0002-7385-4723>)
Maintainer Victor Maus <vwmaus1@gmail.com>

Repository CRAN

Date/Publication 2023-08-08 07:20:02 UTC

https://doi.org/10.1109/JSTARS.2016.2517118
https://doi.org/10.18637/jss.v088.i05
https://github.com/vwmaus/twdtw/
https://github.com/vwmaus/twdtw/issues/
https://orcid.org/0000-0002-7385-4723

2

date_to_numeric_cycle

R topics documented:

date_to_numeric_cycle 2
max_cycle_length L 3
plot_cost_matriX e e 3
Printtwdtw 4
tWAtW . . e e e e e 5
Index 9

date_to_numeric_cycle Convert Date/POSIXct to a Numeric Cycle

Description

This function takes a date or datetime and converts it to a numeric cycle. The cycle can be spec-
ified in units of years, months, days, hours, minutes, or seconds. When cycle_length is a string,
time_scale only changes the unit in which the result is expressed. When cycle_length is numeric,
time_scale and origin are used to compute the elapsed time.

Usage

date_to_numeric_cycle(x, cycle_length, time_scale, origin = NULL)

Arguments

X

cycle_length

time_scale

origin

Value

A vector of dates or datetimes to convert. If not of type Date or POSIXct, the
function attempts to convert it.

The length of the cycle. Can be a numeric value or a string specifying the units
(’year’, month’, ’day’, "hour’, *minute’, second’). When numeric, the cycle
length is in the same units as time_scale. When a string, it specifies the time
unit of the cycle.

Specifies the time scale for the conversion. Must be one of ’year’, 'month’,
’day’, ’hour’, ’minute’, ’second’. When cycle_length is a string, time_scale
changes the unit in which the result is expressed. When cycle_length is numeric,
time_scale is used to compute the elapsed time in seconds.

For numeric cycle_length, the origin must be specified. This is the point from
which the elapsed time is computed. Must be of the same class as x.

The numeric cycle value(s) corresponding to X.

Examples

date_to_numeric_cycle(Sys.time(), "year”, "day") # Returns the day of the year
date_to_numeric_cycle(Sys.time(), "day”, "hour”) # Returns the hour of the day

max_cycle_length 3

max_cycle_length Calculate the Maximum Possible Value of a Time Cycle

Description

This function returns the maximum possible value that a specific time component can take, given a
cycle length and scale.

Usage

max_cycle_length(cycle_length, time_scale)

Arguments

cycle_length A character string indicating the larger unit of time. It must be one of "year",
"month", "day", "hour", "minute".

time_scale A character string indicating the smaller unit of time, which is a division of the
cycle_length. If cycle_lengthis "year", time_scale can be one of "month",

"day", "hour", "minute", "second". If cycle_length is "month", time_scale
can be "day", "hour", "minute", "second", and so on.

)

Value

The function returns the maximum possible value that the time_scale can take within one cycle_length.

Examples
max_cycle_length("year”, "month"”) # Maximum months is a year 12
max_cycle_length("day”, "minute”) # Maximum minutes in a day 1440

max_cycle_length("year”, "day") # Maximum days in a year 366

plot_cost_matrix Plot TWDTW cost matrix

Description

This function visualizes the Time-Weighted Dynamic Time Warping cost matrix.

Usage

plot_cost_matrix(x, ...)

4 print.twdtw

Arguments
X An object of class twdtw’ including internal data.
Additional arguments passed to image.
Value

An image plot of the TWDTW cost matrix. The x-axis represents the time series X, and the y-axis
represents the time series y. The cost matrix is color-coded, with darker shades indicating higher
costs and lighter shades indicating lower costs. No object is returned by this function; the plot is
directly outputted to the active device.

Examples
Create a time series
n <- 23
t <- seq(@, pi, length.out = n)
d <- seq(as.Date('2020-09-01'), length.out = n, by = "15 day")

x <- data.frame(time = d, vl sin(t)*2 + runif(n))
shift time by 30 days
y <- data.frame(time = d + 30, vl = sin(t)*2 + runif(n))

plot(x, type = "1", x1lim = range(c(d, d + 5)))
lines(y, col = "red")

Call twdtw using "output = 'internals'
twdtw_obj <- twdtw(x, vy,
cycle_length = 'year',
time_scale = 'day',
time_weight = c(steepness = 0.1, midpoint = 50), output = 'internals')

plot_cost_matrix(twdtw_obj)

print.twdtw Print method for twdtw class

Description

Print method for twdtw class

Usage

S3 method for class 'twdtw'
print(x, ...)

twdtw 5

Arguments
X An object of class twdtw.
Arguments passed to print.default or other methods.
Value

This function returns a textual representation of the object twdtw, which is printed directly to the
console. If x is a list, the function will print a summary of matches and omit twdtw’s internal data,
see names(x). If x is not a list, it prints the content of x, i.e. either a matrix with all matches or the
lowest twdtw distance.

twdtw Calculate Time-Weighted Dynamic Time Warping (TWDTW) distance

Description

This function calculates the Time-Weighted Dynamic Time Warping (TWDTW) distance between
two time series.

Usage

twdtw(x, y, time_weight, cycle_length, time_scale, ...)

S3 method for class 'data.frame'
twdtw(

X!

Y,

time_weight,

cycle_length,

time_scale,
origin = NULL,
index_column = "time",
max_elapsed = Inf,
output = "distance”,
version = "f90",
)
S3 method for class 'matrix'
twdtw(
X,
Y,

time_weight,
cycle_length,
time_scale = NULL,
index_column = 1,

twdtw

max_elapsed = Inf,

output = "distance”,
version = "f90",
)
Arguments
X A data.frame or matrix representing time series.
y A data.frame or matrix representing a labeled time series (reference).

time_weight

cycle_length

time_scale

origin

index_column

max_elapsed

output

version

Details

A numeric vector with length two (steepness and midpoint of logistic weight) or
a function. See details.

The length of the cycle. Can be a numeric value or a string specifying the units
(’year’, month’, ’day’, "hour’, *minute’, ’second’). When numeric, the cycle
length is in the same units as time_scale. When a string, it specifies the time
unit of the cycle.

Specifies the time scale for the conversion. Must be one of ’year’, *'month’,
’day’, ’hour’, minute’, ’second’. When cycle_length is a string, time_scale
changes the unit in which the result is expressed. When cycle_length is numeric,
time_scale is used to compute the elapsed time in seconds.

ignore

For numeric cycle_length, the origin must be specified. This is the point from
which the elapsed time is computed. Must be of the same class as x.

(optional) The column name of the time index for data.frame inputs. Defaults to
"time". For matrix input, an integer indicating the column with the time index.
Defaults to 1.

Numeric value constraining the TWDTW calculation to the lower band given by
a maximum elapsed time. Defaults to Inf.

A character string defining the output. It must be one of ’distance’, *matches’,
’internals’. Defaults to ’distance’. ’distance’ will return the lowest TWDTW
distance between x and y. *matches’ will return all matches within the TWDTW
matrix. ’internals’ will return all TWDTW internal data.

A string identifying the version of TWDTW implementation. Options are 'f90°
for Fortran 90, *f90goto’ for Fortran 90 with goto statements, or cpp’ for C++
version. Defaults to "f90°. See details.

TWDTW calculates a time-weighted version of DTW by modifying each element of the DTW’s
local cost matrix (see details in Maus et al. (2016) and Maus et al. (2019)). The default time weight
is calculated using a logistic function that adds a weight to each pair of observations in the time
series x and y based on the time difference between observations, such that

Where:

1

tw(dist; ;) = dist; ; + 15 o—a(eli;—B)

twdtw 7

* tw is the time-weight function

* dist; ; is the Euclidean distance between the i-th element of x and the j-th element of y in a
multi-dimensional space

* el; ; is the time elapsed between the i-th element of x and the j-th element of y

* « and S are the steepness and midpoint of the logistic function, respectively

The logistic function is implemented as the default option in the C++ and Fortran versions of the
code. To use the native implementation, o and 3 must be provided as a numeric vector of length
two using the argument time_weight. This implementation provides high processing performance.

The time_weight argument also accepts a function defined in R, allowing the user to define a dif-
ferent weighting scheme. However, passing a function to time_weight can degrade the processing
performance, i.e., it can be up to 3x slower than using the default logistic time-weight.

A time-weight function passed to time_weight must receive two numeric arguments and return a
single numeric value. The first argument received is the Euclidean dist; ; and the second is the
elapsed time el; ;. For example, time_weight = function(dist, el) dist + @.1xel defines a
linear weighting scheme with a slope of 0.1.

The Fortran 90 versions of twdtw are usually faster than the C++ version. The *f90goto’ version,
which uses goto statements, is slightly quicker than the 9@’ version that uses while and for loops.
You can use the max_elapsed parameter to limit the TWDTW calculation to a maximum elapsed
time. This means it will skip comparisons between pairs of observations in x and y that are far apart
in time. Be careful, though: if max_elapsed is set too low, it could change the results. It important
to try out different settings for your specific problem.

Value

An S3 object twdtw either: If output = ’distance’, a numeric value representing the TWDTW dis-
tance between the two time series. If output = *matches’, a numeric matrix of all TWDTW matches.
For each match the starting index, ending index, and distance are returned. If output = ’internals’, a
list of all TWDTW internal data is returned.

References

Maus, V., Camara, G., Cartaxo, R., Sanchez, A., Ramos, F. M., & de Moura, Y. M. (2016). A
Time-Weighted Dynamic Time Warping Method for Land-Use and Land-Cover Mapping. IEEE
Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(8), 3729-3739.
doi:10.1109/JSTARS.2016.2517118

Maus, V., Camara, G., Appel, M., & Pebesma, E. (2019). dtwSat: Time-Weighted Dynamic Time
Warping for Satellite Image Time Series Analysis in R. Journal of Statistical Software, 88(5), 1-31.
doi:10.18637/jss.v088.105

Examples

Create a time series

n <- 23

t <- seq(@, pi, length.out = n)

d <- seq(as.Date('2020-09-01'), length.out = n, by = "15 day")

https://doi.org/10.1109/JSTARS.2016.2517118
https://doi.org/10.18637/jss.v088.i05

twdtw

X <- data.frame(time = d, vl = sin(t)*2 + runif(n))

shift time by 30 days
y <- data.frame(time = d + 30, v1 = sin(t)*2 + runif(n))

plot(x, type = "1", xlim = range(c(d, d + 5)))
lines(y, col = "red")

Calculate TWDTW distance between x and y using logistic weight

twdtw(x, vy,
cycle_length = 'year',
time_scale = 'day',

time_weight = c(steepness = 0.1, midpoint = 50))

Pass a generic time-weight function

twdtw(x, vy,
cycle_length = 'year',
time_scale = 'day',

time_weight = function(x,y) x + 1.0 / (1.0 + exp(-0.1 * (y - 50))))

Test other version

twdtw(x, vy,
cycle_length = 'year',
time_scale = 'day',
time_weight = c(steepness = 0.1, midpoint = 50),
version = 'f90goto')
twdtw(x, vy,
cycle_length = 'year',
time_scale = 'day',

time_weight = c(steepness = 0.1, midpoint
version = 'cpp')

50),

Index

date_to_numeric_cycle, 2
image, 4
max_cycle_length, 3

plot_cost_matrix, 3
print.default, 5
print.twdtw, 4

twdtw, 5

	date_to_numeric_cycle
	max_cycle_length
	plot_cost_matrix
	print.twdtw
	twdtw
	Index

