Package 'theftdlc'

July 10, 2025

Type Package

Title Analyse and Interpret Time Series Features

Version 0.2.0

Date 2025-07-10

Maintainer Trent Henderson <then6675@uni.sydney.edu.au>

Description Provides a suite of functions for analysing, interpreting, and visualising time-series features calculated from different feature sets from the 'theft' package. Implements statistical learning methodologies described in Henderson, T., Bryant, A., and Fulcher, B. (2023) <doi:10.48550/arXiv.2303.17809>.

BugReports https://github.com/hendersontrent/theftdlc/issues

License MIT + file LICENSE

Encoding UTF-8

Depends R (>= 3.5.0), theft (>= 0.8.1)

Imports rlang, stats, tibble, dplyr, ggplot2, tidyr, purrr, furrr, future, reshape2, scales, broom, Rtsne, e1071, janitor, umap, MASS, mclust, normaliseR, correctR, glmnet

Suggests lifecycle, cachem, bslib, knitr, rmarkdown, pkgdown, testthat

RoxygenNote 7.3.2

VignetteBuilder knitr

URL https://hendersontrent.github.io/theftdlc/

NeedsCompilation no

Author Trent Henderson [cre, aut]

Repository CRAN

Date/Publication 2025-07-10 08:20:02 UTC

Contents

classify		•		•																							•			1	2
cluster .		•	•	•	•	•		•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•				4

classify

compare_features	5
filter_duplicates	6
filter_good_features	7
find_good_features	8
fit_models	8
get rescale vals	9
interval	9
make_title	
plot.feature_calculations	
plot.feature_projection	
plot.interval_calculations	14
project	14
resample_data	16
rescale_zscore	17
select_stat_cols	
shrink	
sta_test	
theftdlc	20
	21

Index

classify	Fit classifiers using time-series features using a resample-based ap-
	proach and get a fast understanding of performance

Description

Fit classifiers using time-series features using a resample-based approach and get a fast understanding of performance

Usage

```
classify(
  data,
  classifier = NULL,
  train_size = 0.75,
  n_resamples = 30,
  by_set = TRUE,
  use_null = FALSE,
  seed = 123
)
tsfeature_classifier(
  data,
  classifier = NULL,
  train_size = 0.75,
  n_resamples = 30,
  by_set = TRUE,
```

classify

```
use_null = FALSE,
seed = 123
)
```

Arguments

data	feature_calculations object containing the raw feature matrix produced by theft::calculate_features
classifier	<pre>function specifying the classifier to fit. Should be a function with 2 argu- ments: formula and data containing a classifier compatible with R's predict functionality. Please note that classify z-scores data prior to modelling using the train set's information so disabling default scaling if your function uses it is recommended. Defaults to NULL which means the following linear SVM is fit: classifier = function(formula, data){mod <- e1071::svm(formula, data = data, kernel = "linear", scale = FALSE, probability = TRUE)}</pre>
train_size	numeric denoting the proportion of samples to use in the training set. Defaults to 0.75
n_resamples	integer denoting the number of resamples to calculate. Defaults to 30
by_set	Boolean specifying whether to compute classifiers for each feature set. Defaults to TRUE. If FALSE, the function will instead find the best individually-performing features
use_null	Boolean whether to fit null models where class labels are shuffled in order to generate a null distribution that can be compared to performance on correct class labels. Defaults to FALSE
seed	integer to fix R's random number generator to ensure reproducibility. Defaults to 123

Value

list containing a named vector of train-test set sizes, and a data.frame of classification performance results

Author(s)

Trent Henderson

Examples

```
library(theft)
```

```
features <- theft::calculate_features(theft::simData,
    feature_set = "catch22")
classifiers <- classify(features,</pre>
```

```
by_set = FALSE,
n_resamples = 3)
```

cluster

Description

Perform cluster analysis of time series using their feature vectors

Usage

```
cluster(
  data,
  norm_method = c("zScore", "Sigmoid", "RobustSigmoid", "MinMax", "MaxAbs"),
  unit_int = FALSE,
  clust_method = c("kmeans", "hclust", "mclust"),
  k = 2,
  features = NULL,
  na_removal = c("feature", "sample"),
  seed = 123,
  ...
)
```

data	<pre>feature_calculations object containing the raw feature matrix produced by theft::calculate_features</pre>
norm_method	character denoting the rescaling/normalising method to apply. Can be one of "zScore", "Sigmoid", "RobustSigmoid", "MinMax", or "MaxAbs". Defaults to "zScore"
unit_int	Boolean whether to rescale into unit interval [0,1] after applying normalisation method. Defaults to FALSE
clust_method	character specifying the clustering algorithm to use. Can be one of "kmeans" for k-means clustering, "hclust" for hierarchical clustering, or "mclust" for Gaussian mixture model clustering. Defaults to "kMeans"
k	integer denoting the number of clusters to extract. Defaults to 2
features	character vector denoting the names of time-series features to use in the clus- tering algorithm. Defaults to NULL for no feature filtering and usage of the entire feature matrix
na_removal	character defining the way to deal with NAs produced during feature calcu- lation. Can be one of "feature" or "sample". "feature" removes all fea- tures that produced any NAs in any sample, keeping the number of samples the same. "sample" omits all samples that produced at least one NA. Defaults to "feature"
seed	integer to fix R's random number generator to ensure reproducibility. Defaults to 123
	arguments to be passed to stats::kmeans or stats::hclust, or mclust::Mclust depending on selection in clust_method

compare_features

Value

object of class feature_cluster containing the clustering algorithm and a tidy version of clusters joined to the input dataset ready for further analysis

Author(s)

Trent Henderson

Examples

```
library(theft)
features <- theft::calculate_features(theft::simData,
    feature_set = "catch22")
clusts <- cluster(features,
    k = 6)</pre>
```

compare_features	Conduct statistical testing on time-series feature classification perfor-
	mance to identify top features or compare entire sets

Description

Conduct statistical testing on time-series feature classification performance to identify top features or compare entire sets

Usage

```
compare_features(
   data,
   metric = c("accuracy", "precision", "recall", "f1"),
   by_set = TRUE,
   hypothesis = c("null", "pairwise"),
   p_adj = c("none", "holm", "hochberg", "hommel", "bonferroni", "BH", "BY", "fdr"),
   n_workers = 1
)
```

data	list object containing the classification outputs produce by tsfeature_classifier
metric	character denoting the classification performance metric to use in statistical testing. Can be one of "accuracy", "precision", "recall", "f1". Defaults to "accuracy"
by_set	Boolean specifying whether you want to compare feature sets (if TRUE) or in- dividual features (if FALSE). Defaults to TRUE but this is contingent on whether you computed by set or not in tsfeature_classifier

hypothesis	character denoting whether p-values should be calculated for each feature set or feature (depending on by_set argument) individually relative to the null if use_null = TRUE in tsfeature_classifier through "null", or whether pair- wise comparisons between each set or feature should be conducted on main model fits only through "pairwise". Defaults to "null"
p_adj	character denoting the adjustment made to p-values for multiple comparisons. Should be a valid argument to stats::p.adjust. Defaults to "none" for no adjustment. "holm" is recommended as a starting point for adjustments
n_workers	integer denoting the number of parallel processes to use. Defaults to 1 for serial processing

Value

data.frame containing the results

Author(s)

Trent Henderson

References

Henderson, T., Bryant, A. G., and Fulcher, B. D. Never a Dull Moment: Distributional Properties as a Baseline for Time-Series Classification. 27th Pacific-Asia Conference on Knowledge Discovery and Data Mining, (2023).

Examples

```
library(theft)
```

filter_duplicates

Remove duplicate features that exist in multiple feature sets and retain a reproducible random selection of one of them

Description

Remove duplicate features that exist in multiple feature sets and retain a reproducible random selection of one of them

Usage

```
filter_duplicates(data, preference = NULL, seed = 123)
```

Arguments

data	feature_calculations object containing the raw feature matrix produced by calculate_features
preference	deprecated. Do not use
seed	integer denoting a fix for R's pseudo-random number generator to ensure se- lections are reproducible. Defaults to 123

Value

feature_calculations object containing filtered feature data

Author(s)

Trent Henderson

filter_good_features Filter resample data sets according to good feature list

Description

Filter resample data sets according to good feature list

Usage

```
filter_good_features(data, x, good_features)
```

Arguments

data	list of "Train" and "Test" data
х	integer denoting the resample index to operate on
good_features	character vector of good features to keep

Value

list of filtered train and test data

Author(s)

Trent Henderson

find_good_features Helper function to find features in both train and test set that are "good"

Description

Helper function to find features in both train and test set that are "good"

Usage

```
find_good_features(data, x)
```

Arguments

data	list of "Train" and "Test" data
х	integer denoting the resample index to operate on

Value

character vector of "good" feature names

Author(s)

Trent Henderson

fit_models

Fit classification model and compute key metrics

Description

Fit classification model and compute key metrics

Usage

```
fit_models(data, iter_data, row_id, is_null_run = FALSE, classifier)
```

data	list containing train and test sets
iter_data	data.frame containing the values to iterate over for seed and either feature name or set name
row_id	integer denoting the row ID for iter_data to filter to
is_null_run	Boolean whether the calculation is for a null model. Defaults to FALSE
classifier	function specifying the classifier to fit. Should be a function with 2 arguments: formula and data. Please note that tsfeature_classifier z-scores data prior to modelling using the train set's information so disabling default scaling if your function uses it is recommended.

get_rescale_vals

Value

data.frame of classification results

Author(s)

Trent Henderson

<pre>get_rescale_vals</pre>	Calculate central tendency and spread values for all numeric columns
	in a dataset

Description

Calculate central tendency and spread values for all numeric columns in a dataset

Usage

get_rescale_vals(data)

Arguments

data data.frame containing data to normalise

Value

list of central tendency and spread values

Author(s)

Trent Henderson

interval	Calculate interval summaries with a measure of central tendency of
	classification results

Description

Calculate interval summaries with a measure of central tendency of classification results

Usage

```
interval(
 data,
 metric = c("accuracy", "precision", "recall", "f1"),
 by_set = TRUE,
 type = c("sd", "qt", "quantile"),
 interval = NULL,
 model_type = c("main", "null")
)
calculate_interval(
 data,
 metric = c("accuracy", "precision", "recall", "f1"),
 by_set = TRUE,
 type = c("sd", "qt", "quantile"),
 interval = NULL,
 model_type = c("main", "null")
)
```

Arguments

data	list object containing the classification outputs produce by tsfeature_classifier
metric	character denoting the classification performance metric to calculate intervals for. Can be one of "accuracy", "precision", "recall", "f1". Defaults to "accuracy"
by_set	Boolean specifying whether to compute intervals for each feature set. Defaults to TRUE. If FALSE, the function will instead calculate intervals for each feature
type	character denoting whether to calculate a +/- SD interval with "sd", confi- dence interval based off the t-distribution with "qt", or based on a quantile with "quantile". Defaults to "sd"
interval	<pre>numeric scalar denoting the width of the interval to calculate. Defaults to 1 if type = "sd" to produce a +/- 1 SD interval. Defaults to 0.95 if type = "qt" or type = "quantile" for a 95 per cent interval</pre>
model_type	character denoting whether to calculate intervals for main models with "main" or null models with "null" if the use_null argument when using tsfeature_classifier was use_null = TRUE. Defaults to "main"

Value

interval_calculations object which is a data frame containing the results

Author(s)

Trent Henderson

10

make_title

Examples

library(theft)

```
features <- theft::calculate_features(theft::simData,
    feature_set = NULL,
    features = list("mean" = mean, "sd" = sd))
classifiers <- classify(features,
    by_set = FALSE,
    n_resamples = 3)
interval(classifiers,
    by_set = FALSE,
    type = "sd",
    interval = 1)
```

make_title

Helper function for converting to title case

Description

Helper function for converting to title case

Usage

make_title(x)

Arguments

x character vector

Value

character vector

Author(s)

Trent Henderson

plot.feature_calculations

Produce a plot for a feature_calculations object

Description

Produce a plot for a feature_calculations object

Usage

```
## S3 method for class 'feature_calculations'
plot(
    x,
    type = c("matrix", "cor", "violin", "box", "quality"),
    norm_method = c("zScore", "Sigmoid", "RobustSigmoid", "MinMax", "MaxAbs"),
    unit_int = FALSE,
    clust_method = c("average", "ward.D", "ward.D2", "single", "complete", "mcquitty",
        "median", "centroid"),
    cor_method = c("pearson", "spearman"),
    feature_names = NULL,
    ...
)
```

х	feature_calculations object containing the raw feature matrix produced by theft::calculate_features
type	character specifying the type of plot to draw. Can be one of "matrix", "cor", "violin", "box", or "quality". Defaults to "matrix"
norm_method	character specifying a rescaling/normalising method to apply if type = "matrix" or if type = "cor". Can be one of "zScore", "Sigmoid", "RobustSigmoid", "MinMax", or "MaxAbs". Defaults to "zScore"
unit_int	Boolean whether to rescale into unit interval [0,1] after applying normalisation method. Defaults to FALSE
clust_method	character specifying the hierarchical clustering method to use if type = "matrix" or if type = "cor". Defaults to "average"
cor_method	character specifying the correlation method to use if type = "cor". Defaults to "pearson"
feature_names	character vector denoting the name of the features to plot if type = "violin". Defaults to NULL
	Arguments to be passed to ggplot2::geom_bar if type = "quality",ggplot2::geom_raster if type = "matrix",ggplot2::geom_raster if type = "cor",orggplot2::geom_point if type = "violin"

Value

object of class ggplot that contains the graphic

Author(s)

Trent Henderson

plot.feature_projection

Produce a plot for a feature_projection object

Description

Produce a plot for a feature_projection object

Usage

S3 method for class 'feature_projection'
plot(x, show_covariance = TRUE, ...)

Arguments

x	${\tt feature_projection}$ object containing the two-dimensional embedding calculated by ${\tt project}$
show_covariance	
	Boolean specifying whether covariance ellipses should be shown on the plot. Defaults to TRUE
•••	Arguments to be passed to methods

Value

object of class ggplot that contains the graphic

Author(s)

Trent Henderson

plot.interval_calculations

Produce a plot for a interval_calculations object

Description

Produce a plot for a interval_calculations object

Usage

```
## S3 method for class 'interval_calculations'
plot(x, ...)
```

Arguments

х	interval_calculations object containing the summary calculated by interval
	Arguments to be passed to methods

Value

object of class ggplot that contains the graphic

Author(s)

Trent Henderson

project	Project a feature matrix into a two-dimensional representation using
	PCA, MDS, t-SNE, or UMAP ready for plotting

Description

Project a feature matrix into a two-dimensional representation using PCA, MDS, t-SNE, or UMAP ready for plotting

Usage

```
project(
    data,
    norm_method = c("zScore", "Sigmoid", "RobustSigmoid", "MinMax", "MaxAbs"),
    unit_int = FALSE,
    low_dim_method = c("PCA", "tSNE", "ClassicalMDS", "KruskalMDS", "SammonMDS", "UMAP"),
    na_removal = c("feature", "sample"),
    seed = 123,
    ...
```

project

)

```
reduce_dims(
    data,
    norm_method = c("zScore", "Sigmoid", "RobustSigmoid", "MinMax", "MaxAbs"),
    unit_int = FALSE,
    low_dim_method = c("PCA", "tSNE", "ClassicalMDS", "KruskalMDS", "SammonMDS", "UMAP"),
    na_removal = c("feature", "sample"),
    seed = 123,
    ...
)
```

Arguments

data	feature_calculations object containing the raw feature matrix produced by theft::calculate_features
norm_method	character denoting the rescaling/normalising method to apply. Can be one of "zScore", "Sigmoid", "RobustSigmoid", "MinMax", or "MaxAbs". Defaults to "zScore"
unit_int	Boolean whether to rescale into unit interval [0,1] after applying normalisation method. Defaults to FALSE
low_dim_method	character specifying the low dimensional embedding method to use. Can be one of "PCA", "tSNE", "ClassicalMDS", "KruskalMDS", "SammonMDS", or "UMAP". Defaults to "PCA"
na_removal	character defining the way to deal with NAs produced during feature calcu- lation. Can be one of "feature" or "sample". "feature" removes all fea- tures that produced any NAs in any sample, keeping the number of samples the same. "sample" omits all samples that produced at least one NA. Defaults to "feature"
seed	integer to fix R's random number generator to ensure reproducibility. Defaults to 123
	arguments to be passed to stats::prcomp or Rtsne::Rtsne, stats::cmdscale, MASS::isoMDS, MASS::sammon, or umap::umap depending on selection in low_dim_method

Value

object of class feature_projection which is a named list containing the feature_calculations data supplied to the function, the wide matrix of filtered data, a tidy data.frame of the projected 2-D data, and the model fit object

Author(s)

Trent Henderson

Examples

library(theft)

```
features <- theft::calculate_features(theft::simData,
    feature_set = "catch22")
pca <- project(features,
    norm_method = "zScore",
    low_dim_method = "PCA")
```

resample_data

Helper function to create a resampled dataset

Description

Helper function to create a resampled dataset

Usage

resample_data(data, train_rows, test_rows, train_groups, test_groups, seed)

Arguments

data	data.frame containing time-series features
train_rows	integer denoting the number of cases in the train set
test_rows	integer denoting the number of cases in the test set
train_groups	data.frame containing proportions of each class in original train split
test_groups	data.frame containing proportions of each class in original test split
seed	integer denoting fixed value for R's pseudorandom number generator

Value

list containing new train and test data

Author(s)

Trent Henderson

16

rescale_zscore

Description

Calculate z-score for all columns in a dataset using train set central tendency and spread

Usage

```
rescale_zscore(data, rescalers)
```

Arguments

data	data.frame containing data to normalise
rescalers	list containing central tendency and spread values for the train set

Value

data.frame of rescaled data

Author(s)

Trent Henderson

<pre>select_stat_cols</pre>	Helper function to select only the relevant columns for statistical test-
	ing

Description

Helper function to select only the relevant columns for statistical testing

Usage

```
select_stat_cols(data, by_set, metric, hypothesis)
```

data	data.frame of classification accuracy results
by_set	Boolean specifying whether you want to compare feature sets (if TRUE) or individual features (if FALSE).
metric	character denoting the classification performance metric to use in statistical testing. Can be one of "accuracy", "precision", "recall", "f1". Defaults to "accuracy"

hypothesis	character denoting whether p-values should be calculated for each feature set
	or feature (depending on by_set argument) individually relative to the null if
	use_null = TRUE in tsfeature_classifier through "null", or whether pair-
	wise comparisons between each set or feature should be conducted on main
	model fits only through "pairwise".

Value

object of class data.frame

Author(s)

Trent Henderson

shrink

Use a cross validated penalized maximum likelihood generalized linear model to perform feature selection

Description

Use a cross validated penalized maximum likelihood generalized linear model to perform feature selection

Usage

```
shrink(data, threshold = c("one", "all"), plot = FALSE, ...)
```

Arguments

data	<pre>feature_calculations object containing the raw feature matrix produced by theft::calculate_features</pre>
threshold	character denoting whether to retain features that have at least one non-zero coefficient "one" across all group levels or features that have non-zero coefficients across all group levels "all". Applicable to multinomial case only. Defaults to "one" for less aggressive filtering
plot	Boolean whether to draw the misclassification error lambda plot for a cv.glmnet object. Defaults to FALSE
	arguments to be passed to glmnet::cv.glmnet

Value

feature_calculations object containing a data frame of the reduced feature set

Author(s)

Trent Henderson

stat_test

Examples

library(theft)

```
features <- theft::calculate_features(theft::simData,
    feature_set = "catch22")
```

```
best_features <- shrink(features)</pre>
```

stat_test

Calculate p-values for feature sets or features relative to an empirical null or each other using resampled t-tests

Description

Calculate p-values for feature sets or features relative to an empirical null or each other using resampled t-tests

Usage

```
stat_test(
   data,
   iter_data,
   row_id,
   by_set = FALSE,
   hypothesis,
   metric,
   train_test_sizes,
   n_resamples
)
```

data	data.frame of raw classification accuracy results
iter_data	data.frame containing the values to iterate over for seed and either feature name or set name
row_id	integer denoting the row ID for iter_data to filter to
by_set	Boolean specifying whether you want to compare feature sets (if TRUE) or individual features (if FALSE).
hypothesis	character denoting whether p-values should be calculated for each feature set or feature (depending on by_set argument) individually relative to the null if use_null = TRUE in tsfeature_classifier through "null", or whether pair- wise comparisons between each set or feature should be conducted on main model fits only through "pairwise".

metric	character denoting the classification performance metric to use in statistical	
	testing. Can be one of "accuracy", "precision", "recall", "f1". Defaults	
	to "accuracy"	
train_test_sizes		
	integer vector containing the train and test set sample sizes	
n_resamples	integer denoting the number of resamples that were calculated	

Value

object of class data.frame

Author(s)

Trent Henderson

theftdlc

Analyse and Interpret Time Series Features

Description

Analyse and Interpret Time Series Features

Index

calculate_interval (interval), 9 classify, 2 cluster,4 compare_features, 5 filter_duplicates, 6 filter_good_features, 7 find_good_features, 8 fit_models, 8 get_rescale_vals, 9 interval, 9 make_title, 11 plot.feature_calculations, 12 plot.feature_projection, 13 plot.interval_calculations, 14 project, 14 reduce_dims (project), 14 resample_data, 16 rescale_zscore, 17 select_stat_cols, 17 shrink, 18 stat_test, 19

theftdlc, 20
tsfeature_classifier (classify), 2