Perform a supervised data analysis on a database through a 'shiny' graphical interface. It includes methods such as linear regression, penalized regression, k-nearest neighbors, decision trees, ada boosting, extreme gradient boosting, random forest, neural networks, deep learning and support vector machines.
Version: |
4.0.3 |
Depends: |
R (≥ 4.1) |
Imports: |
DT (≥ 0.27), gbm (≥ 2.2.2), pls (≥ 2.8-1), dplyr (≥
1.1.0), psych (≥ 2.4.6), shiny (≥ 1.7.4), golem (≥ 0.3.5), rlang (≥ 1.0.6), glmnet (≥ 4.1-6), loadeR (≥ 1.1.3), shinyjs (≥ 2.1.0), traineR (≥ 2.0.4), shinyAce (≥ 0.4.2), echarts4r (≥ 0.4.4), htmltools (≥ 0.5.4), rpart.plot (≥ 3.1.1), shinydashboard (≥ 0.7.2), shinycustomloader (≥ 0.9.0), shinydashboardPlus (≥ 2.0.3) |
Published: |
2024-11-15 |
DOI: |
10.32614/CRAN.package.regressoR |
Author: |
Oldemar Rodriguez [aut, cre],
Andres Navarro D. [ctb, prg],
Diego Jimenez A. [ctb, prg],
Ariel Arroyo S. [ctb, prg],
Joseline Quiros M. [ctb, prg] |
Maintainer: |
Oldemar Rodriguez <oldemar.rodriguez at ucr.ac.cr> |
BugReports: |
https://github.com/PROMiDAT/predictoR/issues |
License: |
GPL-2 | GPL-3 [expanded from: GPL (≥ 2)] |
URL: |
https://promidat.website/ |
NeedsCompilation: |
no |
Materials: |
NEWS |
CRAN checks: |
regressoR results |