
Package ‘tsDyn’
October 31, 2024

Type Package

Title Nonlinear Time Series Models with Regime Switching

Version 11.0.5.2

Date 2024-10-29

Depends R (>= 3.5.0)

Imports mnormt, mgcv, nnet, tseriesChaos, tseries, utils, vars, urca,
forecast, MASS, Matrix, foreach, methods, generics

Suggests sm, scatterplot3d, rgl, rugarch, broom, dplyr, stringr,
purrr, tibble, tidyr, testthat (>= 3.0.0)

Maintainer Matthieu Stigler <Matthieu.Stigler@gmail.com>

Description Implements nonlinear autoregressive (AR) time series models. For univariate se-
ries, a non-parametric approach is available through additive nonlinear AR. Parametric model-
ing and testing for regime switching dynamics is available when the transition is either di-
rect (TAR: threshold AR) or smooth (STAR: smooth transition AR, LSTAR). For multivariate se-
ries, one can estimate a range of TVAR or threshold cointegration TVECM mod-
els with two or three regimes. Tests can be con-
ducted for TVAR as well as for TVECM (Hansen and Seo 2002 and Seo 2006).

License GPL (>= 2)

URL https://github.com/MatthieuStigler/tsDyn/wiki

BugReports https://github.com/MatthieuStigler/tsDyn/issues

RoxygenNote 7.3.2

LazyData true

Encoding UTF-8

Config/testthat/edition 3

NeedsCompilation yes

Author Antonio Fabio Di Narzo [aut] (<https://orcid.org/0000-0002-4033-5038>),
Jose Luis Aznarte [ctb] (<https://orcid.org/0000-0002-1636-244X>),
Matthieu Stigler [aut, cre] (<https://orcid.org/0000-0002-6802-4290>)

Repository CRAN

Date/Publication 2024-10-31 15:40:02 UTC

1

https://github.com/MatthieuStigler/tsDyn/wiki
https://github.com/MatthieuStigler/tsDyn/issues
https://orcid.org/0000-0002-4033-5038
https://orcid.org/0000-0002-1636-244X
https://orcid.org/0000-0002-6802-4290

2 Contents

Contents
tsDyn-package . 3
aar . 4
accuracy_stat . 5
addRegime . 6
ar_mean . 7
autopairs . 8
autotriples . 9
autotriples.rgl . 10
availableModels . 11
barry . 12
BBCTest . 12
charac_root . 14
coefB . 14
delta . 16
delta.lin . 18
fevd.nlVar . 19
fitted.nlVar . 20
getTh . 21
GIRF . 22
IIPUs . 25
irf.linear . 27
isLinear . 30
KapShinTest . 31
lags.select . 32
LINEAR . 33
lineVar . 34
llar . 36
logLik.nlVar . 38
LSTAR . 40
m.unrate . 43
MakeThSpec . 43
MAPE . 45
mse . 45
nlar-methods . 46
NNET . 48
plot methods . 49
plot_ECT . 50
predict.nlar . 51
predict.TVAR . 53
predict_rolling . 55
rank.select . 56
rank.test . 58
regime . 61
resample_vec . 62
resVar . 63
selectHyperParms . 64

tsDyn-package 3

selectSETAR . 65
SETAR . 67
setar.sim . 69
setarTest . 71
setarTest_IIPUs_results . 74
sigmoid . 74
STAR . 75
toLatex.setar . 76
TVAR . 77
TVAR.LRtest . 79
TVAR.sim . 81
TVECM . 84
TVECM.HStest . 86
TVECM.SeoTest . 89
TVECM.sim . 90
UsUnemp . 93
VAR.sim . 94
VARrep . 96
VECM . 97
VECM_symbolic . 99
zeroyld . 101

Index 102

tsDyn-package Getting started with the tsDyn package

Description

Getting started with the tsDyn package

Details

This package provide some tools inspired by nonlinear dynamics for the analysis-modelling of ob-
served time series.
For loading the package, type:
library(tsDyn)
A good place to start learning the package usage, is the vignette. It contains a more detailed guide
on package contents, and an applied case study. At the R prompt, write:
vignette("tsDyn")
For a full list of functions exported by the package, type:
ls("package:tsDyn")

There is also an experimental GUI for built-in NLAR models. Call it with:
nlarDialog(timeSeries)
where timeSeries is an available time series object.
Each exported function has a corresponding man page (some man pages are in common to more
functions). Display it by typing
help(functionName)

4 aar

Author(s)

Antonio, Fabio Di Narzo

See Also

availableModels for listing all currently available NLAR models

autopairs,autotriples,autotriples.rgl for graphical exploratory functions

llar, delta, delta.lin for nonlinearity checking tools

aar Additive nonlinear autoregressive model

Description

Additive nonlinear autoregressive model.

Usage

aar(x, m, d=1, steps=d, series)

Arguments

x time series

m, d, steps embedding dimension, time delay, forecasting steps

series time series name (optional)

Details

Nonparametric additive autoregressive model of the form:

xt+s = µ+

m∑
j=1

sj(xt−(j−1)d)

where sj are nonparametric univariate functions of lagged time series values. They are represented
by cubic regression splines. sj are estimated together with their level of smoothing using routines
in the mgcv package (see references).

Value

An object of class nlar, subclass aar, i.e. a list with mostly internal structures for the fitted gam
object.

Author(s)

Antonio, Fabio Di Narzo

accuracy_stat 5

References

Wood, mgcv:GAMs and Generalized Ridge Regression for R. R News 1(2):20-25 (2001)

Wood and Augustin, GAMs with integrated model selection using penalized regression splines and
applications to environmental modelling. Ecological Modelling 157:157-177 (2002)

Examples

#fit an AAR model:
mod <- aar(log(lynx), m=3)
#Summary informations:
summary(mod)
#Diagnostic plots:
plot(mod)

accuracy_stat Forecasting accuracy measures.

Description

Compute forecasting accuracies. This is very similar to the accuracy method form forecast.

Usage

accuracy_stat(object, ...)

Default S3 method:
accuracy_stat(object, true, ...)

S3 method for class 'pred_roll'
accuracy_stat(object, w, ...)

Arguments

object A data-frame, matrix, or object of class pred_roll

... Not used currently.

true If object is just a matrix or data-frame, true values to be compared to should be
supplied

w Optional. For objects of class pred_roll containing multiple variables, user
can specify the way to aggregate the specific x-step-ahead into the ‘all’ category

Details

The function works either for a simple data.frame or for objects pred_roll. For simple data.frames,
the argument true, i.e. a data frame containing the true values, has to be provided. For pred_roll
objects, the true values are contained in the object, so no need (nor possibility) to provide the true
values.

6 addRegime

Value

A data-frame containing the forecasting accuracy measures.

Author(s)

Matthieu Stigler

Examples

univariate:
mod_ar <- linear(lynx[1:100], m=1)
mod_ar_pred <- predict_rolling(mod_ar, newdata=lynx[101:114])
accuracy_stat(object=mod_ar_pred$pred, true=mod_ar_pred$true)

multivariate
data(barry)
mod_var <- lineVar(barry, lag=1)

mod_var_pred <-predict_rolling(object=mod_var, nroll=10, n.ahead=1:3)
accuracy_stat(object=mod_var_pred)
accuracy_stat(object=mod_var_pred, w=c(0.7, 0.2, 0.1))

addRegime addRegime test

Description

addRegime test

Usage

addRegime(object, ...)

Arguments

object fitted model object with at least 2 regimes

... arguments to and from other methods

Value

A list containing the p-value of the F statistic and a boolean, true if there is some remaining nonlin-
earity and false otherwise.

Author(s)

J. L. Aznarte

ar_mean 7

References

TODO

See Also

star

Examples

##TODO

ar_mean Long-term mean of an AR(p) process

Description

Computes the long term mean of an AR process

Usage

ar_mean(object, ...)

S3 method for class 'linear'
ar_mean(object, ...)

S3 method for class 'setar'
ar_mean(object, ...)

S3 method for class 'lstar'
ar_mean(object, ...)

Arguments

object an object of class linear, setar or lstar

... unused argument

Details

The function computes the long-term mean of an AR(p) process, or of the corresponding sub-
regimes in SETAR or LSTAR model. There are three possible cases:

No constant nor trend The LT mean is 0

constant The LT mean is given by const/(1-sum(AR coefs))

Trend The LT mean is not defined

8 autopairs

Examples

estimate a (linear) AR, a SETAR and a LSTAR
lin_cst_l1 <- linear(lh, m = 1, include = "const")
set_cst_l1 <- setar(lh, m = 1, include = "const")
lst_cst_l1 <- lstar(lh, m = 1, include = "const", trace = FALSE)

ar_mean(lin_cst_l1)
ar_mean(set_cst_l1)
ar_mean(lst_cst_l1)

autopairs Bivariate time series plots

Description

Bivariate time series plots: scatterplots, directed lines and kernel density estimations using functions
in the sm package.

Usage

autopairs(
x,
lag = 1,
h,
type = c("levels", "persp", "image", "lines", "points", "regression")

)

Arguments

x time series

lag time lag

h kernel window (useful only for kernel estimations)

type type of plot: contour levels, perspective plots, image, directed lines, points or
points with superposed kernel regression

Details

Bivariate time series plots: scatterplots, directed lines and kernel density and regression func-
tions estimations using functions in the package sm. In particular, for kernel density estimation
sm.density is used, with smoothing parameter h defaulting to hnorm. For kernel regression,
sm.regression is used.

Value

None. Plots are produced on the default graphical device.

autotriples 9

Author(s)

Wrappers to sm by Antonio, Fabio Di Narzo

See Also

For finer control on density estimation, consider using directly sm.density and, especially, sm.ts.pdf
from package sm.

Examples

x <- log10(lynx)
autopairs(x, lag=2, type="lines")

autotriples Trivariate time series plots

Description

Trivariate time series plots: kernel autoregression using functions in the sm package

Usage

autotriples(
x,
lags = 1:2,
h,
type = c("levels", "persp", "image", "lines", "points")

)

Arguments

x time series

lags vector of regressors lags

h kernel window

type type of plot: contour levels, perspective plots, image

Details

This function displays trivariate time series plots, i.e. kernel regression of x[t − lags[1]], x[t −
lags[2]] against x[t] using functions in the package sm. In particular, sm.regression is used, with
smoothing parameter defaulting to hnorm(x).

Value

None. Plots are produced on the default graphical device.

10 autotriples.rgl

Author(s)

Wrappers to sm by Antonio, Fabio Di Narzo

See Also

For finer control on kernel regression, consider using directly sm.regression and, especially,
sm.autoregression in package sm.

Examples

autotriples(log(lynx))
autotriples(log(lynx), type="persp")
autotriples(log(lynx), type="image")

autotriples.rgl Interactive trivariate time series plots

Description

Interactive trivariate time series plots

Usage

autotriples.rgl(x, lags = 1:2, type = c("lines", "points"))

Arguments

x time series

lags vector of regressors lags

type type of plot: contour levels, perspective plots, image

Details

This function displays interactive trivariate time series plots x[t-lags[1]], x[t-lags[2]] against
x[t] using the interactive rgl device.

Value

None. A plot is produced on the current rgl device.

Author(s)

Wrapper to ’sm’ and GUI by Antonio, Fabio Di Narzo

availableModels 11

See Also

autotriples for 3d visualization via scatterplot3d package and for kernel post-processing of the
cloud for nonparametric autoregression functions estimates.

Examples

if(interactive())
autotriples.rgl(log(lynx))

availableModels Available models

Description

Available built-in time series models

Usage

availableModels()

Details

Return the list of built-in available ‘nlar’ time series models

Value

A character vector containing built-in time series models. For help on a specific model, type:
help(modelName).

Author(s)

Antonio, Fabio Di Narzo

Examples

availableModels()

12 BBCTest

barry Time series of PPI used as example in Bierens and Martins (2010)

Description

This data set contains the series used by Bierens and Martins for testing for PPI between Canada
and US.

Usage

data(barry)

Format

A data frame with 324 monthly observations, ranging from 1973:M1 until 1999:M12.

dolcan Exchange rate US/Can dollar.
cpiUSA US Consumer Price Index.
cpiCAN Canada Consumer Price Index.

Author(s)

Matthieu Stigler

Source

Bierens, H. and Martins, L. (2010), Time Varying Cointegration,

BBCTest Test of unit root against SETAR alternative

Description

Test of unit root against a stationnary three regime SETAR alternative

Usage

BBCTest(
x,
m,
series,
testStat = c("LR", "Wald", "LM"),
trim = 0.1,
grid = c("minPerc", "minObs")

)

BBCTest 13

Arguments

x time series

m Number of lags under the alternative

series time series name (optional)

testStat Type of test statistic to use

trim trimming parameter indicating the minimal percentage of observations in each
regime

grid Whether a minimal number of percentage or observations should be imposed.
See details

Details

TODO

Value

A object of class "BBC2004Test" containing:

-The value of the sup Test

-The version of test used (either Wald, LM or LR).

Author(s)

Matthieu Stigler

References

Bec, Ben Salem and Carrasco (2004) Tests for Unit-Root versus Threshold Specification With an
Application to the Purchasing Power Parity Relationship, Journal of Business and Economic Statis-
tics; 22:4

See Also

setarTest for a test with stationarity as a null.

Examples

BBCTest(lynx, m=3, test="Wald", grid="minPerc")

14 coefB

charac_root Characteristic roots of the AR coefficients

Description

Computes the (inverse) characteristic roots of the auto-regressive coefficients. To be stationary, the
values should be outside the unit circle. The function here returns the modulus of the roots.

Usage

charac_root(object, ...)

S3 method for class 'nlar'
charac_root(object, ...)

Arguments

object object of class nlar

... currently unused

Details

Computes the roots of the polynomial (1, -phi) using function polyroot

Value

a data.frame, with the modulus of the roots. For models with multiple regimes (setar, lstar, star),
one column per regime.

Examples

mod.ar <- linear(lh, m = 5, include = "const")
mod.setar <- setar(lh, m = 5, include = "const")

charac_root(mod.ar)
charac_root(mod.setar)

coefB Extract cointegration parameters A, B and PI

Description

Extract parameters in VECM: adjustment coefficients A, cointegrating coefficients B , or the com-
posite matrix PI

coefB 15

Usage

coefB(object, ...)

S3 method for class 'VECM'
coefB(object, ...)

S3 method for class 'ca.jo'
coefB(object, r = 1, normalize = TRUE, ...)

coefA(object, ...)

S3 method for class 'VECM'
coefA(object, ...)

S3 method for class 'ca.jo'
coefA(object, r = 1, normalize = TRUE, ...)

coefPI(object, ...)

Arguments

object An object of class VECM, ca.jo

r The cointegrating rank

normalize Whether to normalize the A/B coefficients. See details

... Further arguments passed to methods

Details

The functions extract the parameters from a VECM with K variables and rank r:

A Adjustment coefficients, of dim K × r

B Cointegrating coefficients, of dim K × r

Pi Matrix Π = AB
′
, of dim K ×K

Coefficients are extracted from a VECM in package tsDyn, or from a VECM obtained in package
urca from ca.jo or cajorls.

Note that by default, the A and B coefficients returned are normalized (see below). This is the case
for results obtained from VECM/lineVar and cajorls, while for ca.jo, the user has the choice (but
normalize=TRUE by default), in which case the rank r is also to be specified. The normalization
is the Phillips triangular representation, as suggested by Johansen (1995, p. 72), standardising the
first r × r coefficients to Ir:

B Bnorm = B(c
′
B)−1 with c = (Ir, 0K−r,r)

′

A Anorm = AB
′
c

Finally, note that the function also apply to objects obtained from tests of class ca.jo.test (from
blrtest etc...). Care should be taken however, since the normalization might override the restric-
tions imposed.

16 delta

Value

A matrix containing the coefficients

Author(s)

Matthieu Stigler

References

Johansen, Soren, (1995), Likelihood-Based Inference in Cointegrated Vector Autoregressive Mod-
els, Oxford University Press

Examples

data(barry)
vecm <- VECM(barry, lag=1, estim="ML")
vecm_r2 <- VECM(barry, lag=1, estim="ML", r=2)

extract coefficients:
coefA(vecm)
coefB(vecm)
coefPI(vecm)
coefB(vecm_r2)
coefPI(vecm_r2)

Beta-Restricted VECM:
beta_vecm2 <- coefB(vecm_r2)
beta_vecm2[3,2] <- 0.02
vecm_r2_rest <- VECM(barry, lag=1, estim="ML", r=2, beta=beta_vecm2)
round(coefB(vecm_r2_rest),5)

Package vars/urca
if(require(urca)){
vecm_ur <- ca.jo(barry, K=2)
coefB(vecm_ur)
coefB(vecm_ur,r=2)
coefB(cajorls(vecm_ur, r=2))
all.equal(coefB(vecm), coefB(vecm_ur), check.attributes=FALSE)
all.equal(coefB(vecm_r2), coefB(vecm_ur, r=2), check.attributes=FALSE)

}

delta delta test of conditional independence

Description

delta statistic of conditional independence and associated bootstrap test

delta 17

Usage

delta(x, m, d = 1, eps)

delta.test(
x,
m = 2:3,
d = 1,
eps = seq(0.5 * sd(x), 2 * sd(x), length = 4),
B = 49

)

Arguments

x time series

m vector of embedding dimensions

d time delay

eps vector of length scales

B number of bootstrap replications

Details

delta statistic of conditional independence and associated bootstrap test. For details, see Man-
zan(2003).

Value

delta returns the computed delta statistic. delta.test returns the bootstrap based 1-sided p-value.

Warning

Results are sensible to the choice of the window eps. So, try the test for a grid of m and eps values.
Also, be aware of the course of dimensionality: m can’t be too high for relatively small time series.
See references for further details.

Author(s)

Antonio, Fabio Di Narzo

References

Sebastiano Manzan, Essays in Nonlinear Economic Dynamics, Thela Thesis (2003)

See Also

BDS marginal independence test: bds.test in package tseries

Teraesvirta’s neural network test for nonlinearity: terasvirta.test in package tseries

delta test for nonlinearity: delta.lin.test

18 delta.lin

Examples

delta(log10(lynx), m=3, eps=sd(log10(lynx)))

delta.lin delta test of linearity

Description

delta test of linearity based on conditional mutual information

Usage

delta.lin(x, m, d = 1)

delta.lin.test(
x,
m = 2:3,
d = 1,
eps = seq(0.5 * sd(x), 2 * sd(x), length = 4),
B = 49

)

Arguments

x time series

m vector of embedding dimensions

d time delay

eps vector of length scales

B number of bootstrap replications

Details

delta test of linearity based on conditional mutual information

Value

delta.lin returns the parametrically estimated delta statistic for the given time series (assuming
linearity). delta.lin.test returns the bootstrap based 1-sided p-value. The test statistic is the
difference between the parametric and nonparametric delta estimators.

Author(s)

Antonio, Fabio Di Narzo

fevd.nlVar 19

References

Sebastiano Manzan, Essays in Nonlinear Economic Dynamics, Thela Thesis (2003)

Examples

delta.lin(log10(lynx), m=3)

fevd.nlVar Forecast Error Variance Decomposition

Description

Use the fevd function from package vars to compute the forecast error variance decomposition of
a VAR(p) or VECM for n.ahead steps.

Usage

S3 method for class 'nlVar'
fevd(x, n.ahead = 10, ...)

Arguments

x Object of class ‘VAR’ generated by lineVar(), or an object of class ‘VECM’ gen-
erated by VECM()

n.ahead Integer specifying the number of steps.

... Currently not used.

Details

The function converts the VAR or VECM computed by package tsDyn into an object of class
‘vec2var’, on which then the fevd method is applied. For details, see package vars.

Value

A list with class attribute ‘varfevd’ of length K holding the forecast error variances as matrices.

Author(s)

Bernhard Pfaff

References

Hamilton, J. (1994), Time Series Analysis, Princeton University Press, Princeton.

Lutkepohl, H. (2006), New Introduction to Multiple Time Series Analysis, Springer, New York.

20 fitted.nlVar

See Also

plot for the plot method. lineVar, VECM for the models.

Examples

data(zeroyld)
mod_vecm <- VECM(zeroyld, lag = 2)
fevd(mod_vecm, n.ahead = 5)

fitted.nlVar fitted method for objects of class nlVar, i.e. VAR and VECM models.

Description

Returns the fitted values of the model, either as computed in the model, or back to the original series
level.

Usage

S3 method for class 'nlVar'
fitted(object, level = c("model", "original"), ...)

Arguments

object An object of class ‘nlVar’; generated by VECM or lineVar.

level How to return the fitted values. See below.

... Currently not used.

Details

In case of a VAR in differences, in ADF specification, or a VECM, the fitted values are actually
in differences. With the option level="original", the function returns the series in the original
level.

For VAR in levels, the two arguments are evidently the same and hence it is not taken into account,
returning a warning.

Value

A matrix.

Author(s)

Matthieu Stigler

getTh 21

Examples

estimate models
data(barry)

ve <- VECM(barry, lag=2)
va <- lineVar(barry, lag=1)
va_diff <- lineVar(barry, lag=1, I="diff")
va_ADF <- lineVar(barry, lag=1, I="ADF")

get fitted values:
tail(fitted(ve))
tail(fitted(ve, level="original"))

tail(fitted(va))
tail(fitted(object=va, level="original"))

tail(fitted(va_diff))
tail(fitted(object=va_diff, level="original"))

tail(fitted(va_ADF))
tail(fitted(object=va_ADF, level="original"))

getTh Extract threshold(s) coefficient

Description

Extract threshold coefficient(s)

Usage

getTh(object, ...)

Default S3 method:
getTh(object, ...)

Arguments

object object of class setar, summary.setar, nlVar

... additional arguments to getTh

Value

Threshold value.

22 GIRF

Author(s)

Matthieu Stigler

Examples

set<-setar(lynx, m=3)
getTh(set)
getTh(summary(set))

GIRF Generalized Impulse response Function (GIRF)

Description

Generates a GIRF for multiple innovations and histories

Usage

GIRF(object, n.ahead, seed = NULL, ...)

S3 method for class 'setar'
GIRF(
object,
n.ahead = 10,
seed = NULL,
n.hist = 20,
n.shock = 20,
R = 10,
hist_li = NULL,
shock_li = NULL,
...

)

S3 method for class 'linear'
GIRF(
object,
n.ahead = 10,
seed = NULL,
n.hist = 20,
n.shock = 20,
R = 10,
hist_li = NULL,
shock_li = NULL,
...

)

GIRF 23

S3 method for class 'nlVar'
GIRF(
object,
n.ahead = 10,
seed = NULL,
n.hist = 20,
n.shock = 20,
R = 10,
hist_li = NULL,
shock_li = NULL,
...

)

S3 method for class 'GIRF_df'
plot(
x,
plot_type = c("density", "line"),
n.ahead = c(1, 5, 10),
var = unique(x$var)[1],
n_simu = c(1, 2),
...

)

Arguments

object An object of class linear, setar or nlVar (TVAR, TVECM)

n.ahead The number of steps ahead to compute

seed optional, the seed for the random numbers

n.hist The number of past histories to consider. Should be high, ideally size of data
(minus lags).

n.shock The number of actual shocks to consider

R the number of draws to use for the n.ahead innovations

hist_li optional, a list of histories (each of same length as lags in the model). If not
provided, n.hist histories will be randomly drawn for the original series.

shock_li optional, a list of innovations. If not provided, n.shock shocks will be randomly
drawn from the estimated residuals.

x output of girf

plot_type plot: density (for each n.ahead), or line (for multipe n_simu)?

var plot: which variable to plot?

n_simu line plot: which simulation to plot?

... Further arguments passed to specific methods.

Details

In a nonlinear model, the Impulse response Function (IRF) is not time-, scale- and sign-invariant as
in linear models. To address this, Koop et al (1996) introduced the Generalized Impulse response

24 GIRF

Function (GIRF):

GIRF (h, δ, ωt−1) = E[yt+h|ϵt = δ, ϵt+h = 0, ωt−1]− E[yt+h|ϵt = 0, ϵt+h = 0, ωt−1]

It is the difference between two conditional expectations, one containing the shock of interest, the
second one averaging it out. The averaging-out is done by comparing against random innovations
(unlike the IRF, which compares against innovation 0), The parameter R corresponds to the number
of times this is done.

The GIRF as defined here depends on the particular shock, as well as on the history. Koop et
al (1996) suggest to draw multiple combinations of histories and innovations. This is done with
arguments n.hist and n.shock (or, alternatively, provide one of, or both, hist_li and hist_li as
list of histories and shocks).

The output is a data-frame containing the two average paths for each combinations of shocks and
histories.

Value

A data-frame, with:

n_simu: Id for the simulation (total number is n.hist times n.shock)

hist, shock History and shock used in the nth simulation

n.ahead: The forecasting horizon. Note the shocks happens at time 0

var: The variable (on which the shock happens, corresponds hence to the response argument in
irf)

sim_1, sim_2 The average (over R times) simulation with the specific shock (sim_1) or with ran-
dom shocks (sim_2).

girf The difference between sim_1 and sim_2

Author(s)

Matthieu Stigler

References

Koop, G, Pesaran, M. H. & Potter, S. M. (1996) Impulse response analysis in nonlinear multivariate
models. Journal of Econometrics, 74, 119-147

See Also

irf.nlVar for the IRF, for linear models, or in case of non-linear models, for each regime.

Examples

simulate a SETAR for the example. Higher regime more persistent (AR coef 0.5 instead of 0.2)
set <- setar.sim(B = c(0.5, 0.2, 0.5, 0.5), lag = 1, Thresh = 0.5, n = 500)
set_estim <- setar(set, m = 1)

regime-specific IRF:

IIPUs 25

plot(irf(set_estim, regime = "L", boot = FALSE))
plot(irf(set_estim, regime = "H", boot = FALSE))

GIRF
girf_out <- GIRF(set_estim, n.hist = 10, n.shock = 10) # smaller number for example only

the GIRF shows a very fast convergence (the shock at n.ahead = 4 is already very close to 0)
plot(girf_out, n.ahead = 1:4)
investigate a few specific GIRFS:
plot(girf_out, plot_type = "line", n_simu = 1:5)

IIPUs US monthly industrial production from Hansen (1999)

Description

This data, used as example in Hansen (1999), contains the US monthly industrial production.

Usage

IIPUs

Format

A monthly time series of class ts starting in January 1960 and ending in September 1997. Note that
the series ends at 1997 and not 1998 as in the paper of Hansen, even if the data was taken from hi
site and the graph is exactly the same.

Source

Hansen (1999) Testing for linearity, Journal of Economic Surveys, Volume 13, Number 5, Decem-
ber 1999 , pp. 551-576(26) available at: https://www.ssc.wisc.edu/~bhansen/papers/cv.htm

Examples

data(IIPUs)
end(IIPUs) #not same date as in the paper

Figure 2 in paper (p. 555)
plot(IIPUs)

Table 1 in paper (p. 556)
ar_1 <- linear(IIPUs, m=16)
coef(summary(ar_1))[, 1:2]
deviance(ar_1)

Table 2 in paper (p. 559)
set_1 <- setar(IIPUs, m=16, thDelay=5, trim=0.1)
tsDyn finds another threshold, with a better SSR:
getTh(set_1)

https://www.ssc.wisc.edu/~bhansen/papers/cv.htm

26 IIPUs

deviance(set_1)

estimate with Hansen threshold:
set_1_han <- setar(IIPUs, m=16, thDelay=5, trim=0.1, th = 0.23)
deviance(set_1_han)
set_1_CO <- coef(summary(set_1_han))[, 1:2]
cbind(set_1_CO[1:17,], set_1_CO[18:34,])

Table 4 in paper (p. 561)
set_2 <- setar(IIPUs, m=16, thDelay=5, trim=0.1, nthresh =2)
getTh(set_2)
deviance(set_2)

##most of the results agree, except constant in the low regime which has opposed signs!
set_2_CO <- coef(summary(set_2))[, 1:2]
cbind(set_2_CO[1:17,], set_1_CO[18:34,])

#this is obviously a error in Hansen, see:
XX<-embed(IIPUs, 17)
Y<-XX[,1]
X<-XX[,-1]
dummyDown<-ifelse(X[,6]<= -2.5, 1,0)
sum(dummyDown)
M<-cbind(1*dummyDown,X*dummyDown)
lm(Y~M-1)

setar test (takes long to compute, even with small nboot)
Not run:

test_1 <- setarTest(IIPUs, m=16, thDelay=5, nboot=10)
#because of the discrepency. test1vs2 does not correspond, test 1vs3 conforms
test_1$Ftests ## compare with Table 2 (F12) and Table 4 (F13, F23)
summary(test_1)

setarTest(IIPUs, m=16, thDelay=5, nboot=10, test="2vs3")
#test 2vs3 is also different of the version in the article (27)

End(Not run)

results from the test is stored in: setarTest_IIPUs_results
data(setarTest_IIPUs_results)

Table 5 and 6
test_1vs <- setarTest_IIPUs_results$test_1
test_1vs

Table 7
test_2vs <- setarTest_IIPUs_results$test_2
test_2vs
plot(test_2vs)

irf.linear 27

irf.linear Impulse response function

Description

Compute the impulse response coefficients (IRF) of a VAR(p) (or transformed VECM to VAR(p))
for n.ahead steps. For TVECM and TVAR model, argument regime offers regime-specific IRF.

Usage

S3 method for class 'linear'
irf(
x,
impulse = NULL,
response = NULL,
n.ahead = 10,
ortho = TRUE,
cumulative = FALSE,
boot = TRUE,
ci = 0.95,
runs = 100,
seed = NULL,
...

)

S3 method for class 'setar'
irf(
x,
impulse = NULL,
response = NULL,
n.ahead = 10,
ortho = TRUE,
cumulative = FALSE,
boot = TRUE,
ci = 0.95,
runs = 100,
seed = NULL,
regime = c("L", "M", "H"),
...

)

S3 method for class 'ar'
irf(
x,
impulse = NULL,
response = NULL,
n.ahead = 10,

28 irf.linear

ortho = TRUE,
cumulative = FALSE,
boot = TRUE,
ci = 0.95,
runs = 100,
seed = NULL,
...

)

S3 method for class 'VAR'
irf(
x,
impulse = NULL,
response = NULL,
n.ahead = 10,
ortho = TRUE,
cumulative = FALSE,
boot = TRUE,
ci = 0.95,
runs = 100,
seed = NULL,
...

)

S3 method for class 'VECM'
irf(
x,
impulse = NULL,
response = NULL,
n.ahead = 10,
ortho = TRUE,
cumulative = FALSE,
boot = TRUE,
ci = 0.95,
runs = 100,
seed = NULL,
...

)

S3 method for class 'TVAR'
irf(
x,
impulse = NULL,
response = NULL,
n.ahead = 10,
ortho = TRUE,
cumulative = FALSE,
boot = TRUE,

irf.linear 29

ci = 0.95,
runs = 100,
seed = NULL,
regime = c("L", "M", "H"),
...

)

S3 method for class 'TVECM'
irf(
x,
impulse = NULL,
response = NULL,
n.ahead = 10,
ortho = TRUE,
cumulative = FALSE,
boot = TRUE,
ci = 0.95,
runs = 100,
seed = NULL,
regime = c("L", "M", "H"),
...

)

Arguments

x Object of class ‘VAR’; generated by lineVar(), or object of class ‘VECM’; gen-
erated byVECM().

impulse, response
Not used!

n.ahead Integer specifying the steps.

ortho Logical, if TRUE (the default) the orthogonalised impulse response coefficients
are computed .

cumulative Logical, if TRUE the cumulated impulse response coefficients are computed. The
default value is false.

boot, ci, runs, seed
Arguments for the bootstrap, see irf.varest

... Currently not used.

regime For a setar model, which regime (L, M or H) to produce IRF for?

Value

A list of class ‘varirf’ see irf.varest

Author(s)

Matthieu Stigler

30 isLinear

See Also

plot for the plot method. lineVar, VECM for the models. Hamilton, J. (1994), Time Series Analysis,
Princeton University Press, Princeton.

Lutkepohl, H. (2006), New Introduction to Multiple Time Series Analysis, Springer, New York.

Examples

data(barry)

For VAR
mod_var <- lineVar(barry, lag = 2)
irf(mod_var, impulse = "dolcan", response = c("dolcan", "cpiUSA", "cpiCAN"), boot =
FALSE)

For VECM
mod_VECM <- VECM(barry, lag = 2, estim="ML", r=2)
irf(mod_VECM, impulse = "dolcan", response = c("dolcan", "cpiUSA", "cpiCAN"), boot =
FALSE)

isLinear isLinear

Description

Generic NLAR linearity test

Usage

isLinear(object, ...)

Arguments

object fitted time series model

... arguments to and from other methods

Author(s)

A. F. Di Narzo

KapShinTest 31

KapShinTest Test of unit root against SETAR alternative with

Description

Test of unit root against a stationnary 3 regime SETAR alternative with random walk in the inner
regime

Usage

KapShinTest(x, m=1, series, include = c("none","const", "trend", "both"),
c=3, delta=0.5, points=NULL,minObsMid=10,
trick=c("for", "apply", "mapply"), trace=FALSE)

Arguments

x time series

m Number of lags under the alternative

series time series name (optional)

include Whether data should be raw, de-meaned or de-meaned and de-trended

c Argument for the grid search. See details

delta Argument for the grid search. See details

points Points for the grid search. See details

minObsMid Minimal number of observations in the inner regime

trick type of internal function used

trace should additional infos be printed? (logical)

Details

This function is currently spurious.

Value

A object of class KapShin2006Test containing:

statistic The three (SupW, AvgW, ExpW) test statistics computed

case Whether the data was transformed, corresponds to input argument include

series The name of the series

Author(s)

Matthieu Stigler

32 lags.select

See Also

BBCTest for a similar test. setarTest for a test with stationarity as a null.

Examples

KapShinTest(lynx, m=1, trace=FALSE, include="none", points=10)

lags.select Selection of the lag with Information criterion.

Description

Selection of the cointegrating rank and the lags with Information criterion (AIC, BIC).

Usage

lags.select(
data,
lag.max = 10,
include = c("const", "trend", "none", "both"),
fitMeasure = c("SSR", "LL"),
sameSample = TRUE

)

Arguments

data multivariate time series.

lag.max Maximum number of lags to investigate.

include Type of deterministic regressors to include.

fitMeasure Whether the AIC/BIC should be based on the full likelihood, or just the SSR.
See explanations in logLik.VECM.

sameSample Logical. Whether the data should be shortened so that the AIC/BIC are esti-
mated on the same sample. Default to TRUE.

Details

This function selects the lag according to AIC, BIC and Hannan-Quinn.

Value

An object of class rank.select, with ‘print’ and ‘summary methods’, containing among other the
matrices of AIC/BIC/HQ.

Author(s)

Matthieu Stigler

LINEAR 33

See Also

rank.select, the underlying function, to estimate the rank also.

VARselect in package vars, does basically the same.

Examples

data(barry)

#
rk_sel <- lags.select(barry)
rk_sel
summary(rk_sel)

LINEAR Linear AutoRegressive models

Description

AR(m) model

Usage

linear(x, m, d=1, steps=d, series, include = c("const", "trend","none", "both"),
type=c("level", "diff", "ADF"), warn_root=TRUE)

Arguments

x time series

m, d, steps embedding dimension, time delay, forecasting steps

series time series name (optional)

include Type of deterministic regressors to include

type Whether the variable is taken is level, difference or a mix (diff y= y-1, diff lags)
as in the ADF test

warn_root Whether to check (and warn) for roots outside the unit circle?

Details

AR(m) model:

xt+s = ϕ0 + ϕ1xt + ϕ2xt−d + · · ·+ ϕmxt−(m−1)d + ϵt+s

Value

A nlar object, linear subclass.

34 lineVar

Author(s)

Antonio, Fabio Di Narzo

See Also

nlar for fitting this and other models to time series data

Examples

#fit an AR(2) model
mod.linear <- linear(log(lynx), m=2)
mod.linear
summary(mod.linear)

lineVar Multivariate linear models: VAR and VECM

Description

Estimate either a VAR or a VECM.

Usage

lineVar(
data,
lag,
r = 1,
include = c("const", "trend", "none", "both"),
model = c("VAR", "VECM"),
I = c("level", "diff", "ADF"),
beta = NULL,
estim = c("2OLS", "ML"),
LRinclude = c("none", "const", "trend", "both"),
exogen = NULL

)

Arguments

data multivariate time series (first row being first=oldest value)

lag Number of lags to include in each regime

r Number of cointegrating relationships

include Type of deterministic regressors to include

model Model to estimate. Either a VAR or a VECM

I For VAR only: whether in the VAR the variables are to be taken in levels (orig-
inal series) or in difference, or similarly to the univariate ADF case.

lineVar 35

beta for VECM only: user-specified cointegrating value. If NULL, will be estimated
using the estimator specified in estim

estim Type of estimator for the VECM: ’2OLS’ for the two-step approach or ’ML’ for
Johansen MLE

LRinclude For VECM: type of deterministic regressor(s) to include in the long-term rela-
tionship. Can also be a matrix with exogeneous regressors (2OLS only).

exogen Inclusion of exogenous variables (first row being first=oldest value). Is either of
same size than data (then automatically cut) or than end-sample.

Details

This function provides basic functionalities for VAR and VECM models. More comprehensive
functions are in package vars. A few differences appear in the VECM estimation:

Engle-Granger estimator The Engle-Granger estimator is available

Presentation Results are printed in a different ways, using a matrix form

lateX export The matrix of coefficients can be exported to latex, with or without standard-values
and significance stars

Two estimators are available: the Engle-Granger two-steps approach (2OLS) or the Johansen (ML).
For the 2OLS, deterministic regressors (or external variables if LRinclude is of class numeric) can
be added for the estimation of the cointegrating value and for the ECT. This is only working when
the beta value is not pre-specified.

The argument beta is only for VECM, look at the specific help page for more details.

Value

Fitted model data

Author(s)

Matthieu Stigler

See Also

VECM which is just a wrapper for lineVar(..., model="VECM"). Methods predict.VAR, VARrep,
regime, irf and toLatex.

TVAR and TVECM for the corresponding threshold models. linear for the univariate AR model.

Examples

data(zeroyld)

#Fit a VAR
VAR <- lineVar(zeroyld, lag=1)
VAR
summary(VAR)

#compare results with package vars:

36 llar

if(require(vars)) {
a<-VAR(zeroyld, p=1)
coef_vars <- t(sapply(coef(a), function(x) x[c(3,1,2),1]))
all.equal(coef(VAR),coef_vars, check.attributes=FALSE)
}

###VECM
VECM.EG <- lineVar(zeroyld, lag=2, model="VECM")
VECM.EG
summary(VECM.EG)

VECM.ML <- lineVar(zeroyld, lag=2, model="VECM", estim="ML")
VECM.ML
summary(VECM.ML)

###Check Johansen MLE
myVECM <- lineVar(zeroyld, lag=1, include="const", model="VECM", estim="ML")
summary(myVECM, digits=7)
#comparing with vars package
if(require(vars)){
a<-ca.jo(zeroyld, spec="trans")
summary(a)
#same answer also!
}

##export to Latex
toLatex(VECM.EG)
toLatex(summary(VECM.EG))
options("show.signif.stars"=FALSE)
toLatex(summary(VECM.EG), parenthese="Pvalue")
options("show.signif.stars"=TRUE)

llar Locally linear model

Description

Casdagli test of nonlinearity via locally linear forecasts

Usage

llar(x, m, d = 1, steps = d, series, eps.min = sd(x)/2,
eps.max = diff(range(x)), neps = 30, trace = 0)

llar.predict(x, m, d=1, steps=d, series, n.ahead=1,
eps=stop("you must specify a window value"),

llar 37

onvoid=c("fail","enlarge"), r = 20, trace=1)

llar.fitted(x, m, d=1, steps=d, series, eps, trace=0)

Arguments

x time series
m, d, steps embedding dimension, time delay, forecasting steps
series time series name (optional)
n.ahead n. of steps ahead to forecast
eps.min, eps.max

min and max neighbourhood size
neps number of neighbourhood levels along which iterate
eps neighbourhood size
onvoid what to do in case of an isolated point: stop or enlarge neighbourhood size by

an r%
r if an isolated point is found, enlarge neighbourhood window by r%
trace tracing level: 0, 1 or more than 1 for llar, 0 or 1 for llar.forecast

Details

llar does the Casdagli test of non-linearity. Given the embedding state-space (of dimension m and
time delay d) obtained from time series series, for a sequence of distance values eps, the relative
error made by forecasting time series values with a linear autoregressive model estimated on points
closer than eps is computed. If minimum error is reached at relatively small length scales, a global
linear model may be inappropriate (using current embedding parameters). This was suggested by
Casdagli(1991) as a test for non-linearity.

llar.predict tries to extend the given time series by n.ahead points by iteratively fitting locally
(in the embedding space of dimension m and time delay d) a linear model. If the spatial neighbour-
hood window is too small, your time series last point would be probably isolated. You can ask to
automatically enlarge the window eps by a factor of r% sequentially, until enough neighbours are
found for fitting the linear model.

llar.fitted gives out-of-sample fitted values from locally linear models.

Value

llar gives an object of class ’llar’. I.e., a list of components:

RMSE vector of relative errors
eps vector of neighbourhood sizes (in the same order of RMSE)
frac vector of fractions of the time series used for RMSE computation
avfound vector of average number of neighbours for each point in the time series which

can be plotted using the plot method, and transformed to a regular data.frame
with the as.data.frame function.

Function llar.forecast gives the vector of n steps ahead locally linear iterated forecasts.

Function llar.fitted gives out-of-sample fitted values from locally linear models.

38 logLik.nlVar

Warning

For long time series, this can be slow, especially for relatively big neighbourhood sizes.

Note

The C implementation was re-adapted from that in the TISEAN package ("ll-ar" routine, see refer-
ences). However, here the euclidean norm is used, in place of the max-norm.

Author(s)

Antonio, Fabio Di Narzo

References

M. Casdagli, Chaos and deterministic versus stochastic nonlinear modelling, J. Roy. Stat. Soc. 54,
303 (1991)

Hegger, R., Kantz, H., Schreiber, T., Practical implementation of nonlinear time series methods:
The TISEAN package; CHAOS 9, 413-435 (1999)

Examples

res <- llar(log(lynx), m=3, neps=7)
plot(res)

x.new <- llar.predict(log(lynx),n.ahead=20, m=3, eps=1, onvoid="enlarge", r=5)
lag.plot(x.new, labels=FALSE)

x.fitted <- llar.fitted(log(lynx), m=3, eps=1)
lag.plot(x.fitted, labels=FALSE)

logLik.nlVar Extract Log-Likelihood

Description

Log-Likelihood method for VAR and VECM models.

Usage

S3 method for class 'nlVar'
logLik(object, ...)

S3 method for class 'VECM'
logLik(object, r, ...)

logLik.nlVar 39

Arguments

object object of class VAR computed by lineVar, or class VECM computed by VECM.

... additional arguments to logLik.

r The cointegrating rank. By default the rank specified in the call to VECM, but can
be set differently by user.

Details

For a VAR, the Log-Likelihood is computed as in Luetkepohl (2006) equ. 3.4.5 (p. 89) and Juselius
(2006) p. 56:

LL = −(TK/2) log(2π)− (T/2) log |Σ| − (1/2)

T∑[
(yt −A

′
xt)

′
Σ−1(yt −A

′
xt)

]
Where Σ is the Variance matrix of residuals, and xt is the matrix stacking the regressors (lags and
deterministic).

However, we use a computationally simpler version:

LL = −(TK/2) log(2π)− (T/2) log |Σ| − (TK/2)

See Juselius (2006), p. 57.

(Note that Hamilton (1994) 11.1.10, p. 293 gives +(T/2) log |Σ−1|, which is the same as −(T/2) log |Σ|).
For VECM, the Log-Likelihood is computed in two different ways, depending on whether the VECM
was estimated with ML (Johansen) or 2OLS (Engle and Granger).

When the model is estimated with ML, the LL is computed as in Hamilton (1994) 20.2.10 (p. 637):

LL = −(TK/2) log(2π)− (TK/2)− (T/2) log |Σ̂UU | − (T/2)

r∑
i=1

log(1− λ̂i)

Where ΣUU is the variance matrix of residuals from the first auxiliary regression, i.e. regressing ∆yt
on a constant and lags, ∆yt−1, . . . ,∆yt−p. λi are the eigenvalues from the Σ−1

V V ΣV UΣ
−1
UUΣUV ,

see 20.2.9 in Hamilton (1994).

When the model is estimated with 2OLS, the LL is computed as:

LL = log |Σ|

Where Σ is the variance matrix of residuals from the the VECM model. There is hence no corre-
spondence between the LL from the VECM computed with 2OLS or ML.

Value

Log-Likelihood value.

Author(s)

Matthieu Stigler

40 LSTAR

References

Hamilton (1994) Time Series Analysis, Princeton University Press

Juselius (2006) The Cointegrated VAR model: methodology and Applications, Oxford Univesity
Press

Luetkepohl (2006) New Introduction to Multiple Time Series Analysis, Springer

Examples

data(zeroyld)

#Fit a VAR
VAR <- lineVar(zeroyld, lag=1)
logLik(VAR)

#'#Fit a VECM
vecm <- VECM(zeroyld, lag=1, r=1, estim="ML")
logLik(vecm)

LSTAR Logistic Smooth Transition AutoRegressive model

Description

Logistic Smooth Transition AutoRegressive model.

Usage

lstar(x, m, d=1, steps=d, series, mL, mH, mTh, thDelay,
thVar, th, gamma, trace=TRUE, include = c("const", "trend","none", "both"),

control=list(), starting.control=list())

Arguments

x time series

m, d, steps embedding dimension, time delay, forecasting steps

series time series name (optional)

mL autoregressive order for ’low’ regime (default: m). Must be <=m

mH autoregressive order for ’high’ regime (default: m). Must be <=m

thDelay ’time delay’ for the threshold variable (as multiple of embedding time delay d)

mTh coefficients for the lagged time series, to obtain the threshold variable

thVar external threshold variable

th, gamma starting values for coefficients in the LSTAR model. If missing, a grid search is
performed

LSTAR 41

trace should additional infos be printed? (logical)

include Type of deterministic regressors to include

control further arguments to be passed as control list to optim

starting.control

further arguments for the grid search (dimension, bounds). See details below.

Details

xt+s = (ϕ1,0+ϕ1,1xt+ϕ1,2xt−d+· · ·+ϕ1,mLxt−(mL−1)d)G(zt, th, γ)+(ϕ2,0+ϕ2,1xt+ϕ2,2xt−d+· · ·+ϕ2,mHxt−(mH−1)d)(1−G(zt, th, γ))+ϵt+steps

with z the threshold variable, and G the logistic function, computed as plogis(q, location = th,
scale = 1/gamma), so see plogis documentation for details on the logistic function formulation
and parameters meanings. The threshold variable can alternatively be specified by:

mTh z[t] = x[t]mTh[1] + x[t− d]mTh[2] + · · ·+ x[t− (m− 1)d]mTh[m]

thDelay z[t] = x[t− thDelay ∗ d]
thVar z[t] = thV ar[t]

Note that if starting values for phi1 and phi2 are provided, isn’t necessary to specify mL and mH.
Further, the user has to specify only one parameter between mTh, thDelay and thVar for indicating
the threshold variable.

Estimation of the transition parameters th and gamma , as well as the regression parameters phi1
and phi2 , is done using concentrated least squares, as suggested in Leybourne et al. (1996).

Given th and gamma , the model is linear, so regression coefficients can be obtained as usual by
OLS. So the nonlinear numerical search needs only to be done for th and gamma; the regression
parameters are then recovered by OLS again from the optimal th and gamma .

For the nonlinear estimation of the parameters th and gamma , the program uses the optim func-
tion, with optimization method BFGS using the analytical gradient. For the estimation of standard
values, optim is re-run using the complete Least Squares objective function, and the standard errors
are obtained by inverting the hessian. You can pass further arguments to optim directly with the
control list argument. For instance, the option maxit maybe useful when there are convergence
issues (see examples).

Starting parameters are obtained doing a simple two-dimensional grid-search over th and gamma .
Parameters of the grid (interval for the values, dimension of the grid) can be passed to starting.control.

nTh The number of threshold values (th) in the grid. Defaults to 200

nGamma The number of smoothing values (gamma) in the grid. Defaults to 40

trim The minimal percentage of observations in each regime. Defaults to 10% (possible threshold
values are between the 0.1 and 0.9 quantile)

gammaInt The lower and higher smoothing values of the grid. Defaults to c(1,40)

thInt The lower and higher threshold values of the grid. When not specified (default, i.e NA), the
interval are the trim quantiles above.

42 LSTAR

Value

An object of class nlar, subclass lstar, i.e. a list with fitted model informations.

Author(s)

Antonio, Fabio Di Narzo

References

Non-linear time series models in empirical finance, Philip Hans Franses and Dick van Dijk, Cam-
bridge: Cambridge University Press (2000).

Non-Linear Time Series: A Dynamical Systems Approach, Tong, H., Oxford: Oxford University
Press (1990).

Leybourne, S., Newbold, P., Vougas, D. (1998) Unit roots and smooth transitions, Journal of Time
Series Analysis, 19: 83-97

See Also

plot.lstar for details on plots produced for this model from the plot generic.

Examples

#fit a LSTAR model. Note 'maxit': slow convergence
mod.lstar <- lstar(log10(lynx), m=2, mTh=c(0,1), control=list(maxit=3000))
mod.lstar

#fit a LSTAR model without a constant in both regimes.
mod.lstar2 <- lstar(log10(lynx), m=1, include="none")
mod.lstar2

#Note in example below that the initial grid search seems to be to narrow.
Extend it, and evaluate more values (slow!):
controls <- list(gammaInt=c(1,2000), nGamma=50)
mod.lstar3 <- lstar(log10(lynx), m=1, include="none", starting.control=controls)
mod.lstar3

a few methods for lstar:
summary(mod.lstar)
residuals(mod.lstar)
AIC(mod.lstar)
BIC(mod.lstar)
plot(mod.lstar)
predict(mod.lstar, n.ahead=5)

m.unrate 43

m.unrate Monthly US unemployment

Description

Monthly US civilian unemployment rate from 1948 through 2004. Used in the book financial time
series for Tsay (2005, chapter 4)

Usage

data(m.unrate)

Format

zoo object

Source

‘https://faculty.chicagobooth.edu/ruey-s-tsay/research/analysis-of-financial-time-series-2nd-edition’

References

Ruey Tsay (2005) Analysis of Financial Time Series, 2nd ed. (Wiley, ch. 4)

MakeThSpec Specification of the threshold search

Description

This optional function allows the user to set different restrictions for the threshold grid search in
function selectSETAR.

Usage

MakeThSpec(
ngrid = c("All", "Half", "Third", "Quarter"),
exact = NULL,
int = c("from", "to"),
around = "val",
...

)

44 MakeThSpec

Arguments

ngrid The number of values to search for

exact The user give an exact threshold value

int The user gives an interval to search inside

around The user gives an point to search around

... currently unused

Details

This function is just to check the inputs for the specification of the grid search. If not provided, the
search will be in the biggest interval (ngrid ="All") between the minimum and maximum values.
The user can reduce it by giving setting "Half" (only every two points is taken) and so on, or setting
a number.

The search can also be made around a point, or between two points. When between a point, the
argument ngrid is still used, whereas for around, a value of 30 is taken as default value if ngrid is
not specified by user.

Value

The input values are given as output after checking for consistency (only one of exact/int/around
should be given).

Author(s)

Matthieu Stigler

See Also

selectSETAR

Examples

sun<-(sqrt(sunspot.year+1)-1)*2
selectSETAR(sun, m=3, th=MakeThSpec(exact=10.40967),criterion="SSR", d=1, thDelay=0:2,

plot=FALSE, nthresh=1)
#when pre-sepcified value does not correspond, function will search nearest value
selectSETAR(sun, m=3, th=MakeThSpec(exact=10.4),criterion="SSR", d=1, thDelay=0:2,

plot=FALSE, nthresh=1)
#search around:
selectSETAR(sun, m=3, th=MakeThSpec(around=10.40967, ngrid=20),criterion="SSR", d=1, thDelay=0:2,

plot=FALSE, nthresh=1)
#search in an interval
selectSETAR(sun, m=3, th=MakeThSpec(int=c(10, 11), ngrid=20),criterion="SSR", d=1, thDelay=0:2,

plot=FALSE, nthresh=1)
#reduce size of the grid:
selectSETAR(sun, m=3, th=MakeThSpec(ngrid="Half"),criterion="SSR", d=1, thDelay=0:2,

plot=FALSE, nthresh=1)

MAPE 45

2 thresholds:
selectSETAR(sun, m=3, th=MakeThSpec(ngrid="Half"),criterion="SSR", d=1, thDelay=0:2,

plot=FALSE, nthresh=2)

MAPE Mean Absolute Percent Error

Description

Generic function to compute the Mean Absolute Percent Error of a fitted model.

Usage

MAPE(object, ...)

Default S3 method:
MAPE(object, ...)

Arguments

object object of class nlar.fit

... additional arguments to MAPE

Value

Computed Mean Absolute Percent Error for the fitted model.

Author(s)

Antonio, Fabio Di Narzo

mse Mean Square Error

Description

Generic function to compute the Mean Squared Error of a fitted model.

Usage

mse(object, ...)

Default S3 method:
mse(object, ...)

46 nlar-methods

Arguments

object object of class nlar.fit

... additional arguments to mse

Value

Computed MSE for the fitted model.

Author(s)

Antonio, Fabio Di Narzo

nlar-methods NLAR methods

Description

Generic ‘nlar’ methods. Method ‘nlar’ is described in a separate page: nlar

Usage

S3 method for class 'nlar'
coef(object, ...)

S3 method for class 'nlar'
fitted(object, ...)

S3 method for class 'nlar'
residuals(object, initVal = TRUE, timeAttr = TRUE, ...)

S3 method for class 'nlar'
deviance(object, ...)

S3 method for class 'nlar'
mse(object, ...)

S3 method for class 'nlar'
AIC(object, k = 2, ...)

S3 method for class 'nlar'
BIC(object, ...)

S3 method for class 'nlar'
MAPE(object, ...)

S3 method for class 'nlar'
summary(object, ...)

nlar-methods 47

S3 method for class 'nlar'
plot(x, ask = interactive(), ...)

S3 method for class 'nlar'
toLatex(object, digits, label, ...)

Arguments

... further arguments to be passed to and from other methods

initVal Whether to return NA for initial values in residuals/predicitons etc

timeAttr Whether the time attributes should be returned in the output

k numeric, the penalty per parameter to be used for AIC/BIC; the default k = 2 is
the classical AIC

x, object fitted ‘nlar’ object

ask graphical option. See par

digits For print method, see printCoefmat.

label LaTeX label passed to the equation

Details

MAPE Mean Absolute Percent Error

mse Mean Square Error

plot Diagnostic plots

Author(s)

Antonio, Fabio Di Narzo

See Also

availableModels for listing all currently available models.

Examples

x <- log10(lynx)
mod.setar <- setar(x, m=2, thDelay=1, th=3.25)
mod.setar
AIC(mod.setar)
mse(mod.setar)
MAPE(mod.setar)
coef(mod.setar)
summary(mod.setar)

e <- residuals(mod.setar)
e <- e[!is.na(e)]
plot(e)
acf(e)

48 NNET

plot(x)
lines(fitted(mod.setar), lty=2)
legend(x=1910, y=3.9,lty=c(1,2), legend=c("observed","fitted"))

plot(mod.setar)

NNET Neural Network nonlinear autoregressive model

Description

Neural Network nonlinear autoregressive model.

Usage

nnetTs(x, m, d = 1, steps = d, series, size,
control = list(trace = FALSE))

Arguments

x time series

m, d, steps embedding dimension, time delay, forecasting steps

series time series name (optional)

size number of hidden units in the neural network

control control list to be passed to nnet::nnet optimizer

Details

Neural network model with 1 hidden layer and linear output:

xt+s = β0 +

D∑
j=1

βjg(γ0j +

m∑
i=1

γijxt−(i−1)d)

Model is estimated using the nnet function in nnet package. Optimization is done via the BFGS
method of optim. Note that for this model, no additional model-specific summary and plot methods
are made available from this package.

Value

An object of class nlar, subclass nnetTs, i.e. a list with mostly nnet::nnet internal structures.

Author(s)

Antonio, Fabio Di Narzo

plot methods 49

References

Non-linear time series models in empirical finance, Philip Hans Franses and Dick van Dijk, Cam-
bridge: Cambridge University Press (2000).

Non-Linear Time Series: A Dynamical Systems Approach, Tong, H., Oxford: Oxford University
Press (1990).

Chaos: A Statistical Perspective, Chan, K., Tong, H., New York: Springer-Verlag (2001).

Examples

#fit a Neural Network model
mod.nnet <- nnetTs(log(lynx), m=2, size=3)
mod.nnet

plot methods Plotting methods for SETAR and LSTAR subclasses

Description

Plotting methods ‘setar’ and ‘lstar’ subclasses

Usage

S3 method for class 'setar'
plot(x, ask=interactive(), legend=FALSE, regSwStart, regSwStop, ...)
S3 method for class 'lstar'
plot(x, ask=interactive(), legend=FALSE, regSwStart, regSwStop, ...)

Arguments

x fitted ‘setar’ or ‘lstar’ object

ask graphical option. See par

legend Should a legend be plotted? (logical)
regSwStart, regSwStop

optional starting and stopping time indices for regime switching plot

... further arguments to be passed to and from other methods

Details

These plot methods produce a plot which gives to you an idea of the behaviour of the fitted model.

Firstly, if embedding dimension is, say, m , m scatterplots are produced. On the x axis you have
the lagged time series values. On the y axis the ‘response’ time series values. Observed points are
represented with different colors-symbols depending on the level of the threshold variable. Specifi-
cally, for the setar model, black means ‘low regime’, red means ‘high regime’. For the lstar model,
where the self-threshold variable is continuous, threshold values are grouped in 5 different zones
with the same number of points in each. Note that if more than 300 points are to be plotted, they all

50 plot_ECT

share the same symbol, and regimes can be distinguished only by color. If you want, by specifying
legend=TRUE a legend is added at the upper-left corner of each scatterplot. To each scatterplot, a
dashed line is superposed, which links subsequent fitted values.

Finally, a new time series plot is produced, with lines segments coloured depending on the regime
(colors meanings are the same of those in the preceding scatterplots). Optionally, you can specify a
starting and ending time indices, for zooming on a particular segment of the time series.

Author(s)

Antonio, Fabio Di Narzo

See Also

setar, lstar

nlar-methods for other generic available methods for this kind of objects.

Examples

##
##See 'setar' examples
##

plot_ECT Plot the Error Correct Term (ECT) response

Description

This plot shows how variables in a (T)VECM respond to deviations from the long-term equilibrium

Usage

plot_ECT(x, add.legend = TRUE, legend.location = "topright", ...)

Arguments

x object of class VECM or TVECM

add.legend logical. Whether to add a legend?
legend.location

character. Location of the legend, see legend

... arguments passed to the initial plot call, see plot

Value

a plot, and invisibly the underlying data.frame, containing the ECT and the response for each vari-
able

predict.nlar 51

Examples

data(zeroyld)
vec_l1 <- VECM(zeroyldMeta[, c("long.run", "short.run")], lag =1)
tvec_l1 <- TVECM(zeroyldMeta[, c("long.run", "short.run")], lag =1,

plot = FALSE, trace = FALSE, th1 = list(exact = -1.263))

plot_ECT(vec_l1)
plot_ECT(tvec_l1, legend.location = "bottomright")

predict.nlar Predict method for objects of class ‘nlar’.

Description

Forecasting a non-linear model object of general class ‘nlar’, including ‘setar’ and ‘star’.

Usage

S3 method for class 'nlar'
predict(
object,
newdata,
n.ahead = 1,
type = c("naive", "MC", "bootstrap", "block-bootstrap"),
nboot = 100,
ci = 0.95,
block.size = 3,
boot1Zero = TRUE,
seed = NULL,
...

)

Arguments

object An object of class ‘nlar’; generated by setar() or lstar().

newdata Optional. A new data frame to predict from.

n.ahead An integer specifying the number of forecast steps.

type Type of forecasting method used. See details.

nboot The number of replications for type MC or bootstrap.

ci The forecast confidence interval (available only with types MC and bootstrap).

block.size The block size when the block-bootstrap is used.

boot1Zero Whether the first innovation for MC/bootstrap should be set to zero.

seed optional, the seed for the random generation.

... Further arguments passed to the internal ‘oneStep’ function. Mainly argument
‘thVar’ if an external threshold variable was provided

52 predict.nlar

Details

The forecasts are obtained recursively from the estimated model. Given that the models are non-
linear, ignoring the residuals in the 2- and more steps ahead forecasts leads to biased forecasts
(so-called naive). Different resampling methods, averaging n.boot times over future residuals, are
available:

naive No residuals

MC Monte-Carlo method, where residuals are taken from a normal distribution, with a standard
deviation equal to the residuals sd.

bootstrap Residuals are resampled from the empirical residuals from the model.

block-bootstrap Same as bootstrap, but residuals are resampled in block, with size block.size

The MC and bootstrap methods correspond to equations 3.90 and 3.91 of Franses and van Dijk
(2000, p. 121). The bootstrap/MC is initiated either from the first forecast, n.ahead=1 (set with
boot1zero to TRUE), or from the second only.

When the forecast method is based on resampling, forecast intervals are available. These are ob-
tained simply as empirical ci quantiles of the resampled forecasts (cf Method 2 in Franses and van
Dijk, 2000, p. 122).

Value

A ‘ts’ object, or, in the case of MC/bootstrap, a list containing the prediction (pred) and the forecast
standard errors (se).

Author(s)

Matthieu Stigler

References

Non-linear time series models in empirical finance, Philip Hans Franses and Dick van Dijk, Cam-
bridge: Cambridge University Press (2000).

See Also

The model fitting functions setar, lstar.

A more sophisticated predict function, allowing to do sub-sample rolling predictions: predict_rolling.

Examples

x.train <- window(log10(lynx), end = 1924)
x.test <- window(log10(lynx), start = 1925)

Use different forecasting methods:
mod.set <- setar(x.train, m=2, thDelay=0)
pred_setar_naive <- predict(mod.set, n.ahead=10)
pred_setar_boot <- predict(mod.set, n.ahead=10, type="bootstrap", n.boot=200)

predict.TVAR 53

pred_setar_Bboot <- predict(mod.set, n.ahead=10, type="block-bootstrap", n.boot=200)
pred_setar_MC <- predict(mod.set, n.ahead=10, type="bootstrap", n.boot=200)

Plot to compare results:
pred_range <- range(pred_setar_naive, pred_setar_boot$pred, pred_setar_MC$pred, na.rm=TRUE)
plot(x.test, ylim=pred_range, main="Comparison of forecasts methods from same SETAR")
lines(pred_setar_naive, lty=2, col=2)
lines(pred_setar_boot$pred, lty=3, col=3)
lines(pred_setar_Bboot$pred, lty=4, col=4)
lines(pred_setar_MC$pred, lty=5, col=5)

legLabels <- c("Observed", "Naive F", "Bootstrap F","Block-Bootstrap F", "MC F")
legend("bottomleft", leg=legLabels, lty=1:5, col=1:5)

predict.TVAR Predict method for objects of class ‘VAR’, ‘VECM’ or ‘TVAR’

Description

Forecasting the level of a series estimated by ‘VAR’ / ‘VECM’ or ‘TVAR’

Usage

S3 method for class 'TVAR'
predict(object, newdata, n.ahead = 5, newdataTrendStart, ...)

S3 method for class 'VAR'
predict(object, newdata, n.ahead = 5, newdataTrendStart, exoPred = NULL, ...)

Arguments

object An object of class ‘VAR’, ‘VECM’ or ‘TVAR’

newdata Optional. A new data frame to predict from. This should contain lags of the
level of the original series. See Details.

n.ahead An integer specifying the number of forecast steps.

newdataTrendStart

If ‘newdata’ is provided by the user, and the estimated model includes a trend,
this argument specifies where the trend should start

... Arguments passed to the unexported ‘VAR.gen’ or ‘TVAR.gen’ function

exoPred vector/matrix of predictions for the exogeneous variable(s) (with ‘n.ahead’ rows).
Only for ‘VAR’/‘VECM’, not for ‘TVAR’.

54 predict.TVAR

Details

The forecasts are obtained recursively, and are for the levels of the series.

When providing newdata, newdata has to be ordered chronologically, so that the first row/element
is the earliest value.

For VECM, the forecasts are obtained by transforming the VECM to a VAR (using function VARrep).
Note that a VECM(lag=p) corresponds to a VAR(lag=p+1), so that if the user provides newdata for
a VECM(lag=p), newdata should actually contain p+1 rows.

Value

A matrix of predicted values.

Author(s)

Matthieu Stigler

See Also

lineVar and VECM. VARrep

A more sophisticated predict function, allowing to do sub-sample rolling predictions: predict_rolling.

Examples

data(barry)
barry_in <- head(barry, -5)
barry_out <- tail(barry, 5)

mod_vecm <- VECM(barry_in, lag=2)
mod_var <- lineVar(barry_in, lag=3)
mod_tvar <- TVAR(barry_in, lag=3, nthresh=1, thDelay=1)

pred_vecm <- predict(mod_vecm)
pred_var <- predict(mod_var)
pred_tvar <- predict(mod_tvar)

compare forecasts on a plot
n <- 30
plot(1:n, tail(barry[,1], n), type="l", xlim=c(0,n))
lines((n-5+1):n, pred_var[,1], lty=2, col=2)
lines((n-5+1):n, pred_vecm[,1], lty=2, col=3)
lines((n-5+1):n, pred_tvar[,1], lty=2, col=4)
legend("bottomright", lty=c(1,2,2,2), col=1:4, legend=c("true", "var", "vecm", "tvar"))

example for newdata:
all.equal(predict(mod_vecm), predict(mod_vecm, newdata=barry[c(317, 318, 319),]))

predict_rolling 55

predict_rolling Rolling forecasts

Description

Forecasts a VAR or VECM by discarding a part of the sample, and recursively generating a series
of updated forecasts.

Usage

predict_rolling(object, ...)

S3 method for class 'nlVar'
predict_rolling(object, nroll = 10, n.ahead = 1, refit.every, newdata, ...)

Arguments

object A linear object of class ‘nlVar’; generated by lineVar or VECM.

... Currently not used.

nroll The number of rolling forecasts

n.ahead An integer specifying the number of forecast steps.

refit.every Determines every how many periods the model is re-estimated.

newdata In case the given model is already estimated on the sub-sample, the out-of-
sample data can be provided with this argument. Note it should contain ob-
servations to predict the first values, that are also contained in the in-sample.

Details

This function allows to check the out-of sample forecasting accuracy by estimating the model on a
sub-sample of the original, then making nroll forecasts of horizon n.ahead, each time by updating
the sample. In other words, with a given model estimated on 100 observations, the function will
estimate it on say 90 first obs (nroll=10), generate a say 1 step-ahead (n.ahead=1) from obs 90,
then using true value 91 for to predict value at 92, etc, till the full sample is used.

Unlike with usual predict() methods, specifiying n.ahead=2 will not generate a 1 step-ahead and
a 2 step-ahead forecasts, but only nroll 2 step-ahead forecasts.

Note that while the forecasts are updated with new values, the model estimation is (by default) not
updated. This can however be done with the argument fit.every, specifiying at which frequency
the model should be re-estimated. By setting it to 1 for example, each time a new observation is
taken, the model is reestimated. This is similar to the ugarchroll in package rugarch.

Value

A matrix containing the forecasts.

56 rank.select

Author(s)

Matthieu Stigler

See Also

predict.nlar for the standard predict function.

Examples

data(barry)

model estimated on full sample:
mod_vec <- VECM(barry, lag=2)

generate 10 1-step-ahead forecasts:
preds_roll <- predict_rolling(mod_vec, nroll=10)

plot the results:
plot(window(barry[,"dolcan"],start=1998), type="l", ylab="barry: dolcan")
preds_roll_ts <- ts(preds_roll$pred, start=time(barry)[nrow(barry)-10], freq=12)
lines(preds_roll_ts[,"dolcan"], col=2, lty=2)
legend("bottomright", lty=c(1,2), col=1:2, leg=c("True", "Fitted"))
title("Comparison of true and rolling 1-ahead forecasts\n")

rank.select Selection of the cointegrating rank with Information criterion.

Description

Selection of the cointegrating rank and the lags with Information criterion (AIC, BIC).

Usage

rank.select(
data,
lag.max = 10,
r.max = ncol(data) - 1,
include = c("const", "trend", "none", "both"),
fitMeasure = c("SSR", "LL"),
sameSample = TRUE,
returnModels = FALSE

)

S3 method for class 'rank.select'
print(x, ...)

rank.select 57

S3 method for class 'rank.select'
as.data.frame(x, ...)

S3 method for class 'rank.select'
summary(object, ...)

Arguments

data multivariate time series.

lag.max Maximum number of lags to investigate.

r.max Maximum rank to investigate.

include Type of deterministic regressors to include. See VECM or lineVar.

fitMeasure Whether the AIC/BIC should be based on the full likelihood, or just the SSR.
See explanations in logLik.VECM.

sameSample Logical. Whether the data should be shortened so that the AIC/BIC are esti-
mated on the same sample. Default to TRUE.

returnModels Logical, default to FALSE. Whether the output should also contain the list of
each model computed.

x The output from rank.select for the print method.

... Unused.

object The output from rank.select for the summary method.

Details

This function estimates the AIC, BIC and Hannan-Quinn for each rank (up to lags.max) and lags
(up to lags.max). This method has been shown to be useful to select simultaneously the rank and
the lags, see references.

Value

An object of class ‘rank.select’, with ‘print’ and ‘summary methods’, containing among other the
matrices of AIC/BIC/HQ, the Likelihood, and best ranks according to each criterion.

Author(s)

Matthieu Stigler

References

- Aznar A and Salvador M (2002). Selecting The Rank Of The Cointegration Space And The Form
Of The Intercept Using An Information Criterion. Econometric Theory, *18*(04), pp. 926-947.
<URL: http://ideas.repec.org/a/cup/etheor/v18y2002i04p926-947_18.html>.

-Cheng X and Phillips PCB (2009). Semiparametric cointegrating rank selection. Econometrics
Journal , *12*(s1), pp. S83-S104. <URL: http://ideas.repec.org/a/ect/emjrnl/v12y2009is1ps83-
s104.html>.

58 rank.test

- Gonzalo J and Pitarakis J (1998). Specification via model selection in vector error correction mod-
els. Economics Letters, *60*(3), pp. 321 - 328. ISSN 0165-1765, <URL: http://dx.doi.org/DOI:
10.1016/S0165-1765(98)00129-3>.

- Kapetanios G (2004). The Asymptotic Distribution Of The Cointegration Rank Estimator Un-
der The Akaike Information Criterion. Econometric Theory, *20*(04), pp. 735-742. <URL:
http://ideas.repec.org/a/cup/etheor/v20y2004i04p735-742_20.html>.

- Wang Z and Bessler DA (2005). A Monte Carlo Study On The Selection Of Cointegrating Rank
Using Information Criteria. Econometric Theory, *21*(03), pp. 593-620. <URL: http://ideas.repec.org/a/cup/etheor/v21y2005i03p593-
620_05.html>.

See Also

VECM for estimating a VECM. rank.test (or ca.jo in package urca) for the classical Johansen
cointegration test.

Examples

data(barry)

#
rk_sel <- rank.select(barry)
rk_sel
summary(rk_sel)

rank.test Test of the cointegrating rank

Description

Maximum-likelihood test of the cointegrating rank.

Usage

rank.test(vecm, type = c("eigen", "trace"), r_null, cval = 0.05)

S3 method for class 'rank.test'
print(x, ...)

S3 method for class 'rank.test'
summary(object, digits = max(1, getOption("digits") - 3), ...)

rank.test 59

Arguments

vecm ‘VECM’ object computed with the function VECM.

type Type of test, either ’trace’ or ’eigenvalue’. See details below.

r_null Rank to test specifically.

cval Critical value level for the automatic test.

x The output from rank.test for the print method.

... Unused.

object The output from rank.test for the summary method.

digits The number of digits to use in format.pval

Details

This function computes the two maximum-likelihood tests for the cointegration rank from Johansen
(1996). Tests are:

trace Test the hypothesis of rank ‘h’ against rank ‘K’, i.e. against the alternative that the system is
stationary.

eigenvalue Test the hypothesis of rank ‘h’ against rank ‘h+1’.

The test works for five specifications of the deterministic terms as in Doornik et al (1998), to be
specified in the previous call to VECM:

H_ql Unrestricted constant and trend: use include="both"

H_l Unrestricted constant and restricted trend: use include="const"and LRinclude="trend"

H_lc Unrestricted constant and no trend: use include="const"

H_c Restricted constant and no trend: use LRinclude="const"

H_z No constant nor trend: use include="none"

Two testing procedures can be used:

Specific test By specifying a value for ‘r_null’. The ‘pval’ value returned gives the speciifc p-
value.

Automatic test If not value is specified for ‘r_null’, the function makes a simple automatic test: re-
turns the rank (slot ‘r’) of the first test not rejected (level specified by arg cval) as recommend
i.a. in Doornik et al (1998, p. 544).

A full table with both test statistics ad their respective p-values is given in the summary method.

P-values are obtained from the gamma approximation from Doornik (1998, 1999). Small sample
values adjusted for the sample site are also available in the summary method. Note that the ‘effective
sample size’ for the these values is different from output in gretl for example.

Value

An object of class ‘rank.test’, with ‘print’ and ‘summary methods’.

60 rank.test

Comparison with urca

While ca.jo in package urca and rank.test both implement Johansen tests, there are a few dif-
ferences:

• rank.test gives p-values, while ca.jo gives only critical values.

• rank.test allows for five different specifications of deterministic terms (see above), ca.jo
for only three.

• ca.jo allows for seasonal and exogenous regressors, which is not available in rank.test.

• The lag is specified differently: K from ca.jo corresponds to lag+1 in rank.test.

Author(s)

Matthieu Stigler

References

- Doornik, J. A. (1998) Approximations to the Asymptotic Distributions of Cointegration Tests,
Journal of Economic Surveys, 12, 573-93

- Doornik, J. A. (1999) Erratum [Approximations to the Asymptotic Distribution of Cointegration
Tests], Journal of Economic Surveys, 13, i

- Doornik, Hendry and Nielsen (1998) Inference in Cointegrating Models: UK M1 Revisited, Jour-
nal of Economic Surveys, 12, 533-72

- Johansen, S. (1996) Likelihood-based inference in cointegrated Vector Autoregressive Models,
Oxford University Press

See Also

VECM for estimating a VECM. rank.select to estimate the rank based on information criteria.

ca.jo in package urca for another implementation of Johansen cointegration test (see section
‘Comparison with urca’ for more infos).

Examples

data(barry)

estimate the VECM with Johansen!
ve <- VECM(barry, lag=1, estim="ML")

specific test:
ve_test_spec <- rank.test(ve, r_null=1)
ve_test_spec_tr <- rank.test(ve, r_null=1, type="trace")

ve_test_spec
ve_test_spec_tr

No specific test: automatic method
ve_test_unspec <- rank.test(ve)

regime 61

ve_test_unspec_tr <- rank.test(ve, type="trace")

ve_test_unspec
ve_test_unspec_tr

summary method: output will be same for all types/test procedure:
summary(ve_test_unspec_tr)

The function works for many specification of the VECM(), try:
rank.test(VECM(barry, lag=3, estim="ML"))
rank.test(VECM(barry, lag=3, include="both",estim="ML"))
rank.test(VECM(barry, lag=3, LRinclude="const",estim="ML"))

Note that the tests are simple likelihood ratio, and hence can be obtained also manually:
-2*(logLik(ve, r=1)-logLik(ve, r=2)) # eigen test, 1 against 2
-2*(logLik(ve, r=1)-logLik(ve, r=3)) # eigen test, 1 against 3

regime Extract a variable showing the regime

Description

This function allows to extract the indicator variable specifying the regime in which the process is
at time t.

Usage

regime(object, initVal = TRUE, timeAttr = TRUE, series = NULL, ...)

S3 method for class 'lstar'
regime(object, initVal = TRUE, timeAttr = TRUE, series, discretize = TRUE, ...)

Arguments

object object of class setar or nlVar

initVal Logical. Whether the initial NA values should be returned. Default to TRUE.

timeAttr Logical. Whether the time attributes should be returned. Default to TRUE.

series Optional. A numeric vector to classify according to the model.

... additional arguments to regime

discretize logical (default TRUE) whether the series are discretized to {1,2}, or whether
regime probabilities are returned.

Value

Time series of same attributes as input to setar.

62 resample_vec

Author(s)

Matthieu Stigler

Examples

set<-setar(lynx, m=3)
regime(set)
regime(set, time=FALSE, initVal=FALSE)

plot(regime(set))

resample_vec Resampling schemes

Description

Bootstrap a vector according to multiple resampling schemes: resampling, block resampling, Wild
bootstrap.

Usage

resample_vec(
x,
boot.scheme = c("resample", "resample_block", "wild1", "wild2", "check"),
seed = NULL,
block.size = 2

)

Arguments

x A numeric vector

boot.scheme The type of resampling scheme used, see Details

seed the seed used, see set.seed

block.size for the resample_block scheme, the size of the blocks.

Details

This function offers various bootstrap/resampling schemes:

resample Resampling with replacement

resample_block Resampling contiguous observations (blocks) with replacement. Use argument
block.size

wild1 Wild bootstrap: do not resample, but add a N(0,1) distribution to each value

wild12 Wild bootstrap: same, but add instead -1 or 1.

resVar 63

resVar Residual variance

Description

Extracts the global and regime-dependent variance of the residuals

Usage

resVar(x, adj=c("OLS", "ML"))

Arguments

x setar object

adj Degrees of freedom adjustment for the variance

Details

The degree of freedom adjustment in the formula for the variance is the number of parameters when
adj="OLS" or zero when adj="ML".

Value

A vector containing:

Total The residual variance of the full sample

L, (M), H The residual variance of the lower (L), middle (if two thresholds) (M) and higher
(H) regimes

Author(s)

Matthieu Stigler

References

Non-Linear Time Series: A Dynamical Systems Approach, Tong, H., Oxford: Oxford University
Press (1990).

Examples

#Lynx model as in Tong (1980, p. 387)
mod.setar <- setar(log10(lynx), mL=7,mH=2, thDelay=1, th=3.116)
summary(mod.setar)
#coefficients are same for lower regime but differ for higer

resVar(mod.setar, adj="ML")
#variance or the residuals is same for lower regime but differ for higer regime and hence for total

#Lynx model as in Tong (1980, p. 405)

64 selectHyperParms

mod.setar2 <- setar(log10(lynx), mL=1,mM=7,mH=2, thDelay=1, nthresh=2,th=c(2.373, 3.154))
round(coefficients(mod.setar2),3)

resVar(mod.setar2, adj="ML")

selectHyperParms Automatic selection of model hyper-parameters

Description

Automatic selection of model hyper-parameters

Usage

selectLSTAR(x, m, d=1, steps=d, mL = 1:m, mH = 1:m, thDelay=0:(m-1),
fast=TRUE, trace=FALSE)

selectNNET(x, m, d=1, steps=d, size=1:(m+1), maxit=1e3, trace=FALSE)

Arguments

x time series

m, d, steps embedding parameters. For their meanings, see help about nlar

mL, mH Vector of ‘low’ and ‘high’ regimes autoregressive orders

thDelay Vector of ‘threshold delay’ values

size Vector of numbers of hidden units in the nnet model

maxit Max. number of iterations for each model estimation

fast For LSTAR selection, whether a fast algorithm using starting values fro previous
models should be used

trace Logical. Whether informations from each model should be returned.

Details

Functions for automatic selection of LSTAR and NNET models hyper parameters. An exhaustive
search over all possible combinations of values of specified hyper-parameters is performed. Em-
bedding parameters m,d,steps are kept fixed.

Selection criterion is the usual AIC.

For the LSTAR model, two methods are offered:

fast=FALSE Each model is run separately, each time using the full grid search for starting values.

fast=TRUE Only the first model is run with a full grid search, while the subsequent use the first
model results for their starting values.

selectSETAR 65

Value

A data-frame, with columns giving hyper-parameter values and the computed AIC for each row
(only the best 10s are returned)

Author(s)

Antonio, Fabio Di Narzo

Examples

llynx <- log10(lynx)
selectLSTAR(llynx, m=2)
selectNNET(llynx, m=3, size=1:5)

selectSETAR Automatic selection of SETAR hyper-parameters

Description

Automatic selection of SETAR hyper-parameters

Usage

selectSETAR(x, m, d=1, steps=d, series, mL, mH,mM, thDelay=0, mTh, thVar,
th=MakeThSpec(), trace=TRUE, include = c("const", "trend","none", "both"),
common=c("none", "include","lags", "both"), model=c("TAR", "MTAR"),
ML=seq_len(mL), MH=seq_len(mH), MM=seq_len(mM), nthresh=1, trim=0.15,
criterion = c("pooled-AIC", "AIC","BIC", "SSR"), plot=TRUE,
max.iter=2, type=c("level", "diff", "ADF"), same.lags=FALSE,
restriction=c("none","OuterSymAll","OuterSymTh"), hpc=c("none", "foreach"))

Arguments

x time series

m, d, steps embedding parameters. For their meanings, see help about nlar

series time series name (optional)

mL, mH, mM autoregressive order for ‘low’ (mL) ‘middle’ (mM, only useful if nthresh=2) and
‘high’ (mH) regime (default values: m). Must be <=m. Alternatively, you can
specify ML

thDelay Vector of possible ‘threshold delay’ values to check for

mTh coefficients for the lagged time series, to obtain the threshold variable

thVar external threshold variable

th Different specifications of the grid search, to pre-specify a value or set the num-
ber of points to search. SeeMakeThSpec

trace should additional infos be printed? (logical)

66 selectSETAR

include Type of deterministic regressors to include

common Indicates which elements are common to all regimes: no, only the include
variables, the lags or both

model Currently not implemented

ML, MM, MH vector of lags for order for ‘low’ (ML) ‘middle’ (MM, only useful if nthresh=2)
and ‘high’ (MH)regime. Max must be <=m

nthresh Number of threshold of the model

trim trimming parameter indicating the minimal percentage of observations in each
regime. Default to 0.15

criterion Model selection criterion

plot Should a plot showing the criterion values be printed? (logical)

max.iter Number of iterations for the algorithm

type Whether the variable is taken is level, difference or a mix (diff y= y-1, diff lags)
as in the ADF test

same.lags Logical. When AIC or pooled-AIC is used and arg m is given, should it search
for same number of lags in each regime (TRUE) or allow for different (FALSE)
lags in each regime. Different lags involves more computation

restriction Restriction on the threshold. OuterSymAll will take a symmetric threshold and
symmetric coefficients for outer regimes. OuterSymTh currently unavailable

hpc Possibility to run the bootstrap on parallel core. See details

Details

Routine for automatic selection of SETAR models hyper parameters.

An exhaustive search over all possible combinations of values of specified hyper-parameters is
performed. Thus the threshold delay, the number of lags in each regime and the threshold value are
computed.

Embedding parameters d,steps are kept fixed.

Possible criteria are the usual SSR, AIC and a pooled AIC formula: AIC(lowregimemodel) +
AIC(highregimemodel). The default criterion is the pooled AIC formula. SSR criterion can’t be
used to compare models with different lags.

When two thresholds(nthresh=2) have to be computed, the search for the second is made condi-
tional on results for first threshold as suggested in Gonzalo and Pittarakis (2002). Refinements can
be obtained by using max.iter (first threshold being re-estimated based on the second one). If SSR
is used, the number of lags in the inner regime is either the same if only arg m was given, otherwise
it has to be pre-specified. Criterion AIC can be used to determine the number of lags in the nner
regime, whereas pooled-AIC is currently not implemented for nthresh=2.

By default, all threshold values excluding the upper and lower trim of the threshold values are
taken as potential threshold. restriction can be made with arg th. See function MakeThSpec.

With the argument hpc, the heavy grid search can be run on parallel cores, thus alleviating the time
of computation. Preliminary results indicate however that the length of the series must be very
considerable in order that the parallel code becomes advantageous. To use it, the user needs simply
to choose a package (among doMC, doMPI, doSNOW or doRedis) and register the backend. See
the vignette for more details.

SETAR 67

Value

An object of class selectSETAR (print and plot methods) with:

res A data-frame, with columns giving hyper-parameter values and the computed
AIC for each row (only the best 10/5s are returned)

res2 Same as res, returned if nthresh=2 otherwise set to NULL

bests estimated hyper-parameters
th, firstBests, bests2th, ML, MM, MH

estimated parameters, from first and conditional search
criterion, nthresh, same.lags

returns args given by user

allTh all threshold values and corresponding criterion from first search

Author(s)

Antonio, Fabio Di Narzo and Stigler, Matthieu

References

Gonzalo, J. & Pitarakis, J. (2002) Estimation and model selection based inference in single and
multiple threshold models, Journal of Econometrics, 110, 319 - 352

See Also

selectLSTAR, selectNNET, MakeThSpec

Examples

llynx <- log10(lynx)
selectSETAR(llynx, m=2)
#Suggested model is the following:
setar(llynx, m=2, thDelay=1, th=3.4)

SETAR Self Threshold Autoregressive model

Description

Self Exciting Threshold AutoRegressive model.

Usage

setar(x, m, d=1, steps=d, series, mL, mM, mH, thDelay=0, mTh, thVar, th, trace=FALSE,
nested=FALSE, include = c("const", "trend","none", "both"),

common=c("none", "include","lags", "both"), model=c("TAR", "MTAR"), ML=seq_len(mL),
MM=seq_len(mM), MH=seq_len(mH),nthresh=1,trim=0.15, type=c("level", "diff", "ADF"),

restriction=c("none","OuterSymAll","OuterSymTh"))

68 SETAR

Arguments

x time series

m, d, steps embedding dimension, time delay, forecasting steps

series time series name (optional)

mL, mM, mH autoregressive order for ‘low’ (mL) ‘middle’ (mM, only useful if nthresh=2) and
‘high’ (mH)regime (default values: m). Must be <=m. Alternatively, you can
specify ML

thDelay ’time delay’ for the threshold variable (as multiple of embedding time delay d)

mTh coefficients for the lagged time series, to obtain the threshold variable

thVar external threshold variable

th threshold value (if missing, a search over a reasonable grid is tried)

trace should additional infos be printed? (logical)

include Type of deterministic regressors to include

common Indicates which elements are common to all regimes: no, only the include
variables, the lags or both

ML, MM, MH vector of lags for order for ‘low’ (ML) ‘middle’ (MM, only useful if nthresh=2)
and ‘high’ (MH)regime. Max must be <=m

model Whether the threshold variable is taken in levels (TAR) or differences (MTAR)

nthresh Number of threshold of the model

trim trimming parameter indicating the minimal percentage of observations in each
regime. Default to 0.15

type Whether the variable is taken is level, difference or a mix (diff y= y-1, diff lags)
as in the ADF test

restriction Restriction on the threshold. OuterSymAll will take a symmetric threshold and
symmetric coefficients for outer regimes. OuterSymTh currently unavailable

nested Whether is this a nested call? (useful for correcting final model df)

Details

Self Exciting Threshold AutoRegressive model.

Xt+s = xt+s = (ϕ1,0+ϕ1,1xt+ϕ1,2xt−d+· · ·+ϕ1,mLxt−(mL−1)d)I(zt ≤ th)+(ϕ2,0+ϕ2,1xt+ϕ2,2xt−d+· · ·+ϕ2,mHxt−(mH−1)d)I(zt > th)+ϵt+steps

with z the threshold variable. The threshold variable can alternatively be specified by (in that order):

thDelay z[t] = x[t - thDelay*d]

mTh z[t] = x[t] mTh[1] + x[t-d] mTh[2] + ... + x[t-(m-1)d] mTh[m]

thVar z[t] = thVar[t]

For fixed th and threshold variable, the model is linear, so phi1 and phi2 estimation can be done
directly by CLS (Conditional Least Squares). Standard errors for phi1 and phi2 coefficients pro-
vided by the summary method for this model are taken from the linear regression theory, and are to
be considered asymptotical.

setar.sim 69

Value

An object of class nlar, subclass setar

Author(s)

Antonio, Fabio Di Narzo

References

Non-linear time series models in empirical finance, Philip Hans Franses and Dick van Dijk, Cam-
bridge: Cambridge University Press (2000).

Non-Linear Time Series: A Dynamical Systems Approach, Tong, H., Oxford: Oxford University
Press (1990).

See Also

plot.setar for details on plots produced for this model from the plot generic.

Examples

#fit a SETAR model, with threshold as suggested in Tong(1990, p 377)
mod.setar <- setar(log10(lynx), m=2, thDelay=1, th=3.25)
mod.setar
summary(mod.setar)

example in Tsay (2005)
data(m.unrate)
setar(diff(m.unrate), ML=c(2,3,4,12), MH=c(2,4,12), th=0.1, include="none")

setar.sim Simulation and bootstrap of Threshold Autoregressive model (SETAR)

Description

Simulate or bootstrap a Threshold AR (SETAR) The setar.sim function allows to simulate a
SETAR model from scratch. The most important argument is the B argument, which should be a
one row matrix, with first the constant/trend arguments, then the slope coefficients, and this for each
regime (lower, middle, high). Other arguments such as lag, nthresh indicate the dimension of this
matrix. As an example, a SETAR with 2 lags, 1 threshold, a constant, would have coefficient in
the order: c(const_L, phi_1_L, phi_2_L, const_H, phi_1_H, phi_2_H) where L is for Lower
regime, H for Higher.

setar.boot on the other side resample/bootstraps an existing setar output. It uses a recursive
approach, reconstructing the series. Residuals from the original model are resampled using different
bootstrap schemes, see resample_vec.

70 setar.sim

Usage

setar.boot(
setarObject,
boot.scheme = c("resample", "resample_block", "wild1", "wild2", "check"),
seed = NULL,
...

)

linear.boot(
linearObject,
boot.scheme = c("resample", "resample_block", "wild1", "wild2", "check"),
seed = NULL,
...

)

setar.sim(
B,
n = 200,
lag = 1,
include = c("const", "trend", "none", "both"),
nthresh = 1,
Thresh,
starting = NULL,
innov = rnorm(n),
...

)

linear.sim(
B,
n = 200,
lag = 1,
include = c("const", "trend", "none", "both"),
starting = NULL,
innov = rnorm(n),
...

)

Arguments

setarObject Bootstrap: the setar object to resample data from.

boot.scheme Bootstrap: which resampling scheme to use for the residuals. See resample_vec.

seed Bootstrap: seed used in the resampling

... additional arguments for the unexported setar.gen.

linearObject Bootstrap: the linear object to resample data from.

B Simulation: vector of coefficients to simulate from.

n Simulation: Number of observations to simulate.

setarTest 71

Thresh, nthresh, lag, include
Simulation: parameters for the SETAR to simulate. See setar for their descrip-
tion.

starting Simulation: Starting values (same length as lag)

innov Simulation: time series of innovations/residuals.

Value

a list with the simulated/bootstrapped data and the parameter matrix used.

Author(s)

Matthieu Stigler

See Also

SETAR to estimate a SETAR, arima.sim to simulate an ARMA.

Examples

##Simulation of a TAR with 1 threshold
TvarMat <- c(2.9,-0.4,-0.1,-1.5, 0.2,0.3)
sim<-setar.sim(B=TvarMat,lag=2, type="simul", nthresh=1, Thresh=2, starting=c(2.8,2.2))
mean(ifelse(sim>2,1,0)) #approximation of values over the threshold

#check the result
selectSETAR(sim, m=2)

##Bootstrap a TAR with two threshold (three regimes)
sun <- (sqrt(sunspot.year+1)-1)*2
sun_est <- setar(sun, nthresh=2, m=2)
sun_est_boot <- setar.boot(sun_est)
head(sun_est_boot)

##Check the bootstrap: with no resampling, is it the same series?
sun_est_boot <- setar.boot(sun_est, boot.scheme = "check")
all.equal(as.numeric(sun), sun_est_boot)

setarTest Test of linearity against threshold (SETAR)

Description

Test of linearity against threshold of Hansen (1999) with bootstrap distribution

72 setarTest

Usage

setarTest(
x,
m,
thDelay = 0,
trim = 0.1,
include = c("const", "trend", "none", "both"),
nboot = 10,
test = c("1vs", "2vs3"),
hpc = c("none", "foreach"),
boot.scheme = c("resample", "resample_block", "wild1", "wild2", "check"),
seed = NULL

)

Arguments

x time series

m, thDelay lag and ’time delay’ for the threshold variable

trim trimming parameter indicating the minimal percentage of observations in each
regime

include Type of deterministic regressors to include: none, a constant, a trend, or constant
and trend (both).

nboot number of bootstrap replications

test whether to test AR against SETAR, or SETAR(1 reg) against SETAR(2 reg)

hpc Possibility to run the bootstrap on parallel core. See details in

boot.scheme Type of resampling scheme to use for the residuals. See resample_vec.

seed Seed used in the bootstrap resampling TVECM.HStest

Details

Estimation of the first threshold parameter is made with CLS, a conditional search with one iteration
is made for the second threshold. The Ftest comparing the residual sum of squares (SSR) of each
model is computed.

Fij = T ((Si − Sj)/Sj)

where Si is the SSR of the model with i regimes (and so i-1 thresholds).

Three test are available. The both first can be seen as linearity test, whereas the third can be seen
as a specification test: once the 1vs2 or/and 1vs3 rejected the linearity and henceforth accepted the
presence of a threshold, is a model with one or two thresholds preferable?

Test 1vs2: Linear AR versus 1 threshold TAR

Test 1vs3: Linear AR versus 2 thresholds TAR

Test 2vs3: 1 threshold TAR versus 2 thresholds TAR

The two first tests are computed together and available with test="1vs". The third test is available
with test="2vs3".

setarTest 73

The homoskedastic bootstrap distribution is based on resampling the residuals from H0 model (ar
for test 1vs, and setar(1) for test 2vs3), estimating the threshold parameter and then computing the
Ftest, so it involves many computations and is pretty slow.

Value

A object of class "Hansen99Test" containing:

SSRs The residual Sum of squares of model AR, 1 threshold TAR and 2 thresholds
TAR

Ftests The Ftest statistic for the test

PvalBoot The bootstrap p-values for the test selected

CriticalValBoot

The critical values for the test selected

Ftestboot All the F-test computed

firstBests, secBests
The thresholds for the original series, obtained from search for 1 thresh (firstBests)
and conditional search for 2 thresh (secBests)

nboot, m The number of bootstrap replications (nboot), the lags used (m)

Author(s)

Matthieu Stigler

References

Hansen (1999) Testing for linearity, Journal of Economic Surveys, Volume 13, Number 5, Decem-
ber 1999 , pp. 551-576(26) available at: https://www.ssc.wisc.edu/~bhansen/papers/cv.htm

See Also

TVAR.LRtest for the multivariate version. SETAR for estimation of the model.

Examples

#Data used by Hansen
sun <- (sqrt(sunspot.year + 1) - 1) * 2

#Test 1vs2 and 1vs3
#setarTest(sun, m=11, thDelay=0:1, nboot=5,trim=0.1, test="1vs")

https://www.ssc.wisc.edu/~bhansen/papers/cv.htm

74 sigmoid

setarTest_IIPUs_results

Results from the setarTest, applied on Hansen (1999) data

Description

Saved objects

Usage

setarTest_IIPUs_results

Format

A list containing output from two tests

See Also

Example in IIPUs

Examples

library(tsDyn)
data(IIPUs)
B <- 1000
Not run:

test_1 <- setarTest(IIPUs, m=16, thDelay=5, nboot=B)
test_2 <- setarTest(IIPUs, m=16, thDelay=5, nboot=B, test = "2vs3")

End(Not run)

sigmoid sigmoid functions

Description

Some sigmoid functions. See R sources for their definition

Usage

sigmoid(x)

dsigmoid(x)

Arguments

x numeric vector

STAR 75

Author(s)

J. L. Aznarte

STAR STAR model

Description

STAR model fitting with automatic selection of the number of regimes based on LM tests.

Usage

star(x, m=2, noRegimes, d = 1, steps = d, series, rob = FALSE,
mTh, thDelay, thVar, sig=0.05, trace=TRUE, control=list(), ...)

Arguments

x time series

m, d, steps embedding dimension, time delay, forecasting steps

noRegimes max number of regimes

series time series name (optional)

rob perform robust test (not implemented)

thDelay ’time delay’ for the threshold variable (as multiple of embedding time delay d)

mTh coefficients for the lagged time series, to obtain the threshold variable

thVar external threshold variable

sig significance level for the tests to select the number of regimes.

control further arguments to be passed as control list to optim

trace should additional infos be printed out?

... currently unused

Details

The function star implements the iterative building strategy described in [1] to identify and estimate
Smooth Transition Autoregressive models.

[1] T. Terasvirta, "Specification, estimation and evaluation of smooth transition autoregressive mod-
els", J. Am. Stat. Assoc. 89 (1994): 208-218.

Value

star returns an object of class nlar, subclass star, i.e. a list with informations about the fitted
model.

76 toLatex.setar

Author(s)

J. L. Aznarte M.

See Also

addRegime

Examples

mod.star <- star(log10(lynx), mTh=c(0,1), control=list(maxit=3000))
mod.star

addRegime(mod.star)

toLatex.setar Latex representation of fitted setar models

Description

Produce LaTeX output of the SETAR model.

Usage

S3 method for class 'setar'
toLatex(object, digits = 3, label, ...)

Arguments

object fitted setar model (using nlar)

digits options to be passed to format for formatting numbers

label LaTeX label passed to the equation

... Not used

Author(s)

Antonio, Fabio Di Narzo

See Also

setar, nlar-methods

Examples

mod.setar <- setar(log10(lynx), m=2, thDelay=1, th=3.25)
toLatex(mod.setar)

TVAR 77

TVAR Multivariate Threshold Vector Autoregressive model

Description

Estimate a multivariate Threshold VAR (TVAR), either using lags as transition variable (default),
or specifying an external variable.

Usage

TVAR(
data,
lag,
include = c("const", "trend", "none", "both"),
model = c("TAR", "MTAR"),
commonInter = FALSE,
nthresh = 1,
thDelay = 1,
mTh = 1,
thVar,
trim = 0.1,
ngrid,
gamma = NULL,
around,
plot = FALSE,
dummyToBothRegimes = TRUE,
trace = TRUE,
trick = "for",
max.iter = 2

)

Arguments

data time series

lag Number of lags to include in each regime

include Type of deterministic regressors to include

model Whether the transition variable is taken in levels (TAR) or difference (MTAR)

commonInter Whether the deterministic regressors are regime specific (commonInter=FALSE)
or not.

nthresh Number of thresholds

thDelay ’time delay’ for the threshold variable (as multiple of embedding time delay d)
PLEASE NOTE that the notation is currently different to univariate models in
tsDyn. The left side variable is taken at time t, and not t+1 as in univariate cases.

mTh combination of variables with same lag order for the transition variable. Either
a single value (indicating which variable to take) or a combination

78 TVAR

thVar Optional. External transition variable.

trim trimming parameter indicating the minimal percentage of observations in each
regime

ngrid number of elements of the grid, especially for nthresh=3

gamma prespecified threshold values

around The grid search is restricted to ngrid values around this point. Especially useful
for nthresh=3.

plot Whether a plot showing the results of the grid search should be printed
dummyToBothRegimes

Whether the dummy in the one threshold model is applied to each regime or not.

trace should additional infos be printed out?

trick type of R function called: for or mapply

max.iter Number of iterations for the algorithm

Details

For fixed th and threshold variable, the model is linear, so estimation can be done directly by CLS
(Conditional Least Squares). The search of the parameters values is made upon a grid of potential
values. So it is pretty slow.

nthresh=1: estimation of one threshold model (two regimes) upon a grid of ngrid values (default to
ALL) possible thresholds and delays values.

nthresh=2: estimation of two thresholds model (three regimes) Conditional on the threshold found
in model where nthresh=1, the second threshold is searched. When both are found, a second grid
search is made with 30 values around each threshold.

nthresh=3: DOES NOT estimate a 3 thresholds model, but a 2 thresholds model with a whole grid
over the thresholds parameters (so is really slow) with a given delay, is there rather to check the
consistency of the method nthresh=2

Value

An object of class TVAR, with standard methods.

Author(s)

Matthieu Stigler

References

Lo and Zivot (2001) "Threshold Cointegration and Nonlinear Adjustment to the Law of One Price,"
Macroeconomic Dynamics, Cambridge University Press, vol. 5(4), pages 533-76, September.

See Also

lineVar for the linear VAR/VECM, TVAR.LRtest to test for TVAR, TVAR.sim to simulate/bootstrap
a TVAR.

TVAR.LRtest 79

Examples

data(zeroyld)

tv <- TVAR(zeroyld, lag=2, nthresh=2, thDelay=1, trim=0.1, mTh=1, plot=FALSE)

print(tv)
summary(tv)

a few useful methods:
plot(tv)
predict(tv)
c(AIC(tv), BIC(tv), logLik(tv))

TVAR.LRtest Test of linearity

Description

Multivariate extension of the linearity against threshold test from Hansen (1999) with bootstrap
distribution

Usage

TVAR.LRtest(
data,
lag = 1,
trend = TRUE,
series,
thDelay = 1:m,
mTh = 1,
thVar,
nboot = 10,
plot = FALSE,
trim = 0.1,
test = c("1vs", "2vs3"),
model = c("TAR", "MTAR"),
hpc = c("none", "foreach"),
trace = FALSE,
check = FALSE

)

Arguments

data multivariate time series

lag Number of lags to include in each regime

trend whether a trend should be added

series name of the series

80 TVAR.LRtest

thDelay ’time delay’ for the threshold variable (as multiple of embedding time delay d)
PLEASE NOTE that the notation is currently different to univariate models in
tsDyn. The left side variable is taken at time t, and not t+1 as in univariate cases.

mTh combination of variables with same lag order for the transition variable. Either
a single value (indicating which variable to take) or a combination

thVar external transition variable
nboot Number of bootstrap replications
plot Whether a plot showing the results of the grid search should be printed
trim trimming parameter indicating the minimal percentage of observations in each

regime
test Type of usual and alternative hypothesis. See details
model Whether the threshold variable is taken in level (TAR) or difference (MTAR)
hpc Possibility to run the bootstrap on parallel core. See details in TVECM.HStest

trace should additional infos be printed? (logical)
check Possibility to check the function by no sampling: the test value should be the

same as in the original data

Details

This test is just the multivariate extension proposed by Lo and Zivot of the linearity test of Hansen
(1999). As in univariate case, estimation of the first threshold parameter is made with CLS, for the
second threshold a conditional search with one iteration is made. Instead of a Ftest comparing the
SSR for the univariate case, a Likelihood Ratio (LR) test comparing the covariance matrix of each
model is computed.

LRij = T (ln(det Σ̂i)− ln(det Σ̂j))

where Σ̂i is the estimated covariance matrix of the model with i regimes (and so i-1 thresholds).

Three test are available. The both first can be seen as linearity test, whereas the third can be seen
as a specification test: once the 1vs2 or/and 1vs3 rejected the linearity and henceforth accepted the
presence of a threshold, is a model with one or two thresholds preferable?

Test 1vs2: Linear VAR versus 1 threshold TVAR

Test 1vs3: Linear VAR versus 2 threshold2 TVAR

Test 2vs3: 1 threshold TAR versus 2 threshold2 TAR

The both first are computed together and available with test="1vs". The third test is available with
test="2vs3".

The homoskedastik bootstrap distribution is based on resampling the residuals from H0 model,
estimating the threshold parameter and then computing the Ftest, so it involves many computations
and is pretty slow.

Value

A list containing:

-The values of each LR test

-The bootstrap Pvalues and critical values for the test selected

TVAR.sim 81

Author(s)

Matthieu Stigler

References

Hansen (1999) Testing for linearity, Journal of Economic Surveys, Volume 13, Number 5, Decem-
ber 1999 , pp. 551-576(26) available at: https://www.ssc.wisc.edu/~bhansen/papers/cv.htm

Lo and Zivot (2001) "Threshold Cointegration and Nonlinear Adjustment to the Law of One Price,"
Macroeconomic Dynamics, Cambridge University Press, vol. 5(4), pages 533-76, September.

See Also

setarTest for the univariate version. OlsTVAR for estimation of the model.

Examples

data(zeroyld)
data<-zeroyld

TVAR.LRtest(data, lag=2, mTh=1,thDelay=1:2, nboot=3, plot=FALSE, trim=0.1, test="1vs")

TVAR.sim Simulation of a multivariate Threshold Autoregressive model (TVAR)

Description

Simulate a multivariate Threshold VAR (TVAR)

Usage

TVAR.sim(
B,
Thresh,
nthresh = 1,
n = 200,
lag = 1,
include = c("const", "trend", "none", "both"),
thDelay = 1,
mTh = 1,
starting = NULL,
innov = rmnorm(n, varcov = varcov),
varcov = diag(1, nrow(B)),
show.parMat = FALSE,
...

)

https://www.ssc.wisc.edu/~bhansen/papers/cv.htm

82 TVAR.sim

TVAR.boot(
TVARobject,
innov,
seed,
boot.scheme = c("resample", "wild1", "wild2", "check"),
...

)

Arguments

B Matrix of coefficients to simulate

Thresh The threshold value(s). Vector of length nthresh

nthresh number of threshold (see details)

n Number of observations to create when type="simul"

lag Number of lags to include in each regime

include Type of deterministic regressors to include. NOT WORKING PROPERLY
CURRENTLY if not const

thDelay ’time delay’ for the threshold variable (as multiple of embedding time delay d)
PLEASE NOTE that the notation is currently different to univariate models in
tsDyn. The left side variable is taken at time t, and not t+1 as in univariate cases.

mTh combination of variables with same lag order for the transition variable. Either
a single value (indicating which variable to take) or a combination

starting Starting values (matrix of dimension lag x k). If not given, set to zero.

innov Innovations used for simulation. Should be matrix of dim n x k. By default
multivariate normal. For the bootstrap case TVAR.boot, residuals are resampled
if argument is missing.

varcov Variance-covariance matrix for the innovations. By default identity matrix.

show.parMat Logical. Should the parameter matrix be shown? Useful to understand how to
give right input

... Further arguments passed to the underlying (un-exported) TVAR.gen function

TVARobject Object of class TVAR generated by function TVAR

seed Optional. Seed for the random resampling function.

boot.scheme The bootstrap scheme.

Details

This function offers the possibility to generate series following a TVAR.

By giving a matrix of coefficients, on can only simulate a VAR (nthresh=0) or TVAR (nthresh=1
or 2). One can have a specification with constant (default), trend, both or none (see arg include).
Order in parameters is include/lags (VECM) and include/lags/include/lags for TVECM, hence, a
matrix for a TVECM with 3 regimes, a const and a 2 lags would have 2 lines and 2*(1+4) columns.
The innovations can be given by the user (a matrix of dim nxk, here n does not include the starting
values!), by default it uses a multivariate normal distribution, with covariance matrix specified by

TVAR.sim 83

varcov. The starting values (of dim lags x k) can be given. The user should take care for their
choice, since it is not sure that the simulated values will cross the threshold even once.

The matrix ‘B’ has to be in the form: constant, trend, lags, then repeated if many regimes. In case
of uncertainty, using who.parMat=TRUE will print the matrix as interpreted by the function, helping
the user to feed the right input.

For the bootstrap, the function resamples data from a given TVAR model generated by TVAR, re-
turning the resampled data. A residual recursive bootstrap is used, where one uses either a simple
resampling, or the Wild bootstrap, either with a normal distribution (wild1) or inverting the sign
randomly (wild2)

Value

A matrix with the simulated/bootstrapped series.

Author(s)

Matthieu Stigler

See Also

TVAR to estimate the TVAR. Similar TVECM.sim and TVECM.boot for TVECM, VAR.sim and VAR.boot
for VAR models estimated with lineVar.

Examples

TVAR.sim: Simulation of a TVAR with 1 threshold
B <- rbind(c(0.11928245, 1.00880447, -0.009974585, -0.089316, 0.95425564, 0.02592617),

c(0.25283578, 0.09182279, 0.914763741, -0.0530613, 0.02248586, 0.94309347))
colnames(B) <- paste(rep(c("Const", "Lag_1_var1", "Lag_1_var2"), 2), c("Low", "High"), sep="_")
sim <- TVAR.sim(B=B,nthresh=1,n=500, mTh=1, Thresh=5, starting=matrix(c(5.2, 5.5), nrow=1))

#estimate the new serie
TVAR(sim, lag=1, dummyToBothRegimes=TRUE)

TVAR.boot: Bootstrap a TVAR with two threshold (three regimes)
data(zeroyld)
serie <- zeroyld
mod <- TVAR(data=serie,lag=1, nthresh=1)
TVAR.boot(mod)

84 TVECM

TVECM Threshold Vector Error Correction model (VECM)

Description

Estimate a Threshold Vector Error Correction model (VECM)

Usage

TVECM(
data,
lag = 1,
nthresh = 1,
trim = 0.05,
ngridBeta = 50,
ngridTh = 50,
plot = TRUE,
th1 = list(exact = NULL, int = c("from", "to"), around = "val"),
th2 = list(exact = NULL, int = c("from", "to"), around = "val"),
beta = list(exact = NULL, int = c("from", "to"), around = c("val", "by")),
restr = c("none", "equal", "signOp"),
common = c("All", "only_ECT"),
include = c("const", "trend", "none", "both"),
dummyToBothRegimes = TRUE,
beta0 = 0,
methodMapply = FALSE,
trace = TRUE

)

Arguments

data time series

lag Number of lags to include in each regime

nthresh number of threshold (see details)

trim trimming parameter indicating the minimal percentage of observations in each
regime

ngridBeta number of elements to search for the cointegrating value

ngridTh number of elements to search for the threshold value

plot Whether the grid with the SSR of each threshold should be plotted.

th1 different possibilities to pre-specify an exact value, an interval or a central point
for the search of the threshold (or first threshold if nthresh=2)

th2 different possibilities to pre-specify an exact value or a central point for the
search of the second threshold (used only if nthresh=2)

beta different possibilities to pre-specify an exact value, an interval or a central point
for the search of the cointegrating value

TVECM 85

restr Currently not available
common Whether the regime-specific dynamics are only for the ECT or for the ECT and

the lags
include Type of deterministic regressors to include
dummyToBothRegimes

Whether the dummy in the one threshold model is applied to each regime or not.
beta0 Additional regressors to include in the cointegrating relation
methodMapply only for programming. Is to make the choice between a for loop or mapply

implementation
trace should additional infos be printed? (logical)

Details

For fixed threshold and cointegrating vector, the model is linear, so estimation of the regression
parameters can be done directly by CLS (Conditional Least Squares). The search of the threshold
and cointegrating parameters values which minimize the residual sum of squares (SSR) is made on
a grid of potential values. For specification of the grids, see below.

The function can estimate one as well as two thresholds:

nthresh=1: estimation of one threshold model (two regimes) upon a grid of ngridTh values (default
to ALL) possible thresholds and delays values.

nthresh=2: estimation of two thresholds model (three regimes). Conditional on the threshold found
in model where nthresh=1, the second threshold is searched. When both are found, a second
grid search is made with 30 values around each threshold.

The model can be either with a threshold effect on all variables ("All") or only on the error correction
term (ECT) (argument "only ECT"). In the second case, the value for the middle threshold is taken
a null, as in Balke and Fomby (1997).

The grid for the threshold parameters can be set in different ways, through the argument th1 , th2
and beta:

exact: Pre-specified value (for beta: cointegrating vector will be c(1,-beta))
int: Specify an interval (of length ngridTh) in which to search.
around: Specify to take ngridTh points around the value given.

The default is to do an interval search. Interval bounds for the threshold interval are simply the trim
and 1-trim percents of the sorted error correction term. For the cointegrating parameter, bounds of
the interval are obtained from the (OLS) confidence interval of the linear cointegration case. It is
often found however that this interval is too tight. It is hence recommended to inspect the plot of
the grid search.

Value

Fitted model data

Author(s)

Matthieu Stigler

86 TVECM.HStest

References

Hansen, B. and Seo, B. (2002), Testing for two-regime threshold cointegration in vector error-
correction models, Journal of Econometrics, 110, pages 293 - 318

Seo, M. H. (2009) Estimation of non linear error-correction models, Working paper

See Also

VECM for the linear VECM, TVAR for the threshold VAR, TVECM.SeoTest to test for TVECM,
TVECM.sim to simulate/bootstrap a TVECM.

Examples

data(zeroyld)

##Estimate a TVECM (we use here minimal grid, it should be usually much bigger!)

tvec <- TVECM(zeroyld, nthresh=2,lag=1, ngridBeta=20, ngridTh=30, plot=TRUE,trim=0.05, common="All")

print(tvec)
summary(tvec)

#Obtain diverse infos:
AIC(tvec)
BIC(tvec)

res.tvec<-residuals(tvec)

#export the equations as Latex:
toLatex(tvec)

TVECM.HStest Test of linear cointegration vs threshold cointegration

Description

Tests the null of linear cointegration against threshold cointegration following Hansen and Seo
(2002). Fixed regressor and residual bootstrap are available.

Usage

TVECM.HStest(data, lag=1, ngridTh=300, trim=0.05,
nboot=100, fixed.beta=NULL, intercept=TRUE,
boot.type=c("FixedReg", "ResBoot"),
hpc=c("none", "foreach"))

TVECM.HStest 87

Arguments

data Time series
lag Number of lags to include in each regime
ngridTh Number of threshold grid points to evaluate the optimal threshold.
trim Trimming parameter indicating the minimal percentage of observations in each

regime
nboot Number of bootstrap replications
fixed.beta Numeric. User pre-specified cointegrating value, as in VECM (i.e. cointegrating

vector will be c(1, -beta.fixed)). When NULL (default), the value is estimated
from the linear VECM.

intercept Logical. Whether an intercept has to be included in the VECM
boot.type Character. Type of bootstrap simulation (only if nboot>0)
hpc Possibility to run the bootstrap on parallel core. See details

Details

This test follows the implementation done by Hansen and Seo (2002). The cointegrating value is
estimated from the linear VECM. Then, conditional on this value, the LM test is run for a range of
different threshold values. The maximum of those LM test values is reported.

Two bootstrap are available: a fixed regressor, as well as a usual residual bootstrap (using the
function TVECM.sim).

Available methods are print(), summary() and plot().

With the argument hpc, the burdensome bootstrap replication can be run on parallel cores, thus
alleviating the time of computation. The user needs simply to choose a package (among doMC,
doMPI, doSNOW or doRedis) and register the backend. See the vignette for more details.

Value

A list containing diverse values:

stat The sup-LM statistic.
values The whole LM values.
PvalBoot The bootstrap p-value
CriticalValBoot

The bootstrap critical values
allBoots The boot sup-LM values
args Some user given args (nboot, boot.type)

Reproducibility

Comparison with original paper is made difficult as values of the test are not shown in the paper,
only their critical values, which depend on random bootstrap.

Comparison is done with the GAUSS code available on the page of Bruce Hansen. Running tar_ci,
we have the same sup-LM value when lags=1 and lags=2, a higher value with lag=3. When the test
is run with pre-specified beta values, we have different results, sometimes higher but also smaller
sup-LM value.

88 TVECM.HStest

Author(s)

Matthieu Stigler

References

Hansen, B. and Seo, B. (2002), Testing for two-regime threshold cointegration in vector error-
correction models, Journal of Econometrics, 110, pages 293 - 318

See Also

zeroyld: data used in the original paper of Hansen and Seo.

TVECM.SeoTest: a similar test, but with null hypothesis of no-cointegration.

TVECM for estimating a TVECM, TVECM.sim for simulating/bootstrap a TVECM,

Examples

#Use original data from paper:
data(zeroyld)
dataPaper<-zeroyld
Test: nboot, number of bootstrap replications, should be high
Not run:
test1<-TVECM.HStest(dataPaper, lag=1, intercept=TRUE, nboot=1000)

End(Not run)

#we use here for the example a much smaller number of bootstrap:
test1<-TVECM.HStest(dataPaper, lag=1, intercept=TRUE, nboot=10)

test1
summary(test1)
plot(test1)

#can have only specific plots:
plot(test1, which="LM values")
plot(test1, which="Density")

Run the function in parallel:
Not run:
#we show here the use with package doMC
library(doMC)
registerDoMC(2) #Number of cores
test1<-TVECM.HStest(dataPaper, lag=1, intercept=TRUE, nboot=1000, hpc="foreach")

End(Not run)

TVECM.SeoTest 89

TVECM.SeoTest No cointegration vs threshold cointegration test

Description

Test the null of no cointegration against threshold cointegration with bootstrap distribution of Seo
(2006)

Usage

TVECM.SeoTest(
data,
lag,
beta,
trim = 0.1,
nboot,
plot = FALSE,
hpc = c("none", "foreach"),
check = FALSE

)

Arguments

data time series

lag Number of lags to include in each regime

beta Pre-specified cointegrating value (i.e. cointegrating vector will be c(1, -beta))

trim trimming parameter indicating the minimal percentage of observations in each
regime

nboot Number of bootstrap replications

plot Whether a grid with the SSR of each threshold should be printed

hpc Possibility to run the bootstrap on parallel core. See details in TVECM.HStest

check Possibility to check the function by no sampling: the test value should be the
same as in the original data

Details

For this test, the cointegrating value has to be specified by the user.

The model used is one where the threshold effect concerns only the cointegrating vector, and only
in the outer regimes.

Due to the presence of parameters unidentified under the null hypothesis, the test employed is a
Sup-Wald test, that means that for each combination of the thresholds, a Wald Test is computed and
the supremum of all tests is taken. For each bootstrap replication, this approach is taken, so that the
test is really slow.

90 TVECM.sim

Value

A list containing diverse informations:

Estimated threshold parameters and usual slope parameters.

Value of the test.

Critical and Pvalue from bootstrap distribution.

Author(s)

Matthieu Stigler

References

Seo, Myunghwan, 2006. "Bootstrap testing for the null of no cointegration in a threshold vector
error correction model," Journal of Econometrics, vol. 127(1), pages 129-150, September.

See Also

TVECM for estimating a TVECM, TVECM.sim for simulating/bootstrap a TVECM,

Examples

As the function takes long long time to be executed, we show in in don't run environement
Not run:
data(zeroyld)

#can be useful to check whether the bootstrap is working:
#without sampling, results of boot should be same as original
#this is indeed not always the case duye to floating point algorithm
TVECM.SeoTest(zeroyld,lag=2, beta=1, trim=0.1,nboot=2, plot=FALSE,check=TRUE)

#then run the function:
TVECM.SeoTest(zeroyld,lag=2, beta=1, trim=0.1,nboot=100, plot=FALSE,check=FALSE)

End(Not run)

TVECM.sim Simulation and bootstrap a VECM or bivariate TVECM

Description

Estimate or bootstraps a multivariate Threshold VAR

TVECM.sim 91

Usage

TVECM.sim(
B,
n = 200,
lag = 1,
include = c("const", "trend", "none", "both"),
beta,
nthresh = 1,
Thresh,
starting = NULL,
innov = rmnorm(n, varcov = diag(1, nrow(B))),
show.parMat = FALSE,
returnStarting = FALSE,
...

)

VECM.sim(
B,
n = 200,
lag = 1,
include = c("const", "trend", "none", "both"),
beta,
starting = NULL,
innov = rmnorm(n, varcov = diag(1, nrow(B))),
show.parMat = FALSE,
returnStarting = FALSE,
...

)

VECM.boot(
object,
boot.scheme = c("resample", "resample_block", "wild1", "wild2", "check"),
seed = NULL,
...

)

TVECM.boot(
object,
boot.scheme = c("resample", "resample_block", "wild1", "wild2", "check"),
seed = NULL,
...

)

Arguments

B Simulation: Matrix of coefficients to simulate

n Simulation: Number of observations to simulate.

beta The cointegrating value

92 TVECM.sim

Thresh, nthresh, lag, include
Simulation: parameters for the VECM/TVECM to simulate. See TVECM for their
description.

starting Simulation: Starting values (same length as lag = 1)

innov Simulation: time series of innovations/residuals.

show.parMat Logical. Whether to show how the parameter matrix B is interpreted.

returnStarting Logical. Whether to return the starting values.

... additional arguments for the unexported TVECM.gen.

object Object computed by function TVECM or linear VECM

boot.scheme Bootstrap: which resampling scheme to use for the residuals. See resample_vec.

seed Bootstrap: seed used in the resampling

Details

This function offers the possibility to generate series following a VECM/TVECM from two ap-
proaches: bootstrap or simulation. VECM.sim is just a wrapper for TVECM.sim.

When the argument matrix is given, on can only simulate a VECM (nthresh=0) or TVECM
(nthresh=1 or 2). One can have a specification with constant ("const"), "trend", "both" or
"none" (see argument include). Order for the parameters is ECT/include/lags for VECM and
ECT1/include1/lags1/ECT2/include2/lags2 for TVECM. To be sure that once is using it correctly,
setting show.parMat = TRUE will show the matrix of parameters together with their values and
names.

The argument beta is the cointegrating value on the right side of the long-run relationship, and
hence the function use the vector (1,-beta). The innov argument specifies the innovations. It should
be given as a matrix of dim nxk, (here n does not include the starting values!), by default it uses a
multivariate normal distribution, with covariance matrix specified by varcov.

The starting values (of dim lags x k) can be given through argument starting. The user should
take care for their choice, since it is not sure that the simulated values will cross the threshold even
once. Notice that only one cointegrating value is allowed. User interested in simulating a VECM
with more cointegrating values should do use the VAR representation and use TVAR.sim.

The second possibility is to bootstrap series. This is done on a object generated by TVECM (or VECM).
A simple residual bootstrap is done, or one can simulate a series with the same parameter matrix
and with normal distributed residuals (with variance pre-specified), corresponding to Monte-carlo
simulations.

One can alternatively give only the series, and then the function will call internally TVECM.

Value

A matrix with the simulated/bootstrapped series.

Author(s)

Matthieu Stigler

UsUnemp 93

See Also

VECM or TVECM to estimate the VECM or TVECM. Similar TVAR.sim and TVAR.boot for TVAR,
VAR.sim and VAR.boot for VAR models estimated with lineVar models.

Examples

###reproduce example in Enders (2004, 2 edition) p. 350,
(similar example in Enders (2010, 3 edition) 301-302).

if(require(mnormt)){
#see that the full "VAR" coefficient matrix is:
A <- matrix(c(-0.2, 0.2, 0.2, -0.2), byrow=TRUE, ncol=2)

but this is not the input of VECM.sim. You should decompose into the a and b matrix:
a<-matrix(c(-0.2, 0.2), ncol=1)
b<-matrix(c(1,-1), nrow=1)

so that:
a%*%b

The a matrix is the input under argument B, while the b matrix is under argument beta:
(the other zeros in B are for the not-specified lags)
innov<-rmnorm(100, varcov=diag(2))
Bvecm <- rbind(c(-0.2, 0,0), c(0.2, 0,0))
vecm1 <- VECM.sim(B=Bvecm, beta=1,n=100, lag=1,include="none", innov=innov)
ECT <- vecm1[,1]-vecm1[,2]

#add an intercept as in panel B
Bvecm2 <- rbind(c(-0.2, 0.1,0,0), c(0.2,0.4, 0,0))
vecm2 <- VECM.sim(B=Bvecm2, n=100,beta=1, lag=1,include="const", innov=innov)

par(mfrow=c(2,1))
plot(vecm1[,1], type="l", main="Panel a: no drift or intercept", ylab="", xlab="")
lines(vecm1[,2], lty=2)
plot(vecm2[,1], type="l", main="Panel b: drift terms (0.1)", ylab="", xlab="")
lines(vecm2[,2], lty=2)

}
##Bootstrap a TVAR with 1 threshold (two regimes)
data(zeroyld)
TVECMobject <- TVECM(zeroyld, nthresh=1, lag=1, ngridBeta=20, ngridTh=20, plot=FALSE, trace = FALSE)
TVECM.boot(TVECMobject)

##Check the bootstrap: do we get original series, when not resampling residuals?
TVECM.boot.check <- TVECM.boot(TVECMobject, boot.scheme = "check")
all.equal(as.data.frame(TVECM.boot.check), zeroyld)

UsUnemp US unemployment series used in Caner and Hansen (2001)

94 VAR.sim

Description

This data, used as example in Caner and Hansen (2001), contains the monthly US adult male un-
employment from 1956 to 1999.

Usage

data(UsUnemp)

Format

A monthly time series of class ts starting in January 1956 and ending in August 1999.

Source

Caner and Hansen,Threshold autoregression with a unit root Econometrica, 2001, 69, 1555-1596
available at: https://www.ssc.wisc.edu/~bhansen/papers/cv.htm

VAR.sim Simulate or bootstrap a VAR model

Description

Allow to either simulate from scratch (by providing coefficients) or bootstrap from an estimated
VAR model,

Usage

VAR.sim(
B,
n = 200,
lag = 1,
include = c("const", "trend", "none", "both"),
starting = NULL,
innov = rmnorm(n, varcov = varcov),
varcov = diag(1, nrow(B)),
show.parMat = FALSE,
returnStarting = FALSE,
...

)

VAR.boot(
VARobject,
boot.scheme = c("resample", "wild1", "wild2", "check"),
seed,
...

)

https://www.ssc.wisc.edu/~bhansen/papers/cv.htm

VAR.sim 95

Arguments

B Matrix of coefficients.

n Number of observations to simulate

lag Number of lags of the VAR to simulate

include Type of deterministic regressors to include in the VAR to simulate

starting Starting values (matrix of dimension lag x k) for the VAR to simulate. If not
given, set to zero.

innov Innovations used for in the VAR to simulate. Should be matrix of dim n x k. By
default multivariate normal.

varcov Variance-covariance matrix for the innovations. By default identity matrix.

show.parMat Logical. Should the parameter matrix be shown? Useful to understand how to
give right input

returnStarting Whether starting values are returned. Default to FALSE

... Further arguments passed to the underlying (un-exported) VAR.gen function

VARobject Object of class VAR generated by function lineVar

boot.scheme The bootstrap scheme. See details.

seed Optional. Seed for the random resampling function.

Details

For the bootstrap, the function resamples data from a given VAR model generated by lineVar,
returning the resampled data. A residual recursive bootstrap is used, where one uses either a simple
resampling, or the Wild bootstrap, either with a normal distribution (wild1) or inverting the sign
randomly (wild2)

Value

A matrix with the resampled series.

Author(s)

Matthieu Stigler

See Also

lineVar to estimate the VAR. Similar TVECM.sim and TVECM.boot for TVECM, TVAR.sim and
TVAR.boot for TVAR models.

Examples

VAR.sim: simulate VAR as in Enders 2004, p 268
B1<-matrix(c(0.7, 0.2, 0.2, 0.7), 2)
var1 <- VAR.sim(B=B1, n=100, include="none")
ts.plot(var1, type="l", col=c(1,2))

96 VARrep

B2<-rbind(c(0.5, 0.5, 0.5), c(0, 0.5, 0.5))
varcov<-matrix(c(1,0.2, 0.3, 1),2)
var2 <- VAR.sim(B=B2, n=100, include="const", varcov=varcov)
ts.plot(var2, type="l", col=c(1,2))

VAR.boot: Bootstrap a VAR
data(zeroyld)
mod <- lineVar(data=zeroyld,lag=1)
VAR.boot(mod)

VARrep VAR representation

Description

Show the VAR representation of a VECM

Usage

VARrep(object, ...)

S3 method for class 'VECM'
VARrep(object, ...)

S3 method for class 'VAR'
VARrep(object, ...)

Arguments

object An object of class ‘VECM’ created by VECM, or of class ‘VAR’ created by
lineVar

... Currently not used

Value

A matrix containing the parameters of the VECM under their VAR representation.

Author(s)

Matthieu Stigler

References

Hamilton (1994) Time Series Analysis, Princeton University Press

VECM 97

Examples

data(barry)

VECM model:
mod_vecm <- VECM(barry, lag=2, estim="ML")
VARrep(mod_vecm)

VAR model:
mod_var <- lineVar(barry, lag=2, I="diff")
VARrep(mod_var)

VECM Estimation of Vector error correction model (VECM)

Description

Estimate a VECM by either Engle-Granger (2OLS) or Johansen (MLE) method.

Usage

VECM(
data,
lag,
r = 1,
include = c("const", "trend", "none", "both"),
beta = NULL,
estim = c("2OLS", "ML"),
LRinclude = c("none", "const", "trend", "both"),
exogen = NULL

)

Arguments

data multivariate time series (first row being first=oldest value)
lag Number of lags (in the VECM representation, see Details)
r Number of cointegrating relationships
include Type of deterministic regressors to include
beta for VECM only: user-specified cointegrating values, the cointegrating vector

will be taken as: (1, -beta) If NULL, will be estimated using the estimator
specified in estim

estim Type of estimator: 2OLS for the two-step approach or ML for Johansen MLE
LRinclude Type of deterministic regressor(s) to include in the long-term relationship. Can

also be a matrix with exogeneous regressors (2OLS only).
exogen Inclusion of exogenous variables (first row being first=oldest value). Is either of

same size than data (then automatically cut) or than end-sample.

98 VECM

Details

This function is just a wrapper for the lineVar, with model="VECM".

More comprehensive functions for VECM are in package vars. Differences with that package are:

Engle-Granger estimator The Engle-Granger estimator is available

Presentation Results are printed in a different ways, using a matrix form

lateX export The matrix of coefficients can be exported to latex, with or without standard-values
and significance stars

Prediction The predict method contains a newdata argument allowing to compute rolling fore-
casts.

Two estimators are available: the Engle-Granger two step approach (2OLS) or the Johansen (ML).
For the 2OLS, deterministic regressors (or external variables if LRinclude is of class numeric) can
be added for the estimation of the cointegrating value and for the ECT. This is only working when
the beta value is not pre-specified.

The arg beta is the cointegrating value, the cointegrating vector will be taken as: (1, -beta).

Note that the lag specification corresponds to the lags in the VECM representation, not in the VAR
(as is done in package vars or software GRETL). Basically, a VAR with 2 lags corresponds here to
a VECM with 1 lag. The lag can be set to 0, although some methods (irf, fevd) won’t work for this
case.

#’The arg beta allows to specify constrained cointegrating values, leading to ECT = β
′
Xt−1. It

should be specified as a K × r matrix. In case of r = 1, can also be specified as a vector. Note that
the vector should be normalised, with the first value to 1, and the next values showing the opposite
sign in the long-run relationship −β. In case the vector has K − 1 values, this is what lineVar is
doing, setting (1,−β). Note finally one should provide values for all the coefficients (eventually
except for special case of r=1 and k-1), if you want to provide only part of the parameters, and let
the others be estimated, look at the functions in package urca.

The eigenvector matrix β is normalised using the Phillips triangular representation, see Hamilton
(1994, p. 576) and Juselius (2006, p. 216), see coefA for more details.

Value

An object of class VECM (and higher classes VAR and nlVar) with methods:

Usual methods: Print, summary, residuals, fitted, vcov

Fit criteria: AIC, BIC, MAPE, mse, logLik (the latter only for models estimated with MLE)

Prediction: predict and predict_rolling

coef extraction: Extract cointegrating/adjustment coefficients, coefA, coefB coefPI

VAR/VECM methods: Impulse response function (irf.VECM) and forecast error variance decom-
position (fevd)

LaTeX: toLatex

Author(s)

Matthieu Stigler

VECM_symbolic 99

References

Hamilton (1994) Time Series Analysis, Princeton University Press

Juselius (2006) The Cointegrated VAR model, Oxford University Press

See Also

coefA, coefB and coefPI to extract the relevant parameter matrices.

lineVar TVAR and TVECM for the corresponding threshold models. linear for the univariate AR
model.

Examples

data(zeroyld)
data<-zeroyld

#Fit a VECM with Engle-Granger 2OLS estimator:
vecm.eg<-VECM(zeroyld, lag=2)

#Fit a VECM with Johansen MLE estimator:
vecm.jo<-VECM(zeroyld, lag=2, estim="ML")

#compare results with package vars:
if(require(vars)) {
data(finland)
#check long coint values
all.equal(VECM(finland, lag=2, estim="ML", r=2)$model.specific$beta,

cajorls(ca.jo(finland, K=3, spec="transitory"), r=2) $beta, check.attributes=FALSE)
check OLS parameters

all.equal(t(coefficients(VECM(finland, lag=2, estim="ML", r=2))),
coefficients(cajorls(ca.jo(finland, K=3, spec="transitory"), r=2)$rlm), check.attributes=FALSE)

}

##export to Latex
toLatex(vecm.eg)
toLatex(summary(vecm.eg))
options("show.signif.stars"=FALSE)
toLatex(summary(vecm.eg), parenthese="Pvalue")
options("show.signif.stars"=TRUE)

VECM_symbolic Virtual VECM model

100 VECM_symbolic

Description

Pedagogical tool to create a symbolic VECM model, i.e. just for representation purpose.

Usage

VECM_symbolic(
alpha,
beta,
lags,
inc,
include = c("none", "const", "trend", "both")

)

Arguments

alpha Matrix of alpha speed adjustment coefficients.

beta Matrix of alpha, cointegrating coefficients.

lags Matrix containing the lags coefficients.

inc Matrix containing the include (see following arg.) coefficients.

include Character indicating the type of deterministic term included, if any.

Value

An object of class ‘VECM’, without however any data.

Examples

a<-matrix(c(-0.4, 0.1), ncol=1)
b<-matrix(c(1, -2), ncol=2)

VECM_symb(alpha=a, beta=t(b))
d<- VECM_symbolic(alpha=a, beta=t(b))
VARrep(d)
d<- VECM_symbolic(alpha=a, beta=t(b), lags=matrix(0, ncol=2, nrow=2))
VARrep(d)
LagMat <- matrix(c(0.1, 0.3, 0.1, 0.2), ncol=2, nrow=2)
incMat <- matrix(c(0.5, 0.1), ncol=1)
d3<- VECM_symbolic(alpha=a, beta=t(b), lags=LagMat, inc=incMat, include="const")
VARrep(d3)

zeroyld 101

zeroyld zeroyld time series

Description

U.S. Term Structure Data, 1951-1991. Dataset used by Hansen and Seo (2002). The data contains
the 12 month short rate and 120 month long rate.

Usage

zeroyld
zeroyldMeta

Format

zeroyld contains two variables, while zeryldMeta contains also Year and Month columns.

zeroyld is a data frame with 482 observations and 2 variables:

short.run numeric Short term, 12 month
long.run numeric Long term, 120 month

Source

Hansen, B. and Seo, B. (2002), Testing for two-regime threshold cointegration in vector error-
correction models, Journal of Econometrics, 110, pages 293 - 318

The data can be downloaded from: https://www.ssc.wisc.edu/~bhansen/progs/joe_02r.
zip.

The authors themselves took the data from the webpage of Huston McCulloch: https://www.asc.
ohio-state.edu/mcculloch.2/ts/mcckwon/mccull.htm

See Also

TVECM.HStest: Hansen and Seo test.

TVECM for estimating a TVECM.

Examples

data(zeroyldMeta)
plot(zeroyldMeta$Date, zeroyldMeta$short.run, type = "l", xlab = "Date", ylab ="Rate")
lines(zeroyldMeta$Date, zeroyldMeta$long.run, lty = 2)
legend("topleft", lty = c(1, 2), legend = c("Short rate: 12 months", "Long rate: 120 months"))

https://www.ssc.wisc.edu/~bhansen/progs/joe_02r.zip
https://www.ssc.wisc.edu/~bhansen/progs/joe_02r.zip
https://www.asc.ohio-state.edu/mcculloch.2/ts/mcckwon/mccull.htm
https://www.asc.ohio-state.edu/mcculloch.2/ts/mcckwon/mccull.htm

Index

∗ Testing for linearity
UsUnemp, 93

∗ VAR
VARrep, 96

∗ VECM
rank.select, 56
VARrep, 96
VECM_symbolic, 99

∗ bootstrap
TVAR.sim, 81
VAR.sim, 94

∗ cointegration
rank.select, 56
VARrep, 96
VECM_symbolic, 99

∗ datasets
barry, 12
IIPUs, 25
m.unrate, 43
setarTest_IIPUs_results, 74
UsUnemp, 93
zeroyld, 101

∗ predict
predict_rolling, 55

∗ regression
fevd.nlVar, 19
fitted.nlVar, 20
irf.linear, 27
predict.nlar, 51
predict.TVAR, 53

∗ ts
aar, 4
accuracy_stat, 5
addRegime, 6
autopairs, 8
autotriples, 9
autotriples.rgl, 10
availableModels, 11
delta, 16

delta.lin, 18
getTh, 21
isLinear, 30
lags.select, 32
LINEAR, 33
lineVar, 34
llar, 36
logLik.nlVar, 38
LSTAR, 40
MAPE, 45
mse, 45
nlar-methods, 46
NNET, 48
plot methods, 49
rank.select, 56
rank.test, 58
regime, 61
resVar, 63
selectHyperParms, 64
selectSETAR, 65
SETAR, 67
setar.sim, 69
setarTest, 71
sigmoid, 74
STAR, 75
toLatex.setar, 76
tsDyn-package, 3
TVAR, 77
TVAR.LRtest, 79
TVAR.sim, 81
TVECM, 84
TVECM.HStest, 86
TVECM.SeoTest, 89
TVECM.sim, 90
VAR.sim, 94
VARrep, 96
VECM, 97
VECM_symbolic, 99

AAR (aar), 4

102

INDEX 103

aar, 4
accuracy, 5
accuracy_stat, 5
addRegime, 6, 76
AIC.nlar (nlar-methods), 46
ar_mean, 7
arima.sim, 71
as.data.frame, 37
as.data.frame.llar (llar), 36
as.data.frame.rank.select

(rank.select), 56
autopairs, 4, 8
autotriples, 4, 9, 11
autotriples.rgl, 4, 10
availableModels, 4, 11, 47

barry, 12
BBCTest, 12, 32
bds.test, 17
BIC.nlar (nlar-methods), 46
blrtest, 15

ca.jo, 15, 58, 60
cajorls, 15
charac_root, 14
coef.nlar (nlar-methods), 46
coefA, 98, 99
coefA (coefB), 14
coefB, 14, 98, 99
coefPI, 98, 99
coefPI (coefB), 14

d2sigmoid (sigmoid), 74
delta, 4, 16
delta.lin, 4, 18
delta.lin.test, 17
deviance.nlar (nlar-methods), 46
dsigmoid (sigmoid), 74

fevd, 19, 98
fevd.nlVar, 19
fitted (fitted.nlVar), 20
fitted.nlar (nlar-methods), 46
fitted.nlVar, 20
format, 76
format.pval, 59

gam, 4
getTh, 21

GIRF, 22

hnorm, 8, 9

IIPUs, 25, 74
irf, 35
irf.ar (irf.linear), 27
irf.linear, 27
irf.nlVar, 24
irf.nlVar (irf.linear), 27
irf.setar (irf.linear), 27
irf.TVAR (irf.linear), 27
irf.TVECM (irf.linear), 27
irf.VAR (irf.linear), 27
irf.varest, 29
irf.VECM, 98
irf.VECM (irf.linear), 27
isLinear, 30

KapShinTest, 31

lags.select, 32
legend, 50
LINEAR, 33
linear, 7, 23, 35, 70, 99
linear (LINEAR), 33
linear.boot (setar.sim), 69
linear.sim (setar.sim), 69
lineVar, 15, 20, 30, 34, 39, 54, 55, 57, 78, 83,

93, 95, 96, 98, 99
llar, 4, 36
logLik, 98
logLik.nlVar, 38
logLik.VAR (logLik.nlVar), 38
logLik.VECM, 32, 57
logLik.VECM (logLik.nlVar), 38
LSTAR, 40
lstar, 7, 50, 52
lstar (LSTAR), 40

m.unrate, 43
MakeThSpec, 43, 65–67
makeThSpec (MakeThSpec), 43
MAPE, 45, 98
MAPE.nlar (nlar-methods), 46
mse, 45, 98
mse.nlar (nlar-methods), 46

nlar, 14, 33, 34, 46, 64, 65, 76
nlar-methods, 46, 50

104 INDEX

NNET, 48
nnet, 48
nnetTs (NNET), 48

OlsTVAR, 81
OlsTVAR (TVAR), 77
optim, 41, 48, 75

par, 47, 49
plogis, 41
plot, 20, 30, 50
plot methods, 49
plot-methods (plot methods), 49
plot.aar (aar), 4
plot.GIRF_df (GIRF), 22
plot.llar (llar), 36
plot.lstar, 42
plot.lstar (plot methods), 49
plot.nlar (nlar-methods), 46
plot.setar, 69
plot.setar (plot methods), 49
plot_ECT, 50
polyroot, 14
predict (predict.nlar), 51
predict.nlar, 51, 56
predict.TVAR, 53
predict.VAR, 35
predict.VAR (predict.TVAR), 53
predict.VECM (predict.TVAR), 53
predict_rolling, 52, 54, 55, 98
print.aar (aar), 4
print.linear (LINEAR), 33
print.llar (llar), 36
print.rank.select (rank.select), 56
print.rank.test (rank.test), 58
print.summary.linear (LINEAR), 33
printCoefmat, 47

rank.select, 32, 33, 56, 60
rank.test, 58, 58
regime, 35, 61
resample_vec, 62, 69, 70, 72, 92
residuals.nlar (nlar-methods), 46
resVar, 63
rgl, 10

selectHyperParms, 64
selectLSTAR, 67
selectLSTAR (selectHyperParms), 64

selectNNET, 67
selectNNET (selectHyperParms), 64
selectSETAR, 43, 44, 65
selectSetar (selectSETAR), 65
selectsetar (selectSETAR), 65
set.seed, 62
SETAR, 67, 71, 73
setar, 7, 23, 50, 52, 70, 71, 76
setar (SETAR), 67
setar.boot (setar.sim), 69
setar.sim, 69
setarTest, 13, 32, 71, 81
setartest (setarTest), 71
setarTest_IIPUs_results, 74
sigmoid, 74
sm, 10
sm.autoregression, 10
sm.density, 8, 9
sm.regression, 8–10
sm.ts.pdf, 9
STAR, 75
star, 7
star (STAR), 75
summary.aar (aar), 4
summary.linear (LINEAR), 33
summary.nlar (nlar-methods), 46
summary.rank.select (rank.select), 56
summary.rank.test (rank.test), 58
summary.setar (SETAR), 67

terasvirta.test, 17
toLatex, 35
toLatex.nlar (nlar-methods), 46
toLatex.setar, 76
tsDyn (tsDyn-package), 3
tsDyn-package, 3
TVAR, 23, 35, 77, 82, 83, 86, 93, 95, 99
TVAR.boot, 93, 95
TVAR.boot (TVAR.sim), 81
TVAR.LRtest, 73, 78, 79
TVAR.sim, 78, 81, 92, 93, 95
TVECM, 23, 35, 50, 83, 84, 88, 90, 92, 93, 95,

99, 101
TVECM.boot, 83, 95
TVECM.boot (TVECM.sim), 90
TVECM.HStest, 72, 80, 86, 89, 101
TVECM.HStest (TVECM.HStest), 86
TVECM.SeoTest, 86, 88, 89
TVECM.sim, 83, 86–88, 90, 90, 92, 95

INDEX 105

ugarchroll, 55
UsUnemp, 93

VAR.boot, 83, 93
VAR.boot (VAR.sim), 94
VAR.sim, 83, 93, 94
VARrep, 35, 54, 96
VARselect, 33
VECM, 15, 20, 30, 35, 39, 50, 54, 55, 57–60, 86,

87, 92, 93, 96, 97
VECM.boot (TVECM.sim), 90
VECM.sim (TVECM.sim), 90
VECM_symbolic, 99

zeroyld, 88, 101
zeroyldMeta (zeroyld), 101

	tsDyn-package
	aar
	accuracy_stat
	addRegime
	ar_mean
	autopairs
	autotriples
	autotriples.rgl
	availableModels
	barry
	BBCTest
	charac_root
	coefB
	delta
	delta.lin
	fevd.nlVar
	fitted.nlVar
	getTh
	GIRF
	IIPUs
	irf.linear
	isLinear
	KapShinTest
	lags.select
	LINEAR
	lineVar
	llar
	logLik.nlVar
	LSTAR
	m.unrate
	MakeThSpec
	MAPE
	mse
	nlar-methods
	NNET
	plot methods
	plot_ECT
	predict.nlar
	predict.TVAR
	predict_rolling
	rank.select
	rank.test
	regime
	resample_vec
	resVar
	selectHyperParms
	selectSETAR
	SETAR
	setar.sim
	setarTest
	setarTest_IIPUs_results
	sigmoid
	STAR
	toLatex.setar
	TVAR
	TVAR.LRtest
	TVAR.sim
	TVECM
	TVECM.HStest
	TVECM.SeoTest
	TVECM.sim
	UsUnemp
	VAR.sim
	VARrep
	VECM
	VECM_symbolic
	zeroyld
	Index

