Package ‘qfasar’

October 13, 2022
Type Package
Title Quantitative Fatty Acid Signature Analysis in R
Version 1.2.1

Description An implementation of Quantitative Fatty Acid Signature
Analysis (QFASA) in R. QFASA is a method of estimating the diet
composition of predators. The fundamental unit of information in
QFASA is a fatty acid signature (signature), which is a vector of
proportions describing the composition of fatty acids within lipids.
Signature data from at least one predator and from samples of all
potential prey types are required. Calibration coefficients, which
adjust for the differential metabolism of individual fatty acids by
predators, are also required. Given those data inputs, a predator
signature is modeled as a mixture of prey signatures and its diet
estimate is obtained as the mixture that minimizes a measure of
distance between the observed and modeled signatures. A variety of
estimation options and simulation capabilities are implemented.
Please refer to the vignette for additional details and references.

License Unlimited

LazyData TRUE

Imports Rsolnp (>=1.16)

RoxygenNote 7.1.0

Suggests knitr, rmarkdown, testthat
VignetteBuilder knitr

Date 2020-03-18

NeedsCompilation no

Author Jeffrey F. Bromaghin [aut, cre]
Maintainer Jeffrey F. Bromaghin <jbromaghin@usgs.gov>
Repository CRAN

Date/Publication 2020-03-19 21:30:02 UTC

2

add_cc_err

R topics documented:

add_cC_err. s 2
adj_diet_fat L e 4
CC_AUEZ . v v v v e e e e e e e e e e e e e e 5
comp_chi_gamma e e e e e 7
diet_obj_func 9
diet_poolo 10
dimac e e e 12
dist_between_2_sigS e e e 15
dist_pairs_map e e e e e e e 16
dist_sSigs_2 mean e e e e 17
dist_sum_pairwise e e e e 18
est_diet 18
find_boOt_SS e 23
8Of e 26
103 0 29
lopo_pool 32
make_diet_grid 33
make_diet_rand e e 35
make_ghost 36
make_pred_Sigs L. e e e e 38
make_prey_part e e 39
pm_obj_func e 41
pred_beyond_prey e 42
prep_fa . .. e e e 44
PIEP_SIZ « « o o i e e e e e 45
SIZ TEP_ZETO . v v v v v e 48
sigoscale e e e 49
Index 51
add_cc_err Add error to the calibration coefficients
Description

Bromaghin et al (2016) studied the performance of QFASA estimators when predator diets were
estimated using calibration coefficients that incorporated a degree of error. add_cc_err implements
their method of adding error to a set of calibration coefficients.

Usage

add_cc_err(cc_true, err_bound)

add_cc_err 3

Arguments
cc_true A vector of calibration coefficients, intended to be the object cc returned by the
function prep_fa.
err_bound A proportion strictly greater than O and less than 1 used to control the lower and
upper bounds of calibration coefficient error.
Value

A list containing the following elements:

cc A numeric vector of calibration coefficients with error incorporated.
err The mean relative absolute error in the calibration coefficients.
err_code An integer error code (0 if no error is detected).

err_message A string contains a brief summary of the execution.

Details

One of the major assumptions of QFASA is that the calibration coefficients are known perfectly.
Bromaghin et al. (2016) investigated the robustness of diet estimators to violations of this assump-
tion. The function add_cc_err uses the methods of Bromaghin et al. (2016) to add error to a set of
calibration coefficients.

The argument err_bound is used to compute box constraints for the calibration coefficients: lower
bound equals (1 - err_bound)*cc_true and upper bound equals (1 + err_bound)*cc_true. A
uniformly distributed random number is generated between the bounds for each calibration coeffi-
cient and the vector of coefficients is scaled so that their sum equals the sum of the true calibration
coefficients. Because only the relative magnitudes of the calibration coefficients are important in
diet estimation, scaling the coefficients to have a common sum ensures comparability between mul-
tiple sets of coefficients.

The mean relative absolute difference between the true and error-added calibration coefficients is
computed as a measure of error for the entire vector.

References

Bromaghin, J.F., S.M. Budge, G.W. Thiemann, and K.D. Rode. 2016. Assessing the robustness
of quantitative fatty acid signature analysis to assumption violations. Methods in Ecology and
Evolution 7:51-59.

Examples

add_cc_err(cc_true = c(0.75, 1.00, 1.50, 1.15),
err_bound = 0.25)

4 adj_diet_fat

adj_diet_fat Adjust diet composition estimates for prey fat content

Description

The function est_diet estimates diet composition in terms of the mass of fatty acids consumed.
The function adj_diet_fat uses estimates of fatty acid mass per prey type to transform estimates
of diet composition in terms of fatty acid mass to another scale.

Usage
adj_diet_fat(prey_fat, diet_est, diet_var = NA)

Arguments
prey_fat A numeric vector of the mean fatty acid mass for each prey type.
diet_est A numeric vector or matrix of the estimated diet composition(s) of individual
predator(s) or predator type(s). Intended to be the object est_ind or est_meanreturned
by the function est_diet.
diet_var A numeric matrix or array containing the estimated variance matrix for the es-
timated diet(s) of individual predator(s) or predator type(s). Intended to be the
object var_ind or var_mean) returned by the function est_diet. Optional.
Value

A list containing the following elements:

diet_est A numeric vector or matrix of the estimated diet composition of individual predator(s) or
predator type(s) in terms of the scale represented by prey_fat.

diet_var A numeric matrix or array containing the estimated variance matrix for the estimated diet
of individual predator(s) or predator type(s), in terms of the scale represented by prey_fat.

err_code An integer error code (0 if no error is detected).

err_message A string contains a brief summary of the execution.

Details

The function est_diet estimates diet composition in terms of the mass of fatty acids consumed.
Such estimates may be of direct ecological interest, especially for ecosystems in which lipids are
particularly important. In other cases, one may wish to transform estimates to a different scale. For
example, if the units of prey_fat are (fatty acid mass)/ (animal mass), the function adj_diet_fat
returns diet composition estimates in terms of the relative prey mass consumed. Alternatively,
if the units of prey_fat are (fatty acid mass)/(animal), the function adj_diet_fat returns diet
composition estimates in terms of the relative numbers of prey animals consumed.

adj_diet_fat uses the fat transformation of Iverson et al. (2004). Variance matrices are estimated
using the delta method (Seber 1982).

NOTE: values of mass per prey type are treated as known constants without variance.

cc_aug 5

References

Iverson, S.J., C. Field, W.D. Bowen, and W. Blanchard. 2004. Quantitative fatty acid signature
analysis: A new method of estimating predator diets. Ecological Monographs 74:211-235.

Seber, G.A.F. 1982. The Estimation of Animal Abundance and Related Parameters, second edition.
Macmillan Publishing Co., New York.

Examples

adj_diet_fat(prey_fat = c(0.5, 1, 2),
diet_est = c(0.3, 0.2, 0.5),
diet_var = matrix(c(0.030, 0.004, -0.003,
0.004, 0.025, -0.007,
-0.003, -0.007, 0.045),
nrow = 3, ncol = 3))

adj_diet_fat(prey_fat = c(0.5, 1, 2),
diet_est = ¢(0.3, 0.2, 0.5))

cc_aug Calibration coefficient for an augmented signature proportion

Description

cc_aug computes the optimal calibration coefficient for an augmented signature proportion (Bro-
maghin et al. 2016). If signature augmentation is to be used, the user must call cc_aug after first
calling prep_sig with the prey signature data, in order to derive a calibration coefficient for the
augmented signature.

Usage

cc_aug(sig_rep, sig_scale, cc_all, use_fa, dist_meas = 1, gamma = 1)

Arguments

sig_rep A numeric matrix containing fatty acid signatures with proportions from all fatty
acids. See Details.

sig_scale A numeric matrix containing fatty acid signatures with proportions from a subset
of all fatty acids and an augmented proportion. See Details.

cc_all A numeric vector of calibration coefficients for the fatty acids in sig_rep.

use_fa A logical vector denoting the fatty acids in sig_rep that are also in sig_scale.

dist_meas An integer indicator of the distance measure to compute. Default value 1.

gamma The power parameter of the chi-square distance measure. Default value 1.

6 cc_aug

Value
A list containing the following elements:

cc A numeric vector of calibration coefficients for the augmented signatures.
err_code An integer error code (0 if no error is detected).

err_message A string contains a brief summary of the execution.

Details

Calibration coefficients provide a one-to-one mapping between the prey and predator spaces (Bro-
maghin et al. 2015). However, when using signature augmentation (Bromaghin et al. 2016), no
calibration coefficient is available for the augmented proportion and the function cc_aug was de-
veloped to remedy that lack.

cc_aug transforms complete prey signatures in sig_rep to the predator space, censors them using
fa, and then augments them. The subset of calibration coefficients in cc_all corresponding to fa
are combined with a calibration coefficient for the augmented proportion, the censored signatures
in sig_scale are also transformed to the predator space, and the distance between the two sets
of censored signatures is computed. The calibration coefficient for the augmented proportion is
taken as the value that minimizes the distance. The function Rsolnp::solnp() is used to minimize
the distance.

The entity passed as the argument fa is intended to be the corresponding entity returned by a call to
prep_fa. Similarly, the entities passed as the arguments sig_rep and sig_scale are intended to be
the corresponding entities returned by a call to prep_sig with data in a prey library. Consequently,
no error checks are made on these objects. Please refer to the documentation for prep_fa and
prep_sig for additional details.

Use of Rsolnp::solnp limits the ability to return any errors from the function dist_between_2_sigs.
A crash may be caused by passing invalid values for the arguments dist_meas or gamma. Please
refer to documentation for the function dist_between_2_sigs for additional information about
valid values for these arguments.

Utility and external functions called by cc_aug:

e dist_between_2_sigs

* Rsolnp::solnp

References

Bromaghin, J.F., S.M. Budge, and G.W. Thiemann. 2016. Should fatty acid signature proportions
sum to 1 for diet estimation? Ecological Research 31:597-606.

Bromaghin, J.F., K.D. Rode, S.M. Budge, and G.W. Thiemann. 2015. Distance measures and
optimization spaces in quantitative fatty acid signature analysis. Ecology and Evolution 5:1249-
1262.

Examples

cc_aug(sig_rep = matrix(c(@0.05, .10, 0.30, 0.55,
0.04, .11, 0.29, 0.56,
0.109, 0.05, 0.35, 0.50), ncol = 3),

comp_chi_gamma

sig_scale = matrix(c(0.40, 0.50, 0.10,

cc_all

use_fa =

0.45, 0.49, 0.06,
0.35, 0.45, 0.20), ncol = 3),

c(0.75, 1.05, 1.86, 0.80),
c(FALSE, FALSE, TRUE, TRUE))

cc_aug(sig_rep = matrix(c(@0.05, .10, 0.30, 0.55,

0.04, 0.11, 0.29, 0.56,
0.10, 0.05, 0.35, 0.50), ncol = 3),

sig_scale = matrix(c(0.40, 0.50, 0.10,

cc_all
use_fa

dist_meas

0.45, 0.49, 0.06,
0.35, 0.45, 0.20), ncol = 3),

c(0.75, 1.05, 1.86, 0.80),
c(FALSE, FALSE, TRUE, TRUE),

D)

cc_aug(sig_rep = matrix(c(0.05, .10, 0.30, 0.55,

sig_scale

cc_all
use_fa

0.04, 0.11, 0.29, 0.56,
0.10, 0.05, 0.35, 0.50), ncol = 3),

matrix(c(0.40, 0.50, 0.10,

0.45, 0.49, 0.06,
.35, 0.45, 0.20), ncol = 3),

c(0.75, 1.05, 1.86, 0.80),
c(FALSE, FALSE, TRUE, TRUE),
dist_meas = 2)

cc_aug(sig_rep = matrix(c(@0.05, .10, 0.30, 0.55,

sig_scale =

0.04, 0.11, 0.29, 0.56,
0.10, 0.05, 0.35, 0.50), ncol = 3),

matrix(c(0.40, 0.50, 0.10,

0.45, 0.49, 0.06,
0.35, 0.45, 0.20), ncol = 3),

cc_all = c(@.75, 1.05, 1.86, 0.80),

c(FALSE, FALSE, TRUE, TRUE),
dist_meas = 3,
gamma = @.25)

use_fa

cc_aug(sig_rep = matrix(c(0.05, .10, 0.30, 0.55,

sig_scale =

cc_all
use_fa

0.04, 0.11, 0.29, 0.56,
0.10, 0.05, .35, 0.50), ncol = 3),

matrix(c(0.40, 0.50, 0.10,

0.45, 0.49, 0.06,
0.35, 0.45, 0.20), ncol = 3),

c(0.75, 1.05, 1.86, 0.80),
c(FALSE, FALSE, TRUE, TRUE),

dist_meas =

3

comp_chi_gamma

Compute gamma parameter of chi-square distance measure

8 comp_chi_gamma

Description
The function comp_chi_gamma computes the gamma parameter of the chi-square distance measure
using the algorithm of Stewart et al. (2014).

Usage

comp_chi_gamma(sigs, cc, near_zero = 1e-05, min_gamma = 0.05, space = 1)

Arguments
sigs A matrix of fatty acid signatures ready for analysis. Intended to be the object
sig_rep returned by a call to the function prep_sig.
cc A vector of calibration coefficients, intended to be the object cc returned by the
function prep_fa or cc_aug.
near_zero A small constant used to terminate the algorithm. Default value 0.00001.
min_gamma Smallest desired value of gamma, potentially used to terminate the algorithm.
Default value 0.05.
space An integer indicator of the estimation space to be used. Default value 1.
Value

A list containing the following elements:

gamma The estimated value of gamma.
gamma_vec A numeric vector containing the value of gamma at each step of the iteration.

prop_vec A numeric vector containing the proportion of all possible two-element signatures with
distance exceeding that of the full signatures at each step of the iteration. This value is com-
pared to the argument near_zero.

err_code An integer error code (0 if no error is detected).

err_message A string contains a brief summary of the execution.

Details

The chi-square distance involves a power transformation of signature proportions, with the power
parameter being denoted gamma. comp_chi_gamma implements the algorithm of Stewart et al.
(2014) to find a suitable value of gamma.

The algorithm is initialized with inv_gamma equal to 1 and gamma is computed as 1/inv_gamma.
The distances between all possible pairs of full signatures are computed (distances). For each pair
of full signatures, the distances between all possible sub-signatures comprised of only two fatty
acid proportions are computed (sub-distances). The proportion of sub-distances that exceed the
corresponding distance is computed across all possible pairs of signatures. If that proportion is less
than the argument near_zero, the function returns with gamma equal to 1. Otherwise, the function
enters an iterative phase. At each iteration, inv_gamma is incremented by 1, gamma is computed as
1/inv_gamma, distances and sub-distances are recomputed, and the proportion of the sub-distances
that exceed their corresponding distance is recomputed. The algorithm terminates when the propor-
tion is less than the argument near_zero or the value of gamma is less than min_gamma.

diet_obj_func 9

The argument space must equal 1 or 2 (see est_diet). If its value is 1, the calibration coefficients
are used to map the signatures to the predator space prior to initializing the algorithm.

As the number of signatures in the library and/or the number of fatty acids in a signature increases,
the number of possible pairs of signatures and the number of all possible two-proportion sub-
signatures increases rapidly. Consequently, this algorithm may require long run times. However, it
only needs to be run once for any particular library of signatures.

References

Stewart, C., S. Iverson, and C. Field. 2014. Testing for a change in diet using fatty acid signatures.
Environmental and Ecological Statistics 21:775-792.

Examples
comp_chi_gamma(sigs = matrix(c(0.05, 0.10, 0.30, 0.55,
0.04, 0.11, 0.29, 0.56,
0.10, 0.05, 0.35, 0.50,
0.12, 0.03, 0.37, 0.48,
0.19, 0.06, 0.35, 0.49,
0.05, 0.15, 0.35, 0.45), ncol=6),
cc = c(0.75, 1.00, 1.50, 0.90),
near_zero = 0.05,
min_gamma = 0.01,
space = 1)
diet_obj_func Diet estimation objective function

Description
The utility function diet_obj_func computes the distance between an observed fatty acid signature
and a modeled signature computed as a mixture of mean prey signatures.

Usage

diet_obj_func(diet, obs_sig, mean_sigs, dist_meas = 1, gamma = 1)

Arguments
diet A numeric vector of diet composition.
obs_sig A numeric vector containing an observed fatty acid signature.
mean_sigs A numeric matrix of the mean fatty acid signature for each prey type in the prey
library, in column-major format.
dist_meas An integer indicator of the distance measure to compute. Default value 1.

gamma The power parameter of the chi-square distance measure. Default value 1.

10 diet_pool

Value

The distance between the observed and modeled signatures.

Details

This is an internal utility function. Consequently, to increase execution speed, no numeric error
checking is performed within diet_obj_func. Rather, error checking is presumed to have occurred
at a higher level in the calling sequence.

The argument obs_sig is presumed to be a fatty acid signature that has been prepared for analy-
sis, which is best accomplished by a call to the function prep_sig with the predator data frame.
Similarly, the contents of mean_sig should be mean signatures computed from signatures that were
prepared for analysis by call to the function prep_sig.

The argument diet is presumed to contain non-negative proportions that sum to 1.0.
The arguments dist_meas and gamma must be compatible with the function dist_between_2_sigs.

Please refer to the vignette and documentation for the functions prep_sig, sig_scale, and dist_between_2_sigs
for additional details.

diet_obj_func models a predator signature as a mixture of the mean prey-type signatures, with
the diet proportions as the mixture proportions, returning the distance between the observed and
modeled signatures. The diet composition of a predator is estimated by minimizing this function
with respect to the diet using the function Rsolnp::solnp.

diet_pool Pool diet estimates to combined prey types

Description

diet_pool pools estimated diets and variance matrices to a smaller number of combined prey
types. If est_diet is used to estimate predator diet composition using a partitioned prey library
(make_prey_part), diet_pool pools the partitioned results back to the original, unpartitioned prey

types.

Usage

diet_pool(rep_grp, est_ind, var_ind = NA, est_mean = NA, var_mean = NA)

Arguments
rep_grp The post-multiplication matrix returned by a call to make_prey_part as the
object pool_post, or a user-defined matrix for custom pooling. Each column
defines a prey type to which estimates should be pooled.
est_ind A numeric matrix of the estimated diet compositions of individual predators

using a partitioned prey library, intended to be the object est_ind returned by a
call to est_diet.

diet_pool 11

var_ind A numeric array containing the estimated variance matrix for the estimated
diet of each predator, intended to be the object var_ind returned by a call to
est_diet. Optional.

est_mean A numeric matrix containing the estimated mean diet of each predator type,
intended to be the object est_mean returned by a call to est_diet. Optional.

var_mean A numeric array containing the estimated variance matrix for the estimated mean
diet of each predator type, intended to be the object var_mean returned by a call
to est_diet. Optional.

Value

A list containing the following elements, all of which are organized on the basis of the original,
unpartitioned prey types:

est_ind A numeric matrix of the estimated diet compositions of individual predators.

var_ind A numeric array containing the estimated variance matrix for the estimated mean diet of
each predator.

est_mean A numeric matrix containing the estimated mean diet of each predator type.

var_mean A numeric array containing the estimated variance matrix for the estimated mean diet
of each predator type.

err_code An integer error code (0 if no error is detected).

err_message A string containing a brief summary of the results.

Details

The function dimac explores the prey library for additional structure with identified prey types. If
significant structure is found within a library, estimating diet composition on the basis of a parti-
tioned prey library may lead to estimates with less bias and possibly less variation through reduced
prey confounding (Bromaghin et al. 2016). The function make_prey_part takes the clustering
results returned by dimac and user specification of the number of clusters in which to partition each
prey type and returns a partitioned prey library that is ready for use in diet estimation.

However, when estimating diet composition using a partitioned prey library one may still wish to
pool partitioned estimates back to the original, unpartitioned prey types for reporting purposes. That
is the purpose of the function diet_pool.

NOTE: diet_pool can also be used to pool estimates into a smaller number of combined prey
types for reporting purposes. For example, imagine a prey library with a large number of prey
types. If subsets of the prey types have similar ecological function, their signatures may share
some similarities (prey confounding, Bromaghin et al. 2016). In such a case, one may wish to
estimate diet on the basis of the full prey library, but subsequently pool the resulting estimates to a
smaller number of combined prey types for reporting purposes (reporting groups, Bromaghin 2008)
to reduce the effect of prey confounding. diet_pool can also be used for this purpose, though the
user would need to manually construct the reporting group matrix rep_grp.

References

Bromaghin, J.F. 2008. BELS: Backward elimination locus selection for studies of mixture compo-
sition or individual assignment. Molecular Ecology Resources 8:568-571.

12 dimac

Bromaghin, J.F., S.M. Budge, and G.W. Thiemann. 2016. Should fatty acid signature proportions
sum to 1 for diet estimation? Ecological Research 31:597-606.

Examples
diet_pool(rep_grp = matrix(c(1, 0, @, 0, @, 0, 0,
0, 1, 0, 0, 0, 0, 0,
o, 1, 0, 0, 0, @, 0,
o, 0, 1, 0, 0, 0, 0,
0, 0, 0, 1, 0, 0, 0,
o, 0, 0, 1, 0, @, 0,
o, 0, 0, 90, 1, 0, 0,
0, 0, 0, 0, 0, 1, 0,
o, 0, 0, 90, 0, 1, O,
0, 0, 9, 0, 20, 0, 1),
nrow = 10, byrow = TRUE),
est_ind = matrix(c(0.116, 0.315,
0.028, 0.073,
0.000, 0.000,
0.131, 0.120,
0.000, 0.000,
0.000, 0.000,
0.723, 0.452,
0.000, 0.000,
0.000, 0.000,
0.002, 0.040),

nrow = 10, byrow = TRUE))

dimac Diversive magnetic clustering

Description

The function dimac implements the divisive magnetic clustering algorithm to partition fatty acid
signatures into clusters. The DiMaC algorithm was modified from the diana algorithm of the pack-
age cluster (Maechler et al. 2016). dimac is intended to be called by the user, but only after the fatty
acid signatures have been prepared for analysis by calls to the functions prep_fa and prep_sig.
Consequently, error checking of the arguments associated with the signatures (sigs, id, type, and
loc) is necessarily limited, and calling dimac without preceding calls to prep_fa and prep_sig
could return meaningless results. Please see Details or the vignette for additional information.

Usage

dimac(sigs, id, type, loc, dist_meas = 1, gamma = 1)

dimac 13

Arguments

sigs A numeric matrix of fatty acid signatures in column-major format.

id A character vector with a unique sample ID for each signature.

type A character vector of prey or predator type names.

loc A numeric matrix specifying the location of signatures within sig for each type.

dist_meas A integer indicator of the distance measure to use. Default value 1.

gamma The power parameter of the chi-square distance measure. Default value 1.
Value

A list containing the following elements:

clust A data frame denoting cluster assignments at each iteration of the algorithm.
clust_dist A numeric matrix of the summed distance within clusters at each iteration.
err_code An integer error code(0 if no error is detected).

err_message A string containing a brief summary of the results.

Details

The signatures in sigs are presumed to be ready for analysis, which is best accomplished by a call
to the function prep_sig. Please refer to the documentation for prep_sig and/or the vignette for
additional details.

The matrix loc provides a mapping of the location of data for each type within sig. It must contain
arow for each type and two columns, which contain integers designating the first and last signature
of each type within sigs. Such a matrix is returned by the function prep_sig.

Please refer to the documentation for the function dist_between_2_sigs for information regarding
permissable values for the arguments dist_meas and gamma.

The DiMaC algorithm is initialized with all signatures in one cluster. The first two magnets are cho-
sen as the two signatures having the greatest distance between them and each non-magnet signature
is placed in the cluster associated with the closest magnet. The algorithm then enters an iterative
phase. At each iteration, the cluster with the greatest average distance between its signatures and
the mean signature is identified as the "active" cluster. The two signatures within the active clus-
ter having the greatest distance between them are selected as new magnets. One of the two new
magnets replaces the original magnet for the active cluster and the second starts the formation of
an additional cluster. Each non-magnet signature is placed in the cluster associated with the clos-
est magnet, without regard for its cluster designation in the preceding iteration. Consequently, the
algorithm is not simply bifurcating, but rather is much more dynamic and flexible. The iterations
continue until each signature is in its own cluster.

Unfortunately, there is no objective method to determine the most appropriate number of clusters
for each prey or predator type. Our suggestion is to examine the distance results and identify any
substantial reductions in distance, which are likely caused by the discovery of structure within that
type, that are followed by a more gradual decrease in distance as the number of clusters increases.
For diet estimation applications, partitioning a prey library into more clusters than the number of
fatty acids used to estimate diet may result in estimates that are not unique. In such a case, estimates

14

dimac

of diet composition need to be pooled into a smaller number of "reporting groups" (e.g., Bromaghin

2008; Meynier et al. 2010).
Utility functions called by dimac:

e dist_pairs_map

e dist_sigs_2_mean

References

Bromaghin, J.F. 2008. BELS: Backward elimination locus selection for studies of mixture compo-
sition or individual assignment. Molecular Ecology Resources 8:568-571.

Maechler, M., P. Rousseeuw, A. Struyf, M. Hubert, and K. Hornik. 2016. cluster: cluster analysis
basics and extensions. R package version 2.0.4.

Meynier, L., P.C.H. morel, B.L. Chilvers, D.D.S. Mackenzie, and P. Duignan. 2010. Quantitative
fatty acid signature analysis on New Zealand sea lions: model sensitivity and diet estimates. Journal

of Mammalogy 91:1484-1495.

0.
Q.
0.
0.
0.
0.

30,
29,
35,
37,
35,
35,

0.55,
0.56,
0.50,
0.48,
0.49,
0.45), ncol=6),

id - C(HID_1H, "ID_Z", ”ID_3I, HID_4H’ HID_SN, NID_GH),

Q.
0.
Q.
0.
Q.
0.

30,
29,
35,
37,
35,
35,

matrix(c(1, 3, 5, 2, 4, 6), ncol=2),

0.55,
0.56,
0.50,
0.48,
0.49,
0.45), ncol=6),

id - C(HID_1”’ ”ID_Z”, ”ID_3’, "ID_4”, ”ID_S”, "ID_6"),

30,
29,
35,
37,
35,

matrix(c(1, 3, 5, 2, 4, 6), ncol=2),

0.55,
0.56,
0.50,
0.48,
0.49,

Examples
dimac(sigs = matrix(c(0.05, 0.10,
0.04, 0.11,
0.10, 0.05,
0.12, 0.03,
0.10, 0.06,
0.05, 0.15,
type = c("Type_1", "Type_2", "Type_3"),
loc =
dist_meas =1,
gamma = NA)
dimac(sigs = matrix(c(0.05, 0.10,
0.04, 0.11,
0.10, 0.05,
0.12, 0.03,
0.10, 0.06,
0.05, 0.15,
type = c("Type_1", "Type_2", "Type_3"),
loc =
dist_meas = 2,
gamma = NA)
dimac(sigs = matrix(c(0.05, 0.10,
0.04, 0.11,
0.10, 0.05,
0.12, 0.03,
0.10, 0.06,
0.05, 0.15,

Q.
Q.
0.
Q.
0.
0.

35,

0.45), ncol=6),

id = ¢("ID_1", "ID_2", "ID.3", "ID_4", "ID_5", "ID_6"),
type = c("Type_1", "Type_2", "Type_3"),

loc =
dist_meas = 3,

matrix(c(1, 3, 5, 2, 4, 6), ncol=2),

dist_between_2_sigs 15

gamma = 0.5)
dimac(sigs = matrix(c(0.05, 0.10, .30, 0.55,
0.04, 0.11, 0.29, 0.56,
0.10, 0.05, 0.35, 0.50,
0.12, .03, 0.37, 0.48,
0.10, 0.06, 0.35, 0.49,
0.05, 0.15, 0.35, 0.45), ncol=6),

id = ¢("ID_1", "ID_2", "ID.3", "ID_4", "ID_5", "ID_6"),
type = c("Type_1", "Type_2", "Type_3"),
loc = matrix(c(1, 3, 5, 2, 4, 6), ncol=2))

dist_between_2_sigs Compute the distance between two fatty acid signatures

Description
The utility function dist_between_2_sigs computes the distance between two fatty acid signa-
tures.

Usage

dist_between_2_sigs(sig_1, sig_2, dist_meas = 1, gamma = 1)

Arguments
sig_1, sig_2 Equal-length numeric vectors of fatty acid signature proportions.
dist_meas An integer indicator of the distance measure to compute. Default value 1.
gamma The power parameter of the chi-square distance measure. See Details. Default
value 1.
Value

The selected distance between the two signatures.

Details

This is an internal utility function. The signatures in sig_1 and sig_2 are presumed to be ready
for analysis, which is best accomplished by a call to the function prep_sig. Consequently, to
increase execution speed during simulations, no numeric error checking is performed. Please refer
to documentation for the function prep_sig for additional details.

If the argument dist_meas is not one of the following integers, a value of NA is returned:
* dist_meas == 1 yields the Aitchison distance measure (Stewart et al. 2014). This is the default
value.
* dist_meas == 2 yields the Kullback-Leibler distance measure of Iverson et al. (2004).

* dist_meas == 3 yields the chi-square distance measure (Stewart et al. 2014).

16 dist_pairs_map

The argument gamma is only used if dist_meas == 3 and need not be passed otherwise. If dist_meas
== 3, gamma must be greater than 0 and cannot exceed 1. If dist_meas == 3 and a value for gamma
is not passed, a default value of 1 is used.

References

Iverson, S.J., C. Field, W.D. Bowen, and W. Blanchard. 2004. Quantitative fatty acid signature
analysis: A new method of estimating predator diets. Ecological Monographs 74:211-235.

Stewart, C., S. Iverson, and C. Field. 2014. Testing for a change in diet using fatty acid signatures.
Environmental and Ecological Statistics 21:775-792.

dist_pairs_map Creats a map of the distance between pairs of fatty acid signatures

Description
The utility function dist_pairs_map computes the distance between all possible pairs of fatty acid
signatures within each type of prey or predator.

Usage

dist_pairs_map(sig_data, dist_meas = 1, gamma = 1)

Arguments
sig_data A numeric matrix of fatty acid signatures in column-major format.
dist_meas An integer indicator of the distance measure to compute. Default value 1.
gamma The power parameter of the chi-square distance measure. Default value 1.
Value

A list containing the following elements:

n_sig The number of signatures (columns) in sig_data.
sig_1 The column of sig_data containing one signature.
sig_2 The column of sig_data containing the other signature.

dist The distance between signatures sig_1 and sig_2.

Details

This is an internal utility function. The signature data in sig_data are presumed to be ready for
analysis, which is best accomplished by a call to the function prep_sig. Consequently, to increase
execution speed during simulations, no numeric error checking is performed. Please refer to the
documentation for prep_sig for additional information.

Please refer to the documentation for dist_between_2_sigs for additional information regarding
distance measures.

dist_sigs_2_mean 17

Storing the distances between all possible pairs of fatty acid signatures along with the locations
of each pair requires less memory than a square matrix of all possible pairs, while allowing the
location of the signatures to be easily determined.

Utility functions called by dist_sigs_2_mean:

e dist_between_2_sigs

dist_sigs_2_mean Distance between fatty acid signatures and their mean

Description

The utility function dist_sigs_2_mean computes the summed and mean distance between a col-
lection of fatty acid signatures and their mean signature.

Usage

dist_sigs_2_mean(sig_data, dist_meas = 1, gamma = 1)

Arguments
sig_data A numeric matrix of fatty acid signatures in column-major format.
dist_meas An integer indicator of the distance measure to compute. Default value 1.
gamma The power parameter of the chi-square distance measure. Default value 1.
Value

A list containing the following elements:

dist_sum The summed distance between each signature and the mean signature.

dist_mean The mean distance between each signature and the mean signature.

Details

This is an internal utility function. The signature data in sig_data are presumed to be ready for
analysis, which is best accomplished by a call to the function prep_sig. Consequently, to increase
execution speed during simulations, no numeric error checking is performed. Please refer to the
documentation for prep_sig for additional information.

Please refer to the documentation for dist_between_2_sigs for additional information regarding
distance measures.

Utility functions called by dist_sigs_2_mean:

e dist_between_2_sigs

18 est_diet

dist_sum_pairwise Distance between pairs of fatty acid signatures

Description

The utility function dist_sum_pairwise computes the total distance between all possible pairs of
fatty acid signatures.

Usage

dist_sum_pairwise(sig_data, dist_meas = 1, gamma = 1)

Arguments
sig_data A numeric matrix of fatty acid signatures in column-major format.
dist_meas An integer indicator of the distance measure to compute. Default value 1.
gamma The power parameter of the chi-square distance measure. Default value 1.
Value

The summed distance between all possible pairs of signatures.

Details

dist_sum_pairwise is an internal utility function. The signature data in sig_data are presumed
to be ready for analysis, which is best accomplished by a call to the function prep_sig. Conse-
quently, to increase execution speed during simulations, no numeric error checking of the signatures
is performed. Please refer to documentation for the function prep_sig for information regarding
signature preparation.

Please refer to documentation for the function dist_between_2_sigs for additional information
regarding the arguments dist_meas and gamma.

Utility functions called by dist_sigs_2_mean:

e dist_between_2_sigs

est_diet Estimate predator diet composition

Description

est_diet estimates the diet of one or more predators.

est_diet

Usage

es

t_diet(
pred_sigs,
pred_uniq_types,
pred_loc,
prey_sigs,
prey_uniq_types,
prey_loc,

cc,

space = 1,
dist_meas = 1,
gamma = 1,
ind_boot = 100,
mean_meth = 1,
var_meth = 1,
mean_boot = 100

19

Arguments

pred_sigs

pred_uniq_types

pred_loc

prey_sigs

prey_uniq_types

prey_loc

CcC

space
dist_meas
gamma

ind_boot

A vector or matrix of predator signatures ready for analysis, intended to be the
object sig_scale returned by a call to the function prep_sig with the predator
data frame.

A character vector of the unique predator types, intended to be the object unig_types
returned by a call to the function prep_sig with the predator data frame.

A vector or matrix giving the first and last locations of the signatures of each
predator type within pred_sigs, intended to be the object loc returned by a call
to the function prep_sig with the predator data frame.

A matrix of prey signatures ready for analysis, intended to be the object sig_scale
returned by a call to the function prep_sig with the prey data frame or the object
sig_part returned by make_prey_part.

A character vector of the unique prey types, intended to be the object uniq_types
returned by a call to the function prep_sig with the prey data frame.

A matrix giving the first and last locations of the signatures of each prey type
within prey_sigs, intended to be the object loc returned by a call to the func-
tion prep_sig with the prey data frame.

A vector of calibration coefficients, intended to be a subset of the object cc re-
turned by the function prep_fa or the object cc returned by the function cc_aug.

An integer indicator of the estimation space to be used. Default value 1.
An integer indicator of the distance measure to be used. Default value 1.
The power parameter of the chi-square distance measure. Default value 1.

The number of bootstrap replications to use in the estimation of the variance of
an individual predator’s diet. Default value 100.

20 est_diet
mean_meth An integer indicator of the estimation method for mean diet. Default value 1.
var_meth An integer indicator of the estimation method for the variance of mean diet.

Default value 1 (bootstrap estimator).
mean_boot The number of bootstrap replications to use, needed only if the bootstrap method
of estimating the variance of meat diet is selected (var_meth == 1). Default value
100.
Value

A list containing the following elements:

pred_sigs A numeric matrix of predator signatures, potentially transformed to the prey space.
prey_sigs A numeric matrix of prey signatures, potentially transformed to the predator space.

mean_sigs A numeric matrix of mean prey-type signatures, potentially transformed to the predator
space.

est_ind A numeric matrix of the estimated diet compositions of individual predators.

conv A logical vector indicating whether the optimization function successfully converged.
obj_func A numeric vector of the values of the objective function at each predator’s estimated diet.
mod_sigs A numeric matrix of the modeled signature of each predator at its estimated diet.

var_ind A numeric array containing the estimated variance matrix for the estimated mean diet of
each predator.

est_mean A numeric matrix containing the estimated mean diet of each predator type.

conv_mean A logical vector indicating whether the estimated mean diet of each predator type is
based on at least one diet estimate that converged.

var_mean A numeric array containing the estimated variance matrix for the estimated mean diet
of each predator type.

err_code An integer error code (0 if no error is detected).

err_message A string contains a brief summary of the execution.

Details

est_diet estimates the diet of one or more predators. It implements a variety of estimation op-
tions, and is therefore one of the more complicated functions in gfasar. Please read the following
information and the Diet Estimation section of the vignette for a description of the options.

The objects passed via the arguments pred_sig, pred_uniqg_types, and pred_loc are presumed
to be the objects sig_scale, unig_types, and loc, respectively, returned by a call to the function
prep_sig with the predator data frame.

The objects passed via the arguments prey_sig, prey_uniqg_types, and prey_loc are presumed
to be the objects sig_scale, uniqg_types, and loc, respectively, returned by a call to the function
prep_sig with the prey data frame.

The object passed via the argument cc is presumed to be a subset of the object cc returned by a call
to the function prep_fa with the fatty acid suite data frame. Use the logical vector use returned by
prep_fa to subset the list of all calibration coefficients to the suite to be used for diet estimation.
Alternatively, if signature augmentation is used, pass the object cc returned by the funtion cc_aug.

est_diet 21

Bromaghin et al. (2015) introduced the terms prey space and predator space. These terms refer
to the simplexes in which the prey and predator signatures reside. The spaces differ due to predator
metabolism of ingested prey tissue and the resulting modification of signature proportions. The
calibration coefficients cc provide a one-to-one mapping or transformation between the prey and
predator spaces. Diet estimation can be performed in either space. Iverson et al. (2004) used
calibration coefficients to map predator signatures to the prey space, while Bromaghin et al. (2013)
took the opposite approach and mapped prey signatures to the predator space. Simulation work has
not revealed any strong reason to prefer one space over the other (Bromaghin et al. 2015). However,
be aware that some distance measures will produce different diet estimates in the two spaces. Please
see the vignette for more information.

Estimation space options:

* space == | Estimation in the predator space, the default value.

* space == 2 Estimation in the prey space.

gfasar implements three distance measures that have been used by QFASA practitioners and re-
searchers: Aitchison, Kullback-Leibler, and chi-square. The argument gamma is a parameter of the
chi-square distance measure and its value must be strictly greater than O and less than or equal to 1.
The distance measure options are:

¢ dist_meas == 1 yields the Aitchison distance measure (Stewart et al. 2014). This is the default
value.

* dist_meas == 2 yields the Kullback-Leibler distance measure of Iverson et al. (2004).

* dist_meas == 3 yields the chi-square distance measure (Stewart et al. 2014).

Please refer to the vignette for additional information about distance measures.

The covariance matrix of each estimated diet can be estimated by bootstrap sampling the prey
library. The signatures of each prey type are independently sampled with replacement and the
predator diet is estimated with the bootstrapped library. This is replicated ind_boot times and the
covariance matrix is estimated from the replicated estimates (Beck et al. 2007, Bromaghin et al.
2015). If you do not wish to estimate variances for the individual diet estimates, pass a bootstrap
sample size of 0 via the argument ind_boot.

gfasar implements two methods of estimating the mean diet of each class of predator. The first
is the empirical mean of the estimated diets. In the second method, called the parameterized
mean method, the model is parameterized with a single vector of diet proportions common to all
predators and mean diet is estimated by minimizing the distance between the signature modeled
from the mean diet proportions and each predator’s observed signature, summed over all predators.
The parameterized mean method has not yet been thoroughly tested and its inclusion is intended to
facilitate future research. Our limited and unpublished work with the parameterized mean estimator
suggests it may perform well when predator signatures are homogeneous, but may be more sensitive
to the presence of predators with quite different signatures than the empirical estimator. The options
for mean_meth are:

* mean_meth == 0 skips estimation of mean diet.
* mean_meth == 1 yields the empirical estimate of mean diet. This is the default value.

* mean_meth == 2 yields the parameterized mean estimate of mean diet.

22

est_diet

gfasar implements two methods of estimating the variance of mean diet estimates, the variance
estimator of Beck et al. (2007) and a bootstrap estimator, controlled by the argument var_meth.
The bootstrap estimator draws independent samples of each prey type to form a bootstrap prey
library and a random sample of each predator type, with sample sizes equal to the observed sample
sizes. Mean diet is estimated using the method indicated by mean_meth. The argument mean_boot
controls the number of times this is repeated, and the replications are used to estimate the covariance
matrix for each predator type. Unpublished work suggests that the bootstrap estimator is more
reliable. Note that if using the parameterized-mean estimator for mean diet composition, the Beck
estimator is not appropriate. The options for var_meth are:

» var_meth == 0 skips variance estimation for mean diets.

* var_meth == 1 yields the bootstrap estimator. This is the default value.

» var_meth == 2 yields the Beck et al. (2007) estimator.
NOTE: The numerical optimization and bootstrap sampling performed by est_diet are numeri-
cally intensive and can cause long runs times. Patience is advised! The primary factors causing

slow execution are the number of predator signatures, the number of predator and prey types, and
bootstrap sample sizes.

References

Beck, C.A., S.J. Iverson, W.D. Bowen, and W. Blanchard. 2007. Sex differences in grey seal
diet reflect seasonal variation in foraging behaviour and reproductive espenditure: evidence from
quantitative fatty acid signature analysis. Journal of Animal Ecology 76:490-502.

Bromaghin, J.F., M.M. Lance, E.W. Elliott, S.J. Jeffries, A. Acevedo-Gutierrez, and J.M. Kennish.
2013. New insights into the diets of harbor seals (Phoca vitulina) in the Salish Sea revealed by
analysis of fatty acid signatures. Fishery Bulletin 111:13-26.

Bromaghin, J.F.,, K.D. Rode, S.M. Budge, and G.W. Thiemann. 2015. Distance measures and
optimization spaces in quantitative fatty acid signature analysis. Ecology and Evolution 5:1249-
1262.

Iverson, S.J., C. Field, W.D. Bowen, and W. Blanchard. 2004. Quantitative fatty acid signature
analysis: A new method of estimating predator diets. Ecological Monographs 74:211-235.

Stewart, C., S. Iverson, and C. Field. 2014. Testing for a change in diet using fatty acid signatures.
Environmental and Ecological Statistics 21:775-792.

Examples

est_diet(pred_sigs = matrix(c(@.05, 0.10, 0.30, 0.55,
0.04, 9.11, 0.29, 0.56,
0.10, 0.06, 0.35, 0.49,
0.05, 0.15, 0.35, 0.45), ncol=4),
pred_uniqg_types = c("Pred_1", "Pred_2"),
pred_loc = matrix(c(1, 3, 2, 4), ncol=2),

prey_sigs = matrix(c(@.06, 0.09, 0.31, 0.54,
0.95, 0.09, 0.30, 0.56,
0.03, 0.10, 0.30, 0.57,
0.08, 0.07, 0.30, 0.55,
0.99, 0.05, 0.33, 0.53,
0.09, 0.06, 0.34, 0.51,

find_boot_ss 23

0.09, 0.07, 0.34, 0.50,

0.08, 0.11, 0.35, 0.46,

0.06, 0.14, 0.36, 0.44), ncol=9),
prey_unig_types = c("Prey_1", "Prey_2", "Prey_3"),
prey_loc = matrix(c(1, 4, 7, 3, 6, 9), ncol=2),
cc = c(0.75, 1.00, 1.50, 1.15),
space = 1, dist_meas = 1, ind_boot = 2,
mean_meth = @)

find_boot_ss Find realistic bootstrap sample sizes

Description

In QFASA simulation studies, predator signatures are often simulated by bootstrap resampling prey
signature data. find_boot_ss finds bootstrap sample sizes for each prey type that produce simu-
lated predator signatures with realistic levels of variation.

Usage

find_boot_ss(pred_sigs, pred_diets, prey_sigs, prey_loc, n_pred_boot = 1000)

Arguments
pred_sigs A vector or matrix of predator signatures, intended to be the object pred_sigs
returned by a call to the function est_diet.
pred_diets A numeric matrix of the estimated diet compositions of individual predators,
intended to be the object est_ind returned by a call to est_diet.
prey_sigs A matrix of prey signatures, intended to be the object prey_sigs returned by a
call to the function est_diet.
prey_loc A matrix giving the first and last locations of the signatures of each prey type
within prey_sigs, intended to be the object loc returned by a call to the func-
tion prep_sig with the prey data frame, or by a call to the function make_prey_part
if a partitioned prey library was used for diet estimation.
n_pred_boot An integer designating the number of predator signatures to bootstrap. See De-
tails. Default value 1000.
Value

A list containing the following elements:
var_diet A numeric vector of the variance between the estimated diets of all possible pairs of
predators, sorted in increasing order.

var_sig A numeric vector of the variance between the signatures of all possible pairs of predators,
sorted consistently with var_diet.

var_sig_smooth A loess-smoothed version of var_sig.

24

find_boot_ss

mod_sig_var A numeric vector of the modeled variance between bootstrapped predator signatures
at each iteration of the algorithm.

var_target The target level of variance between bootstrapped predator signatures.
boot_ss An integer vector of bootstrap sample sizes for each prey type.
err_code An integer error code (0 if no error is detected).

err_message A string containing a brief summary of the results.

Details

QFASA simulation studies may require the generation of predator signatures given a specified diet,
against which estimates of diet composition can then be compared (e.g., Bromaghin et al. 2015).
Given a specified diet, a bootstrap sample of each prey type is drawn and mean prey-type signatures
are computed. A predator signature is then generated by multiplying the mean bootstrapped prey
signatures by the diet proportions.

Although authors often fail to report the bootstrap sample sizes used for each prey type when de-
scribing simulations (e.g., Haynes et al. 2015; Thiemann et al. 2008; Wang et al. 2010), they are
subjectively selected (e.g., Iverson et al. 2004; Bromaghin et al. 2015). However, Bromaghin et al.
(2016) found that bootstrap sample sizes strongly influence both the bias and the variance of diet
composition estimates in simulation studies. Consequently, the selection of bootstrap sample sizes
is an important aspect of simulation design.

Bromaghin (2015) presented an objective method of establishing a bootstrap sample size for each
prey type that produces simulated predator signatures having a realistic level of between-signature
variation. The function find_boot_ss implements the algorithm of Bromaghin (2015). A brief
summary of the algorithm, sufficient to understand the objects returned by find_boot_ss, follows
below. Please refer to Bromaghin (2015) for additional details.

The concept underlying the algorithm is that the variation in predator signatures can be partitioned
into variation due to differences in diet and variation due to prey animals consumed given diet.
Consequently, a realistic level of variation between signatures for predators sharing the same diet
is approximated from the empirical relationship between a measure of variation between pairs of
predator signatures var_sig and a measure of variation between the estimated diets var_diets
of the same predator pairs. As the variance in diets approaches zero, the predators are effectively
eating the same diet and variation in their signatures therefore approaches the level of variation
due to prey selection only. find_boot_ss models the relationship between var_diet and var_sig
using a loess smooth, and the modeled signature variance var_sig_smooth for the pair of predators
whose value of var_diet is smallest is taken as the target level of variation for predator signatures.

The algorithm is initialized with a sample size of 1 from each prey type. A sample of n_pred_boot
predator signatures is generated using those sample sizes and the measure of variance among the
signatures is computed. If the variance measure exceeds the target level, the prey type contributing
most to the variance measure is identified and its sample size is increased by 1. The algorithm then
iterates, increasing the sample size by one at each iteration, until the measure of variation is less
than the target level. The level of variation at each iteration and the target level of variation are
returned in the objects mod_sig_var and var_terget, respectively.

The argument n_boot_pred should be large enough to return an estimate of the variance measure
that itself has low variance, so that the algorithm returns numerically stable results. We suspect that
the default value of 1000 errs on the side of caution.

find_boot_ss 25

NOTE: Because find_boot_ss is intended to operate on the predator and prey signatures returned
by a call to the function est_diet, find_boot_ss can be based on diet estimates obtained in either
the predator or prey space, using an original or partitioned prey library. However, it is imperative
that the arguments are compatible.

References

Bromaghin, J.F. 2015. Simulating realistic predator signatures in quantitative fatty acid signature
analysis. Ecological Informatics 30:68-71.

Bromaghin, J.F., S.M. Budge, and G.W. Thiemann. 2016. Should fatty acid signature proportions
sum to 1 for diet estimation? Ecological Research 31:597-606.
Bromaghin, J.F., K.D. Rode, S.M. Budge, and G.W. Thiemann. 2015. Distance measures and

optimization spaces in quantitative fatty acid signature analysis. Ecology and Evolution 5:1249-
1262.

Haynes, T.B., J.A. Schmutz, J.F. Bromaghin, S.J. Iverson, V.M. Padula, and A.E. Rosenberger.
2015. Diet of yellow-billed loons (Gavia adamsii) in Arctic lakes during the nesting season inferred
from fatty acid analysis. Polar Biology 38:1239-1247.

Iverson, S.J., C. Field, W.D. Bowen, and W. Blanchard. 2004. Quantitative fatty acid signature
analysis: A new method of estimating predator diets. Ecological Monographs 74:211-235.

Thiemann, G.W., S.J. Iverson, and I. Stirling. 2008. Polar bear diets and Arctic marine food webs:
insights from fatty acid analysis. Ecological Monographs 78:591-613.

Wang, S.W., T.E. Hollmen, and S.J. Iverson. 2010. Validating quantitative fatty acid signature anal-
ysis to estimate diets of spectacled and Stellers eiders (Somateria fischeri and Polysticta stelleri).
Journal of Comparative Physiology B 180:125-139.

Examples

find_boot_ss(pred_sigs = matrix(c(0.05, 0.10, 0.30, 0.55,
0.04, 0.11, 0.29, 0.56,
0.19, 0.05, 0.35, 0.50,
0.12, 0.03, 0.37, 0.48,
0.10, 0.06, 0.35, 0.49,
0.05, 0.15, 0.35, 0.45), ncol = 6),

pred_diets = matrix(c(@.33, 0.34, 0.33,

0.10, 0.80, 0.10,
0.35, 0.50, 0.15,
0.20, 0.35, 0.45,
0.20, 0.45, 0.35,
0.15, ©.65, 0.20), ncol = 6),

prey_sigs = matrix(c(0.06, .09, 0.31, 0.54,
0.05, 0.09, 0.30, 0.56,
0.93, 0.10, 0.30, 0.57,
0.08, 0.07, 0.30, 0.55,
0.09, 0.05, 0.33, 0.53,
0.09, 0.06, 0.34, 0.51,
0.09, 0.07, 0.34, 0.50,
0.08, 0.11, 0.35, 0.46,
0.06, 0.14, ©.36, 0.44), ncol = 9),

prey_loc = matrix(c(1, 4, 7, 3, 6, 9), ncol=2),

26 gof
n_pred_boot = 500)
find_boot_ss(pred_sigs = matrix(c(0.05, 0.10, 0.30, 0.55,
0.04, 0.11, 0.29, 0.56,
0.10, 0.05, 0.35, 0.50,
0.12, 0.03, 0.37, 0.48,
0.10, 0.06, 0.35, 0.49,
0.05, .15, 0.35, 0.45), ncol = 6),
pred_diets = matrix(c(@.33, 0.34, 0.33,
0.10, 0.80, 0.10,
9.35, 0.50, 0.15,
0.20, 0.35, 0.45,
0.20, 0.45, 0.35,
0.15, ©.65, 0.20), ncol = 6),
prey_sigs = matrix(c(0.06, 0.09, 0.31, 0.54,
0.05, 0.09, 0.30, 0.56,
0.03, 0.10, 0.30, 0.57,
0.08, 0.07, 0.30, 0.55,
0.09, 0.05, 0.33, 0.53,
0.09, 0.06, 0.34, 0.51,
0.09, 0.07, 0.34, 0.50,
0.08, 0.11, 0.35, 0.46,
0.06, 0.14, 0.36, 0.44), ncol = 9),
prey_loc = matrix(c(1, 4, 7, 3, 6, 9), ncol=2))
gof Goodness-of-fit for modeled predator signatures
Description
The function gof uses estimated diet compositions and bootstrap resampling of the prey library to
construct a statistic that may conservatively indicate predator fatty acid signatures that were not
accurately modeled during diet estimation.
Usage
gof(
prey_sigs,
prey_loc,
mean_sigs,
diet_est,
conv,
obj_func,
dist_meas = 1,
gamma = 1,
boot_gof = 500

gof 27

Arguments

prey_sigs A matrix of prey signatures in the optimization space used for diet estimation.
Intended to be the object prey_sigs returned by the function est_diet.

prey_loc A matrix giving the first and last locations of the signatures of each prey type
within prey_sigs. Intended to be the object loc returned by the function
prep_sigif diets were estimated using an unpartitioned prey library or make_prey_part
if diets were estimated using a partitioned library.

mean_sigs A numeric matrix of mean prey-type signatures in the optimization space used
for diet estimation. Intended to be the object mean_sigs returned by the function
est_diet.

diet_est A numeric matrix of estimated diet compositions. Intended to be the object
est_ind returned by the function est_diet.

conv A logical vector indicating whether the optimization function successfully con-
verged during diet estimation. Intended to be the object conv returned by the
function est_diet.

obj_func A numeric vector of the value of the minimized objective function for each
predator. Intended to be the object obj_func returned by the function est_diet.

dist_meas An integer indicator of the distance measure used for diet estimation. Default
value 1.

gamma The power parameter of the chi-square distance measure. Default value 1.

boot_gof The number of bootstrap replications to use. Default value 500.

Value

A list containing the following elements:

gof_ss The number of diet estimates that converged for each predator, therefore producing a simu-
lated value of the objective function.

p_val The proportion of the simulated objective function values that exceeded the value produced
during diet estimation.

err_code An integer error code (0 if no error is detected).

err_message A string contains a brief summary of the execution.

Details

Diet estimation involves modeling an observed predator fatty acid signature as a mixture of prey
signatures. However, methods to assess how well predator signatures are modeled have received
little attention in the literature (but see Bromaghin et al. 2015).

One byproduct of diet estimation is the value of the distance measure that is minimized during diet
estimation (est_diet), called the objective function. If a predator signature is accurately modeled,
the value of the objective function will be relatively small. Conversely, the more poorly the signature
is approximated, the larger the objective function will tend to be. However, what value of the
objective function to use as a warning flag for a potentially poor fit is not clear.

The function gof represents one attempt to answer this question. The algorithm is based on the
following logic. First, we assume that a predator consumes the mixture of prey specified by its

28

gof

estimated diet composition. Given that assumption, the expected value of the objective function is,
in a sense, fixed (Bromaghin 2015). Large values of the objective function are then most likely to
occur when variation in a predator signature, which results from the selection of individual prey
within prey types, is maximized. Within the framework of simulating predator signatures, variation
in the signatures is maximized when the bootstrap sample sizes of the prey signatures used to
construct a predator signature are minimized (Bromaghin et al. 2016).

Implementing the above logic, gof randomly samples a single prey signature from each prey type
and weights the resulting signatures with a predator’s estimated diet composition to construct a
modeled signature. The modeled signature is then used to estimate diet. If the optimization func-
tion converges, the value of the objective function obtained with the modeled signature is compared
to the value of the objective function obtained while estimating diet with the observed signature
(argument obj_func. This is repeated boot_gof times and the proportion of the simulated objec-
tive function values that exceed the observed objective function value is computed. gof therefore
constructs a statistic similar to a p-value, with small values being suggestive of a predator signature
that was not closely approximated during diet estimation.

NOTE: the method implemented in gof is at this point only an idea whose performance has not
been explored. It has been included in gfasar to support future research on this topic.

References

Bromaghin, J.F. 2015. Simulating realistic predator signatures in quantitative fatty acid signature
analysis. Ecological Informatics 30:68-71.

Bromaghin, J.F., S.M. Budge, and G.W. Thiemann. 2016. Should fatty acid signature proportions
sum to 1 for diet estimation? Ecological Research 31:597-606.

Bromaghin, J.F., K.D. Rode, S.M. Budge, and G.W. Thiemann. 2015. Distance measures and
optimization spaces in quantitative fatty acid signature analysis. Ecology and Evolution 5:1249-
1262.

Examples

gof (prey_sigs = matrix(c(0.06, 0.09, 0.31, 0.54,
0.05, 0.09, 0.30, 0.56,
0.03, 0.10, 0.30, 0.57,
0.08, 0.07, 0.30, 0.55,
0.09, 0.05, 0.33, 0.53,
0.09, 0.06, 0.34, 0.51,
0.09, 0.07, 0.34, 0.50,
0.08, 0.11, 0.35, 0.46,
0.06, 0.14, 0.36, 0.44), ncol = 9),

prey_loc = matrix(c(1, 4, 7, 3, 6, 9), ncol=2),
mean_sigs = matrix(c(0.047, 0.093, 0.303, 0.557,
0.087, 0.050, 0.323, 0.530,
0.077, ©0.106, ©.350, 0.467), ncol = 3),
diet_est = matrix(c(@.394, 0.356, 0.250,
0.336, 0.365, 0.299), ncol = 2),
conv = c(TRUE, TRUE),
obj_func = ¢c(1.13, 2.24),
dist_meas = 1,
boot_gof = 10)

Iopo

29

lopo

Leave-one-prey-out analysis

Description

The function lopo evaluates the distinctiveness of a prey library by performing a leave-one-prey-out

analysis.

Usage

lopo(sigs, type, unig_types, type_ss, loc, dist_meas = 1, gamma = 1)

Arguments
sigs
type
unig_types
type_ss

loc

dist_meas

gamma

Value

A numeric matrix of fatty acid signatures in column-major format.
A character vector of prey or predator type names.

A character vector of the unique types, sorted alphanumerically.
The number of signatures (sample size) for each unique type.

A numeric matrix specifying the location of signatures within sigs for each
unig_types.

A integer indicator of the distance measure to use. Default value 1.

The power parameter of the chi-square distance measure. Default value 1.

A list containing the following elements:

est A square matrix containing the mean distribution of estimates among all prey types, by prey-

type.

mean_correct The mean proportion correctly estimated across prey types, unweighted by prey-
type sample sizes.

total_correct The proportion of all signatures correctly estimated.

n_conv An integer vector containing the number of estimates that converged.

err_code An integer error code (0 if no error is detected).

err_message A string containing a brief summary of the results.

30 lopo

Details

The object passed as the argument sigs is intended to be the signature object returned by sig_scale
or, if the prey library has been partitioned, by make_prey_part.

The objects passed as the arguments type, uniq_types, type_ss, and loc are intended to be
the corresponding objects returned by prep_sig or, if the prey library has been partitioned, by
make_prey_part.

The arguments dist_meas and gamma must be compatible with the function dist_between_2_sigs.

lopo performs a leave-one-prey-out analysis with a prey library and defined prey types (Bromaghin
et al. 2016b). Each signature is temporarily removed from the library, the mean prey-type signa-
ture is recomputed, and the "diet" of the removed signature is estimated, after which the removed
signature is returned to the library. This is done for each signature in turn. The mean estimate
for each prey type is returned as a row of est. Perfect estimation would result in the square ma-
trix est having 1.0 along its diagonal and 0.0 in all off-diagonal positions. Large off-diagonal
elements are indicative of confounding, or similarity, between the corresponding prey types. The
returned object mean_correct is the mean of the diagonal elements of est, while the returned
object total_correct is the mean computed over all signatures in the prey library.

Note: the statistics are computed based on the estimates that successfully converge (n_conv) and
prey types that only have a sample size of 1 are skipped.

Because of the numerical optimization involved in a leave-one-prey-out analysis, lopo can take a
few minutes to run with a large prey library.

The statistics computed by lopo are one measure of the distinctiveness of prey types within a prey
library. However, it is important to be aware that such statistics are not necessarily informative
of the ability of QFASA to accurately estimate predator diets, as Bromaghin et al. (2015, 2016a,
2016b) found that QFASA performance depends strongly on the interaction between characteristics
of a prey library, the specific diet of a predator, and the accuracy of the calibration coefficients.
Consequently, the user is warned not to misinterpret or misrepresent these statistics.

References

Bromaghin, J.F., S.M. Budge, and G.W. Thiemann. 2016b. Should fatty acid signature proportions
sum to 1 for diet estimation? Ecological Research 31:597-606.

Bromaghin, J.F., S.M. Budge, G.W. Thiemann, and K.D. Rode. 2016b. Assessing the robustness
of quantitative fatty acid signature analysis to assumption violations. Methods in Ecology and
Evolution 7:51-59.

Bromaghin, J.F., K.D. Rode, S.M. Budge, and G.W. Thiemann. 2015. Distance measures and
optimization spaces in quantitative fatty acid signature analysis. Ecology and Evolution 5:1249-
1262.

Examples
lopo(sigs = matrix(c(@.05, ©.10, 0.30, 0.55,
0.94, 0.11, 0.29, 0.56,
0.10, 0.05, 0.35, 0.50,
0.12, 0.03, 0.37, 0.48,
0.10, 0.06, ©.35, 0.49,
0.05, 0.15, 0.35, 0.45), ncol=6),

Iopo

type = c("Type_1", "Type_1", "Type_2", "Type_2", "Type_3",
uniqg_types = c("Type_1", "Type_2", "Type_3"),

type_ss <- c(2, 2, 2),

loc = matrix(c(1, 3, 5, 2, 4, 6), ncol=2),

dist_meas = 1)

lopo(sigs = matrix(c(0.05, ©.10, 0.30, 0.55,
0.04, 0.11, 0.29, 0.56,
0.19, 0.05, 0.35, 0.50,
0.12, 0.03, 0.37, 0.48,
0.10, 0.06, ©.35, 0.49,
0.05, 0.15, 0.35, 0.45), ncol=6),

type = c("Type_1", "Type_1", "Type_2", "Type_2", "Type_3",
uniq_types = c("Type_1", "Type_2", "Type_3"),

type_ss <- c(2, 2, 2),

loc = matrix(c(1, 3, 5, 2, 4, 6), ncol=2),

dist_meas = 2)

lopo(sigs = matrix(c(@.05, ©.10, 0.30, 0.55,
0.04, 0.11, 0.29, 0.56,
0.10, 0.05, 0.35, 0.50,
0.12, 0.03, 0.37, 0.48,
0.10, 0.06, 0.35, 0.49,
0.05, 0.15, 0.35, 0.45), ncol=6),

type = c("Type_1", "Type_1", "Type_2", "Type_2", "Type_3",
unig_types = c("Type_1", "Type_2", "Type_3"),

type_ss <- c(2, 2, 2),

loc = matrix(c(1, 3, 5, 2, 4, 6), ncol=2),

dist_meas = 3,

gamma = @.25)
lopo(sigs = matrix(c(0.05, ©0.10, 0.30, 0.55,
0.04, 0.11, 0.29, 0.56,
0.10, 0.05, 0.35, 0.50,
0.12, 0.03, 0.37, 0.48,
0.10, 0.06, 0.35, 0.49,
0.05, 0.15, 0.35, 0.45), ncol=6),

type = c("Type_1", "Type_1", "Type_2", "Type_2", "Type_3",
unig_types = c("Type_1", "Type_2", "Type_3"),

type_ss <- c(2, 2, 2),

loc = matrix(c(1, 3, 5, 2, 4, 6), ncol=2),

dist_meas = 3)

lopo(sigs = matrix(c(0.05, ©.10, 0.30, 0.55,
0.04, 0.11, 0.29, 0.56,
0.10, 0.05, 0.35, 0.50,
0.12, 0.03, 0.37, 0.48,
0.10, 0.06, 0.35, 0.49,
0.05, 0.15, 0.35, 0.45), ncol=6),

type = c("Type_1", "Type_1", "Type_2", "Type_2", "Type_3",
uniq_types = c("Type_1", "Type_2", "Type_3"),

type_ss <- c(2, 2, 2),

loc = matrix(c(1, 3, 5, 2, 4, 6), ncol=2))

31

"Type_3”) ,

"Type_3") ,

"Type_3") ,

"Type_3"),

"Type_3"),

32 Iopo_pool

lopo_pool Pool lopo results to original prey types

Description

If 1opo is used to perform a leave-one-prey-out analysis with a partitioned prey library (make_prey_part),
lopo_pool pools the partitioned results back to the original unpartitioned prey types.

Usage

lopo_pool(est, n_conv, type_ss, pre, post)

Arguments
est The estimation matrix of a leave-one-prey-out analysis performed by the func-
tion lopo, returned as the est object.
n_conv An integer vector denoting the number of signature estimates in the partitioned
prey types that converged, returned by a call to lopo as the n_conv object.
type_ss An integer vector with the number of signatures (sample size) in each of the
partitioned prey types, returned by a call to make_prey_part as the type_ss
object.
pre The pre-multiplication matrix returned by a call to make_prey_part as the
pool_pre object.
post The post-multiplication matrix returned by a call to make_prey_part as the
pool_post object.
Value

A list containing the following elements, all of which are organized on the basis of the original
unpartitioned prey types:

est A square matrix containing the mean distribution of leave-one-prey-out estimates among all
prey types.

mean_correct The mean proportion correctly estimated across prey types, unweighted by prey-
type sample sizes.

total_correct The proportion of all signatures correctly estimated.
n_conv An integer vector containing the number of estimates that converged.
err_code An integer error code (0 if no error is detected).

err_message A string containing a brief summary of the results.

make_diet_grid 33

Details

The statistics computed by lopo and 1opo_pool are one measure of the distinctiveness of prey types
within a prey library. However, it is important to be aware that such statistics are not necessarily
informative of the ability of QFASA to accurately estimate predator diets, as Bromaghin et al.
(2015, 20164, 2016b) found that QFASA performance depends strongly on the interaction between
characteristics of a prey library, the specific diet of a predator, and the accuracy of the calibration
coefficients. Consequently, the user is warned not to misinterpret or misrepresent these statistics.

References

Bromaghin, J.F., S.M. Budge, and G.W. Thiemann. 2016b. Should fatty acid signature proportions
sum to 1 for diet estimation? Ecological Research 31:597-606.

Bromaghin, J.F., S.M. Budge, G.W. Thiemann, and K.D. Rode. 2016a. Assessing the robustness
of quantitative fatty acid signature analysis to assumption violations. Methods in Ecology and
Evolution 7:51-59.

Bromaghin, J.F., K.D. Rode, S.M. Budge, and G.W. Thiemann. 2015. Distance measures and
optimization spaces in quantitative fatty acid signature analysis. Ecology and Evolution 5:1249-
1262.

Examples

lopo_pool(est = matrix(c(0.90, 0.05, 0.30, 0.02,
0.04, 0.84, 0.09, 0.03,
0.92, 0.06, 0.35, 0.57,
0.05, 0.10, 0.15, 0.70), nrow = 4, byrow = TRUE),
n_conv = c(2, 8, 8, 11),
type_ss = c(2, 8, 8, 12),
pre = matrix(c(0.2, 0.8, 0.0, 0.0,
0.0, 0.0, 0.4, 0.6), nrow = 2, byrow = TRUE),
post = matrix(c(1, 1, 0, 0,
0, 0, 1, 1), ncol = 2)
)

make_diet_grid Generate a regular grid of diet compositions

Description
The function make_diet_grid generates a systematic grid of regularly-spaced diet compositions
with a user-specified resolution.

Usage

make_diet_grid(uniq_types, inv_inc)

34

make_diet_grid

Arguments

uniq_types A factor of unique prey-type names.

inv_inc The integer inverse of the resolution between consecutive diet compositions.
Value

A list containing the following elements:

diet_grid A numeric matrix of grid diet compositions, in column-major format.
err_code An integer error code (0 if no error is detected).

err_message A string contains a brief summary of the execution.

Details

The function make_diet_grid generates a systematic grid of regularly-spaced diet compositions
throughout the space of all possible diets for a given number of prey types. Such a diet composition
grid may be useful in some simulation studies of estimator performance (e.g., Bromaghin et al.
2016). Given a diet composition, predator fatty acid signatures can be generated using the function
make_pred_sigs. The diets of such simulated predators can then be estimated, and the resulting
estimates can be compared to the known diet composition to evaluate bias, variance, and perhaps
other properties.

The algorithm starts with a diet proportion of 1.0 assigned to the first prey type, and therefore 0.0
for the other prey types. The algorithm then begins an iterative loop in which an increment of diet
proportion is repeatedly shifted to the other prey types, stopping when the last prey type has a diet
proportion of 1.0. The user controls the resolution of the grid by specifying the integer inverse of the
desired diet increment. For example, an inverse increment of 10 would produce diet compositions
with proportions shifted by an increment of 0.1. See Bromaghin et al. (2016) for a small example
with three prey types and a diet increment of 0.25. However, note that unlike Bromaghin et al.
(2016), make_diet_grid retains diet compositions comprised of a single prey type.

It is critical that the prey-type names match those in the prey library. The easiest way to ensure this
happens is to pass the object unig_types returned a call to the function prep_sig as the uniq_types
argument. Alternatively, and more risky, a vector of unique prey names can be created using the
concatenate function and cast as a factor, i.e., uniq_types <- as.factor(c("Prey_1", "Prey_2", ..,
"Prey_P)).

NOTE: The number of possible diets grows quickly as the number of prey types increases and the
diet increment decreases, and may exceed memory limits.

References

Bromaghin, J.F., S.M. Budge, and G.W. Thiemann. 2016. Should fatty acid signature proportions
sum to 1 for diet estimation? Ecological Research 31:597-606.

Examples

make_diet_grid(unig_types = as.factor(c("Bearded”,
"Beluga”,
"Bowhead”,
"Ribbon",

make_diet_rand 35

"Ringed",
"Spotted”,
"Walrus")),
inv_inc = 10)
make_diet_rand Generate random diet compositions

Description

The function make_diet_rand generates a user-specified number of random diet compositions.

Usage

make_diet_rand(uniqg_types, n_diet)

Arguments

unig_types A factor of unique prey-type names.

n_diet The integer number of diet compositions to generate.
Value

A list containing the following elements:

diet_rand A numeric matrix of random diet compositions, in column-major format.
err_code An integer error code (0 if no error is detected).

err_message A string contains a brief summary of the execution.

Details

The function make_diet_rand generates a specified number of random diet compositions to support
simulation-based research of the performance of QFASA diet estimation procedures. Given a diet
composition, predator fatty acid signatures can be generated using the function make_pred_sigs.
The diets of such simulated predators can then be estimated, and the diet estimates can be compared
to the known diet composition to evaluate bias, variance, and perhaps other properties.

The algorithm starts by generating a uniformly distributed random number between 0 and 1 as the
diet proportion for the first prey type. The algorithm then considers each additional prey type in
turn, generating a uniform random number between zero and 1 minus the sum of the proportions
assigned to the preceding prey types. The diet proportion for the last prey type is 1 minus the sum
of the other diet proportions. As a hedge against limitations in the random number generator, the
proportions are then randomly ordered among prey types.

It is critical that the prey-type names match those in the prey library. The easiest way to ensure this
happens is to pass the object uniqg_types returned a call to the function prep_sig as the uniq_types
argument. Alternatively, and more risky, a vector of unique prey names can be created using the
concatenate function and cast as a factor, i.e., uniq_types <- as.factor(c("Prey_1", "Prey_2", ...,
"Prey_P)).

36 make_ghost

Examples

make_diet_rand(unig_types = as.factor(c("Bearded”,
"Beluga",
"Bowhead",
"Ribbon",
"Ringed"”,
"Spotted”,
"Walrus")),

n_diet = 100)

make_ghost Make a ghost prey signature

Description

Bromaghin et al (2016) studied the performance of QFASA estimators when predators consumed a
prey type that was not represented in the prey library, termed a ghost prey. make_ghost constructs
a signature for a ghost prey type.

Usage

make_ghost(prey_sigs, loc, ghost_err = 0.25, dist_meas = 1, gamma = 1)

Arguments
prey_sigs A matrix of prey signatures ready for analysis, intended to be the object sig_scale
returned by a call to the function prep_sig with the prey data frame or the object
sig_part returned by make_prey_part.
loc A matrix giving the first and last locations of the signatures of each prey type
within prey_sigs, intended to be the object loc returned by a call to the func-
tion prep_sig with the prey data frame or the object 1oc returned by make_prey_part.
ghost_err A proportion strictly greater than 0 and less than 1 used to control the lower and
upper bounds of ghost prey signature proportions. Default value 0.25.
dist_meas An integer indicator of the distance measure to be used. Default value 1.
gamma The power parameter of the chi-square distance measure. Default value 1.
Value

A list containing the following elements:

sig A numeric vector containing the ghost prey signature.
dist Summed distance between the ghost signature and the mean prey signatures.
err_code An integer error code (0 if no error is detected).

err_message A string contains a brief summary of the execution.

make_ghost 37

Details

One of the major assumptions of QFASA is that the prey library contains representatives of all prey
types consumed by a predator. Bromaghin et al. (2016) investigated the robustness of diet estimators
to violations of this assumption. The function make_ghost constructs a ghost prey signature using
the methods of Bromaghin et al. (2016).

The ghost prey signature is constructed by maximizing the summed distance between the ghost
prey signature and the mean prey signatures, while constraining the ghost signature proportions
within reasonable bounds to ensure that the signature is somewhat realistic for the prey library. The
definition of reasonable bounds is embodied in the argument ghost_err. ghost_err is a proportion
greater than or equal to zero and less than 1 that is used to construct lower and upper bounds of the
signature proportions. The lower bound is obtained by multiplying 1 - ghost_err by the minimum
mean prey proportion for each fatty acid. Similarly, the upper bound is obtained by multiplying 1
+ ghost_err by the maximum mean prey proportion for each fatty acid. The ghost prey signature
is then obtained by maximizing the summed distance between the signature and the mean prey
signatures, constraining the signature to lie within the bounds and sum to 1. See est_diet for
information regarding distance measures.

This method ensures that the ghost prey signature is somewhat distinct from the other prey types,
but not so wildly different that it represents a completely different pattern from the other prey
types. Although research into suitable values for ghost_err has not been conducted, it is probably
advisable to use small to moderate values. Bromaghin et al. (2016) used a value of 0.25. As the
value of ghost_err is increased, the resulting signature will tend to become increasing different
from any prey type in the library.

References

Bromaghin, J.F., S.M. Budge, G.W. Thiemann, and K.D. Rode. 2016. Assessing the robustness
of quantitative fatty acid signature analysis to assumption violations. Methods in Ecology and
Evolution 7:51-59.

Examples
make_ghost(prey_sigs = matrix(c(0.05, 0.10, 0.30, 0.55,
0.04, 0.11, 0.29, 0.56,
0.10, 0.05, 0.35, 0.50,
0.12, 0.03, 0.37, 0.48,
0.10, .06, 0.35, 0.49,
0.05, 0.15, 0.35, 0.45), ncol=6),

loc = matrix(c(1, 3, 5, 2, 4, 6), ncol=2),
ghost_err = 0.15,
dist_meas = 1,

gamma = NA)
make_ghost(prey_sigs = matrix(c(0.05, 0.10, .30, 0.55,
0.04, 0.11, 0.29, 0.56,
0.10, 0.05, 0.35, 0.50,
0.12, 0.03, 0.37, 0.48,
0.10, 0.06, 0.35, 0.49,
0.05, 0.15, 0.35, 0.45), ncol=6),

loc = matrix(c(1, 3, 5, 2, 4, 6), ncol=2))

38 make_pred_sigs

make_pred_sigs Simulate predator signatures

Description

make_pred_sigs generates predator signatures based on a specified predator diet composition and
bootstrap sampling signatures from a prey library.

Usage

make_pred_sigs(prey_sigs, prey_loc, cc, diet, prey_ss, n_pred)

Arguments
prey_sigs A matrix of prey signatures in the prey space, intended to be the object sig_scale
returned by a call to the function prep_sig, or the object sig_part returned by
a call to the function make_prey_part.
prey_loc A matrix giving the first and last locations of the signatures of each prey type
within prey_sigs, intended to be the object loc returned by a call to one of the
functions prep_sig or make_prey_part.
cc A numeric vector containing the calibration coefficients.
diet A numeric vector specifying the predator diet composition as proportions.
prey_ss An integer vector specifying the bootstrap sample size to use for each prey type.
n_pred An integer specifying the number of predator signatures to generate.
Value

A list containing the following elements:

sim_pred_sigs A numeric matrix containing simulated predator signatures in the predator space.
err_code An integer error code (0 if no error is detected).

err_message A string containing a brief summary of the results.

Details

QFASA simulation studies often require the generation of predator signatures given a specified diet,
against which subsequent estimates of diet composition can then be compared (e.g., Bromaghin et
al. 2016). Given a specified diet, a bootstrap sample of each prey type is drawn and mean prey-
type signatures are computed. A predator signature is then generated by multiplying the mean
bootstrapped prey signatures by the diet proportions. Finally, the calibration coefficients are then
used to transform the predator signatures to the predator space (Bromaghin et al. 2015).

make_prey_part 39

References

Bromaghin, J.F., S.M. Budge, and G.W. Thiemann. 2016. Should fatty acid signature proportions
sum to 1 for diet estimation? Ecological Research 31:597-606.

Bromaghin, J.F., K.D. Rode, S.M. Budge, and G.W. Thiemann. 2015. Distance measures and
optimization spaces in quantitative fatty acid signature analysis. Ecology and Evolution 5:1249-
1262.

Examples

make_pred_sigs(prey_sigs = matrix(c(0.06, 0.09, 0.31, 0.54,

0.05, 0.09, 0.30, 0.56,
0.03, 0.10, 0.30, 0.57,
0.08, 0.07, 0.30, 0.55,
0.09, 0.05, 0.33, 0.53,
0.09, 0.06, 0.34, 0.51,
0.09, 0.07, 0.34, .50,
0.08, 0.11, 0.35, 0.46,
0.06, 0.14, 0.36, 0.44), ncol = 9),

prey_loc = matrix(c(1, 4, 7, 3, 6, 9), ncol=2),
cc = c(0.75, 1.05, @.55, 1.75),

diet = ¢(0.25, 0.25, 0.50),

prey_ss = c(5, 3, 7),

n_pred = 50)

make_prey_part Make prey partition

Description
The function make_prey_part partitions a prey library into clusters based on user specifications
informed by the results of a call to the function dimac.

Usage

make_prey_part(sig, clust, n_clust)

Arguments
sig A matrix of scaled signatures ready for analysis, intended to be the object sig_scale
returned by the function prep_sig.
clust A data frame containing cluster definitions, intended to be the object clust
returned by the function dimac.
n_clust An integer vector constructed by the user to specify the number of clusters into

which each prey type should be partitioned.

40 make_prey_part

Value
A list containing the following elements:

type A character vector of the partitioned type of each signature.

id A character vector of the unique sample ID of each signature.

n_types The number of unique types in the partitioned library.

uniq_types A character vector of the unique types, sorted alphanumerically.
type_ss The number of signatures for each unique type.

loc A vector or matrix giving the first and last locations of the signatures of each type, after being
sorted by type and id.

sig_part A matrix of partitioned signatures ready for analysis, sorted by type and id, in column-
major format.

pool_pre A matrix to pre-multiply diet estimates associated with a partitioned library to pool esti-
mates back to the original prey types.

pool_post A matrix to post-multiply diet estimates associated with a partitioned library to pool
estimates back to the original prey types.

err_code An integer error code (0 if no error is detected).

err_message A string contains a brief summary of the execution.

Details

The function make_prey_part partitions a matrix of prey signatures and into a larger number of
prey types based on user input (in the vector n_clust) informed by the results of a preceding call to
the clustering function dimac. The signatures in sig are presumed to be ready for analysis, which
is best accomplished by a call to the function prep_sig.

For each prey type, the column in clust designated by the corresponding integer in n_clust is
accessed and used to partition the prey type. For example, if the element of n_clust is 1, the first
column of clust is accessed and the prey type is not partitioned. If the element of n_clust is 3,
the third column of clust is accessed and the prey type is partitioned into three clusters.

The length of the integer vector n_clust must equal the number of unique types in type. The
integers themselves should be between 1 and the number of signatures of each type.

After all prey types have been partitioned, the prey signatures are sorted by type and id. The matrix
rep_grp is created to map the new prey types to the original prey types. Multiplying diet estimates
corresponding to a partitioned prey library sig_part by rep_grp pools the diet estimates into the
original prey types.

Please refer to the vignette and documentation for the functions dimac and prep_sig for additional
information.

Examples

make_prey_part(sig = matrix(c(0.01, 0.20, 0.30, 0.49,
0.05, 0.14, 0.39, 0.42,
0.07, 0.21, 0.28, 0.44,
0.04, 0.19, 0.34, 0.43,
0.12, 0.29, 0.39, 0.20,

pm_obj_func 41

0.15, 0.28, 0.34, 0.23,
0.17, 9.21, 0.31, 0.31,
0.18, 0.22, 0.28, 0.32), ncol = 8),
data.frame(type = c("prey_1", "prey_1", "prey_1", "prey_2",
"prey_2", "prey_2", "prey_2", "prey_2"),
id = ¢c("1-1", "1-2", "1-3", "2-1",
"2=2", "2=-3", "2-4", "2-5"),
clust_1 =c(1, 1, 1, 1, 1, 1, 1, 1),
clust_2 = c(1, 2,1, 2, 1, 1, 2, 2),
clust_3 = c(1, 2, 3, 3,1, 2, 3, 3),
clust_4 = c(0, 0, 0, 4, 1, 2, 3, 4)),
n_clust = c(1, 2))

’ ’ ’ ’

pm_obj_func Parameterized mean objective function

Description
The utility function pm_obj_func computes the total distance between observed predator signatures
and vector of mean diet proportions common to all predators.

Usage

pm_obj_func(diet, obs_sig, mean_sigs, dist_meas = 1, gamma = 1)

Arguments
diet A numeric vector of mean diet composition.
obs_sig A numeric matrix containing observed predator signatures, in column-major for-
mat.
mean_sigs A numeric matrix of the mean fatty acid signature for each prey type in the prey
library, in column-major format.
dist_meas An integer indicator of the distance measure to compute. Default value 1.
gamma The power parameter of the chi-square distance measure. Default value 1.
Value

The total distance between observed and modeled signatures.

Details

This is an internal utility function. Consequently, to increase execution speed, no numeric error
checking is performed within pm_obj_func. Rather, error checking is presumed to have occurred
at a higher level in the calling sequence.

The argument obs_sig is presumed to be a matrix of predator signatures that has been prepared
for analysis, which is best accomplished by a call to the function prep_sig with the predator data.

42 pred_beyond_prey

Similarly, the contents of mean_sigs should be mean signatures computed from signatures that
were prepared for analysis by a call to the function prep_sig.

The argument diet is presumed to contain non-negative proportions that sum to 1.0.
The arguments dist_meas and gamma must be compatible with the function dist_between_2_sigs.

Please refer to the vignette and documentation for the functions prep_sig, sig_scale, and dist_between_2_sigs
for additional details.

diet_obj_func models a predator signature as a mixture of the mean prey-type signatures, with
the diet proportions as the mixture proportions, returning the distance between the observed and
modeled signatures. The diet composition of a predator is estimated by minimizing this function
with respect to the diet using the function Rsolnp::solnp.

pred_beyond_prey Identify predator signature proportions beyond range of prey

Description

The function pred_beyond_prey identifies predator signaturee proportions that are outside the
range of proportions observed in the individual and mean prey signatures.

Usage

pred_beyond_prey(pred_sigs, prey_sigs, mean_sigs)

Arguments
pred_sigs A numeric matrix of predator signature(s) in column-major format. Intended to
be the object pred_sigs returned by the function est_diet.
prey_sigs A numeric matrix of prey signatures in column-major format. Intended to be the
object prey_sigs returned by the function est_diet.
mean_sigs A numeric matrix of mean prey-type signatures. Intended to be the object
prey_sigs returned by the function est_diet.
Value

A list containing the following elements:
beyond_ind A logical matrix with TRUE indicating that the corresponding predator proportion is
outside the range of individual prey proportions.

beyond_mean A logical matrix with TRUE indicating that the corresponding predator proportion
is outside the range of mean prey proportions.

err_code An integer error code (0 if no error is detected).

err_message A string contains a brief summary of the execution.

pred_beyond_prey 43

Details

In quantitative fatty acid signature analysis, predator signatues are assumed to be a linear mixture
of mean prey signatures (Iverson et al. 2004). Predator signature proportions should therefore be
within the range of the prey signature proportions. Signature proportions outside the range of prey
proportions are indicative of a violation of one or both of the primary model assumptions, i.e., the
prey library is incomplete or the calibration coefficients are inaccurate (Bromaghin et al. 2015,
2016a). Consequently, checking for predator proportions that are outside the range of mean prey
proportions is an important diagnostic aid to evaluate the reliability of diet estimates.

The function pred_beyond_prey identifies predator signature proportions that outside the range
of proportions observed among the individual and mean prey signatures. For purposes of diet
estimation, proportions outside the range of the mean signatures are most important. However,
pred_beyond_prey also identifies predator proportions that are outside the range of the individual
prey proportions for exploratory purposes.

pred_beyond_prey is designed to be called with inputs returned by the function est_diet. Al-
though it is not conceptually necessary to estimate diets before performing this diagnostic check,
doing so ensures that the predator and prey signatures have been transformed to the optimization
space (Bromaghin et al. 2015) in which diets have been estimated.

References

Iverson, S.J., C. Field, W.D. Bowen, and W. Blanchard. 2004. Quantitative fatty acid signature
analysis: A new method of estimating predator diets. Ecological Monographs 74:211-235.

Bromaghin, J.F., S.M. Budge, G.W. Thiemann, and K.D. Rode. 2016. Assessing the robustness
of quantitative fatty acid signature analysis to assumption violations. Methods in Ecology and
Evolution 7:51-59.

Bromaghin, J.F., K.D. Rode, S.M. Budge, and G.W. Thiemann. 2015. Distance measures and
optimization spaces in quantitative fatty acid signature analysis. Ecology and Evolution 5:1249-
1262.

Examples
pred_beyond_prey(pred_sigs = matrix(c(0.05, 0.10, .30, 0.55,
0.04, 0.11, 0.29, 0.56,
0.10, 0.05, 0.35, 0.50,
0.12, 0.03, 0.37, 0.48,
0.10, .06, 0.35, 0.49,
0.05, 0.15, 0.35, 0.45), ncol = 6),
prey_sigs = matrix(c(0.06, .09, 0.31, 0.54,
0.095, 0.09, 0.30, 0.56,
0.03, 0.10, 0.30, 0.57,
0.08, 0.07, 0.30, 0.55,
0.09, 0.05, ©.33, 0.53,
0.09, 0.06, 0.34, 0.51,
0.09, 0.07, 0.34, 0.50,
0.08, 0.11, 0.35, 0.46,
0.06, 0.14, 0.36, 0.44), ncol = 9),

mean_sigs = matrix(c(0.047, 0.093, 0.303, 0.557,
0.087, 0.050, 0.323, 0.530,
0.077, 0.106, 0.350, 0.467), ncol = 3))

44 prep_fa

prep_fa Prepare fatty acid information analysis

Description
The function prep_fa processes the information in a fatty acid suites data frame and prepares that
information for application to fatty acid signatures.

Usage
prep_fa(df_fa)

Arguments
df_fa A data frame containing fatty acid names, calibration coefficients, and 0/1 defi-
nitions of fatty acid suites. gfasar has strict formatting requirements for df _fa;
please see Details and/or the vignette.
Value

A list containing the following elements:

cc A numeric vector of calibration coefficients.

use A logical vector defining a fatty acid suite.

fa_names A character vector of fatty acid names.
err_code An integer error code (0 if no error is detected).

err_message A string contains a brief summary of the execution.

Details

This function is designed to be called by the user after the fatty acid data frame has been read. The
data frame should contain a complete list of all fatty acids in the prey and predator signature data,
one or more sets of calibration coefficients with an indicator of which set to use, one or more fatty
acid suite definitions with an indicator of which suite to use, and optional comments. Please refer
to the vignette for additional information.

The fatty acid data frame must strictly meet the following formatting requirements.

¢ The first row must contain a header for each column.

¢ The second row must list "use_me" in the first column, a 1 in the column for the set of cali-
bration coefficients to be used, a 1 in the column for the fatty acid suite to be used, and a 0 in
all other columns.

 Starting with row three, the first column must contain fatty acid names, which must exactly
match the corresponding components of the headers in any prey and predator signature data
frames.

prep_sig 45

* Starting with row three, Columns 2 to k must contain calibration coefficients for each fatty
acid. Multiple sets of calibration coefficients can be in the data frame. The set to be used must
contain a 1 in Row 1 and the others must contain a 0 in Row 1.

* Columns k+1 to m must contain one or more definitions of fatty acid suites. Membership in
a suite is defined by 0/1 indicators, with a 1 indicating membership. Definitions for multiple
suites can be in the data frame. For example, two columns could contain indicators defining
membership in the dietary and extended-dietary suites of fatty acids (Iverson et al. 2004). The
suite to be used must contain a 1 in Row 1 and the others must contain a 0 in Row 1.

* An optional last column can contain comments.

* Please see the vignette for examples of how to format this data frame.

References

Iverson, S.J., C. Field, W.D. Bowen, and W. Blanchard. 2004. Quantitative fatty acid signature
analysis: A new method of estimating predator diets. Ecological Monographs 74:211-235.

Examples

prep_fa(data.frame(fa = c("use_me"”, "fa_1", "fa_2", "fa_3"),
cc = c(1, 0.75, 1.25, 1.0),
use = c(1, 1, 1, 1))

prep_fa(data.frame(fa = c("use_me”, "fa_1", "fa_2", "fa_3"),
ccl = c(0, 0.75, 1.25, 1.00),
cc2 = c(1, 1.2, 0.8, 0.9),
use_1 = c(o, 1, 1, @),
use_2 = c(1, 1, 1, 9)))

prep_sig Prepare fatty acid signature data for analysis

Description

The function prep_sig prepares raw fatty acid signatures for analysis. Signature proportions that
are missing, negative, or equal to zero are replaced with a small user-specified constant and the
signatures are scaled to sum to 1.0. The fatty acids that are not to be used in the analysis are
censored and the signatures are scaled using one of three options (Bromaghin et al. In press).

Usage

prep_sig(df_sig, fa_names, use_fa, zero_rep = 75, scale = 3)

46 prep_sig

Arguments
df_sig A data frame containing prey fatty acid signature data. qfasar has strict format-
ting requirements for df _sig; please see Details and/or the vignette.
fa_names A character vector of all fatty acid names.
use_fa A logical vector defining a fatty acid suite.
zero_rep A constant associated with the method and value to replace signature proportions
that are missing or less than or equal to 0. Default value 75.
scale An integer indicator of the desired scaling option. Default value 3.
Value

A list containing the following elements:

type A character vector of the type of each signature.

id A character vector of the unique sample ID of each signature.

n_types The number of unique types.

uniq_types A character vector of the unique types, sorted alphanumerically.
n_sig The total number of signatures.

type_ss The number of signatures for each unique type.

loc A vector or matrix giving the first and last locations of the signatures of each type, after being
sorted by type and id.

sig_rep A vector or matrix of the original signatures, with any values missing or less than or equal
to 0 replaced, in column-major format.

n_fa_rep The number of fatty acids in sig_rep.

sig_scale A vector or matrix of scaled signatures ready for analysis, sorted by type and id, in
column-major format.

n_fa_suite The number of fatty acids in sig_scale.
fa_suite A character vector of the names of fatty acids in the suite to be used in the analysis.

zero_rep_val A constant associated with the method and value to be used to replace proportions
that are missing or less than or equal to 0. See Details.

err_code An integer error code (0 if no error is detected).

err_message A string contains a brief summary of the execution.

Details

This function is designed to be called by the user to prepare fatty acid signatures for analysis. For
most analyses, prep_sig should be called immediately after the fatty acid suites and fatty acid
signatures have been read into data frames, and after the fatty acid suites data frame has been
processed by the function prep_fa. Please refer to the vignette for additional information.

The data frame with fatty acid signatures must meet the following formatting requirements:

* The file must be in row-major format, i.e., each row contains the information for an individual
animal.

prep_sig 47

* The first column must contain a designation of animal type. For prey data, type often denotes
species. For predator data, type denotes classes of predators for which separate estimates of
mean diet composition are desired.

* The second column must contain an identifier unique to each signature, i.e. a sample ID.
* The remaining columns must contain fatty acid signature proportions or percentages.

* The data frame must contain a header record, with a name for each column, such as "type",
"id", name of fatty acid 1, name of fatty acid 2, ...

* The file should contain data from all available fatty acids, rather than a subset. The fatty acid
suite to be used in the analysis is defined by the argument fa.
Please refer to the documentation for the utility function sig_rep_zero for information regarding
the argument zero_rep.

Please refer to the documentation for the utility function sig_scale for information regarding the
argument scale.

References

Bromaghin, J.F., S.M. Budge, and G.W. Thiemann. In press. Should fatty acid signature proportions
sum to 1 for diet estimation? Ecological Research.

Iverson, S.J., C. Field, W.D. Bowen, and W. Blanchard. 2004. Quantitative fatty acid signature
analysis: A new method of estimating predator diets. Ecological Monographs 74:211-235.

Examples

prep_sig(df_sig = data.frame(type = c("Type_1", "Type_1", "Type_2",
"Type_2"),

id = c("ID_1", "ID_2", "ID_3", "ID_4"),
fa_1l = c(0.0, 0.2, 0.3, 0.6),

fa_2 = c(0.1, 0.3, 0.3, 0.4),

fa_3 = c(0.9, 0.5, 0.4, NA),

row.names = c("Prey_1", "Prey_2", "Prey_3",

"Prey_4")),
fa_names = c("fa_1", "fa_2", "fa_3"),
use_fa = c(TRUE, FALSE, TRUE),
zero_rep = 0.0001,
scale=2)

prep_sig(df_sig = data.frame(type = c("Type_1", "Type_1", "Type_2",
"Type_2"),

id = c("ID_1", "ID_2", "ID_3", "ID_4"),
fa_1 = c(0.0, 0.2, 0.3, 0.6),

fa_2 = c(0.1, 0.3, 0.3, 0.4),

fa_3 = c(0.9, 0.5, 0.4, NA),

row.names = c("Prey_1", "Prey_2", "Prey_3",

"Prey_4")),
fa_names = c("fa_1", "fa_2", "fa_3"),
use_fa = c(TRUE, FALSE, TRUE),
zero_rep = 90,
scale=1)

48 sig_rep_zero

prep_sig(df_sig = data.frame(type = c("Type_1", "Type_1", "Type_2",
"Type_2"),

id = c¢("ID_1", "ID_2", "ID_3", "ID_4"),
fa_1l = c(0.0, 0.2, 0.3, 0.6),

fa_2 = c(0.1, 0.3, 0.3, 0.4),

fa_3 = c(0.9, 0.5, 0.4, NA),

row.names = c("Prey_1", "Prey_2", "Prey_3",

"Prey_4")),
fa_names = c("fa_1", "fa_2", "fa_3"),
use_fa = c(TRUE, FALSE, TRUE),
scale=3)

prep_sig(df_sig = data.frame(type = c("Type_1", "Type_1", "Type_2",
"Type_2"),

id = c¢("ID_1", "ID_2", "ID_3", "ID_4"),
fa_1l = c(0.0, 0.2, 0.3, 0.6),

fa_2 = c(0.1, 0.3, 0.3, 0.4),

fa_3 = c(0.9, 0.5, 0.4, NA),

row.names = c("Prey_1", "Prey_2", "Prey_3",

"Prey_4")),
fa_names = c("fa_1", "fa_2", "fa_3"),
use_fa = c(TRUE, FALSE, TRUE))

sig_rep_zero Replace invalid fatty acid signature proportions

Description

The utility function sig_rep_zero replaces fatty acid signature proportions that are less than or
equal to zero or missing with a small constant and uses the multiplicative method (Martin-Fernandez
et al. 2011) to scale the proportions to sum to 1.

Usage

sig_rep_zero(sig_data, zero_rep = 75)

Arguments
sig_data A numeric matrix containing signature data as either proportions or percentages
in column-major format.
zero_rep A constant associated with the method and value to be used to replace invalid
values. See Details. Default value 75.
Value

A list containing the following elements:

sig_adj The signature data with non-positive or missing proportions replaced and scaled to sum to
1.0.

sig_scale 49

rep_val The value used to replace invalid proporitons.
err_code An integer error code (0 if no error is detected).

err_message A string contains a brief summary of the execution.

Details

The function sig_rep_zero is an internal utility function.

The Kullback-Leibler (Iverson et al. 2004) and Aitchison (Stewart et al. 2014) distance measures
are not defined for proportions of zero. Consequently, if either of these distance measures will
be used in an analysis, the argument zero_rep should be strictly greater than 0. The chi-square
distance measure (Stewart et al. 2014) is defined for proportions of zero, so if that distance measure
will be used in the analysis, the argument zero_rep may equal zero. For simulation or other
comparative work involving multiple distance measures, it may be advisable to use a common
value to replace zeros.

The argument zero_rep must be either:

* Greater than or equal to 0 and no greater than 0.01, in which case the specified value is used
to replace invalid proportions.

* Between 10 and 100, with an uninformed default of 75. In this case, zero_rep is interpreted

as a percentage. The smallest non-zero proportion in sig_data is multiplied by the percentage
and divided by 100. The result is used to replace invalid proportions.

Although Bromaghin et al. (2016) found that scaling signatures by varying constants introduces a
bias in diet estimation, the slight distortion of the signatures caused by replacing invalid proportions
with a small constant that varies between signatures is unlikely to introduce meaningful bias.

References

Bromaghin, J.F., S.M. Budge, and G.W. Thiemann. 2016. Should fatty acid signature proportions
sum to 1 for diet estimation? Ecological Research 31:597-606.

Iverson, S.J., C. Field, W.D. Bowen, and W. Blanchard. 2004. Quantitative fatty acid signature
analysis: A new method of estimating predator diets. Ecological Monographs 74:211-235.
Martin-Fernandez, J.A., J. Palarea-Albaladejo, and R.A. Olea. 2011. Dealing with zeros. P. 43-58
in V. Pawlowsky-Glahn and A. Buccianto, eds. Compositional data analysis: theory and application.
John Wiley, Chichester.

Stewart, C., and C. Field. 2011. Managing the essential zeros in quantitative fatty acid signature
analysis. Journal of Agricultural, Biological, and Environmental Statistics 16:45769.

sig_scale Scale fatty acid signature proportions

Description

The utility function sig_scale implements the three options for scaling fatty acid signature data
summarized by Bromaghin et al. (2016). A logical vector denotes the subset of all fatty acids to be
used in the analysis. The fatty acids that are not to be used are censored and one of three scaling
options is implemented. See Details.

50 sig_scale

Usage

sig_scale(sig_data, fa_use, scale = 3)

Arguments
sig_data A numeric matrix containing prey signature data as proportions in column-
major. These data should have previously been processed by sig_rep_zero.
fa_use A logical vector denoting the fatty acids to be used, of length equal to the total
number of fatty acids. This vector originates from a data file required by gfasar.
See the vignette for details.
scale An integer indicator of the desired scaling option. See Details. Default value 3.
Value

A list containing the following elements:

n_fa The number of fatty acids in the processed signatures.
sig A numeric matrix of processed signatures in column-major format.
err_code An integer error code (0 if no error is detected).

err_message A string contains a brief summary of the execution.

Details

This is an internal utility function.

The argument scale must be one of three integer values and its value denotes the scaling option
that will be implemented:

* scale == 1. The proportions within each censored signature are scaled to sum to 1.0. This
option is not recommended for routine use in QFASA applications, as Bromaghin et al. (2016)
found that it can meaningfully bias diet estimates under some conditions. It is implemented
here to provide compatibility with original methods and to facilitate potential future research.

* scale == 2. The proportions within each censored signature are not scaled, so each signature
will have a different partial sum.

* scale ==3. Each censored signature is augmented with an additional proportion whose value
equals the sum of the censored proportions, so that the proportions in each signature sum to 1.
This is the default option.

References

Bromaghin, J.F., S.M. Budge, and G.W. Thiemann. 2016. Should fatty acid signature proportions
sum to 1 for diet estimation? Ecological Research 31:597-606.

Index

add_cc_err, 2
adj_diet_fat, 4

cc_aug, 5, 19, 20
comp_chi_gamma, 7

diet_obj_func, 9

diet_pool, 10

dimac, 11, 12, 40

dist_between_2_sigs, 6, 10, 13, 15, 1618,
30, 42

dist_pairs_map, 14, 16

dist_sigs_2_mean, 14, 17

dist_sum_pairwise, 18

est_diet, 4,9-11, 18, 23, 25,27, 37,42, 43
find_boot_ss, 23, 23, 24
gof, 26

lopo, 29, 32, 33
lopo_pool, 32

make_diet_grid, 33

make_diet_rand, 35

make_ghost, 36

make_pred_sigs, 34, 35, 38

make_prey_part, 10, 11, 19, 23,27, 30, 32,
36, 38, 39

pm_obj_func, 41

pred_beyond_prey, 42

prep_fa, 3,6,8, 12, 19, 20, 44

prep_sig, 5, 6, 8, 10, 12, 13, 15-20, 23, 27,
30, 34-36, 38, 4042, 45

sig_rep_zero, 47,48, 50
sig_scale, 10, 30, 42,47, 49

51

	add_cc_err
	adj_diet_fat
	cc_aug
	comp_chi_gamma
	diet_obj_func
	diet_pool
	dimac
	dist_between_2_sigs
	dist_pairs_map
	dist_sigs_2_mean
	dist_sum_pairwise
	est_diet
	find_boot_ss
	gof
	lopo
	lopo_pool
	make_diet_grid
	make_diet_rand
	make_ghost
	make_pred_sigs
	make_prey_part
	pm_obj_func
	pred_beyond_prey
	prep_fa
	prep_sig
	sig_rep_zero
	sig_scale
	Index

