Package ‘semlbci’

January 25, 2025

Title Likelihood-Based Confidence Interval in Structural Equation
Models

Version 0.11.3

Description Forms likelihood-based confidence intervals
(LBCls) for parameters in structural equation modeling,
introduced in Cheung and Pesigan (2023)
<doi:10.1080/10705511.2023.2183860>. Currently
implements the algorithm illustrated by Pek and Wu
(2018) <doi:10.1037/met0000163>, and supports the robust
LBCI proposed by Falk (2018)
<doi:10.1080/10705511.2017.1367254>.

URL https://sfcheung.github.io/semlbci/

BugReports https://github.com/sfcheung/semlbci/issues
License GPL-3

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Suggests testthat (>= 3.0.0), knitr, rmarkdown

Depends R (>=4.0.0)

Imports lavaan (>= 0.6.13), nloptr, stats, utils, MASS, ggplot2,
ggrepel, rlang, pbapply, callr, methods

VignetteBuilder knitr

Config/testthat/parallel true

Config/testthat/edition 3

Config/testthat/start-first semlbci_wn_mg_*, ur_ci_bound_ur*
NeedsCompilation no

Author Shu Fai Cheung [aut, cre] (<https://orcid.org/0000-0002-9871-9448>),
Ivan Jacob Agaloos Pesigan [ctb]
(<https://orcid.org/0000-0003-4818-8420>)

Maintainer Shu Fai Cheung <shufai.cheung@gmail.com>

1

https://doi.org/10.1080/10705511.2023.2183860
https://doi.org/10.1037/met0000163
https://doi.org/10.1080/10705511.2017.1367254
https://sfcheung.github.io/semlbci/
https://github.com/sfcheung/semlbci/issues
https://orcid.org/0000-0002-9871-9448
https://orcid.org/0000-0003-4818-8420

cfa_evar_near_zero

Repository CRAN
Date/Publication 2025-01-25 07:30:02 UTC

Contents
cfa_evar_near_zero 2
cfa_two_factors e 3
cfa_two_factors_mg 4
check_sem_out e e e e e e 5
ciibound_Ur e 7
cibound ur e 10
cibound_Wn_d e 13
CLI_ONE . . . o o o e 17
ciorder e e 19
confint.semlbci L. L e e e 21
GEM_USEIP « v v v v v e 22
get_cibound 25
loglike_compare e 27
mediation_latent e e 33
mediation_latent_skewed 34
nearby_levels 35
plotloglike_compare 36
print.cibound 38
print.semlbci e e e e e e 39
TEZ_COT_MEAT_ONE . .+ © v v v v v e v e e e e e e e e e e e e e e e e e e 42
semlbCi e e e e 43
SEt_CONSLIAINt o o v e e e e e e e e 46
simple_med 47
simple_med_mg 48
SYNEAX_LO_1 + v v v o v e e e e e e e e e e e e e e e e 49

Index 51

cfa_evar_near_zero Dataset (CFA, Two Factors, One Standardized Error Variance Close
to Zero)
Description

Generated from a two-factor model, with one standardized error variance close to zero.

Usage

cfa_evar_near_zero

Format

A data frame with 120 rows and six variables, x1 to x6

cfa_two_factors

Details

This model is used for examples like this one:

If fitted by the following model, the standardized
error variance of “x3° is close to zero.
Consequently, the R-square of “x3° is close to one:

library(lavaan)
mod <- "f1 =~ x1 + x2 + x3
f2 =~ x4 + x5 + x6"
fit <- cfa(mod, cfa_evar_near_zero)
summary(fit, standardized = TRUE, rsquare = TRUE)

Examples

print(head(cfa_evar_near_zero), digits = 3)
nrow(cfa_evar_near_zero)

cfa_two_factors Dataset (CFA, Two Factors, Six Variables)

Description

Generated from a two-factor model with six variables, n = 500

Usage

cfa_two_factors

Format

A data frame with 500 rows and six variables, x1 to x6.

Details

This model is used for examples like this one:

library(lavaan)
mod <- "f1 =~ x1 + x2 + x3
f2 =~ x4 + x5 + x6"
fit <- cfa(mod, cfa_two_factors)
summary (fit)

4 cfa_two_factors_mg

Examples

print(head(cfa_two_factors), digits = 3)
nrow(cfa_two_factors)

cfa_two_factors_mg Dataset (CFA, Two Factors, Six Variables, Two Groups)

Description

Generated from a two-factor model with six variables, n = 500, two groups, n = 250 each.

Usage

cfa_two_factors_mg

Format

A data frame with 500 rows, one grouping variable, gp, six variables, x1 to x6.

Details

This model is used for examples like this one:

library(lavaan)
mod <- "f1 =~ x1 + x2 + x3
f2 =~ x4 + x5 + x6"
fit <- cfa(mod, cfa_two_factors_mg, group = "gp")
summary (fit)

Examples

print(head(cfa_two_factors_mg), digits = 3)
nrow(cfa_two_factors_mg)
table(cfa_two_factors_mg$gp)

check sem_ out 5

check_sem_out Pre-analysis Check For ’semlbci’

Description

Check the output passed to semlbci()

Usage
check_sem_out(
sem_out,
robust = c(”"none”, "satorra.2000"),
multigroup_ok = TRUE
)
Arguments
sem_out The output from an SEM analysis. Currently only supports a lavaan::lavaan
object.
robust Whether the LBCI based on robust likelihood ratio test is to be found. Only

"satorra.2000" in lavaan: :lavTestLRT() is supported for now. If "none”, the
default, then likelihood ratio test based on maximum likelihood estimation will
be used.

multigroup_ok If TRUE, will not check whether the model is a multiple-group model. Default is
TRUE.

Details

It checks whether the model and the estimation method in the sem_out object passed to semlbci()
are supported by the current version of semlbci(). This function is to be used by semlbci() but
is exported such that the compatibility of an SEM output can be checked directly.

Estimation methods (estimator in lavaan: :lavaan()) currently supported:
* Maximum likelihood (ML) and its variants (e.g., MLM, MLR). For methods with robust test statis-

tics (e.g., MLR), only robust LBCIs (robust = "satorra.2000" in calling semlbci()) can be
requested.

Estimation methods not yet supported:

* Generalized least squares (GLS).

* Weighted least squares (a.k.a. asymptotically distribution free) (WLS) and its variants (e.g.,
WLSMV).

* Unweighted least squares (ULS).
» Diagonally weighted least squares (DWLS).
* Other methods not listed.

Models supported:

6 check sem_out

* Single-group models with continuous variables.

* Multiple-group models with continuous variables.
Models not tested:

* Models with categorical variables.
Models not yet supported:

¢ Models with formative factors.

e Multilevel models.

Value

A numeric vector of one element. If 0, the model and estimation method are officially supported. If
larger than zero, then the model and method are not officially supported but users can still try to use
semlbci() on it at their own risks. If less than zero, then the model and/or the method are officially
not supported.

The attributes info contains the reason for a value other than zero.

See Also

semlbci(), ci_i_one()

Examples

library(lavaan)
data(cfa_two_factors)
mod <-

f1 =~ x1 + x2 + x3
f2 =~ x4 + x5 + x6

"

fit <- sem(mod, cfa_two_factors)

Should be @
check_sem_out(fit)

fit2 <- sem(mod, cfa_two_factors, estimator = "DWLS")

Should be negative because DWLS is officially not supported
check_sem_out (fit2)

fit3 <- sem(mod, cfa_two_factors, estimator = "MLR")
Should be negative because MLR is supported only if
robust is set to "satorra.2000"

check_sem_out(fit3)

Should be zero because robust is set to "satorra.2000"
check_sem_out(fit3, robust = "satorra.2000")

ci_bound_ur

ci_bound_ur

Find a Likelihood-Based Confidence Bound By Root Finding

Description

Find the lower or upper bound of the likelihood-based confidence interval (LBCI) for one parameter
in a structural equation model fitted in lavaan: : lavaan() using uniroot().

Usage

ci_bound_ur(
sem_out,

func,
*

level

which =
interval
progress
method =

c("lbound”, "ubound"),
NULL,

FALSE,

"uniroot”,

Irt_method = "default”,

tol = 5e-04,
root_target

d =5,

uniroot_extendIn
uniroot_trace
uniroot_maxiter

c("chisq”, "pvalue"),

t = switch(which, lbound = "downX", ubound = "upX"),
:@’

= 1000,

use_callr = TRUE,

rs = NULL

)

gen_est_i(i, sem_out, standardized = FALSE)

Arguments

sem_out

func

level

which

interval

The fit object. Currently supports lavaan::lavaan objects only.

A function that receives a lavaan object and returns a scalar. This function is to
be used by gen_userp() and so there are special requirements on it. Alterna-
tively, it can be the output of gen_est_i().

Optional arguments to be passed to func. Usually not used but included in case
the function has such arguments.

The level of confidence of the confidence interval. Default is .95, or 95%.
Whether the lower bound or the upper bound is to be found. Must be “1bound”
or "ubound”.

A numeric vector of two values, which is the initial interval to be searched. If
NULL, the default, it will be determined internally using Wald or delta method
confidence interval, if available.

8 ci_bound_ur

progress Whether progress will be reported on screen during the search. Default is FALSE.

method The actual function to be used in the search. which can only be "uniroot”, the
default, for now. May include other function in the future.

1rt_method The method used in lavaan::1lavTestLRT(). Default is "default”. It is au-
tomatically set to "satorra.2000" and cannot be overridden if a scaled test
statistic is requested in sem_out.

tol The tolerance used in uniroot (), default is .005.

root_target Whether the chi-square difference ("chisq"), the default, or its p-value ("pvalue")
is used as the function value in finding the root. Should have little impact on the
results.

d A value used to determine the width of the interval in the initial search. Larger
this value, narrow the interval. Default is 5.

uniroot_extendInt
To be passed to the argument extendInt of uniroot(). Whether the interval
should be extended if the root is not found. Default value depends on the bound
to be searched. Refer to the help page of uniroot() for possible values.

uniroot_trace To be passed to the argument trace of uniroot(). How much information is
printed during the search. Default is 0, and no information is printed during the
search. Refer to the help page of uniroot() for possible values.

uniroot_maxiter
The maximum number of iteration in the search. Default is 1000.

use_callr Whether the callr package will be used to do the search in a separate R process.
Default is TRUE. Should not set to FALSE if used in an interactive environment
unless this is intentional.

rs Optional. If set to a persistent R process created by callr, it will be used instead
of starting a new one, and it will not be terminated on exit.

i The position of the target parameter as appeared in the parameter table of an
lavaan object, generated by lavaan: :parameterTable().

standardized If TRUE, the standardized estimate is to be retrieved. Default is FALSE. Only
support "std.all"” for now.

Details

This function is called xby ci_bound_ur_i (). This function is exported because it is a stand-alone
function that can be used directly for any function that receives a lavaan object and returns a scalar.

The function ci_bound_ur_i() is a wrapper of this function, with an interface similar to that of
ci_bound_wn_i() and returns a cibound-class object. The user-parameter function is generated
internally by ci_bound_wn_i ().

This function, on the other hand, requires users to supply the function directly through the func
argument. This provides the flexibility to find the bound for any function of the model parameter,
even one that cannot be easily coded in 1lavaan model syntax.

ci_bound_ur 9

Value

The function ci_bound_ur () returns a list with the following elements:

¢ bound: The bound found.

* optimize_out: THe output of the root finding function, uniroot () for now. (Called optimize_out
because an earlier version of this function also uses optimize()).

* sem_out_bound: The lavaan model with the user-defined parameter fixed to the bound.
e 1rt: The output of lavaan: :lavTestLRT() comparing sem_out and sem_out_bound.

* bound_start: The Wald or delta method confidence bound returned when determining the
interval internally.

* user_est: The estimate of the user-defined parameter when determining the interval inter-
nally.

The function gen_est_i () returns a special function can inspects the Model slot (and implied slot
if necessary) of a modified lavaan object and return the parameter estimate. This function is to be
used by ci_bound_ur() or gen_sem_out_userp().

Examples

library(lavaan)
data(simple_med)
dat <- simple_med

mod <-
B

m~ X
y ~m

n

fit_med <- lavaan::sem(mod, simple_med, fixed.x = FALSE)
parameterTable(fit_med)
Create a function to get the second parameter
est_i <- gen_est_i(i = 2, sem_out = fit_med)
Find the lower bound of the likelihood-based confidence interval
of the second parameter.
user_callr should be TRUE or omitted in read research.
Remove interval in read research. It is added to speed up the example.
out1l <- ci_bound_ur(sem_out = fit_med,
func = est_i,
which = "lbound”,
use_callr = FALSE,
interval = c(.39070, .39075))
outl1l

10 ci_bound_ur_i

ci_bound_ur_i Likelihood-Based Confidence Bound By Root Finding

Description

Using root finding to find the lower or upper bound of the likelihood-based confidence interval
(LBCI) for one parameter in a structural equation model fitted in lavaan: : lavaan().

Usage

ci_bound_ur_i(
i = NULL,
npar = NULL,
sem_out = NULL,
f_constr = NULL,
which = NULL,
history = FALSE,
perturbation_factor = 0.9,

lb_var = -Inf,
standardized = FALSE,
wald_ci_start = !standardized,

opts = list(),

ciperc = 0.95,
ci_limit_ratio_tol = 1.5,
verbose = FALSE,

sf =1,

sf2 = 0,

p_tol = 5e-04,
std_method = "internal”,
bounds = "none",
xtol_rel_factor = 1,
ftol_rel_factor = 1,
lb_prop = 0.05,

lb_se_k = 3,
d =5,
)
Arguments
i The position of the target parameter as appeared in the parameter table of a
lavaan object, generated by lavaan: :parameterTable().
npar Ignored by this function. Included consistency in the interface.
sem_out The fit object. Currently supports lavaan::lavaan objects only.

f_constr Ignored by this function. Included consistency in the interface.

ci_bound_ur i

which

history

11

Whether the lower bound or the upper bound is to be found. Must be "1bound”
or "ubound”.

Not used. Kept for backward compatibility.

perturbation_factor

1lb_var

standardized

wald_ci_start
opts

ciperc

Ignored by this function. Included consistency in the interface.
Ignored by this function. Included consistency in the interface.

If TRUE, the LBCI is for the requested estimate in the standardized solution.
Default is FALSE.

Ignored by this function. Included consistency in the interface.
Options to be passed to stats: :uniroot(). Defaultis list().

The intended coverage probability for the confidence interval. Default is .95,
and the bound for a 95% confidence interval will be sought.

ci_limit_ratio_tol

verbose

sf
sf2
p_tol

std_method

bounds

xtol_rel_factor

ftol_rel_factor

1lb_prop
lb_se_k
d

The tolerance for the ratio of a to b, where a is the distance between an LBCI
limit and the point estimate, and the b is the distance between the original con-
fidence limit (by default the Wald CI in 1lavaan: : lavaan()) and the point esti-
mate. If the ratio is larger than this value or smaller than the reciprocal of this
value, a warning is set in the status code. Default is 1.5.

If TRUE, the function will store more diagnostic information in the attribute diag.
Default is FALSE.

Ignored by this function. Included consistency in the interface.
Ignored by this function. Included consistency in the interface.

Tolerance for checking the achieved level of confidence. If the absolute dif-
ference between the achieved level and ciperc is greater than this amount, a
warning is set in the status code and the bound is set to NA. Default is Se-4.

The method used to find the standardized solution. If equal to "1avaan”, lavaan
will be used. If equal to "internal”, an internal function will be used. The
"lavaan” method should work in all situations, but the "internal” method is
usually much faster. Default is "internal”.

Ignored by this function. Included consistency in the interface.

Ignored by this function. Included consistency in the interface.

Ignored by this function. Included consistency in the interface.
Ignored by this function. Included consistency in the interface.
Ignored by this function. Included consistency in the interface.

A value used to determine the width of the interval in the initial search. Larger
this value, narrow the interval. Default is 5. Used by ci_bound_ur().

Optional arguments. Not used.

::standardizedSoluti

12 ci_bound_ur_i

Details

Important Notice:

This function is not supposed to be used directly by users in typical scenarios. Its interface is
user-unfriendly because it should be used through semlbci(). It is exported such that interested
users can examine how a confidence bound is found, or use it for experiments or simulations.

Usage:
This function is the lowest level function used by semlbci(). semlbci() calls this function once
for each bound of each parameter.

For consistency in the interface, most of the arguments in ci_bound_wn_i () are also included in
this function, even those not used internally.

Algorithm:

This function, unlike ci_bound_wn_i(), use a simple root finding algorithm. Basically, it tries
fixing the target parameter to different values until the likelihood ratio test p-value, or the corre-
sponding chi-square difference, is equal to the value corresponding to the desired level of confi-
dence. (Internally, the difference between the p-value and the target p-value, that for the chi-square
difference, is the function value.)

For finding the bound, this algorithm can be inefficient compared to the one proposed by Wu and
Neale (2012). The difference can be less than one second versus 10 seconds. It is included as a
backup algorithm for parameters which are difficult for the method by Wu and Neale.

Internally, it uses uniroot () to find the root.

Limitation(s):
This function does not handle an estimate close to an attainable bound using the method proposed
by Wu and Neale (2012). Use it for such parameters with cautions.

Value

A cibound-class object which is a list with three elements:

* bound: A single number. The value of the bound located. NA is the search failed for various
reasons.

» diag: A list of diagnostic information.

* call: The original call.

A detailed and organized output can be printed by the default print method (print.cibound()).

References
Wu, H., & Neale, M. C. (2012). Adjusted confidence intervals for a bounded parameter. Behavior
Genetics, 42(6), 886-898. doi:10.1007/s105190129560z

See Also

print.cibound(), semlbci(), ci_i_one(); see ci_bound_wn_i() on the version for the method
by Wu and Neale (2012).

https://doi.org/10.1007/s10519-012-9560-z

ci_bound_wn_i 13

Examples

library(lavaan)
data(simple_med)
dat <- simple_med

mod <-
"

m-~ X
y ~m

n

fit_med <- sem(mod, simple_med, fixed.x = FALSE)
Remove ~opts™ in real cases.
The options are added just to speed up the example
out1l <- ci_bound_ur_i(i =1,

sem_out = fit_med,

which = "1lbound"”,

opts = list(use_callr = FALSE,

interval = c(0.8277, 0.8278)))

outl1l

ci_bound_wn_i Likelihood-based Confidence Bound By Wu-Neale-2012

Description

User the method proposed by Wu and Neale (2012) to find the lower or upper bound of the
likelihood-based confidence interval (LBCI) for one parameter in a structural equation model fitted
in lavaan: :lavaan()

Usage

ci_bound_wn_i(
i = NULL,
npar = NULL,
sem_out = NULL,
f_constr = NULL,
which = NULL,
history = FALSE,
perturbation_factor = 0.9,

lb_var = -Inf,
standardized = FALSE,
wald_ci_start = !standardized,

opts = list(),

ciperc = 0.95,
ci_limit_ratio_tol = 1.5,
verbose = FALSE,

sf =1
sf2 =
p_tol

’

N o -

5e-04,

14

std_method =

ci_bound_wn_i

"internal”,

bounds = "none”,

xtol_rel_factor = 1,
ftol_rel_factor =1
.05,

1b_prop
lb_se_k =3

’

try_harder = 0,
fit_lb = -Inf,
fit_ub = +Inf,
timeout = 300,

Arguments
i
npar
sem_out

f_constr

which

history

The position of the target parameter as appeared in the parameter table of an
lavaan object, generated by lavaan: :parameterTable().

The number of free parameters, including those constrained to be equal.
The fit object. Currently supports lavaan::lavaan objects only.
The constraint function generated by set_constraint().

Whether the lower bound or the upper bound is to be found. Must be "1bound”
or "ubound”.

Not used. Kept for backward compatibility.

perturbation_factor

1b_var

standardized

wald_ci_start

opts

ciperc

A number multiplied to the parameter estimates in sem_out. Using the param-
eter estimates as starting values may lead to errors in the first few iterations.
Default is .90. This argument is ignored if wald_ci_start is “TRUE.

The lower bound for free parameters that are variances. If equal to -Inf, the
default, 1b_prop and lb_se_k will be used to set the lower bounds for free
variances. If it is a number, it will be used to set the lower bounds for all free
variances.

If TRUE, the LBCI is for the requested estimate in the standardized solution.
Default is FALSE.

If TRUE, there are no equality constraints in the model, and the target parameter
is not a user-defined parameter, the Wald confidence bounds will be used as the
starting value.

Options to be passed to nloptr::nloptr(), the current optimizer. Default is
list().

The intended coverage probability for the confidence interval. Default is .95,
and the bound for a 95% confidence interval will be sought.

ci_limit_ratio_tol

The tolerance for the ratio of a to b, where a is the distance between an LBCI
limit and the point estimate, and the b is the distance between the original con-
fidence limit (by default the Wald CI in 1lavaan: : lavaan()) and the point esti-
mate. If the ratio is larger than this value or smaller than the reciprocal of this
value, a warning is set in the status code. Default is 1.5.

ci_bound_wn_i 15

verbose If TRUE, the function will store more diagnostic information in the attribute diag.
Default is FALSE.

sf A scaling factor. Used for robust confidence bounds. Default is 1. Computed by
an internal function called by semlbci() when robust = "satorra.2000".

sf2 A shift factor. Used for robust confidence bounds. Default is 0. Computed by
an internal function called by semlbci() when robust = "satorra.2000".

p_tol Tolerance for checking the achieved level of confidence. If the absolute dif-
ference between the achieved level and ciperc is greater than this amount, a
warning is set in the status code and the bound is set to NA. Default is Se-4.

std_method The method used to find the standardized solution. If equal to "1avaan”, lavaan
will be used. If equal to "internal”, an internal function will be used. The
"lavaan" method should work in all situations, but the "internal” method is
usually much faster. Default is "internal”.

bounds Default is "" and this function will set the lower bounds to 1b_var for variances.
Other valid values are those accepted by lavaan: : lavaan(). Ignored for now.
xtol_rel_factor
Multiply the default xtol_rel by a number, usually a positive number equal to
or less than 1, to change the default termination criterion. Default is 1.
ftol_rel_factor
Multiply the default ftol_rel by a number, usually a positive number equal to
or less than 1, to change the default termination criterion. Default is 1.

1b_prop Used by an internal function to set the lower bound for free variances. Default
is .05, setting the lower bound to .05 * estimate. Used only if the lower bound
set by 1b_se_k is negative.

1b_se_k Used by an internal function to set the lower bound for free variances. Default is
3, the estimate minus 3 standard error. If negative, the lower bound is set using
1b_prop.

try_harder If error occurred in the optimization, how many more times to try. In each new
attempt, the starting values will be randomly jittered. Default is O.

fit_1lb The vector of lower bounds of parameters. Default is -Inf, setting the lower
bounds to -Inf for all parameters except for free variances which are controlled
by 1b_var.

fit_ub The vector of upper bounds of parameters. Default is +Inf, setting the lower
bounds to +Inf for all parameters.

timeout The approximate maximum time for the search, in second. Default is 300 sec-
onds (5 minutes).

Optional arguments. Not used.

Details

Important Notice:

This function is not supposed to be used directly by users in typical scenarios. Its interface is
user-unfriendly because it should be used through semlbci(). It is exported such that interested
users can examine how a confidence bound is found, or use it for experiments or simulations.

::standardizedSoluti

16 ci_bound_wn_i

Usage:

This function is the lowest level function used by semlbci(). semlbci() calls this function once
for each bound of each parameter. To use it, set_constraint() needs to be called first to create
the equality constraint required by the algorithm proposed by Wu and Neale (2012).

Algorithm:

This function implements the algorithm presented in Wu and Neale (2012; see also Pek & Wu,
2015, Equation 12) that estimates all free parameters in the optimization.

Limitation(s):
This function does not yet implement the method by Wu and Neale (2012) for an estimate close
to an attainable bound.

Value

A cibound-class object which is a list with three elements:

* bound: A single number. The value of the bound located. NA is the search failed for various
reasons.

* diag: A list of diagnostic information.

* call: The original call.

A detailed and organized output can be printed by the default print method (print.cibound()).

References

Pek, J., & Wu, H. (2015). Profile likelihood-based confidence intervals and regions for structural
equation models. Psychometrika, 80(4), 1123-1145. doi:10.1007/s1133601594611

Wu, H., & Neale, M. C. (2012). Adjusted confidence intervals for a bounded parameter. Behavior
Genetics, 42(6), 886-898. doi:10.1007/s105190129560z
See Also

print.cibound(), semlbci(), ci_i_one()

Examples

data(simple_med)
dat <- simple_med

mod <-
"

m =~ X
y ~m

"

fit_med <- lavaan::sem(mod, simple_med, fixed.x = FALSE)

fn_constro <- set_constraint(fit_med)

https://doi.org/10.1007/s11336-015-9461-1
https://doi.org/10.1007/s10519-012-9560-z

ci_i_one

17

out1l <- ci_bound_wn_i(i =1

out1l

npar = 5,

sem_out = fit_med,
f_constr = fn_constro,
which = "lbound")

ci_i_one

Likelihood-Based Confidence Bound for One Parameter

Description

Find the likelihood-based confidence bound for one parameter.

Usage

ci_i_one(
i,
which = NULL,
sem_out,
method = c("wn", "ur"),
standardized = FALSE,
robust = "none",
sf_full = NA,

sf_args = list(),
sem_out_name = NULL,
try_k_more_times = 0,

Arguments

i

which

sem_out
method

standardized

robust

The position (row number) of the target parameters as appeared in the parameter
table of the lavaan::lavaan object.

Whether the lower bound or the upper bound is to be found. Must be "1bound”
or "ubound”.

The SEM output. Currently supports lavaan::lavaan outputs only.

The approach to be used. Default is "wn" (Wu-Neale-2012 Method). Another
method is "ur", root finding by stats: :uniroot().

Logical. Whether the bound of the LBCI of the standardized solution is to be
searched. Default is FALSE.

Whether the LBCI based on robust likelihood ratio test is to be found. Only
"satorra.2000" in lavaan::lavTestLRT() is supported for now. If "none”,
the default, then likelihood ratio test based on maximum likelihood estimation
will be used. For "ur", "satorra.2000" is automatically used if a scaled test
statistic is requested in sem_out.

18 ci_i_one

sf_full A list with the scaling and shift factors. Ignored if robust is "none”. If robust
is "satorra.2000"” and sf_full is supplied, then its value will be used. If
robust is "satorra.2000" but sf_full is NA, then scaling factors will be com-
puted internally.

sf_args The list of arguments to be used for computing scaling factors if robust is
"satorra.2000". Used only by semlbci(). Ignoredif robust is not "satorra.2000".

sem_out_name The name of the object supplied to sem_out. NULL by default. Originally used
by some internal functions. No longer used in the current version but kept for
backward compatibility.

try_k_more_times
How many more times to try if the status code is not zero. Default is 0.

Arguments to be passed to the function corresponds to the requested method
(ci_bound_wn_i() for "wn").

Details

Important Notice:

This function is not supposed to be used directly by users in typical scenarios. Its interface is
user-unfriendly because it should be used through semlbci(). It is exported such that interested
users can examine how a confidence bound is found, or use it for experiments or simulations.

Usage:

ci_i_one() is the link between semlbci () and the lowest level function (currently ci_bound_wn_i()).
When called by semlbci () to find the bound of a parameter, ci_i_one() calls a function (ci_bound_wn_i ()
by default) one or more times to find the bound (limit) for a likelihood-based confidence interval.

Value

A list of the following elements.

* bound: The bound located. NA if the search failed.

* diags: Diagnostic information.

* method: Method used. Currently only "wn" is the only possible value.

* times: Total time used in the search.

e sf_full: The scaling and shift factors used.

e ci_bound_i_out: The original output from ci_bound_wn_i().

* attempt_lb_var: How many attempts used to reduce the lower bounds of free variances.

* attempt_more_times: How many additional attempts used to search for the bounds. Con-
trolled by try_k_more_times.

See Also

semlbci(), ci_bound_wn_i()

ci_order 19

Examples

data(simple_med)

library(lavaan)
mod <-
m~ x
y ~m

fit_med <- lavaan::sem(mod, simple_med, fixed.x = FALSE)
parameterTable(fit_med)

Find the LBCI for the first parameter

The method "wn" needs the constraint function.
Use set_constraint() to generate this function:
fn_constr@ <- set_constraint(fit_med)

Call ci_i to find the bound, the lower bound in this example.
The constraint function, assigned to f_constr, is passed
to ci_bound_wn_i().
npar is an argument for ci_bound_wn_i().
out <- ci_i_one(i =1,
which = "lbound”,
sem_out = fit_med,
npar = 5,
f_constr = fn_constro)
out$bounds

ci_order Check The Order of Bounds in a List of semlbci Objects

Description
Check whether the LBCIs in a list of semlbci-class of objects are consistent with their levels of
confidence.

Usage

ci_order(semlbci_list)

S3 method for class 'ci_order'
print(x, digits =3, ...)
Arguments

semlbci_list An object of class semlbci_list, such as the output of nearby_levels().

X The output of ci_order().

20 ci_order

digits The number of decimal places in the printout.

Additional arguments. Not used.

Value

A ci_order-class object with a print method print.ci_order(). The number of rows is equal
to the number of parameters in semlbci_list, and the columns stores the confidence limits from
the list, ordered according to the level of confidence.

x is returned invisibly. Called for its side effect.

Methods (by generic)

e print(ci_order): The print method of the output of ci_order().

Author(s)

Shu Fai Cheung https://orcid.org/0000-0002-9871-9448

See Also

nearby_levels(), semlbci()

Examples

library(lavaan)
mod <-
m~ x
y ~m
fit_med <- sem(mod, simple_med, fixed.x = FALSE)
lbci_fit <- semlbci(fit_med)
lbci_fit_nb <- nearby_levels(lbci_fit,
ciperc_levels = c(-.050, .050))

Check the order of the confidence bounds.

A confidence interval with a higher level of confidence
should enclose a confidence interval with

a lower level of confidence.

ci_order(lbci_fit_nb)

https://orcid.org/0000-0002-9871-9448

confint.semlbci 21

confint.semlbci Confidence Intervals for a ’smelbci’ Object

Description

Return the confidence intervals of the parameters in the output of semlbci().

Usage
S3 method for class 'semlbci'
confint(object, parm, level = 0.95, ...)
Arguments
object The output of semlbci().
parm The parameters for which the confidence intervals are returned. Not used be-

cause parameters are defined by three or more columns (1hs, op, rhs, and group
for multisample models).

level Ignored. The level of confidence is determined when calling semlbci() and
cannot be changed.

Optional arguments. Ignored.

Details

It returns the likelihood-based confidence intervals in the output of semlbci().

Value

A two-column matrix of the confidence intervals.

Author(s)
Shu Fai Cheung https://orcid.org/0000-0002-9871-9448

See Also
semlbci()

Examples

library(lavaan)
mod <-

m ~ axx

y ~ b*m

ab :=a*b

n

https://orcid.org/0000-0002-9871-9448

22

gen_userp

fit_med <- sem(mod, simple_med, fixed.x = FALSE)
p_table <- parameterTable(fit_med)

p_table

lbci_med <- semlbci(fit_med,

lbci_med

confint(lbci_med)

pars = "ab :=")

gen_userp

Create a Wrapper To Be Used in ’lavaan’ Models

Description

Make a function on lavaan object usable in a 1avaan model syntax.

Usage

gen_userp(func,

gen_sem_out_use
userp,
sem_out,
userp_name =
fix = TRUE,
control_args
iter.max = 10
max_attempts

Arguments

func

sem_out
userp

userp_name

fix

control_args

sem_out)

rp(

"semlbciuserp1234”,

= listQ),
000,
=5

A function that receives a lavaan-object and returns a scalar. See Details on the
restriction on this function.

A lavaan-class object to be modified.
A function that is generated by gen_userp().

The name of the function userp to be used in the 1avaan model. It does not have
to be the name of the function in userp. Should be changed only if it conflicts
with another object in the parent environment, which should not happen if the
model is always fitted in a clean R session.

If TRUE, the default, the function generated is used to fix the value of userp to a
target value using an equality constraint. If FALSE, then the function simply fits
the model to the data.

To be passed to the argument of the same name in lavaan: : lavaan(). Default
is list (). Can be used to set the default values of this argument in the generated
function.

gen_userp 23

iter.max The maximum number of iteration when the generated function fit the model.
Default is 10000.

max_attempts If the initial fit with the equality constraint fails, how many more attempts will
be made by the generated function. Default is 5.

Details

gen_userp:
There are cases in which we want to create a user parameter which is a function of other free
parameters, computed by a function. However such a function may work only on a lavaan object.

If the target function works by extracting parameter estimates stored in the Model slot and/or the
implied slot, then gen_userp() can be used to convert it to a function that retrieves the parameter
estimates when being called by lavaan: :1lavaan() or its wrappers, modifies the stored lavaan
object using lavaan: :lav_model_set_parameters() and lavaan::lav_model_implied() to
change the estimates, and call the target function.

Note that this is an unconventional way to define a user parameter and the generated function
should always be checked to see whether it works as expected.

As shown in the examples, the parameter computed this may not have standard error nor p-value.
The main purpose is for the point estimate, for searching the likelihood-based confidence bound
using ci_bound_ur() and ci_bound_ur_i().

Note that the target function specified in func should work directly on the parameter estimates
stored in the Model slot and then get the estimates using lavaan: : lav_model_get_parameters().
Functions that work on the unmodified output generated by lavaan::lavaan() usually do not
work.

Users are not recommended to use gen_userp() and gen_sem_out_userp() directly because
they require unconventional way to extract parameter estimates from a lavaan model. However,
developers may use them to include functions they wrote in a lavaan model. This is the technique
used by ci_bound_ur_i() to constrain any parameter in a model to an arbitrary value.

gen_sem_out_userp:

The function gen_sem_out_userp() is to be used internally for generating a function for search-
ing a likelihood-based confidence bound. It is exported because it needs to be run in an fresh
external R process, usually created by callr in other internal functions.

Value

gen_userp:

It returns a function that accepts a numeric vector of length equals to the number of free parameters
in sem_out, and returns a scalar which is the output of func. If this vector is not supplied, it will
try to find it in the parent. frame(). This is how it works inside a 1avaan model.

gen_sem_out_userp:
If fix is TRUE, it returns a function with these arguments:
* target: The value to which the user-defined parameter will be fixed to.
* verbose: If TRUE, additional information will be printed when fitting the model.

* control: The values to be passed as a list to the argument of the same name in lavaan: : lavaan().

24 gen_userp

* seed: Numeric. If supplied, it will be used in set.seed() to initialize the random number
generator. Necessary to reproduce some results because random numbers are used in some
steps in lavaan. If NULL, the default, set.seed () will not be called.

If fix is ‘FALSE, then it returns a function with optional arguments that will be ignored, Calling
it will simply fit the modified model to the data. Useful for getting the value of the user-defined
parameter.

Examples

library(lavaan)

data(simple_med)
dat <- simple_med

mod <-

m ~ axx

y ~ b*m
ab := a*b

n

fit_med <- sem(mod, simple_med, fixed.x = FALSE)
parameterEstimates(fit_med)

A trivial example for verifying the results
my_ab <- function(object) {
Need to use lav_model_get_parameters()
because the object is only a modified
lavaan-object, not one directly
generated by lavaan function
est <- lavaan::lav_model_get_parameters(object@Model, type = "user")
unname(est[1] * est[2])
}

Check the function
my_ab(fit_med)
coef (fit_med, type = "user”)["ab"]

Create the function

my_userp <- gen_userp(func = my_ab,
sem_out = fit_med)

Try it on the vector of free parameters

my_userp(coef (fit_med))

Generate a modified lavaan model

fit_userp <- gen_sem_out_userp(userp = my_userp,
userp_name = "my_userp”,
sem_out = fit_med)

This function can then be used in the model syntax.
Note that the following example only work when called inside the

workspace or inside other functions such as ci_bound_ur()"
and “ci_bound_ur_i()" because ~lavaan::sem()” will

get_cibound 25

search “my_userp()” in the global environment.

Therefore, the following lines are commented out.

They should be run only in a "TRUE" interactive

session.

mod2 <-

4"

#m~ x

#y~m

ab := my_userp()

#

fit_med2 <- sem(mod2, simple_med, fixed.x = FALSE)

parameterEstimates(fit_med2)

#

Fit the model with the output of the function, axb

fixed to .50

#

fit_new <- fit_userp(.50)

#

Check if the parameter ab is fixed to .50

parameterEstimates(fit_new)

get_cibound A “cibound’ Output From a ’semlbci’ Object

Description

Get the cibound output of a bound from a semlbci object, the output of semlbci().

Usage

get_cibound(x, row_id, which = c("lbound”, "ubound"))

get_cibound_status_not_0(x)

Arguments
X The output of semlbci().
row_id The row number in x. Should be the number on the left, not the actual row
number, because some rows may be omitted in the printout of x.
which The bound for which the ci_bound_wn_i () is to be extracted. Either "1bound”

or "ubound”.

26 get_cibound

Details

The function get_cibound() returns the original output of ci_bound_wn_i () for a bound. Usually
for diagnosis.

The function get_cibound_status_not_0() checks the status code of each bound, and returns the
cibound outputs of bounds with status code not equal to zero (i.e., something wrong in the search).
Printing it can print the diagnostic information for all bounds that failed in the search.

Value

get_cibound() returns a cibound-class object. See ci_bound_wn_i () for details. get_cibound_status_not_0()
returns a list of cibound-class objects with status not equal to zero. If all bounds have status
equal to zero, it returns an empty list.

Author(s)

Shu Fai Cheung https://orcid.org/0000-0002-9871-9448

See Also

semlbci()

Examples

library(lavaan)
mod <-
m ~ axx
y ~ b*m
ab :=a*b
fit_med <- sem(mod, simple_med, fixed.x = FALSE)
p_table <- parameterTable(fit_med)
p_table
lbci_med <- semlbci(fit_med,
pars = c("ab :="))
lbci_med

Get the output of ci_bound_wn_i() of the lower
bound of the LBCI for the indirect effect:
get_cibound(lbci_med, row_id = 6, which = "lbound")

Get the output of ci_bound_wn_i() of the upper
bound of the LBCI for the indirect effect:
get_cibound(lbci_med, row_id = 6, which = "ubound")

https://orcid.org/0000-0002-9871-9448

loglike_compare

27

loglike_compare

Log Profile likelihood of a Parameter

Description

These functions compute the log profile likelihood of a parameter when it is fixed to a value or a
range of values

Usage

loglike_compare(

)

sem_out,
semlbci_out = NULL,
par_i,

confidence = 0.95,
n_points = 21,
start = "default”,
try_k_more = 5,
parallel = FALSE,

ncpus = parallel::detectCores(logical = FALSE) - 1,

use_pbapply = TRUE

loglike_range(

)

sem_out,

par_i,

confidence = 0.95,
n_points = 21,
interval = NULL,
verbose = FALSE,
start = "default”,
try_k_more = 5,
parallel = FALSE,

ncpus = parallel::detectCores(logical = FALSE)

use_pbapply = TRUE

loglike_point(

)

thetao,

sem_out,

par_i,

verbose = FALSE,
start = "default”,
try_k_more = 5

loglike_quad_range(

loglike_compare

sem_out,
par_i,
confidence = 0.95,
n_points = 21,
interval = NULL,
parallel = FALSE,
ncpus = parallel::detectCores(logical = FALSE) - 1,
use_pbapply = TRUE,
try_k_more = 5,
start = "default”

)

loglike_quad_point(theta®, sem_out, par_i)

loglike_compare_ur(
sem_out,
semlbci_out = NULL,
par_i,
confidence = 0.95,
n_points = 21,
standardized = FALSE,
parallel = FALSE,
ncpus = parallel::detectCores(logical = FALSE) - 1,
use_pbapply = TRUE,
loadbalancing = TRUE
)

loglike_range_ur(
sem_out,
par_i,
standardized = FALSE,
confidence = 0.95,
n_points = 21,
interval = NULL,
verbose = FALSE,
parallel = FALSE,
ncpus = parallel::detectCores(logical = FALSE) - 1,
use_pbapply = TRUE,
loadbalancing = TRUE

)

loglike_point_ur(theta®, sem_out, par_i, standardized = FALSE, verbose = FALSE)

loglike_quad_range_ur(

sem_out,

par_i,

confidence = 0.95,
standardized = FALSE,

loglike_compare 29

n_points = 21,
interval = NULL,
parallel = FALSE,
ncpus = parallel::detectCores(logical = FALSE) - 1,
use_pbapply = TRUE,
loadbalancing = TRUE
)

loglike_quad_point_ur(theta@, sem_out, par_i, standardized = FALSE)

Arguments
sem_out The SEM output. Currently the outputs of lavaan: :lavaan() or its wrappers,
such as lavaan: :sem() and lavaan::cfa() are supported.

semlbci_out The output of semlbci(). If supplied, it will extract the likelihood-based confi-
dence interval from the output. If not, it will call semlbci().

par_i The row number of the parameter in the output of lavaan: : parameterTable().
Can also be a lavaan::model.syntax specification for a parameter, e.g., "y ~ x"
or ab := . It will be converted to the row number by syntax_to_i(). Refer to
syntax_to_i() for details.

confidence The level of confidence of the Wald-type confidence interval. If interval is
NULL, this confidence is used to form the interval.

n_points The number of points to be evaluated in the interval. Default is 21.

start How the start values are setin lavaan: : lavaan(). See lavaan: : 1lavOptions()
on this argument. Default is "default”. If the plot is too irregular, try setting it
to "simple”.

try_k_more How many more times to try finding the p-values, by randomizing the starting

values. Default is 5. Try increasing this number if the plot is too irregular.

parallel If TRUE, parallel processing will be used. A cluster will be created by parallel: :makeCluster(),
with the number of workers equal to ncpus. Parallel processing, though not en-
abled by default, is recommended because it can speed up the computation a
lot.

ncpus The number of workers if parallel is TRUE. Default is parallel: :detectCores(logical
= FALSE) - 1, the number of physical cores minus 1.

use_pbapply If TRUE and pbapply::pbapply is installed, pbapply::pbapply will be used to dis-
play the progress in computing the log profile likelihood. Default is TRUE.

interval A vector of numbers. If provided and has two elements, this will be used as the
end points of the interval. If it has more than two elements, the elements will be
used directly to form the values in the interval. Default is NULL.

verbose Whether some diagnostic information will be printed. Default is FALSE.
theta® The value at which the parameter is fixed to.

standardized Logical. Whether the parameter requested is in the standardized solution. De-
fault is FALSE.

loadbalancing Logical. When using parallel processing, whether load balancing is used. De-
fault is TRUE.

30 loglike_compare

Details

It uses the methods presented in Pawitan (2013) to compute and visualize the log profile likelihood
of a parameter in a structural equation model when this parameter is fixed to a value or a range
of values. loglike_range() and loglike_point() compute the so-called "true" log profile like-
lihood, while loglike_quad_range() and loglike_quad_point() approximate the log profile
likelihood by a quadratic function.

These functions are for creating illustrative examples and learning only, not for research use. There-
fore, they are not as versatile as semlbci () in the types of models and parameters supported. They
can be used for free parameters and user-defined parameters not involved in any constraints. Only
a model fitted by maximum likelihood is supported.

They will not check whether the computation is appropriate for a model. It is the responsibility of
the users to ensure that the computation is appropriate for the model and parameter.

In version 0.11.2.1, added variants of the function, with suffix _ur, which use root finding ("ur”
in semlbci()). These variants are slower to run but can be used for parameter in the standardized
solution. Therefore, they can used to generate plots for parameters such as standardized regression
paths and correlations.

Value

loglike_compare() calls loglike_range() and loglike_quad_range() and returns their results
in a loglike_compare-class object, a list with these elements:

* quadratic: The output of loglike_quad_range().

* loglikelihood: The output of loglike_range().

* pvalue_quadratic: The likelihood ratio test p-values at the quadratic approximation confi-
dence bounds.

* pvalue_loglikelihood: The likelihood ratio test p-values at the likelihood-based confidence
bounds.

 est: The point estimate of the parameter in sem_out.
loglike_compare-class object has a plot method (plot.loglike_compare()) that can be used
to plot the log profile likelihood.

loglike_point() returns a list with these elements:

* loglike: The log profile likelihood of the parameter when it is fixed to theta@.

* pvalue: The p-values based on the likelihood ratio difference test between the original model
and the model with the parameter fixed to theta®.

e fit: A lavaan::lavaan object. The original model with the parameter fixed to theta®.
e 1rt: The output of lavaan: : lavTestLRT(), comparing the original model to the model with
the parameter fixed to theta®.

loglike_quad_range() returns a data frame with these columns:

* theta: The values to which the parameter is fixed to.

* loglike: The log profile likelihood values of the parameter using quadratic approximation.

loglike_compare 31

* pvalue: The p-values based on the likelihood ratio difference test between the original model
and the model with the parameter fixed to theta.

loglike_quad_point() returns a single number of the class lavaan.vector (because it is the
output of lavaan: : fitMeasures()). This number is the quadratic approximation of the log profile
likelihood when the parameter is fixed to theta®@.

loglike_range() returns a data frame with these columns:

* theta: The values to which the parameter is fixed to.
* loglike: The log profile likelihood at theta.

* pvalue: The p-values based on the likelihood ratio difference test between the original model
and model with the parameter fixed to theta.

Functions

* loglike_compare(): Generates points for log profile likelihood and quadratic approxima-
tion, by calling the helper functions loglike_range() and loglike_quad_range().

* loglike_range(): Find the log profile likelihood for a range of values.

* loglike_point(): Find the log likelihood at a value.

e loglike_quad_range(): Find the approximated log likelihood for a range of values.

* loglike_quad_point(): Find the approximated log likelihood at a value.

* loglike_compare_ur(): Generates points for log profile likelihood and quadratic approxi-
mation using root finding, by calling the helper functions loglike_range_ur() and loglike_quad_range_ur().

* loglike_range_ur(): Find the log profile likelihood for a range of values using root finding.
* loglike_point_ur(): Find the log likelihood at a value.

* loglike_quad_range_ur(): Find the approximated log likelihood for a range of values using
root finding.

e loglike_quad_point_ur(): Find the approximated log likelihood at a value. Support a
parameter in the standardized solution.

References

Pawitan, Y. (2013). In all likelihood: Statistical modelling and inference using likelihood. Oxford
University Press.

See Also

plot.loglike_compare()

Examples

loglike_compare

library(lavaan)
data(simple_med)
dat <- simple_med
mod <-

32

"

m~a* x
y ~b*m
ab :=a xb

n

fit <- lavaan::sem(mod, simple_med, fixed.x = FALSE)

4 points are used just for illustration

At least 21 points should be used for a smooth plot

Remove try_k_more in real applications. It is set

to zero such that this example does not take too long to run.

use_pbapply can be removed or set to TRUE to show the progress.

11_a <- loglike_compare(fit, par_i = "m ~ x", n_points = 4,
try_k_more = 0,
use_pbapply = FALSE)

plot(ll_a)

See the vignette "loglike"” for an example for the
indirect effect.

loglike_range

Usually not to be used directly.

Used by loglike_compare().

3 points are used just for illustration

11_1 <- loglike_range(fit, par_i = "y ~ m", n_points = 2)
head(11_1)

loglike_point

Usually not to be used directly.

Used by loglike_compare().

11p_1 <- loglike_point(theta® = 0.3, sem_out = fit, par_i = "y ~m")
11p_1%$loglike

11p_1$pvalue

11p_1%1rt

loglike_quad_range

Usually not to be used directly.
Used by loglike_compare().
2 points are used just for illustration

1g_1 <- loglike_quad_range(fit, par_i = "y ~ m", n_points = 2)
head(1lqg_1)

loglike_quad_point

loglike_compare

mediation_latent

Usually not to be used directly.

Used by loglike_compare().

lgp_1 <- loglike_quad_point(theta® = 0.3, sem_out = fit, par_i = "y ~ m")
lgp_1

33

mediation_latent Dataset (SEM, Three Factors, Nine Variables, Mediation)

Description

Generated from a three-factor model with nine variables, n = 150

Usage

mediation_latent

Format
A data frame with 150 rows and nine variables:

x1 x1
x2 x2
x3 x3
x4 x4
x5 x5
X6 x6
x7 x7
x8 x8
x9 x9

Details

This model is used for examples like this one:

mod <-

fx =~ x1 + x2 + x3
fm =~ x4 + x5 + x6
fy =~ x7 + x8 + x9
fm ~ axfx

fy ~ bxfm + cp*fx
ab := a*xb

n

fit <- lavaan::sem(mod, mediation_latent)

34 mediation_latent_skewed

Examples

print(head(mediation_latent), digits = 3)
nrow(mediation_latent)

mediation_latent_skewed
Dataset (SEM, Three Factors, Nine Variables, Mediation, Skewed)

Description

Generated from a three-factor model with nine variables, n = 150, with some observed variables
positively skewed.

Usage

mediation_latent_skewed

Format

A data frame with 150 rows and nine variables:

x1 x1
x2 x2
x3 x3
x4 x4
x5 x5
x6 x6
x7 x7
x8 x8
x9 x9

Details

This model is used for examples like this one:

mod <-

fx =~ x1 + x2 + x3
fm =~ x4 + x5 + x6
fy =~ x7 + x8 + x9
fm ~ axfx

fy ~ bxfm + cp*fx
ab := axb

n

fit <- lavaan::sem(mod, mediation_latent)

nearby_levels 35

Examples

print(head(mediation_latent_skewed), digits = 3)
nrow(mediation_latent_skewed)

nearby_levels LBCI Bounds of Nearby Levels of Confidence

Description

Find LBCIs with levels of confidence different from those stored in a semlbci- class object.

Usage

nearby_levels(x, ciperc_levels = c(-0.025, 0.025), ciperc_range = c(0.6, 0.99))

Arguments

X The output of semlbci().

ciperc_levels A numeric vector of deviations from the original level of confidence. The default
is c(-.025, .025). Therefore, if the original level is .95, the levels to be used
isc(-.025, .025) + .95 0r c(.925, .975).

ciperc_range A numeric vector of two numbers, which are the minimum and maximum levels
of confidence to be used, respectively. Default is c(.60, .99).
Details

It receives a semlbci-class object, gets the original level of confidence, generates one or more levels
of confidence different from this level by certain amounts, and repeats the original call to semlbci ()
with these levels of confidence. The results are returned as a list of class semlbci_list, with the
originalsemlbci-class included.

Value
A semlbci_list-class object, which is simply a named list of semlbci-class object, names being
the levels of confidence.

Author(s)

Shu Fai Cheung https://orcid.org/0000-0002-9871-9448

See Also

semlbci(), ci_order()

https://orcid.org/0000-0002-9871-9448

36

Examples

library(lavaan)
mod <-
m -~ X
y ~m
fit_med <- sem(mod, simple_med, fixed.x = FALSE)
lbci_fit <- semlbci(fit_med)
lbci_fit_nb <- nearby_levels(lbci_fit,
ciperc_levels = c(-.050, .050))
names(lbci_fit_nb)
Check the order of the confidence bounds.
A confidence interval with a higher level of confidence
should enclose a confidence interval with
a lower level of confidence.
ci_order(lbci_fit_nb)

plot.loglike_compare

plot.loglike_compare Plot the Output of ’loglike_compare()’

Description

Visualize the log profile likelihood of a parameter fixed to values in a range.

Usage

S3 method for class 'loglike_compare'
plot(
X,
Y,
type = c("ggplot2”, "default"”),
size_label = 4,
size_point = 4,
nd_theta = 3,
nd_pvalue = 3,
size_theta = 4,
size_pvalue = 4,
add_pvalues = FALSE,

Arguments

X The output of loglike_compare().
y Not used.

plot.loglike_compare 37

type Character. If "ggplot2”, will use ggplot2::ggplot() to plot the graph. If
"default”, will use R base graphics, The ggplot2 version plots more informa-
tion. Default is "ggplot2”.

size_label The relative size of the labels for thetas (and p-values, if requested) in the plot,
determined by ggplot2: :rel(). Default is 4.

size_point The relative size of the points to be added if p-values are requested in the plot,
determined by ggplot2: :rel(). Default is 4.

nd_theta The number of decimal places for the labels of theta. Default is 3.

nd_pvalue The number of decimal places for the labels of p-values. Default is 3.

size_theta Deprecated. No longer used.

size_pvalue Deprecated. No longer used.

add_pvalues If TRUE, likelihood ratio test p-values will be included for the confidence limits.

Only available if type = "ggplot2”.

Optional arguments. Ignored.

Details

Given the output of loglike_compare(), it plots the log profile likelihood based on quadratic
approximation and that based on the original log-likelihood. The log profile likelihood is scaled to
have a maximum of zero (at the point estimate) as suggested by Pawitan (2013).

Value

Nothing if type = "default”, the generated ggplot2::ggplot() graph if type = "ggplot2".

References

Pawitan, Y. (2013). In all likelihood: Statistical modelling and inference using likelihood. Oxford
University Press.

Examples

loglike_compare

library(lavaan)
data(simple_med)
dat <- simple_med
mod <-

m~a* X
y~b*m
ab :=a*b

"

fit <- lavaan::sem(mod, simple_med, fixed.x = FALSE)

Four points are used just for illustration
At least 21 points should be used for a smooth plot
Remove try_k_more in real applications. It is set

38 print.cibound

to run such that this example is not too slow.
use_pbapply can be removed or set to TRUE to show the progress.
11_a <- loglike_compare(fit, par_i = "m ~ x", n_points = 4,
try_k_more = 0,
use_pbapply = FALSE)

plot(ll_a)
plot(ll_a, add_pvalues = TRUE)

See the vignette "loglike"” for an example for the
indirect effect.

print.cibound Print Method of a "cibound’-class Object

Description

Print the diagnostic information of a cibound-class object.

Usage
S3 method for class 'cibound'
print(x, digits =5, ...)
Arguments
X The output of a ci_bound_xx_i function. Currently the only such function is

ci_bound_wn_i().

digits The number of digits after the decimal point. To be passed to round(). Default
is 5.

Other arguments. They will be ignored.

Details

This is the print method for the output of ci_bound_wn_i(), a cibound-class object. It prints the
diagnostic information on the bound being found and the search process.

Value

x is returned invisibly. Called for its side effect.

print.semlbci

Examples

data(simple_med)
dat <- simple_med

mod <-
»

m =~ X
y ~m

n

fit_med <- lavaan::sem(mod, simple_med, fixed.x = FALSE)
fn_constr@ <- set_constraint(fit_med)

out1l <- ci_bound_wn_i(i =1,
npar = 5,
sem_out = fit_med,
f_constr = fn_constro,
which = "lbound")

Print the output
outl1l

print.semlbci Print Method of a ’semlbci’ Object

Description

Prints the results of a semlbci object, the output of semlbci().

Usage

S3 method for class 'semlbci'
print(
X,
digits = 3,
annotation = TRUE,
time = FALSE,
verbose = FALSE,
verbose_if_needed = TRUE,
drop_no_lbci = TRUE,
output = c("table”, "text", "lavaan"),
sem_out = NULL,
lbci_only = drop_no_lbci,
ratio_digits = 1,
se = TRUE,
zstat = TRUE,

40

print.semlbci

pvalue = TRUE,
boot.ci.type = "perc”,

Arguments

X

digits

annotation
time

verbose

The output of semlbci().

The number of digits after the decimal point. To be passed to formatC(). De-
fault is 3.

If TRUE, print table notes. Default is TRUE.
If TRUE, print the time spent on each bound. Default is FALSE.

If TRUE, additional diagnostic information will always be printed. This argument
overrides verbose_if_needed. Default is FALSE.

verbose_if_needed

drop_no_lbci

output

sem_out

lbci_only

ratio_digits

se

zstat

pvalue

boot.ci.type

If TRUE, additional diagnostic information will be printed only if necessary.
If FALSE, additional diagnostic information will always be printed. Default is
TRUE.

If TRUE, parameters without LBCIs will be removed. Default is TRUE.

The type of printout. If "table”, the default, the results will be printed in a
table. If "text"” or "lavaan”, then the results will be printed in the lavaan
style, as in the summary () method for the output of lavaan.

If output is "text"” or "lavaan”, the original output of lavaan used in calling
semlbci() needs to be supplied to this argument.

Used only if output is "text” or "lavaan”. If TRUE, only the likelihood-
based confidence intervals (LBCIs) will be printed. If FALSE, and LBCIs will be
printed alongside the confidence intervals by lavaan. Its default value depend
on the argument drop_no_lbci. If drop_no_lbci is TRUE, then 1bci_only is
TRUE by default. If drop_no_lbci is FALSE, then 1bci_only is FALSE by de-
fault.

The number of digits after the decimal points for the ratios of distance from the
confidence limits to the point estimates. Default is 1.

Logical. To be passed to lavaan: :parameterEstimates(). Whether standard
error (S.E.) will be printed. Only applicable if output is "text"” or "lavaan”.

Logical. To be passed to lavaan: :parameterEstimates(). Whether z-values
will be printed. Only applicable if output is "text"” or "lavaan”.

Logical. To be passed to lavaan: :parameterEstimates(). Whether p-values
will be printed. Only applicable if output is "text"” or "lavaan”.

Logical. To be passed to lavaan: :parameterEstimates(). The type of boot-
strap confidence intervals to be printed if bootstrapping confidence intervals
available. Possible values are "norm”, "basic”, "perc”, or "bca.simple"”. The
default value is "perc”. Refer to the help of lavaan: :parameterEstimates()

for further information. Only applicable if output is "text” or "lavaan”.

Other arguments. They will be ignored.

print.semlbci

Details

Prints the results of semlbci () as a table.

Value

x is returned invisibly. Called for its side effect.

Author(s)
Shu Fai Cheung https://orcid.org/0000-0002-9871-9448

See Also
semlbci()

Examples

library(lavaan)
mod <-
m ~ a*x
y ~ b*m
ab :=a *b
fit_med <- sem(mod, simple_med, fixed.x = FALSE)
p_table <- parameterTable(fit_med)
p_table
lbci_med <- semlbci(fit_med,
pars = c("ab :="))
lbci_med

print(lbci_med, verbose_if_needed = FALSE)
print(lbci_med, verbose = TRUE)
print(lbci_med, time = TRUE)

print(lbci_med, annotation = FALSE)

print(lbci_med, digits = 4)

Text output

print(lbci_med, output = "lavaan", sem_out = fit_med)
print(lbci_med, output = "lavaan”, sem_out = fit_med, lbci_only
print(lbci_med, output = "lavaan", sem_out = fit_med, lbci_only

se = FALSE, zstat = FALSE, pvalue = FALSE)

FALSE)

FALSE,

41

https://orcid.org/0000-0002-9871-9448

42 reg_cor_near_one

reg_cor_near_one Dataset (Six Variables, One Correlation Close to One)

Description

Generated from a regression model six variables, x4~~x5 correlation close to one.

Usage

reg_cor_near_one

Format

A data frame with 100 rows and six variables:

x1 x1
x2 x2
x3 x3
x4 x4, with correlation with x5 nearly equal to 1
x5 x5, with correlation with x4 nearly equal to 1

y y, the dependent variable

Details
This model is used for examples like this one:
out <- Im(y ~ x1 + x2 + x3 + x4 + x5, reg_cor_near_one)

summary (out)
cor(reg_cor_near_one[, c("x4", "x5")1)

Examples

print(head(reg_cor_near_one), digits = 3)
nrow(reg_cor_near_one)

semlbci 43

semlbci Likelihood-Based Confidence Interval

Description

Find the likelihood-based confidence intervals (LBCls) for selected free parameters in an SEM
output.

Usage

semlbci(
sem_out,
pars = NULL,
include_user_pars = TRUE,
remove_variances = TRUE,
remove_intercepts = TRUE,
ciperc = 0.95,
standardized = FALSE,
method = c("wn", "ur"),
robust = c("none”, "satorra.2000"),
try_k_more_times = 2,
semlbci_out = NULL,
check_fit = TRUE,

parallel = FALSE,
ncpus = 2,
use_pbapply = TRUE,
loadbalancing = TRUE

)
Arguments
sem_out The SEM output. Currently supports lavaan::lavaan outputs only.
pars The positions of the parameters for which the LBCIs are to be searched. Use

the position as appeared on the parameter tables of the sem_out. If NULL, the
default, then LBClISs for all free parameters will be searched. Can also be a vector
of strings to indicate the parameters on the parameter table. The parameters
should be specified in 1avaan: : lavaan() syntax. The vector of strings will be
converted by syntax_to_i() to parameter positions. See syntax_to_i() on
how to specify the parameters.

include_user_pars
Logical. Whether all user-defined parameters are automatically included when
pars is not set. Default is TRUE. If pars is explicitly set, this argument will be
ignored.

remove_variances
Logical. Whether variances and error variances will be removed. Default is
TRUE, removing all variances and error variances even if specified in pars.

44

semlbci

remove_intercepts

ciperc

standardized

method

robust

Logical. Whether intercepts will be removed. Default is TRUE, removing all
intercepts (parameters with operator ~1). Intercepts are not yet supported in
standardized solution and so will always be removed if standardized = TRUE.

The proportion of coverage for the confidence interval. Default is .95, requesting
a 95 percent confidence interval.

If TRUE, the LBCl is for the standardized estimates.

The method to be used to search for the confidence bounds. Supported methods

are”"wn" (Wu-Neale-2012), the default, and "ur” (root finding by stats: :uniroot()).

Whether the LBCI based on robust likelihood ratio test is to be found. Only
"satorra.2000" in lavaan: : lavTestLRT() is supported for now, implemented
by the method proposed by Falk (2018). If "none”, the default, then likelihood
ratio test based on maximum likelihood estimation will be used.

try_k_more_times

semlbci_out

check_fit

parallel

ncpus

use_pbapply

loadbalancing

Details

How many more times to try if failed. Default is 2.

An semlbci-class object. If provided, parameters already with LBCIs formed
will be excluded from pars.

If TRUE (default), the input (sem_out) will be checked by check_sem_out (). If
not supported, an error will be raised. If FALSE, the check will be skipped and
the LBClIs will be searched even for a model or parameter not supported. Set to
TRUE only for testing.

Arguments to be passed to ci_bound_wn_i().
If TRUE, will use parallel processing to do the search.

The number of workers, if parallel is TRUE. Default is 2. This number should
not be larger than the number CPU cores.

If TRUE and pbapply is installed, pbapply: : pbapply () will be used to display
a progress bar when finding the intervals. Default is TRUE. Ignored if pbapply
is not installed.

Whether load balancing is used when parallel is TRUE and use_pbapply is
TRUE.

semlbci() finds the positions of the selected parameters in the parameter table and then calls
ci_i_one() once for each of them. For the technical details, please see ci_i_one() and the func-
tions it calls to find a confidence bound, currently ci_bound_wn_i(). ci_bound_wn_i() uses the
approach proposed by Wu and Neale (2012) and illustrated by Pek and Wu (2015).

It supports updating an output of semlbci() by setting semlbci_out. This allows forming LBCIs
for some parameters after those for some others have been formed.

If possible, parallel processing should be used (see parallel and ncpus), especially for a model
with many parameters.

If the search for some of the confidence bounds failed, with NA for the bounds, try increasing
try_k_more_times.

semlbci 45

The SEM output will first be checked by check_sem_out() to see whether the model and the
estimation method are supported. To skip this test (e.g., for testing or experimenting with some
models and estimators), set check_fit to FALSE.

Examples and technical details can be found at Cheung and Pesigan (2023), the website of the
semlbci package (https://sfcheung.github.io/semlbci/), and the technical appendices at (https://sfcheung.github.io/semlbci/ar

It currently supports lavaan::lavaan outputs only.

Value

A semlbci-class object similar to the parameter table generated by lavaan: :parameterEstimates(),
with the LBClIs for selected parameters added. Diagnostic information, if requested, will be in-
cluded in the attributes. See print.semlbci() for options available.

Author(s)
Shu Fai Cheung https://orcid.org/0000-0002-9871-9448

References

Cheung, S. F., & Pesigan, 1. J. A. (2023). semlbci: An R package for forming likelihood-based
confidence intervals for parameter estimates, correlations, indirect effects, and other derived param-
eters. Structural Equation Modeling: A Multidisciplinary Journal, 30(6), 985-999. doi:10.1080/
10705511.2023.2183860

Falk, C. F. (2018). Are robust standard errors the best approach for interval estimation with non-
normal data in structural equation modeling? Structural Equation Modeling: A Multidisciplinary
Journal, 25(2), 244-266. doi:10.1080/10705511.2017.1367254

Pek, J., & Wu, H. (2015). Profile likelihood-based confidence intervals and regions for structural
equation models. Psychometrika, 80(4), 1123-1145. doi:10.1007/s1133601594611

Wu, H., & Neale, M. C. (2012). Adjusted confidence intervals for a bounded parameter. Behavior
Genetics, 42(6), 886-898. doi:10.1007/s105190129560z

Pritikin, J. N., Rappaport, L. M., & Neale, M. C. (2017). Likelihood-based confidence intervals
for a parameter with an upper or lower bound. Structural Equation Modeling: A Multidisciplinary
Journal, 24(3), 395-401. doi:10.1080/10705511.2016.1275969

See Also

print.semlbci(), confint.semlbci(), ci_i_one(), ci_bound_wn_i()

Examples

library(lavaan)
mod <-

m ~ axx

y ~ b*m

ab :=a=xb

n

fit_med <- sem(mod, simple_med, fixed.x = FALSE)

https://orcid.org/0000-0002-9871-9448
https://doi.org/10.1080/10705511.2023.2183860
https://doi.org/10.1080/10705511.2023.2183860
https://doi.org/10.1080/10705511.2017.1367254
https://doi.org/10.1007/s11336-015-9461-1
https://doi.org/10.1007/s10519-012-9560-z
https://doi.org/10.1080/10705511.2016.1275969

46 set_constraint

p_table <- parameterTable(fit_med)
p_table
lbci_med <- semlbci(fit_med,

pars = c("m ~ x",
"o~
"ab :="))
1bci_med
set_constraint Equality Constraint for Finding the LBCI by Wu-Neale-2012
Description

Create the equality constraint for finding the likelihood-based confidence interval (LBCI) by the
Wu-Neale-2012 method.

Usage

set_constraint(sem_out, ciperc = 0.95)

Arguments

sem_out The SEM output. Currently supports lavaan::lavaan outputs only.

ciperc The intendeted coverage probability of the confidence interval. Default is .95.
Details

Important Notice:

This function is not supposed to be used directly by users in typical scenarios. Its interface is
user-unfriendly because it should be used through semlbci(). It is exported such that interested
users can examine how a confidence bound is found, or use it for experiments or simulations.

Usage:

The Wu-Neale-2012 method uses a simple objective function that is optimized with an equality
constraint. set_constraint() generates the equality constraint function to be used by ci_bound_wn_i ().

It currently supports lavaan::lavaan outputs only.

Value

An equality constraint function to be used by ci_bound_wn_i ().

simple_med

Examples

library(lavaan)
data(simple_med)
dat <- simple_med

mod <-
"

m =~ X
y ~m

n

fit_med <- sem(mod, simple_med, fixed.x = FALSE)

fn_constr@ <- set_constraint(fit_med)

out <- fn_constro@(coef(fit_med), sem_out = fit_med)
out

lavTech(fit_med, "optim")$fx

simple_med Dataset (Simple Mediation Model)

Description

Generated from a simple mediation model, n = 200

Usage

simple_med

Format

A data frame with 200 rows and three variables:

X X, the independent variable
m m, the mediator

y vV, the dependent variable

Details

This model is used for examples like this one:

library(lavaan)
mod <- "m ~ Xx
meII

fit <- cfa(mod, simple_med)
summary (fit)

48 simple_med_mg

Examples

print(head(simple_med), digits = 3)
nrow(simple_med)

simple_med_mg Dataset (Simple Mediation Model, Two Groups)

Description

Generated from a simple mediation model, n = 200, two groups, n = 100 each.

Usage

simple_med_mg

Format

A data frame with 500 rows and four variables:

gp gp, the grouping variable
X X, the independent variable
m m, the mediator

y y, the dependent variable

Details

This model is used for examples like this one:

library(lavaan)
mod <- "m ~ x
y~mu
fit <- sem(mod, simple_med_mg, gp = "group”)
summary (fit)

Examples

print(head(simple_med_mg), digits = 3)
nrow(simple_med_mg)
table(simple_med_mg$gp)

syntax_to_i 49

syntax_to_1i Parameter Positions From lavaan Syntax

Description

Converts lavaan syntax to positions in the model parameter table.

Usage

syntax_to_i(syntax, sem_out)

Arguments
syntax A vector of parameters, defined as in lavaan.
sem_out The SEM output. Currently lavaan output only.
Details

syntax_to_i() converts a vector of strings, in lavaan syntax, to the positions in the parameter table
of a lavaan::lavaan fit object.

Each element in the vector should have left hand side (1hs), operator (op), and/or right hand side
(rhs). For example:all.x

* "m~ x" denotes the coefficient of the path from x to m.

e "y ~~x" denotes the covariance between y and x.
For user-defined parameters, only 1hs and op will be interpreted. For example:

* To specify the user parameter ab, both "ab :=..." and "ab :=" will do, . . . the definition of
ab in the model. The right-hand side will be ignored.

To denote a labelled parameters, such as "y ~ a*x", treat it as a user-defined parameters and use : =,
e.g., "a :="in this example.

For multiple-group models, if a parameter is specified as in a single-group models, then this param-
eter in all groups will be selected. For example:all.x

* If a model has three groups, "y ~ x" denotes this path parameter in all three groups, and it will
be converted to three row numbers.

To select the parameter in a specific group, "multiply" the right-hand-side variable by the group
number. For example:

e "y~ 2*x" denotes the path coefficient from x to y in Group 2.

To denote the parameters in more than one group, multiply the right-hand side variable by a vector
of number. For example:all.x

e "f1=~c(2,3)*x2" denotes the factor loading of x2 on f1 in Group 2 and Group 3.

Elements that cannot be converted to a parameter in the parameter table will be ignored.

Currently supports lavaan::lavaan outputs only.

50 syntax_to_i

Value

A numeric vector of positions (row numbers) in the parameter table.

Examples

library(lavaan)

data(simple_med)

mod <-

m ~ axx

y ~ b*m

ab:= axb

asq:= a2

fit_med <- sem(mod, simple_med, fixed.x = FALSE)
p_table <- parameterTable(fit_med)

pars <- c("m ~ x",

"y ~m”,
"asq := 1",
"ab = 2")
out <- syntax_to_i(pars, fit_med)

out
p_table[out,]

Index

+ datasets
cfa_evar_near_zero, 2
cfa_two_factors, 3
cfa_two_factors_mg, 4
mediation_latent, 33
mediation_latent_skewed, 34
reg_cor_near_one, 42
simple_med, 47
simple_med_mg, 48

cfa_evar_near_zero, 2
cfa_two_factors, 3
cfa_two_factors_mg, 4
check_sem_out, 5
check_sem_out(), 44, 45
ci_bound_ur,7
ci_bound_ur(), 9, 11,23
ci_bound_ur_i, 10
ci_bound_ur_i(), 8, 23
ci_bound_wn_i, 13
ci_bound_wn_i(), 8, 12, 18, 25, 26, 38, 44—46
ci_i_one, 17
ci_i_one(), 06,12, 16, 18,44, 45
ci_order, 19
ci_order(), 19, 20, 35
confint.semlbci, 21
confint.semlbci(), 45

formatC(), 40

gen_est_i (ci_bound_ur), 7

gen_est_i(), 7,9

gen_sem_out_userp (gen_userp), 22

gen_sem_out_userp(), 9, 23

gen_userp, 22

gen_userp(), 7,22, 23

get_cibound, 25

get_cibound(), 26

get_cibound_status_not_0 (get_cibound),
25

51

get_cibound_status_not_0(), 26
ggplot2: :ggplot(), 37
ggplot2::rel(), 37

lavaan::cfa(), 29
lavaan::fitMeasures(), 31
lavaan::lav_model_get_parameters(), 23
lavaan::lav_model_implied(), 23
lavaan::lav_model_set_parameters(), 23
lavaan::lavaan, 5, 7, 10, 14, 17, 30, 43, 45,
46, 49
lavaan::lavaan(), 5, 7,10, 11, 13-15, 22,
23,29,43
lavaan::lavOptions(), 29
lavaan::lavTestLRT(), 5, 8, 9, 17, 30, 44
lavaan: :model. syntax, 29
lavaan: :parameterEstimates(), 40, 45
lavaan: :parameterTable(), 8, 10, 14, 29
lavaan::sem(), 29
lavaan::standardizedSolution(), /1, 15

loglike_compare, 27
loglike_compare(), 30, 36, 37
loglike_compare_ur (loglike_compare), 27
loglike_point (loglike_compare), 27
loglike_point(), 30
loglike_point_ur (loglike_compare), 27
loglike_quad_point (loglike_compare), 27
loglike_quad_point(), 30, 31
loglike_quad_point_ur
(loglike_compare), 27
loglike_quad_range (loglike_compare), 27
loglike_quad_range(), 30
loglike_quad_range_ur
(loglike_compare), 27
loglike_quad_range_ur(), 31
loglike_range (loglike_compare), 27
loglike_range(), 30, 31
loglike_range_ur (loglike_compare), 27
loglike_range_ur(), 31
loglikelihood (loglike_compare), 27

52 INDEX

mediation_latent, 33
mediation_latent_skewed, 34

nearby_levels, 35
nearby_levels(), 19, 20
nloptr::nloptr(), 14

optimize(), 9

parallel::makeCluster(), 29
pbapply: :pbapply, 29
pbapply: :pbapply (), 44
plot.loglike_compare, 36
plot.loglike_compare(), 30, 31
print.ci_order (ci_order), 19
print.ci_order(), 20
print.cibound, 38
print.cibound(), 12, 16
print.semlbci, 39
print.semlbci(), 45

reg_cor_near_one, 42
round(), 38

semlbci, 43
semlbci(), 5, 6,12, 15, 16, 18, 20, 21, 25, 26,
29, 30, 35, 3941, 44, 46
set.seed(), 24
set_constraint, 46
set_constraint(), /4, 16, 46
simple_med, 47
simple_med_mg, 48
stats::uniroot(), 11, 17,44
summary (), 40
syntax_to_i, 49
syntax_to_i(), 29, 43, 49

uniroot(), 7-9, 12

	cfa_evar_near_zero
	cfa_two_factors
	cfa_two_factors_mg
	check_sem_out
	ci_bound_ur
	ci_bound_ur_i
	ci_bound_wn_i
	ci_i_one
	ci_order
	confint.semlbci
	gen_userp
	get_cibound
	loglike_compare
	mediation_latent
	mediation_latent_skewed
	nearby_levels
	plot.loglike_compare
	print.cibound
	print.semlbci
	reg_cor_near_one
	semlbci
	set_constraint
	simple_med
	simple_med_mg
	syntax_to_i
	Index

