
Package ‘tidysq’
October 24, 2024

Type Package

Title Tidy Processing and Analysis of Biological Sequences

Version 1.2.2

Date 2024-10-23

Description A tidy approach to analysis of biological sequences. All processing and data-
storage functions are heavily optimized to allow the fastest and most efficient data storage.

Depends R (>= 3.0.0)

Imports checkmate (>= 1.9.0), cli (>= 2.0.0), crayon (>= 1.3.4), dplyr
(>= 1.0.2), pillar (>= 1.4.2), Rcpp (>= 1.0.1), tibble (>=
2.1.3), vctrs (>= 0.3.0)

Suggests ape (>= 5.3), bioseq (>= 0.1.2), Biostrings (>= 2.52.0),
covr, knitr, lifecycle, purrr, seqinr (>= 3.4-5), spelling,
rmarkdown, testthat (>= 3.0.0), withr (>= 2.2.0), rlang, mockr

License GPL (>= 2)

URL https://github.com/BioGenies/tidysq

BugReports https://github.com/BioGenies/tidysq/issues

SystemRequirements GNU make, C++17

NeedsCompilation yes

Repository CRAN

Encoding UTF-8

Language en-US

RoxygenNote 7.3.2

LinkingTo Rcpp, testthat

VignetteBuilder knitr

Config/testthat/edition 3

Author Dominik Rafacz [cre, aut] (<https://orcid.org/0000-0003-0925-1909>),
Michal Burdukiewicz [aut] (<https://orcid.org/0000-0001-8926-582X>),
Laura Bakala [aut],
Leon Eyrich Jessen [ctb] (<https://orcid.org/0000-0003-2879-2559>),

1

https://github.com/BioGenies/tidysq
https://github.com/BioGenies/tidysq/issues
https://orcid.org/0000-0003-0925-1909
https://orcid.org/0000-0001-8926-582X
https://orcid.org/0000-0003-2879-2559

2 Contents

Stefan Roediger [ctb] (<https://orcid.org/0000-0002-1441-6512>),
Jadwiga Slowik [ctb] (<https://orcid.org/0000-0003-3466-8933>),
Weronika Puchala [ctb] (<https://orcid.org/0000-0003-2163-1429>),
Katarzyna Sidorczuk [ctb],
Filip Pietluch [ctb],
Jaroslaw Chilimoniuk [ctb] (<https://orcid.org/0000-0001-5467-018X>)

Maintainer Dominik Rafacz <dominikrafacz@gmail.com>

Date/Publication 2024-10-24 18:40:02 UTC

Contents
tidysq-package . 3
==.sq . 3
alphabet . 5
as.character.sq . 6
as.matrix.sq . 7
as.sq . 8
bite . 9
collapse . 11
complement . 12
export_sq . 13
find_invalid_letters . 15
find_motifs . 16
get_sq_lengths . 19
get_standard_alphabet . 20
get_tidysq_options . 20
import_sq . 21
is.sq . 23
is_empty_sq . 25
paste . 26
random_sq . 27
read_fasta . 29
remove_ambiguous . 30
remove_na . 32
reverse . 33
sq . 35
sq-class . 39
sqapply . 42
sqconcatenate . 43
sqextract . 45
sqprint . 46
sq_type . 47
substitute_letters . 49
translate . 50
typify . 51
write_fasta . 53
%has% . 54

https://orcid.org/0000-0002-1441-6512
https://orcid.org/0000-0003-3466-8933
https://orcid.org/0000-0003-2163-1429
https://orcid.org/0000-0001-5467-018X

tidysq-package 3

Index 57

tidysq-package tidysq: tidy analysis of biological sequences

Description

The tidysq package is a toolbox for the analysis of biological sequences in a tidy way.

Author(s)

Michal Burdukiewicz, Dominik Rafacz, Laura Bąkała, Leon Eyrich Jessen

See Also

Useful links:

• https://github.com/BioGenies/tidysq

• Report bugs at https://github.com/BioGenies/tidysq/issues

==.sq Compare sq objects

Description

Compares input sq object with either another sq object or character vector.

Usage

S3 method for class 'sq'
e1 == e2

Arguments

e1 [sq]
An object this comparison is applied to.

e2 [sq || character]
An object to compare with x1.

Details

`==` compares compatible object for equality of their respective sequences. Objects are considered
compatible, when either both have same length or one of them is a scalar value (i.e. a vector of
length 1). Moreover, not every e1 sq type can be compared to any e2 sq type.

To see which types are compatible, see Details of sq-concatenate.

`==` returns logical vector, where each element describes whether elements at position n of both
e1 and e2 are equal in meaning (that is, they may be represented differently, but their biological
interpretation must be identical). If one of compared objects is a scalar, then said logical vector
describes comparison for each element of the other, longer vector.

https://github.com/BioGenies/tidysq
https://github.com/BioGenies/tidysq/issues

4 ==.sq

Value

A logical vector indicating on which positions these objects are equal.

See Also

Functions from utility module: get_sq_lengths(), is.sq(), sqconcatenate, sqextract

Examples

Creating objects to work on:
sq_dna_1 <- sq(c("ACTGCTG", "CTTAGA", "CCCT", "CTGAATGT"),

alphabet = "dna_bsc")
sq_dna_2 <- sq(c("ACTGCTG", "CTTAGA", "CCCT", "CTGAATGT"),

alphabet = "dna_bsc")
sq_dna_3 <- sq(c("ACTGCTG", "CTTAGA", "GGAA"),

alphabet = "dna_bsc")
sq_dna_4 <- sq(c("ACTGCTG", "CTTAGA", "CCCT", "GTNANN"),

alphabet = "dna_ext")
sq_ami_1 <- sq(c("ACTGCTG", "NIKAAR", "CCCT", "CTGAATGT"),

alphabet = "ami_bsc")
sq_unt <- sq(c("AHSNLVSCTK$SH%&VS", "YQTVKA&#BSKJGY",

"CCCT", "AVYI#VSV&*DVGDJCFA"))

Comparing sq object with an object of the same length:
sq_dna_1 == sq_dna_2
sq_dna_1 == c("ACTGCTG", "CTTAGA", "CCCT", "CTGAATGT")

Cannot compare sq objects of different lengths:
Not run:
sq_dna_1 == sq_dna_3
sq_dna_1 == c("AAA", "CCC")

End(Not run)

Unless comparing sq object with scalar value:
sq_dna_1 == "CTTAGA"

It's possible to compare basic and extended types:
sq_dna_1 == sq_dna_4

Mixing DNA, RNA and amino acid types throws an error, however:
Not run:
sq_dna_1 == sq_ami_1

End(Not run)

On the other hand, unt sq is acceptable everywhere:
sq_dna_1 == sq_unt
sq_dna_4 == sq_unt
sq_ami_1 == sq_unt

alphabet 5

alphabet Get alphabet of given sq object.

Description

Returns alphabet attribute of an object.

Usage

alphabet(x)

Arguments

x [sq]
An object to extract alphabet from.

Details

Each sq object have an alphabet associated with it. Alphabet is a set of possible letters that can
appear in sequences contained in object. Alphabet is kept mostly as a character vector, where each
element represents one letter.

sq objects of type ami, dna or rna have fixed, predefined alphabets. In other words, if two sq
objects have exactly the same type - ami_bsc, dna_ext, rna_bsc or any other combination - they
are ensured to have the same alphabet.

Below are listed alphabets for these types:

• ami_bsc - ACDEFGHIKLMNPQRSTVWY-*

• ami_ext - ABCDEFGHIJKLMNOPQRSTUVWXYZ-*

• dna_bsc - ACGT-

• dna_ext - ACGTWSMKRYBDHVN-

• rna_bsc - ACGU-

• rna_ext - ACGUWSMKRYBDHVN-

Other types of sq objects are allowed to have different alphabets. Furthermore, having an alphabet
exactly identical to one of those above does not automatically indicate that the type of the sequence
is one of those - e.g., there might be an atp sq that has an alphabet identical to ami_bsc alphabet.
To set the type, one should use the typify or `sq_type<-` function.

The purpose of co-existence of unt and atp alphabets is the fact that although there is a standard
for format of fasta files, sometimes there are other types of symbols, which do not match the stan-
dard. Thanks to these types, tidysq can import files with customized alphabets. Moreover, the user
may want to group amino acids with similar properties (e.g., for machine learning) and replace
the standard alphabet with symbols for whole groups. To check details, see read_fasta, sq and
substitute_letters.

Important note: in atp alphabets there is a possibility of letters appearing that consist of more
than one character - this functionality is provided in order to handle situations like post-translational
modifications, (e.g., using "mA" to indicate methylated alanine).

6 as.character.sq

Important note: alphabets of atp and unt sq objects are case sensitive. Thus, in their alphabets
both lowercase and uppercase characters can appear simultaneously and they are treated as different
letters. Alphabets of dna, rna and ami types are always uppercase and all functions converts other
parameters to uppercase when working with dna, rna or ami - e.g. %has% operator converts lower
letters to upper when searching for motifs in dna, rna or ami object.

Important note: maximum length of an alphabet is 30 letters. The user is not allowed to read
fasta files or construct sq objects from character vectors that have more than 30 distinct characters
in sequences (unless creating ami, dna or rna objects with ignore_case parameter set equal to
TRUE).

Value

A character vector of letters of the alphabet.

See Also

sq class

Functions from alphabet module: get_standard_alphabet()

as.character.sq Convert sq object into character vector

Description

Coerces sequences from an sq object to character vector of sequences.

Usage

S3 method for class 'sq'
as.character(x, ..., NA_letter = getOption("tidysq_NA_letter"))

Arguments

x [sq]
An object this function is applied to.

... further arguments to be passed from or to other methods.

NA_letter [character(1)]
A string that is used to interpret and display NA value in the context of sq class.
Default value equals to "!".

Details

This method for sq class allows converting sequences from the sq object into a character vector of
length equal to the length of input. Each element of resulting vector is a separate sequence. All
attributes of the input sq are lost during the conversion to character vector.

as.matrix.sq 7

Value

A character vector where each element represents the content of respective sequence in input sq
object.

See Also

Functions from output module: as.matrix.sq(), as.sq(), export_sq(), write_fasta()

Examples

Creating an object to work on:
sq_dna <- sq(c("CTGAATGCAGTACCGTAAT", "ATGCCGTAAATGCCAT", "CAGACCANNNATAG"),

alphabet = "dna_ext")

Converting sq object into a character vector:
as.character(sq_dna)

as.matrix.sq Convert sq object into matrix

Description

Coerces sequences from a sq object to a matrix, in which rows correspond to sequences and
columns to positions.

Usage

S3 method for class 'sq'
as.matrix(x, ...)

Arguments

x [sq]
An object this function is applied to.

... further arguments to be passed from or to other methods.

Details

This method for class sq allows converting sequences from the sq object into a matrix. Each row
corresponds to the separate sequence from the sq object, whereas each column indicates a single
position within a sequence. Dimensions of matrix are determined by the number of sequences
(rows) and the length of the longest sequence (columns). If length of a sequence is smaller than the
length of the longest sequence, the remaining columns are filled with NA. All attributes of the input
sq are lost during the conversion to matrix.

8 as.sq

Value

A matrix with number of rows the same as number of sequences and number of columns corre-
sponding to the length of the longest sequence in the converted sq object.

See Also

Functions from output module: as.character.sq(), as.sq(), export_sq(), write_fasta()

Examples

Creating objects to work on:
sq_dna <- sq(c("CGATAGACA", "TGACAAAAC", "GTGACCGTA"),

alphabet = "dna_bsc")
sq_rna <- sq(c("CUGAAUGCAGUACCGUAAU", "AUGCCGUAAAUGCCAU", "CAGACCANNNAUAG"),

alphabet = "rna_ext")

Sequences of the same lengths can be converted easily:
as.matrix(sq_dna)

Sequences that differ in length are filled with NA to the maximum length:
as.matrix(sq_rna)

as.sq Convert an object to sq

Description

Takes an object of arbitrary type and returns an sq object as an output.

Usage

as.sq(x, ...)

Default S3 method:
as.sq(x, ...)

S3 method for class 'character'
as.sq(x, ...)

Arguments

x [any] An object of a class that supports conversion to sq class.

... further arguments to be passed from or to other methods.

Details

There are two possible cases: if x is a character vector, then this method calls sq function, else it
passes x to import_sq and hopes it works.

bite 9

Value

An sq object.

See Also

Functions from output module: as.character.sq(), as.matrix.sq(), export_sq(), write_fasta()

Examples

Constructing an example sequence in the usual way:
sq_1 <- sq("CTGA")

Using a method for character vector:
sq_2 <- as.sq("CTGA")

Checking that both objects are identical:
identical(sq_1, sq_2)

bite Subset sequences from sq objects

Description

Extracts a defined range of elements from all sequences.

Usage

bite(x, indices, ...)

S3 method for class 'sq'
bite(
x,
indices,
...,
NA_letter = getOption("tidysq_NA_letter"),
on_warning = getOption("tidysq_on_warning")

)

Arguments

x [sq]
An object this function is applied to.

indices [integer]
Indices to extract from each sequence. The function follows the normal R con-
ventions for indexing vectors, including negative indices.

... further arguments to be passed from or to other methods.

10 bite

NA_letter [character(1)]
A string that is used to interpret and display NA value in the context of sq class.
Default value equals to "!".

on_warning ["silent" || "message" || "warning" || "error"]
Determines the method of handling warning message. Default value is "warning".

Details

bite function allows user to access specific elements from multiple sequences at once.

By passing positive indices the user can choose, which elements they want from each sequence. If a
sequence is shorter than an index, then NA value is inserted into the result in this place and a warning
is issued. The user can specify behavior of R in this case by specifying on_warning parameter.

Negative indices are supported as well. Their interpretation is "to select all elements except those
on positions specified by these negative indices". This means that e.g. c(-1, -3, -5) vector will
be used to bite all sequence elements except the first, the third and the fifth. If a sequence is shorter
than any index, then nothing happens, as it’s physically impossible to extract an element at said
index.

As per normal R convention, it isn’t accepted to mix positive and negative indices, because there is
no good interpretation possible for that.

Value

sq object of the same type as input sq, where each element is a subsequence created by indexing
corresponding sequence from input sq object with input indices.

See Also

remove_na

Functions that affect order of elements: collapse(), paste(), reverse()

Examples

Creating objects to work on:
sq_dna <- sq(c("ATGCAGGA", "GACCGNBAACGAN", "TGACGAGCTTA"),

alphabet = "dna_bsc")
sq_ami <- sq(c("MIAANYTWIL","TIAALGNIIYRAIE", "NYERTGHLI", "MAYXXXIALN"),

alphabet = "ami_ext")
sq_unt <- sq(c("ATGCAGGA?", "TGACGAGCTTA", "", "TIAALGNIIYRAIE"))

Extracting first five letters:
bite(sq_dna, 1:5)

If a sequence is shorter than 5, then NA is introduced:
bite(sq_unt, 1:5)

Selecting fourth, seventh and fourth again letter:
bite(sq_ami, c(4, 7, 4))

Selecting all letters except first four:

collapse 11

bite(sq_dna, -1:-4)

collapse Collapse multiple sequences into one

Description

Joins sequences from a vector into a single sequence. Sequence type remains unchanged.

Usage

collapse(x, ...)

S3 method for class 'sq'
collapse(x, ..., NA_letter = getOption("tidysq_NA_letter"))

Arguments

x [sq]
An object this function is applied to.

... further arguments to be passed from or to other methods.

NA_letter [character(1)]
A string that is used to interpret and display NA value in the context of sq class.
Default value equals to "!".

Details

collapse() joins sequences from supplied sq object in the same order as they appear in said vector.
That is, if there are three sequences AGGCT, ATCCGT and GAACGT, then resulting sequence will
be AGGCTATCCGTGAACGT. This operation does not alter the type of the input object nor its
alphabet.

Value

sq object of the same type as input but with exactly one sequence.

See Also

Functions that affect order of elements: bite(), paste(), reverse()

12 complement

Examples

Creating objects to work on:
sq_ami <- sq(c("MIAANYTWIL","TIAALGNIIYRAIE", "NYERTGHLI", "MAYXXXIALN"),

alphabet = "ami_ext")
sq_dna <- sq(c("ATGCAGGA", "GACCGAACGAN", ""), alphabet = "dna_ext")
sq_unt <- sq(c("ATGCAGGA?", "TGACGAGCTTA", "", "TIAALGNIIYRAIE"))

Collapsing sequences:
collapse(sq_ami)
collapse(sq_dna)
collapse(sq_unt)

Empty sq objects are collapsed as well (into empty string - ""):
sq_empty <- sq(character(), alphabet = "rna_bsc")
collapse(sq_empty)

complement Create complement sequence from dnasq or rnasq object

Description

Creates the complementary sequence from a given RNA or DNA sequence. The function keeps the
type of sequence intact.

Usage

complement(x, ...)

S3 method for class 'sq_dna_bsc'
complement(x, ..., NA_letter = getOption("tidysq_NA_letter"))

S3 method for class 'sq_dna_ext'
complement(x, ..., NA_letter = getOption("tidysq_NA_letter"))

S3 method for class 'sq_rna_bsc'
complement(x, ..., NA_letter = getOption("tidysq_NA_letter"))

S3 method for class 'sq_rna_ext'
complement(x, ..., NA_letter = getOption("tidysq_NA_letter"))

Arguments

x [sq_dna_bsc || sq_rna_bsc || sq_dna_ext || sq_rna_ext]
An object this function is applied to.

... further arguments to be passed from or to other methods.
NA_letter [character(1)]

A string that is used to interpret and display NA value in the context of sq class.
Default value equals to "!".

export_sq 13

Details

This function matches elements of sequence to their complementary letters. For unambiguous let-
ters, "C" is matched with "G" and "A" is matched with either "T" (thymine) or "U" (uracil), depending
on whether input is of dna or rna type.

Ambiguous letters are matched as well, for example "N" (any nucleotide) is matched with itself,
while "B" (not alanine) is matched with "V" (not thymine/uracil).

Value

sq object of the same type as input but built of nucleotides complementary to those in the entered
sequences.

See Also

sq

Functions interpreting sq in biological context: %has%(), find_motifs(), translate()

Examples

Creating DNA and RNA sequences to work on:
sq_dna <- sq(c("ACTGCTG", "CTTAGA", "CCCT", "CTGAATGT"),

alphabet = "dna_bsc")
sq_rna <- sq(c("BRAUDUG", "URKKBKUCA", "ANKRUGBNNG", "YYAUNAAAG"),

alphabet = "rna_ext")

Here complement() function is used to make PCR (Polymerase Chain Reaction)
primers. Every sequence is rewritten to its complementary equivalent as
in the following example: AAATTTGGG -> TTTAAACCC.

complement(sq_dna)
complement(sq_rna)

Each sequence have now a complementary equivalent, which can be helpful
during constructing PCR primers.

export_sq Export sq objects into other formats

Description

Converts object of class sq to a class from another package. Currently supported packages are
ape, bioseq, Bioconductor and seqinr. For exact list of supported classes and resulting types, see
details.

Usage

export_sq(x, export_format, name = NULL, ...)

14 export_sq

Arguments

x [sq]
An object this function is applied to.

export_format [character(1)]
A string indicating desired class (with specified package for clarity).

name [character]
Vector of sequence names. Must be of the same length as sq object. Can be
NULL.

... further arguments to be passed from or to other methods.

Details

Currently supported formats are as follows (grouped by sq types):

• ami:

– "ape::AAbin"

– "bioseq::bioseq_aa"

– "Biostrings::AAString"

– "Biostrings::AAStringSet"

– "seqinr::SeqFastaAA"

• dna:

– "ape::DNAbin"

– "bioseq::bioseq_dna"

– "Biostrings::DNAString"

– "Biostrings::DNAStringSet"

– "seqinr::SeqFastadna"

• rna:

– "bioseq::bioseq_rna"

– "Biostrings::RNAString"

– "Biostrings::RNAStringSet"

Value

An object with the format specified in the parameter. To find information about the detailed structure
of this object, see documentation of these objects.

See Also

sq class

Functions from output module: as.character.sq(), as.matrix.sq(), as.sq(), write_fasta()

find_invalid_letters 15

Examples

DNA and amino acid sequences can be exported to most packages
sq_ami <- sq(c("MVVGL", "LAVPP"), alphabet = "ami_bsc")
export_sq(sq_ami, "ape::AAbin")
export_sq(sq_ami, "bioseq::bioseq_aa")
export_sq(sq_ami, "Biostrings::AAStringSet", c("one", "two"))
export_sq(sq_ami, "seqinr::SeqFastaAA")

sq_dna <- sq(c("TGATGAAGCGCA", "TTGATGGGAA"), alphabet = "dna_bsc")
export_sq(sq_dna, "ape::DNAbin", name = c("one", "two"))
export_sq(sq_dna, "bioseq::bioseq_dna")
export_sq(sq_dna, "Biostrings::DNAStringSet")
export_sq(sq_dna, "seqinr::SeqFastadna")

RNA sequences are limited to Biostrings and bioseq
sq_rna <- sq(c("NUARYGCB", "", "DRKCNYBAU"), alphabet = "rna_ext")
export_sq(sq_rna, "bioseq::bioseq_rna")
export_sq(sq_rna, "Biostrings::RNAStringSet")

Biostrings can export single sequences to simple strings as well
export_sq(sq_dna[1], "Biostrings::DNAString")

find_invalid_letters Find elements which are not suitable for specified type.

Description

Finds elements in given sequence not contained in amino acid or nucleotide alphabet.

Usage

find_invalid_letters(x, dest_type, ...)

S3 method for class 'sq'
find_invalid_letters(
x,
dest_type,
...,
NA_letter = getOption("tidysq_NA_letter")

)

Arguments

x [sq]
An object this function is applied to.

dest_type [character(1)]
The name of destination type - one of "dna_bsc", "dna_ext", "rna_bsc",
"rna_ext", "ami_bsc" and "ami_ext".

16 find_motifs

... further arguments to be passed from or to other methods.

NA_letter [character(1)]
A string that is used to interpret and display NA value in the context of sq class.
Default value equals to "!".

Details

Amino acid, DNA and RNA standard alphabets have predefined letters. This function allows the
user to check which letters from input sequences are not contained in selected one of these alphabets.

Returned list contains a character vector for each input sequence. Each element of a vector is a
letter that appear in corresponding sequence and not in the target alphabet.

You can check which letters are valid for specified type in alphabet documentation.

Value

A list of mismatched elements for every sequence from sq object.

See Also

alphabet()

Functions that manipulate type of sequences: is.sq(), sq_type(), substitute_letters(), typify()

Examples

Creating objects to work on:
sq_unt <- sq(c("ACGPOIUATTAGACG","GGATFGHA"), alphabet = "unt")
sq_ami <- sq(c("QWERTYUIZXCVBNM","LKJHGFDSAZXCVBN"), alphabet = "ami_ext")

Mismatched elements might be from basic type:
find_invalid_letters(sq_ami, "ami_bsc")

But also from type completely unrelated to the current one:
find_invalid_letters(sq_unt, "dna_ext")

find_motifs Find given motifs

Description

Finds all given motifs in sequences and returns their positions.

find_motifs 17

Usage

find_motifs(x, ...)

S3 method for class 'sq'
find_motifs(x, name, motifs, ..., NA_letter = getOption("tidysq_NA_letter"))

S3 method for class 'data.frame'
find_motifs(
x,
motifs,
...,
.sq = "sq",
.name = "name",
NA_letter = getOption("tidysq_NA_letter")

)

Arguments

x [sq]
An object this function is applied to.

... further arguments to be passed from or to other methods.

name [character]
Vector of sequence names. Must be of the same length as sq object.

motifs [character]
Motifs to be searched for.

NA_letter [character(1)]
A string that is used to interpret and display NA value in the context of sq class.
Default value equals to "!".

.sq [character(1)]
Name of a column that stores sequences.

.name [character(1)]
Name of a column that stores names (unique identifiers).

Details

This function allows search of a given motif or motifs in the sq object. It returns all motifs found
with their start and end positions within a sequence.

Value

A tibble with following columns:

name name of the sequence in which a motif was found

sought sought motif

found found subsequence, may differ from sought if the motif contained ambiguous
letters

18 find_motifs

start position of first element of found motif

end position of last element of found motif

Motif capabilities and restrictions

There are more options than to simply create a motif that is a string representation of searched
subsequence. For example, when using this function with any of standard types, i.e. ami, dna or
rna, the user can create a motif with ambiguous letters. In this case the engine will try to match any
of possible meanings of this letter. For example, take "B" from extended DNA alphabet. It means
"not A", so it can be matched with "C", "G" and "T", but also "B", "Y" (either "C" or "T"), "K"
(either "G" or "T") and "S" (either "C" or "G").

Full list of ambiguous letters with their meaning can be found on IUPAC site.

Motifs are also restricted in that the alphabets of sq objects on which search operations are con-
ducted cannot contain "^" and "$" symbols. These two have a special meaning - they are used to
indicate beginning and end of sequence respectively and can be used to limit the position of matched
subsequences.

See Also

Functions interpreting sq in biological context: %has%(), complement(), translate()

Examples

Creating objects to work on:
sq_dna <- sq(c("ATGCAGGA", "GACCGNBAACGAN", "TGACGAGCTTAG"),

alphabet = "dna_bsc")
sq_ami <- sq(c("AGNTYIKFGGAYTI", "MATEGILIAADGYTWIL", "MIPADHICAANGIENAGIK"),

alphabet = "ami_bsc")
sq_atp <- sq(c("mAmYmY", "nbAnsAmA", ""),

alphabet = c("mA", "mY", "nbA", "nsA"))
sq_names <- c("sq1", "sq2", "sq3")

Finding motif of two alanines followed by aspartic acid or asparagine
("AAB" motif matches "AAB", "AAD" and "AAN"):
find_motifs(sq_ami, sq_names, "AAB")

Finding "C" at fourth position:
find_motifs(sq_dna, sq_names, "^NNNC")

Finding motif "I" at second-to-last position:
find_motifs(sq_ami, sq_names, "IX$")

Finding multiple motifs:
find_motifs(sq_dna, sq_names, c("^ABN", "ANCBY", "BAN$"))

Finding multicharacter motifs:
find_motifs(sq_atp, sq_names, c("nsA", "mYmY$"))

It can be a part of tidyverse pipeline:
library(dplyr)
fasta_file <- system.file(package = "tidysq", "examples/example_aa.fasta")

get_sq_lengths 19

read_fasta(fasta_file) %>%
mutate(name = toupper(name)) %>%
find_motifs("TXG")

get_sq_lengths Get lengths of sequences in sq object

Description

Returns number of elements in each sequence in given sq object.

Usage

get_sq_lengths(x)

Arguments

x [sq]
An object this function is applied to.

Details

Due to storage implementation, using lengths method returns length of stored raw vectors instead
of real sequence lengths. This function accesses original_length attribute of each sequence,
which attribute stores information about how many elements are there in given sequence.

Value

A numeric vector, where each element gives length of corresponding sequence from sq object.

See Also

Functions from utility module: ==.sq(), is.sq(), sqconcatenate, sqextract

Examples

Creating objects to work on:
sq_ami <- sq(c("MIAANYTWIL","TIAALGNIIYRAIE", "NYERTGHLI", "MAYXXXIALN"),

alphabet = "ami_ext")
sq_dna <- sq(c("ATGCAGGA", "GACCGAACGAN", "TGACGAGCTTA", "ACTNNAGCN"),

alphabet = "dna_ext")

Counting number of elements in sq object:
get_sq_lengths(sq_dna)
get_sq_lengths(sq_ami)

20 get_tidysq_options

get_standard_alphabet Get standard alphabet for given type.

Description

Returns alphabet attribute of an object.

Usage

get_standard_alphabet(type)

Arguments

type [character(1)]
The name of standard sq type - one of "dna_bsc", "dna_ext", "rna_bsc",
"rna_ext", "ami_bsc" and "ami_ext".

Details

Each of standard sq types has exactly one predefined alphabet. It allows tidysq to package to
optimize type-specific operations like complement() or translate(). This function enables the
user to access alphabet attribute common for all sq objects of given type.

For list of letters specific to any of these standard alphabets, see alphabet().

Value

An sq_alphabet object related to passed sq type.

See Also

Functions from alphabet module: alphabet()

get_tidysq_options Obtain current state of tidysq options

Description

Subsets all global options to display those related to tidysq package.

Usage

get_tidysq_options()

import_sq 21

Details

The user can display value of selected option by calling getOptions(option_name) and set its
value with options(option_name = value), where option_name is an option name and value is
a value to assign to an option.

Full list of options included in tidysq package is listed below:

• tidysq_NA_letter [character(1)]
A letter to be used when printing, constructing or interpreting NA value. Defaults to "!".

• tidysq_on_warning ["silent" || "message" || "warning" || "error"]
Determines the method of handling warning message. Setting "error" makes any warning
throw an exception and stop execution of the code. The difference between "message" and
"warning" is that while both display warning text to the console, only the latter registers it
so that it can be accessed with a call to warnings(). Lastly, "silent" setting causes any
warnings to be completely ignored. Default value is "warning".

• tidysq_pillar_max_width [integer(1)]
Determines max width of a column of sq class within a tibble. Default value is 15.

• tidysq_print_max_sequences [integer(1)]
Controls maximum number of sequences printed to console. If an sq object is longer than this
value, then only first tidysq_print_max_sequences are printed, just like in any R vector.
Default value is 10.

• tidysq_print_use_color [logical(1)]
Determines whether coloring should be used to increase readability of text printed to console.
While it is advised to keep this option turned on due to above concern, some environments
may not support coloring and thus turning it off can be necessary. Defaults to TRUE.

• tidysq_safe_mode [logical(1)]
Default value is FALSE. When turned on, safe mode guarantees that NA appears within a se-
quence if and only if input sequence contains value passed with NA_letter. This means
that resulting type might be different to the one passed as argument, if there are letters in a
sequence that does not appear in the original alphabet.

Value

A named list with selected option values.

See Also

Functions that display sequence info: sqprint

import_sq Import sq objects from other objects

Description

Creates sq object from object of class from another package. Currently supported packages are
ape, bioseq, Bioconductor and seqinr. For exact list of supported classes and resulting types, see
details.

22 import_sq

Usage

import_sq(object, ...)

Arguments

object [any(1)]
An object of one of supported classes.

... further arguments to be passed from or to other methods.

Details

Currently supported classes are as follows:

• ape:

– AAbin - imported as ami_bsc
– DNAbin - imported as dna_bsc
– alignment - exact type is guessed within sq function

• bioseq:

– bioseq_aa - imported as ami_ext
– bioseq_dna - imported as dna_ext
– bioseq_rna - imported as rna_ext

• Biostrings:

– AAString - imported as ami_ext with exactly one sequence
– AAStringSet - imported as ami_ext
– DNAString - imported as dna_ext with exactly one sequence
– DNAStringSet - imported as dna_ext
– RNAString - imported as rna_ext with exactly one sequence
– RNAStringSet - imported as rna_ext
– BString - imported as unt with exactly one sequence
– BStringSet - imported as unt
– XStringSetList - each element of a list can be imported as a separate tibble, resulting

in a list of tibbles; if passed argument separate = FALSE, these tibbles are bound into
one bigger tibble

• seqinr:

– SeqFastaAA - imported as ami_bsc
– SeqFastadna - imported as dna_bsc

Providing object of class other than specified will result in an error.

Value

A tibble with sq column of sq type representing the same sequences as given object; the object
has a type corresponding to the input type; if given sequences have names, output tibble will also
have another column name with those names

is.sq 23

See Also

sq class

Functions from input module: random_sq(), read_fasta(), sq()

Examples

ape example
library(ape)
ape_dna <- as.DNAbin(list(one = c("C", "T", "C", "A"), two = c("T", "G", "A", "G", "G")))
import_sq(ape_dna)

bioseq example
library(bioseq)
bioseq_rna <- new_rna(c(one = "ANBRY", two = "YUTUGGN"))
import_sq(bioseq_rna)

Biostrings example
library(Biostrings)
Biostrings_ami <- AAStringSet(c(one = "FEAPQLIWY", two = "EGITENAK"))
import_sq(Biostrings_ami)

seqinr example
library(seqinr)
seqinr_dna <- as.SeqFastadna(c("C", "T", "C", "A"), name = "one")
import_sq(seqinr_dna)

is.sq Check if object has specified type

Description

Checks if object is an sq object without specifying type or if it is an sq object with specific type.

Usage

is.sq(x)

is.sq_dna_bsc(x)

is.sq_dna_ext(x)

is.sq_dna(x)

is.sq_rna_bsc(x)

24 is.sq

is.sq_rna_ext(x)

is.sq_rna(x)

is.sq_ami_bsc(x)

is.sq_ami_ext(x)

is.sq_ami(x)

is.sq_unt(x)

is.sq_atp(x)

Arguments

x [sq]
An object this function is applied to.

Details

These functions are mostly simply calls to class checks. There are also grouped checks, i.e.
is.sq_dna, is.sq_rna and is.sq_ami. These check for sq type regardless of if the type is ba-
sic or extended.

Value

A logical value - TRUE if x has specified type, FALSE otherwise.

See Also

Functions that manipulate type of sequences: find_invalid_letters(), sq_type(), substitute_letters(),
typify()

Functions from utility module: ==.sq(), get_sq_lengths(), sqconcatenate, sqextract

Examples

Creating objects to work on:
sq_dna <- sq(c("GGCAT", "TATC-A", "TGA"), alphabet = "dna_bsc")
sq_rna <- sq(c("CGAUUACG", "UUCUAGA", "UUCA"), alphabet = "rna_bsc")
sq_ami <- sq(c("CVMPQGQQ", "AHLC--PPQ"), alphabet = "ami_ext")
sq_unt <- sq("BAHHAJJ&HAN&JD&", alphabet = "unt")
sq_atp <- sq(c("mALPVQAmAmA", "mAmAPQ"), alphabet = c("mA", LETTERS))

What is considered sq:
is.sq(sq_dna)
is.sq(sq_rna)
is.sq(sq_ami)
is.sq(sq_unt)

is_empty_sq 25

is.sq(sq_atp)

What is not:
is.sq(c(1,2,3))
is.sq(LETTERS)
is.sq(TRUE)
is.sq(NULL)

Checking for exact class:
is.sq_dna_bsc(sq_dna)
is.sq_dna_ext(sq_rna)
is.sq_rna_bsc(sq_ami)
is.sq_rna_ext(sq_rna)
is.sq_ami_bsc(sq_ami)
is.sq_ami_ext(sq_atp)
is.sq_atp(sq_atp)
is.sq_unt(sq_unt)

Checking for generalized type:
is.sq_dna(sq_atp)
is.sq_rna(sq_rna)
is.sq_ami(sq_ami)

is_empty_sq Test if sequence is empty

Description

Test an sq object for presence of empty sequences.

Usage

is_empty_sq(x)

S3 method for class 'sq'
is_empty_sq(x)

Arguments

x [sq]
An object this function is applied to.

Details

This function allows identification of empty sequences (that have length 0) represented by the NULL
sq values in the sq object. It returns a logical value for every element of the sq object - TRUE
if its value is NULL sq and FALSE otherwise. NULL sq values may be introduced as a result of
remove_ambiguous and remove_na functions. The former replaces sequences containing ambigu-
ous elements with NULL sq values, whereas the latter replaces sequences with NA values with NULL
sq.

26 paste

Value

A logical vector of the same length as input sq, indicating whether elements are empty sequences
(of length 0).

See Also

sq class

Functions that clean sequences: remove_ambiguous(), remove_na()

Examples

Creating an object to work on:
sq_dna_ext <- sq(c("ACGATTAGACG", "", "GACGANTCCAGNTAC"),

alphabet = "dna_ext")

Testing for presence of empty sequences:
is_empty_sq(sq_dna_ext)

Testing for presence of empty sequences after cleaning - sequence
containing ambiguous elements is replaced by NULL sq:
sq_dna_bsc <- remove_ambiguous(sq_dna_ext)
is_empty_sq(sq_dna_bsc)

Testing for presence of empty sequences after using bite and removing NA.
Extracting letters from first to fifteenth - NA introduced:
bitten_sq <- bite(sq_dna_ext, 1:15)
Removing NA:
rm_bitten_sq <- remove_na(bitten_sq)
Testing for presence of empty sequences:
is_empty_sq(rm_bitten_sq)

paste Paste sequences in string-like fashion

Description

Joins multiple vectors of sequences into one vector.

Usage

S3 method for class 'sq'
paste(..., NA_letter = getOption("tidysq_NA_letter"))

random_sq 27

Arguments

... [sq]
Sequences to paste together.

NA_letter [character(1)]
A string that is used to interpret and display NA value in the context of sq class.
Default value equals to "!".

Details

paste() joins sequences in the same way as it does with strings. All sq objects must have the same
length, that is, contain the same number of sequences. An exception is made for scalar (length 1)
sq objects, which are replicated instead.

Value

sq object of common type of input objects. Common type is determined in the same process as for
c.sq().

See Also

Functions that affect order of elements: bite(), collapse(), reverse()

Examples

Creating objects to work on:
sq_dna_1 <- sq(c("TTCAGGGCTAG", "CGATTGC", "CAGTTTA"),

alphabet = "dna_bsc")
sq_dna_2 <- sq(c("ATCTTGAAG", "CATATGCGCTA", "ACGTGTCGA"),

alphabet = "dna_bsc")
sq_unt_1 <- sq(c("ATGCAGGA?", "TGACGAGCTTA", "", "TIAALGNIIYRAIE"))
sq_unt_2 <- sq(c("OVNU!!OK!!J", "GOK!MI!N!BB!", "DPOFIN!!", "??!?"))

Pasting sequences:
collapse(sq_dna_1, sq_dna_2)
collapse(sq_unt_1, sq_unt_2)
collapse(sq_dna_2, sq_unt_2, sq_dna_1)

random_sq Generate random sequences

Description

Generates an sq object with specified number of sequences of given length and alphabet.

Usage

random_sq(n, len, alphabet, sd = NULL, use_gap = FALSE)

28 random_sq

Arguments

n [integer(1)]
A number of sequences to generate - must be non-negative.

len [integer(1)]
Length of each sequence if sd not specified and mean length of sequences if sd
specified - must be non-negative.

alphabet [character]
If provided value is a single string, it will be interpreted as type (see details). If
provided value has length greater than one, it will be treated as atypical alphabet
for sq object and sq type will be atp.

sd [integer(1)]
If specified, gives standard deviation of length of generated sequences - must be
non-negative.

use_gap [logical(1)]
If TRUE, sequences will be generated with random gaps inside (commonly de-
noted as "-").

Details

Letter ’*’ is not used in generating ami sequences. If parameter sd is passed, then all generated
negative values are replaced with 0s.

Value

An object of class sq with type as specified.

See Also

Functions from input module: import_sq(), read_fasta(), sq()

Examples

Setting seed for reproducibility
set.seed(16)

Generating random sequences
random_sq(10, 10, "ami_bsc")
random_sq(25, 18, "rna_bsc", sd = 6)
random_sq(50, 8, "dna_ext", sd = 3)
random_sq(6, 100, "ami_bsc", use_gap = TRUE)

Passing whole alphabet instead of type
random_sq(4, 12, c("Pro", "Gly", "Ala", "Met", "Cys"))

Generating empty sequences (why would anyone though)
random_sq(8, 0, "rna_ext")

read_fasta 29

read_fasta Read a FASTA file

Description

Reads a FASTA file that contains nucleotide or amino acid sequences and returns a tibble with
obtained data.

Usage

read_fasta(
file_name,
alphabet = NULL,
NA_letter = getOption("tidysq_NA_letter"),
safe_mode = getOption("tidysq_safe_mode"),
on_warning = getOption("tidysq_on_warning"),
ignore_case = FALSE

)

Arguments

file_name [character(1)]
Absolute path to file or url to read from.

alphabet [character]
If provided value is a single string, it will be interpreted as type (see details). If
provided value has length greater than one, it will be treated as atypical alphabet
for sq object and sq type will be atp. If provided value is NULL, type guessing
will be performed (see details).

NA_letter [character(1)]
A string that is used to interpret and display NA value in the context of sq class.
Default value equals to "!".

safe_mode [logical(1)]
Default value is FALSE. When turned on, safe mode guarantees that NA appears
within a sequence if and only if input sequence contains value passed with
NA_letter. This means that resulting type might be different to the one passed
as argument, if there are letters in a sequence that does not appear in the original
alphabet.

on_warning ["silent" || "message" || "warning" || "error"]
Determines the method of handling warning message. Default value is "warning".

ignore_case [logical(1)]
If turned on, lowercase letters are turned into respective uppercase ones and
interpreted as such. If not, either sq object must be of type unt or all lowercase
letters are interpreted as NA values. Default value is FALSE. Ignoring case does
not work with atp alphabets.

30 remove_ambiguous

Details

All rules of creating sq objects are the same as in sq.

Value

A tibble with number of rows equal to the number of sequences and two columns:

• ‘name‘ – specifies name of a sequence, used in functions like find_motifs

• ‘sq‘ – specifies name of a sequence, used in functions like find_motifs

See Also

readLines

Functions from input module: import_sq(), random_sq(), sq()

Examples

fasta_file <- system.file(package = "tidysq", "examples/example_aa.fasta")

In this case, these two calls are equivalent in result:
read_fasta(fasta_file)
read_fasta(fasta_file, alphabet = "ami_bsc")

Not run:
It's possible to read FASTA file from URL:
read_fasta("https://www.uniprot.org/uniprot/P28307.fasta")

End(Not run)

remove_ambiguous Remove sequences that contain ambiguous elements

Description

This function replaces sequences with ambiguous elements by empty (NULL) sequences or removes
ambiguous elements from sequences in an sq object.

Usage

remove_ambiguous(x, by_letter = FALSE, ...)

S3 method for class 'sq'
remove_ambiguous(
x,
by_letter = FALSE,
...,
NA_letter = getOption("tidysq_NA_letter")

)

remove_ambiguous 31

Arguments

x [sq_dna_bsc || sq_rna_bsc || sq_dna_ext || sq_rna_ext || sq_ami_bsc ||
sq_ami_ext]
An object this function is applied to.

by_letter [logical(1)]
If FALSE, filter condition is applied to sequence as a whole. If TRUE, each letter
is applied filter to separately.

... further arguments to be passed from or to other methods.

NA_letter [character(1)]
A string that is used to interpret and display NA value in the context of sq class.
Default value equals to "!".

Details

Biological sequences, whether of DNA, RNA or amino acid elements, are not always exactly deter-
mined. Sometimes the only information the user has about an element is that it’s one of given set
of possible elements. In this case the element is described with one of special letters, here called
ambiguous.

The inclusion of these letters is the difference between extended and basic alphabets (and, con-
versely, types). For amino acid alphabet these letters are: B, J, O, U, X, Z; whereas for DNA and
RNA: W, S, M, K, R, Y, B, D, H, V, N.

remove_ambiguous() is used to create sequences without any of the elements above. Depending
on value of by_letter argument, the function either replaces "ambiguous" sequences with empty
sequences (if by_letter is equal to TRUE) or shortens original sequence by retaining only unam-
biguous letters (if opposite is true).

Value

An sq object with the _bsc version of inputted type.

See Also

Functions that clean sequences: is_empty_sq(), remove_na()

Examples

Creating objects to work on:
sq_ami <- sq(c("MIAANYTWIL","TIAALGNIIYRAIE", "NYERTGHLI", "MAYXXXIALN"),

alphabet = "ami_ext")
sq_dna <- sq(c("ATGCAGGA", "GACCGAACGAN", "TGACGAGCTTA", "ACTNNAGCN"),

alphabet = "dna_ext")

Removing whole sequences with ambiguous elements:
remove_ambiguous(sq_ami)
remove_ambiguous(sq_dna)

Removing ambiguous elements from sequences:
remove_ambiguous(sq_ami, by_letter = TRUE)

32 remove_na

remove_ambiguous(sq_dna, by_letter = TRUE)

Analysis of the result
sq_clean <- remove_ambiguous(sq_ami)
is_empty_sq(sq_clean)
sq_type(sq_clean)

remove_na Remove sequences that contain NA values

Description

This function replaces sequences with NA values by empty (NULL) sequences or removes NA values
from sequences in an sq object.

Usage

remove_na(x, by_letter = FALSE, ...)

S3 method for class 'sq'
remove_na(x, by_letter = FALSE, ..., NA_letter = getOption("tidysq_NA_letter"))

Arguments

x [sq]
An object this function is applied to.

by_letter [logical(1)]
If FALSE, filter condition is applied to sequence as a whole. If TRUE, each letter
is applied filter to separately.

... further arguments to be passed from or to other methods.

NA_letter [character(1)]
A string that is used to interpret and display NA value in the context of sq class.
Default value equals to "!".

Details

NA may be introduced as a result of using functions like substitute_letters or bite. They can
also appear in sequences if the user reads FASTA file using read_fasta or constructs sq object
from character vector with sq function without safe_mode turned on - and there are letters in file
or strings other than specified in the alphabet.

remove_na() is used to filter out sequences or elements that have NA value(s). By default, if any
letter in a sequence is NA, then whole sequence is replaced by empty (NULL) sequence. However, if
by_letter parameter is set to TRUE, then sequences are only shortened by excluding NA values.

reverse 33

Value

An sq object with the same type as the input type. Sequences that do not contain any NA values are
left unchanged.

See Also

sq

Functions that clean sequences: is_empty_sq(), remove_ambiguous()

Examples

Creating objects to work on:
sq_ami <- sq(c("MIAANYTWIL","TIAALGNIIYRAIE", "NYERTGHLI", "MAYXXXIALN"),

alphabet = "ami_ext")
sq_dna <- sq(c("ATGCAGGA", "GACCGAACGAN", "TGACGAGCTTA", "ACTNNAGCN"),

alphabet = "dna_ext")

Substituting some letters with NA
sq_ami_sub <- substitute_letters(sq_ami, c(E = NA_character_, R = NA_character_))
sq_dna_sub <- substitute_letters(sq_dna, c(N = NA_character_))

Biting sequences out of range
sq_bitten <- bite(sq_ami, 1:15)

Printing the sequences
sq_ami_sub
sq_dna_sub

Removing sequences containing NA
remove_na(sq_ami_sub)
remove_na(sq_dna_sub)
remove_na(sq_bitten)

Removing only NA elements
remove_na(sq_ami_sub, by_letter = TRUE)
remove_na(sq_dna_sub, TRUE)
remove_na(sq_bitten, TRUE)

reverse Reverse sequence

Description

Reverse given list of sequences.

34 reverse

Usage

reverse(x, ...)

S3 method for class 'sq'
reverse(x, ..., NA_letter = getOption("tidysq_NA_letter"))

Arguments

x [sq]
An object this function is applied to.

... further arguments to be passed from or to other methods.

NA_letter [character(1)]
A string that is used to interpret and display NA value in the context of sq class.
Default value equals to "!".

Details

reverse() function reverses each sequence in supplied sq object (e.q. transforms "MIAANYTWIL"
to "LIWTYNAAIM"). This operation does not alter the type of the input object nor its alphabet.

Value

An sq object of the same type as input object but each sequence is reversed.

See Also

Functions that affect order of elements: bite(), collapse(), paste()

Examples

Creating objects to work on:
sq_ami <- sq(c("MIAANYTWIL","TIAALGNIIYRAIE", "NYERTGHLI", "MAYXXXIALN"),

alphabet = "ami_ext")
sq_dna <- sq(c("ATGCAGGA", "GACCGAACGAN", ""), alphabet = "dna_ext")
sq_unt <- sq(c("ATGCAGGA?", "TGACGAGCTTA", "", "TIAALGNIIYRAIE"))

Reversing sequences:
reverse(sq_ami)
reverse(sq_dna)
reverse(sq_unt)

sq 35

sq Construct sq object from character vector

Description

This function allows the user to construct objects of class sq from a character vector.

Usage

sq(
x,
alphabet = NULL,
NA_letter = getOption("tidysq_NA_letter"),
safe_mode = getOption("tidysq_safe_mode"),
on_warning = getOption("tidysq_on_warning"),
ignore_case = FALSE

)

Arguments

x [character]
Vector to construct sq object from.

alphabet [character]
If provided value is a single string, it will be interpreted as type (see details). If
provided value has length greater than one, it will be treated as atypical alphabet
for sq object and sq type will be atp. If provided value is NULL, type guessing
will be performed (see details).

NA_letter [character(1)]
A string that is used to interpret and display NA value in the context of sq class.
Default value equals to "!".

safe_mode [logical(1)]
Default value is FALSE. When turned on, safe mode guarantees that NA appears
within a sequence if and only if input sequence contains value passed with
NA_letter. This means that resulting type might be different to the one passed
as argument, if there are letters in a sequence that does not appear in the original
alphabet.

on_warning ["silent" || "message" || "warning" || "error"]
Determines the method of handling warning message. Default value is "warning".

ignore_case [logical(1)]
If turned on, lowercase letters are turned into respective uppercase ones and
interpreted as such. If not, either sq object must be of type unt or all lowercase
letters are interpreted as NA values. Default value is FALSE. Ignoring case does
not work with atp alphabets.

36 sq

Details

Function sq covers all possibilities of standard and non-standard types and alphabets. You can
check what ’type’ and ’alphabet’ exactly are in sq class documentation. There is a guide below on
how function operates and how the program behaves depending on arguments passed and letters in
the sequences.

x parameter should be a character vector. Each element of this vector is a biological sequence. If
this parameter has length 0, object of class sq with 0 sequences will be created (if not specified, it
will have dna_bsc type, which is a result of rules written below). If it contains sequences of length
0, NULL sequences will be introduced (see NULL (empty) sequences section in sq class).

Important note: in all below cases word ’letter’ stands for an element of an alphabet. Letter
might consist of more than one character, for example "Ala" might be a single letter. However,
if the user wants to construct or read sequences with multi-character letters, one has to specify
all letters in alphabet parameter. Details of letters, alphabet and types can be found in sq class
documentation.

Value

An object of class sq with appropriate type.

Simple guide to construct

In many cases, just the x parameter needs to be specified - type of sequences will be guessed
according to rules described below. The user needs to pay attention, however, because for short
sequences type may be guessed incorrectly - in this case they should specify type in alphabet
parameter.

If your sequences contain non-standard letters, where each non-standard letter is one character long
(that is, any character that is not an uppercase letter), you also don’t need to specify any parameter.
Optionally, you can explicitly do it by setting alphabet to "unt".

In safe mode it is guaranteed that only letters which are equal to NA_letter argument are inter-
preted as NA values. Due to that, resulting alphabet might be different from the alphabet argument.

Detailed guide to construct

Below are listed all possibilities that can occur during the construction of a sq object:

• If you don’t specify any other parameter than x, function will try to guess sequence type (it
will check in exactly this order):

1. If it contains only ACGT- letters, type will be set to dna_bsc.
2. If it contains only ACGU- letters, type will be set to rna_bsc.
3. If it contains any letters from 1. and 2. and additionally letters DEFHIKLMNPQRSVWY*,

type will be set to ami_bsc.
4. If it contains any letters from 1. and additionally letters WSMKRYBDHVN, type will be

set to dna_ext.
5. If it contains any letters from 2. and additionally letters WSMKRYBDHVN, type will be

set to rna_ext.
6. If it contains any letters from previous points and additionally letters JOUXZ, type will

be set to ami_ext.

sq 37

7. If it contains any letters that exceed all groups mentioned above, type will be set to unt.
• If you specify alphabet parameter as any of "dna_bsc", "dna_ext", "rna_bsc", "rna_ext",
"ami_bsc", "ami_ext"; then:

– If safe_mode is FALSE, then sequences will be built with standard alphabet for given type.
– If safe_mode is TRUE, then sequences will be scanned for letters not in standard alphabet:

* If no such letters are found, then sequences will be built with standard alphabet for
given type.

* If at least one such letter is found, then sequences are built with real alphabet and
with type set to unt.

• If you specify alphabet parameter as "unt", then sequences are scanned for alphabet and
subsequently built with obtained alphabet and type unt.

• If you specify alphabet parameter as character vector longer than 1, then type is set to atp
and alphabet is equal to letters in said parameter.

If ignore_case is set to TRUE, then lowercase letters are turned into uppercase during their inter-
pretation, unless type is set to atp.

Handling unt and atp types and NA values

You can convert letters into another using substitute_letters and then use typify or sq_type<-
function to set type of sq to dna_bsc, dna_ext, rna_bsc, rna_ext, ami_bsc or ami_ext. If your
sequences contain NA values, use remove_na.

See Also

Functions from input module: import_sq(), random_sq(), read_fasta()

Examples

constructing sq without specifying alphabet:
Correct sq type will be guessed from appearing letters
dna_bsc
sq(c("ATGC", "TCGTTA", "TT--AG"))

rna_bsc
sq(c("CUUAC", "UACCGGC", "GCA-ACGU"))

ami_bsc
sq(c("YQQPAVVM", "PQCFL"))

ami cln sq can contain "*" - a letter meaning end of translation:
sq(c("MMDF*", "SYIHR*", "MGG*"))

dna_ext
sq(c("TMVCCDA", "BASDT-CNN"))

rna_ext
sq(c("WHDHKYN", "GCYVCYU"))

ami_ext

38 sq

sq(c("XYOQWWKCNJLO"))

unt - assume that one wants to mark some special element in sequence with "%"
sq(c("%%YAPLAA", "PLAA"))

passing type as alphabet parameter:
All above examples yield an identical result if type specified is the same as guessed
sq(c("ATGC", "TCGTTA", "TT--AG"), "dna_bsc")
sq(c("CUUAC", "UACCGGC", "GCA-ACGU"), "rna_bsc")
sq(c("YQQPAVVM", "PQCFL"), "ami_bsc")
sq(c("MMDF*", "SYIHR*", "MGG*"), "ami_bsc")
sq(c("TMVCCDA", "BASDT-CNN"), "dna_ext")
sq(c("WHDHKYN", "GCYVCYU"), "rna_ext")
sq(c("XYOQWWKCNJLO"), "ami_ext")
sq(c("%%YAPLAA", "PLAA"), "unt")

Type doesn't have to be the same as the guessed one if letters fit in the destination alphabet
sq(c("ATGC", "TCGTTA", "TT--AG"), "dna_ext")
sq(c("ATGC", "TCGTTA", "TT--AG"), "ami_bsc")
sq(c("ATGC", "TCGTTA", "TT--AG"), "ami_ext")
sq(c("ATGC", "TCGTTA", "TT--AG"), "unt")

constructing sq with specified letters of alphabet:
In sequences below "mA" denotes methyled alanine - two characters are treated as single letter
sq(c("LmAQYmASSR", "LmASMKLKFmAmA"), alphabet = c("mA", LETTERS))
Order of alphabet letters are not meaningful in most cases
sq(c("LmAQYmASSR", "LmASMKLKFmAmA"), alphabet = c(LETTERS, "mA"))

reading sequences with three-letter names:
sq(c("ProProGlyAlaMetAlaCys"), alphabet = c("Pro", "Gly", "Ala", "Met", "Cys"))

using safe mode:
Safe mode guarantees that no element is read as NA
But resulting alphabet might be different to the passed one (albeit with warning/error)
sq(c("CUUAC", "UACCGGC", "GCA-ACGU"), alphabet = "dna_bsc", safe_mode = TRUE)
sq(c("CUUAC", "UACCGGC", "GCA-ACGU"), alphabet = "dna_bsc")

Safe mode guesses alphabet based on whole sequence
long_sequence <- paste0(paste0(rep("A", 4500), collapse = ""), "N")
sq(long_sequence, safe_mode = TRUE)
sq(long_sequence)

ignoring case:
By default, lower- and uppercase letters are treated separately
This behavior can be changed by setting ignore_case = TRUE
sq(c("aTGc", "tcgTTA", "tt--AG"), ignore_case = TRUE)
sq(c("XYOqwwKCNJLo"), ignore_case = TRUE)

It is possible to construct sq with length 0
sq(character())

As well as sq with empty sequences
sq(c("AGTGGC", "", "CATGA", ""))

sq-class 39

sq-class sq: class for keeping biological sequences tidy

Description

An object of class sq represents a list of biological sequences. It is the main internal format of the
tidysq package and most functions operate on it. The storage method is memory-optimized so that
objects require as little memory as possible (details below).

Construction/reading/import of sq objects

There are multiple ways of obtaining sq objects:

• constructing from a character vector with sq method,

• constructing from another object with as.sq method,

• reading from the FASTA file with read_fasta,

• importing from a format of other package like ape or Biostrings with import_sq.

Important note: A manual assignment of a class sq to an object is strongly discouraged - due to
the usage of low-level functions for bit packing such assignment may lead to calling one of those
functions during operating on object or even printing it which can cause a crash of R session and,
in consequence, loss of data.

Export/writing of sq objects

There are multiple ways of saving sq objects or converting them into other formats:

• converting into a character vector with as.character method,

• converting into a character matrix with as.matrix method,

• saving as FASTA file with write_fasta,

• exporting into a format of other package like ape or Biostrings with export_sq.

Ambiguous letters

This package is meant to handle amino acid, DNA and RNA sequences. IUPAC standard for one
letter codes includes ambiguous bases that are used to describe more than one basic standard base.
For example, "B" in the context of DNA code means "any of C, G or T". As there are operations
that make sense only for unambiguous bases (like translate), this package has separate types for
sequences with "basic" and "extended" alphabet.

40 sq-class

Types of sq

There is need to differentiate sq objects that keep different types of sequences (DNA, RNA, amino
acid), as they use different alphabets. Furthermore, there are special types for handling non-standard
sequence formats.

Each sq object has exactly one of types:

• ami_bsc - (amino acids) represents a list of sequences of amino acids (peptides or proteins),

• ami_ext - same as above, but with possible usage of ambiguous letters,

• dna_bsc - (DNA) represents a list of DNA sequences,

• dna_ext - same as above, but with possible usage of ambiguous letters,

• rna_bsc - (RNA) represents a list of RNA sequences (together with DNA above often collec-
tively called "nucleotide sequences"),

• rna_ext - same as above, but with possible usage of ambiguous letters,

• unt - (untyped) represents a list of sequences that do not have specified type. They are mainly
result of reading sequences from a file that contains some letters that are not in standard
nucleotide or amino acid alphabets and user has not specified them explicitly. They should be
converted to other sq classes (using functions like substitute_letters or typify),

• atp - (atypical) represents sequences that have an alphabet different from standard alphabets -
similarly to unt, but user has been explicitly informed about it. They are result of constructing
sequences or reading from file with provided custom alphabet (for details see read_fasta and
sq function). They are also result of using function substitute_letters - users can use it to
for example simplify an alphabet and replace several letters by one.

For clarity, ami_bsc and ami_ext types are often referred to collectively as ami when there is no
need to explicitly specify every possible type. The same applies to dna and rna.

sq object type is printed when using overloaded method print. It can be also checked and obtained
as a value (that may be passed as argument to function) by using sq_type.

Alphabet

See alphabet.

The user can obtain an alphabet of the sq object using the alphabet function. The user can check
which letters are invalid (i.e. not represented in standard amino acid or nucleotide alphabet) in each
sequence of given sq object by using find_invalid_letters. To substitute one letter with another
use substitute_letters.

Missing/Not Available values

There is a possibility of introducing NA values into sequences. NA value does not represents gap
(which are represented by "-") or wildcard elements ("N" in the case of nucleotides and "X" in the
case of amino acids), but is used as a representation of an empty position or invalid letters (not
represented in nucleotide or amino acid alphabet).

NA does not belong to any alphabet. It is printed as "!" and, thus, it is highly unrecommended
to use "!" as special letter in atp sequences (but print character can be changed in options, see
tidysq-options).

NA might be introduced by:

sq-class 41

• reading fasta file with non-standard letters with read_fasta with safe_mode argument set to
TRUE,

• replacing a letter with NA value with substitute_letters,

• subsetting sequences beyond their lengths with bite.

The user can convert sequences that contain NA values into NULL sequences with remove_na.

NULL (empty) sequences

NULL sequence is a sequence of length 0.

NULL sequences might be introduced by:

• constructing sq object from character string of length zero,

• using the remove_ambiguous function,

• using the remove_na function,

• subsetting sq object with bite function (and negative indices that span at least -1:-length(sequence).

Storage format

sq object is, in fact, list of raw vectors. The fact that it is list implies that the user can concatenate sq
objects using c method and subset them using extract operator. Alphabet is kept as an attribute
of the object.

Raw vectors are the most efficient way of storage - each letter of a sequence is assigned an integer
(its index in alphabet of sq object). Those integers in binary format fit in less than 8 bits, but
normally are stored on 16 bits. However, thanks to bit packing it is possible to remove unused bits
and store numbers more tightly. This means that all operations must either be implemented with this
packing in mind or accept a little time overhead induced by unpacking and repacking sequences.
However, this cost is relatively low in comparison to amount of saved memory.

For example - dna_bsc alphabet consists of 5 values: ACGT-. They are assigned numbers 0 to 4
respectively. Those numbers in binary format take form: 000, 001, 010, 011, 100. Each of these
letters can be coded with just 3 bits instead of 8 which is demanded by char - this allows us to save
more than 60% of memory spent on storage of basic nucleotide sequences.

tibble compatibility

sq objects are compatible with tibble class - that means one can have an sq object as a column of
a tibble. There are overloaded print methods, so that it is printed in pretty format.

42 sqapply

sqapply Apply function to each sequence

Description

Applies given function to each sequence. Sequences are passed to function as character vectors (or
numeric, if type of sq is enc) or single character strings, depending on parameter.

Usage

sqapply(x, fun, ...)

S3 method for class 'sq'
sqapply(
x,
fun,
...,
single_string = FALSE,
NA_letter = getOption("tidysq_NA_letter")

)

Arguments

x [sq]
An object this function is applied to.

fun [function(1)]
A function to apply to each sequence in sq object; it should take a character
vector, numeric vector or single character string as an input.

... further arguments to be passed from or to other methods.

single_string [logical(1)]
A value indicating in which form sequences should be passed to the function
fun; if FALSE (default), they will be treated as character vectors, if TRUE, they
will be pasted into a single string.

NA_letter [character(1)]
A string that is used to interpret and display NA value in the context of sq class.
Default value equals to "!".

Value

A list of values returned by function for each sequence in corresponding order.

See Also

sq lapply

sqconcatenate 43

Examples

Creating objects to work on:
sq_dna <- sq(c("ATGCAGGA", "GACCGNBAACGAN", "TGACGAGCTTA"),

alphabet = "dna_bsc")
sq_ami <- sq(c("MIAANYTWIL","TIAALGNIIYRAIE", "NYERTGHLI", "MAYXXXIALN"),

alphabet = "ami_ext")
sq_unt <- sq(c("ATGCAGGA?", "TGACGAGCTTA", "", "TIAALGNIIYRAIE"))

Counting how may "A" elements are present in sequences:

sqapply(sq_dna, function(sequence) sum(sequence == "A"))
sqapply(sq_ami, function(sequence) sum(sequence == "A"))
sqapply(sq_unt, function(sequence) sum(sequence == "A"))

sqconcatenate Concatenate sq objects

Description

Merges multiple sq and possibly character objects into one larger sq object.

Arguments

... [sq || character]
Multiple objects. For exact behavior, check Details section. First argument
must be of sq class due to R mechanism of single dispatch. If this is a problem,
recommended alternative is vec_c method from vctrs-package package.

Details

Whenever all passed objects are of one of standard types (that is, dna_bsc, dna_ext, rna_bsc,
rna_ext, ami_bsc or ami_ext), returned object is of the same class, as no changes to alphabet are
needed.

It’s possible to mix both basic and extended types within one call to c(), however they all must be
of the same type (that is, either dna, rna or ami). In this case, returned object is of extended type.

Mixing dna, rna and ami types is prohibited, as interpretation of letters differ depending on the
type.

Whenever all objects are either of atp type, returned object is also of this class and resulting alphabet
is equal to set union of all input alphabets.

unt type can be mixed with any other type, resulting in unt object with alphabet equal to set union
of all input alphabets. In this case, it is possible to concatenate dna and ami objects, for instance,
by concatenating one of them first with unt object. However, it is strongly discouraged, as it may
result in unwanted concatenation of DNA and amino acid sequences.

Whenever a character vector appears, it does not influence resulting sq type. Each element is treated
as separate sequence. If any of letters in this vector does not appear in resulting alphabet, it is silently
replaced with NA.

44 sqconcatenate

Due to R dispatch mechanism passing character vector as first will return class-less list. This be-
havior is effectively impossible and definitely unrecommended to fix, as fixing it would involve
changing c primitive. If such possibility is necessary, vec_c is a better alternative.

Value

sq object with length equal to sum of lengths of individual objects passed as parameters. Elements
of sq are concatenated just as if they were normal lists (see c).

See Also

Functions from utility module: ==.sq(), get_sq_lengths(), is.sq(), sqextract

Examples

Creating objects to work on:
sq_dna_1 <- sq(c("GGACTGCA", "CTAGTA", ""), alphabet = "dna_bsc")
sq_dna_2 <- sq(c("ATGACA", "AC-G", "-CCAT"), alphabet = "dna_bsc")
sq_dna_3 <- sq(character(), alphabet = "dna_bsc")
sq_dna_4 <- sq(c("BNACV", "GDBADHH"), alphabet = "dna_ext")
sq_rna_1 <- sq(c("UAUGCA", "UAGCCG"), alphabet = "rna_bsc")
sq_rna_2 <- sq(c("-AHVRYA", "G-U-HYR"), alphabet = "rna_ext")
sq_rna_3 <- sq("AUHUCHYRBNN--", alphabet = "rna_ext")
sq_ami <- sq("ACHNK-IFK-VYW", alphabet = "ami_bsc")
sq_unt <- sq("AF:gf;PPQ^&XN")

Concatenating dna_bsc sequences:
c(sq_dna_1, sq_dna_2, sq_dna_3)
Concatenating rna_ext sequences:
c(sq_rna_2, sq_rna_3)
Mixing dna_bsc and dna_ext:
c(sq_dna_1, sq_dna_4, sq_dna_2)

Mixing DNA and RNA sequences doesn't work:
Not run:
c(sq_dna_3, sq_rna_1)

End(Not run)

untsq can be mixed with DNA, RNA and amino acids:
c(sq_ami, sq_unt)
c(sq_unt, sq_rna_1, sq_rna_2)
c(sq_dna_2, sq_unt, sq_dna_3)

Character vectors are also acceptable:
c(sq_dna_2, "TGCA-GA")
c(sq_rna_2, c("UACUGGGACUG", "AUGUBNAABNRYYRAU"), sq_rna_3)
c(sq_unt, "&#JIA$O02t30,9ec", sq_ami)

sqextract 45

sqextract Extract parts of a sq object

Description

Operator to extract subsets of sq objects.

Arguments

x [sq]
An object this function is applied to.

i, j, ... [numeric || logical]
Indices specifying elements to extract.

Details

This function follows vctrs-package conventions regarding argument interpretation for indexing
vectors, which are a bit stricter that normal R conventions, for example implicit argument recycling
is prohibited. Subsetting of the sq object does not affect its attributes (class and alphabet of the
object). Attempt to extract elements using indices not present in the object will return an error.

Value

sq object of the same type as the input, containing extracted elements

See Also

Functions from utility module: ==.sq(), get_sq_lengths(), is.sq(), sqconcatenate

Examples

Creating object to work on:
sq_unt <- sq(c("AHSNLVSCTK$SH%&VS", "YQTVKA&#BSKJGY",

"IAKVGDCTWCTY>", "AVYI#VSV&*DVGDJCFA"))

Subsetting using numeric vectors
Extracting second element of the object:
sq_unt[2]

Extracting elements from second to fourth:
sq_unt[2:4]

Extracting all elements except the third:
sq_unt[-3]

Extracting first and third element:
sq_unt[c(1,3)]

Subsetting using logical vectors

46 sqprint

Extracing first and third element:
sq_unt[c(TRUE, FALSE, TRUE, FALSE)]

Subsetting using empty vector returns all values:
sq_unt[]

Using NULL, on the other hand, returns empty sq:
sq_unt[NULL]

sqprint Print sq object

Description

Prints input sq object in a human-friendly form.

Arguments

x [sq]
An object this function is applied to.

max_sequences [integer(1)]
How many sequences should be printed.

use_color [logical(1)]
Should sequences be colored?

letters_sep [character(1)]
How the letters should be separated.

NA_letter [character(1)]
A string that is used to interpret and display NA value in the context of sq class.
Default value equals to "!".

... further arguments to be passed from or to other methods.

Details

print method is often called implicitly by calling variable name. Only explicit calling of this
method allows its parameters to be changed.

Printed information consists of three parts:

• First line is always a header that contains info about the type of sequences contained.

• The next part is the content. Each sequence has its own line, but not all sequences are printed.
The number of printed sequences is limited by parameter max_sequences, defaulting to 10.
These sequences are printed with:

– left-aligned index of sequence in square brackets (e.g. [3]),
– left-aligned sequence data (more about it in paragraph below),
– right-aligned sequence length in angle brackets (e.g. <27>).

sq_type 47

• Finally, if number of sequences is greater than max_sequences, then a footer is displayed with
how many sequences are there and how many were printed.

Each sequence data is printed as letters. If sequence is too long to fit in one line, then only a
subsequence is displayed - a subsequence that begins from the first letter. Sequence printing is
controlled by letters_sep and NA_letter parameters. The first one specifies a string that should
be inserted between any two letters. By default it’s empty when all letters are one character in
length; and a space otherwise. NA_letter dictates how NA values are displayed, by default it’s an
exclamation mark ("!").

Most consoles support color printing, but when any of these do not, then the user might use
use_color parameter set to FALSE - or better yet, change related option value, where said option is
called "tidysq_print_use_color".

Value

An object that was passed as the first argument to the function. It is returned invisibly (equivalent
of invisible(x))

See Also

Functions that display sequence info: get_tidysq_options()

Examples

Creating objects to work on:
sq_ami <- sq(c("MIAANYTWIL","TIAALGNIIYRAIE", "NYERTGHLI", "MAYXXXIALN"),

alphabet = "ami_ext")
sq_dna <- sq(c("ATGCAGGA", "GACCGNBAACGAN", "TGACGAGCTTA"),

alphabet = "dna_bsc")
sq_unt <- sq(c("ATGCAGGA?", "TGACGAGCTTA", "", "TIAALGNIIYRAIE"))

Printing without explicit function calling with default parameters:
sq_ami
sq_dna
sq_unt

Printing with explicit function calling and specific parameters:
print(sq_ami)
print(sq_dna, max_sequences = 1, use_color = FALSE)
print(sq_unt, letters_sep = ":")

sq_type Get type of an sq object

Description

Returns type of sequences/alphabet contained in sq object.

48 sq_type

Usage

sq_type(x, ...)

S3 method for class 'sq'
sq_type(x, ...)

sq_type(x) <- value

S3 replacement method for class 'sq'
sq_type(x) <- value

Arguments

x [sq]
An object this function is applied to.

... further arguments to be passed from or to other methods.

value [character(1)]
The name of destination type - any valid sq type.

Details

Types returned by this function can be passed as argument to functions like random_sq and find_invalid_letters.

Value

A string, one of: "ami_bsc", "ami_ext", "dna_bsc", "dna_ext", "rna_bsc", "rna_ext", "unt" or "atp".

See Also

sq class

Functions that manipulate type of sequences: find_invalid_letters(), is.sq(), substitute_letters(),
typify()

Examples

Creating objects to work on:
sq_ami <- sq(c("MIAANYTWIL","TIAALGNIIYRAIE", "NYERTGHLI", "MAYXXXIALN"),

alphabet = "ami_ext")
sq_dna <- sq(c("ATGCAGGA", "GACCGAACGA", "TGACGAGCTTA", "ACTTTAGC"),

alphabet = "dna_bsc")

Extracting type of sq objects:
sq_type(sq_ami)
sq_type(sq_dna)

Classes are tightly related to these types:
class(sq_ami)[1]
class(sq_dna)[1]

substitute_letters 49

substitute_letters Substitute letters in a sequence

Description

Replaces all occurrences of a letter with another.

Usage

substitute_letters(x, encoding, ...)

S3 method for class 'sq'
substitute_letters(x, encoding, ..., NA_letter = getOption("tidysq_NA_letter"))

Arguments

x [sq]
An object this function is applied to.

encoding [character || numeric]
A dictionary (named vector), where names are letters to be replaced and ele-
ments are their respective replacements.

... further arguments to be passed from or to other methods.
NA_letter [character(1)]

A string that is used to interpret and display NA value in the context of sq class.
Default value equals to "!".

Details

substitute_letters allows to replace unwanted letters in any sequence with user-defined or IU-
PAC symbols. Letters can also be replaced with NA values, so that they can be later removed from
the sequence by remove_na function.

It doesn’t matter whether replaced or replacing letter is single or multiple character. However, the
user cannot replace multiple letters with one nor one letter with more than one.

Of course, multiple different letters can be encoded to the same symbol, so c(A = "rep1", H =
"rep1", G = "rep1") is allowed, but c(AHG = "rep1") is not (unless there is a letter "AHG" in the
alphabet). By doing that any information of separateness of original letters is lost, so it isn’t possible
to retrieve original sequence after this operation.

All encoding names must be letters contained within the alphabet, otherwise an error will be thrown.

Value

An sq object of atp type with updated alphabet.

See Also

Functions that manipulate type of sequences: find_invalid_letters(), is.sq(), sq_type(),
typify()

50 translate

Examples

Creating objects to work on:
sq_dna <- sq(c("ATGCAGGA", "GACCGAACGAN", "TGACGAGCTTA", "ACTNNAGCN"),

alphabet = "dna_ext")
sq_ami <- sq(c("MIOONYTWIL","TIOOLGNIIYROIE", "NYERTGHLI", "MOYXXXIOLN"),

alphabet = "ami_ext")
sq_atp <- sq(c("mALPVQAmAmA", "mAmAPQ"), alphabet = c("mA", LETTERS))

Not all letters must have their encoding specified:
substitute_letters(sq_dna, c(T = "t", A = "a", C = "c", G = "g"))
substitute_letters(sq_ami, c(M = "X"))

Multiple character letters are supported in encodings:
substitute_letters(sq_atp, c(mA = "-"))
substitute_letters(sq_ami, c(I = "ough", O = "eau"))

Numeric substitutions are allowed too, these are coerced to characters:
substitute_letters(sq_dna, c(N = 9, G = 7))

It's possible to replace a letter with NA value:
substitute_letters(sq_ami, c(X = NA_character_))

translate Convert DNA or RNA into proteins using genetic code

Description

This function allows the user to input DNA or RNA sequences and acquire sequences of corre-
sponding proteins, where correspondence is encoded in specified table.

Usage

translate(x, table = 1, ...)

S3 method for class 'sq_dna_bsc'
translate(x, table = 1, ..., NA_letter = getOption("tidysq_NA_letter"))

S3 method for class 'sq_rna_bsc'
translate(x, table = 1, ..., NA_letter = getOption("tidysq_NA_letter"))

Arguments

x [sq_dna_bsc || sq_rna_bsc]
An object this function is applied to.

table [integer(1)]
The number of translation table used, as specified here.

... further arguments to be passed from or to other methods.

https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi

typify 51

NA_letter [character(1)]
A string that is used to interpret and display NA value in the context of sq class.
Default value equals to "!".

Details

DNA and RNA sequences use combinations of three consecutive nucleic acids to encode one of 22
amino acids. This encoding is called "genetic code".

translate() first splits passed DNA or RNA sequences into three-letter chunks. Then searches
the codon table for the entry where the key is equal to the current chunk and the value is one letter
that encodes the corresponding protein. These resulting letters are then pasted into one sequence
for each input sequence.

Due to how the tables works, translate() does not support inputting sequences with extended
alphabets, as ambiguous letters in most cases cannot be translated into exactly one protein.

Moreover, this function raises an error whenever input sequence contain either "-" or NA value.

Value

An object of class sq with ami_bsc type.

See Also

remove_ambiguous, substitute_letters and typify for necessary actions before using translate()

Functions interpreting sq in biological context: %has%(), complement(), find_motifs()

Examples

sq_dna <- sq(c("TACTGGGCATGA", "CAGGTC", "TAGTCCTAG"), alphabet = "dna_bsc")
translate(sq_dna)

typify Set type of an sq object

Description

Sets sequence type (and, consequently, alphabet attribute) to one of ami, dna or rna types.

Usage

typify(x, dest_type, ...)

S3 method for class 'sq'
typify(x, dest_type, ..., NA_letter = getOption("tidysq_NA_letter"))

52 typify

Arguments

x [sq]
An object this function is applied to.

dest_type [character(1)]
The name of destination type - one of "dna_bsc", "dna_ext", "rna_bsc",
"rna_ext", "ami_bsc" and "ami_ext".

... further arguments to be passed from or to other methods.

NA_letter [character(1)]
A string that is used to interpret and display NA value in the context of sq class.
Default value equals to "!".

Details

Sometimes functions from I/O module return sequences of incorrect type, most often unt (which
indicates no type). It happens mostly whenever there are letters that don’t fit into target alphabet.
After replacing wrong letters with correct ones with substitute_letters the user has sequences
of type atp, even if their alphabet is contained in the target one. At the same time, many functions
demand sequences to be of standard type (i.e. ami, dna or rna) or behave differently for these.

typify() is used to help with these situations by allowing the user to convert their sequences to
target type. There are some conditions that must be met to use this function. The most important is
that typified sq object must not contain invalid letters. If this condition is not satisfied, an error is
thrown.

If dest_type is equal to type of sq, function simply returns input value.

Value

sq object with the same letters as input x, but with type as specified in dest_type.

See Also

Functions that manipulate type of sequences: find_invalid_letters(), is.sq(), sq_type(),
substitute_letters()

Examples

Constructing sq object with strange characters (type will be set to "unt"):
sq_unt <- sq(c("&VPLG&#", "##LCG"))

Substituting letters with "X", which stands for unknown amino acid:
sq_sub <- substitute_letters(sq_unt, c(`&` = "X", `#` = "X"))

Setting extended amino acid type (only extended one has "X" letter):
typify(sq_sub, "ami_ext")

write_fasta 53

write_fasta Save sq to fasta file

Description

Writes sq objects with their names to a fasta file.

Usage

write_fasta(x, ...)

S3 method for class 'sq'
write_fasta(
x,
name,
file,
width = 80,
NA_letter = getOption("tidysq_NA_letter"),
...

)

S3 method for class 'data.frame'
write_fasta(
x,
file,
.sq = "sq",
.name = "name",
width = 80,
NA_letter = getOption("tidysq_NA_letter"),
...

)

Arguments

x [sq]
An object this function is applied to.

... further arguments to be passed from or to other methods.

name [character]
Vector of sequence names. Must be of the same length as sq object.

file [character(1)]
Absolute path to file to write to.

width [integer(1)]
Maximum number of characters to put in each line of file. Must be positive.

NA_letter [character(1)]
A string that is used to interpret and display NA value in the context of sq class.
Default value equals to "!".

54 %has%

.sq [character(1)]
Name of a column that stores sequences.

.name [character(1)]
Name of a column that stores names (unique identifiers).

Details

Whenever a name has more letters than width parameter, nothing happens, as only sequences are
split to fit within designated space.

Value

No value is returned.

See Also

Functions from output module: as.character.sq(), as.matrix.sq(), as.sq(), export_sq()

Examples

Not run:
sq_dna <- sq(c("ACTGCTG", "CTTAGA", "CCCT", "CTGAATGT"),

alphabet = "dna_bsc")
write_fasta(sq_dna,

c("bat", "cat", "rat", "elephant_swallowed_by_A_snake"),
tempfile())

End(Not run)

It can be a part of tidyverse pipeline:
library(dplyr)
fasta_file <- system.file(package = "tidysq", "examples/example_aa.fasta")
read_fasta(fasta_file) %>%

mutate(name = toupper(name)) %>%
write_fasta(tempfile())

%has% Test sq object for presence of given motifs

Description

Tests if elements of a sq object contain given motifs.

Usage

x %has% y

%has% 55

Arguments

x [sq]
An object this function is applied to.

y [character]
Motifs to be searched for.

Details

This function allows testing if elements of a sq object contain the given motif or motifs. It returns a
logical value for every element of the sq object - TRUE if tested sequence contains searched motif
and FALSE otherwise. When multiple motifs are searched, TRUE will be returned only for sequences
that contain all given motifs.

This function only indicates if a motif is present within a sequence, to find all motifs and their
positions within sequences use find_motifs.

Value

A logical vector of the same length as input sq, indicating which elements contain all given motifs.

Motif capabilities and restrictions

There are more options than to simply create a motif that is a string representation of searched
subsequence. For example, when using this function with any of standard types, i.e. ami, dna or
rna, the user can create a motif with ambiguous letters. In this case the engine will try to match any
of possible meanings of this letter. For example, take "B" from extended DNA alphabet. It means
"not A", so it can be matched with "C", "G" and "T", but also "B", "Y" (either "C" or "T"), "K"
(either "G" or "T") and "S" (either "C" or "G").

Full list of ambiguous letters with their meaning can be found on IUPAC site.

Motifs are also restricted in that the alphabets of sq objects on which search operations are con-
ducted cannot contain "^" and "$" symbols. These two have a special meaning - they are used to
indicate beginning and end of sequence respectively and can be used to limit the position of matched
subsequences.

See Also

Functions interpreting sq in biological context: complement(), find_motifs(), translate()

Examples

Creating objects to work on:
sq_dna <- sq(c("ATGCAGGA", "GACCGNBAACGAN", "TGACGAGCTTAG"),

alphabet = "dna_bsc")
sq_ami <- sq(c("MIAANYTWIL","TIAALGNIIYRAIE", "NYERTGHLI", "MAYXXXIALN"),

alphabet = "ami_ext")
sq_atp <- sq(c("mAmYmY", "nbAnsAmA", ""),

alphabet = c("mA", "mY", "nbA", "nsA"))

Testing if DNA sequences contain motif "ATG":
sq_dna %has% "ATG"

56 %has%

Testing if DNA sequences begin with "ATG":
sq_dna %has% "^ATG"

Testing if DNA sequences end with "TAG" (one of the stop codons):
sq_dna %has% "TAG$"

Test if amino acid sequences contain motif of two alanines followed by
aspartic acid or asparagine ("AAB" motif matches "AAB", "AAD" and "AAN"):
sq_ami %has% "AAB"

Test if amino acid sequences contain both motifs:
sq_ami %has% c("AAXG", "MAT")

Test for sequences with multicharacter alphabet:
sq_atp %has% c("nsA", "mYmY$")

Index

∗ alphabet_functions
alphabet, 5
get_standard_alphabet, 20

∗ bio_functions
%has%, 54
complement, 12
find_motifs, 16
translate, 50

∗ cleaning_functions
is_empty_sq, 25
remove_ambiguous, 30
remove_na, 32

∗ display_functions
get_tidysq_options, 20
sqprint, 46

∗ input_functions
import_sq, 21
random_sq, 27
read_fasta, 29
sq, 35

∗ order_functions
bite, 9
collapse, 11
paste, 26
reverse, 33

∗ output_functions
as.character.sq, 6
as.matrix.sq, 7
as.sq, 8
export_sq, 13
write_fasta, 53

∗ type_functions
find_invalid_letters, 15
is.sq, 23
sq_type, 47
substitute_letters, 49
typify, 51

∗ util_functions
==.sq, 3

get_sq_lengths, 19
is.sq, 23
sqconcatenate, 43
sqextract, 45

==.sq, 3, 19, 24, 44, 45
%has%, 6, 13, 18, 51, 54

alphabet, 5, 16, 20, 40
as.character, 39
as.character.sq, 6, 8, 9, 14, 54
as.matrix, 39
as.matrix.sq, 7, 7, 9, 14, 54
as.sq, 7, 8, 8, 14, 39, 54

bite, 9, 11, 27, 32, 34, 41

c, 41, 44
c.sq, 27
character, 6, 32, 39
collapse, 10, 11, 27, 34
complement, 12, 18, 20, 51, 55

export_sq, 7–9, 13, 39, 54

find_invalid_letters, 15, 24, 40, 48, 49, 52
find_motifs, 13, 16, 30, 51, 55

get_sq_lengths, 4, 19, 24, 44, 45
get_standard_alphabet, 6, 20
get_tidysq_options, 20, 47

import_sq, 8, 21, 28, 30, 37, 39
is.sq, 4, 16, 19, 23, 44, 45, 48, 49, 52
is.sq_ami (is.sq), 23
is.sq_ami_bsc (is.sq), 23
is.sq_ami_ext (is.sq), 23
is.sq_atp (is.sq), 23
is.sq_dna (is.sq), 23
is.sq_dna_bsc (is.sq), 23
is.sq_dna_ext (is.sq), 23
is.sq_rna (is.sq), 23

57

58 INDEX

is.sq_rna_bsc (is.sq), 23
is.sq_rna_ext (is.sq), 23
is.sq_unt (is.sq), 23
is_empty_sq, 25, 31, 33

lapply, 42
lengths, 19
logical, 4, 55

matrix, 7, 8

NA, 40, 49
numeric, 19

paste, 10, 11, 26, 34
print, 40

random_sq, 23, 27, 30, 37, 48
read_fasta, 5, 23, 28, 29, 32, 37, 39–41
readLines, 30
remove_ambiguous, 25, 26, 30, 33, 41, 51
remove_na, 10, 25, 26, 31, 32, 37, 41, 49
reverse, 10, 11, 27, 33

sq, 3, 5–8, 10, 11, 13, 16, 19, 21–23, 25, 27,
28, 30–34, 35, 39, 40, 42–47, 49,
52–54

sq-class, 39
sq-concatenate (sqconcatenate), 43
sq-extract (sqextract), 45
sq-print (sqprint), 46
sq_type, 16, 24, 40, 47, 49, 52
sq_type<- (sq_type), 47
sqapply, 42
sqconcatenate, 4, 19, 24, 43, 45
sqextract, 4, 19, 24, 44, 45
sqprint, 21, 46
substitute_letters, 5, 16, 24, 32, 37, 40,

41, 48, 49, 51, 52

tibble, 17, 21, 22, 29, 30, 41
tidysq (tidysq-package), 3
tidysq-options (get_tidysq_options), 20
tidysq-package, 3
translate, 13, 18, 20, 39, 50, 55
typify, 5, 16, 24, 37, 40, 48, 49, 51, 51

vec_c, 43, 44

write_fasta, 7–9, 14, 39, 53

	tidysq-package
	==.sq
	alphabet
	as.character.sq
	as.matrix.sq
	as.sq
	bite
	collapse
	complement
	export_sq
	find_invalid_letters
	find_motifs
	get_sq_lengths
	get_standard_alphabet
	get_tidysq_options
	import_sq
	is.sq
	is_empty_sq
	paste
	random_sq
	read_fasta
	remove_ambiguous
	remove_na
	reverse
	sq
	sq-class
	sqapply
	sqconcatenate
	sqextract
	sqprint
	sq_type
	substitute_letters
	translate
	typify
	write_fasta
	has
	Index

