
Package ‘proporz’
March 10, 2025

Type Package

Title Proportional Apportionment

Version 1.5.1

Description Calculate seat apportionment for legislative bodies with
various methods. The algorithms include divisor or highest averages methods
(e.g. Jefferson, Webster or Adams), largest remainder methods and
biproportional apportionment.
Gaffke, N. & Pukelsheim, F. (2008) <doi:10.1016/j.mathsocsci.2008.01.004>
Oelbermann, K. F. (2016) <doi:10.1016/j.mathsocsci.2016.02.003>.

License GPL (>= 3)

Encoding UTF-8

LazyData true

RoxygenNote 7.3.2

Depends R (>= 3.6.0)

Suggests shiny, shinyMatrix, testthat, knitr, rmarkdown

URL https://polettif.github.io/proporz/,

https://github.com/polettif/proporz

BugReports https://github.com/polettif/proporz/issues

VignetteBuilder knitr

NeedsCompilation no

Author Flavio Poletti [aut, cre, cph]

Maintainer Flavio Poletti <flavio.poletti@hotmail.ch>

Repository CRAN

Date/Publication 2025-03-10 12:10:02 UTC

Contents
apply_quorum . 2
biproporz . 3

1

https://doi.org/10.1016/j.mathsocsci.2008.01.004
https://doi.org/10.1016/j.mathsocsci.2016.02.003
https://polettif.github.io/proporz/
https://github.com/polettif/proporz
https://github.com/polettif/proporz/issues

2 apply_quorum

ceil_at . 5
district_winner_matrix . 6
divisor_methods . 7
finland2019 . 8
get_divisors . 9
highest_averages_method . 9
largest_remainder_method . 10
lower_apportionment . 11
pivot_to_matrix . 13
proporz . 14
pukelsheim . 15
quorum_functions . 17
reached_quorum_any_district . 18
reached_quorum_total . 19
run_app . 20
upper_apportionment . 21
uri2020 . 22
weight_list_votes . 22
zug2018 . 23

Index 24

apply_quorum Apply quorum to votes vector or matrix

Description

This quorum calculation implementation is called within proporz(), biproporz() and related
functions. Generally, there’s no need to call apply_quorum directly.

Usage

apply_quorum(votes, quorum)

Arguments

votes votes vector or votes matrix

quorum Depending on votes:

• For a vector: Vote threshold a party must reach. Used as fraction of total
votes if less than 1 otherwise as number of votes.

• For a matrix: List of quorum functions (created with quorum_functions)
or a logical vector with the same length as the number of votes rows.

Value

Vector or matrix with same dimension as votes. Parties that failed to reach the specified quorum
have their votes set to zero.

biproporz 3

See Also

quorum_functions for more matrix examples.

Examples

vector
(votes = c(81, 9, 10))

apply_quorum(votes, 10)

apply_quorum(votes, .11)

matrix
(votes_matrix = matrix(c(91, 9, 199, 1), nrow = 2))

apply_quorum(votes_matrix, quorum_all(total = 0.1))

apply_quorum(votes_matrix, c(FALSE, TRUE))

biproporz Biproportional apportionment

Description

Method to proportionally allocate seats among parties (or lists) and districts (or entities, regions),
thus bi-proportional.

Usage

biproporz(
votes_matrix,
district_seats,
quorum,
use_list_votes = TRUE,
method = "round"

)

Arguments

votes_matrix Vote count matrix with votes by party in rows and votes by district in columns.

district_seats Vector defining the number of seats per district. Must be the same length as
ncol(votes_matrix). Values are name-matched to votes_matrix columns if
both are named. If the number of seats per district should be calculated accord-
ing to the number of votes (not the general use case), a single number for the
total number of seats can be used.

4 biproporz

quorum Optional list of functions which take the votes_matrix and return a logical vector
that denotes for each party/row whether they reached the quorum (i.e. are eligi-
ble for seats). The easiest way to do this is via quorum_any() or quorum_all(),
see examples. Alternatively you can pass a precalculated logical vector. No quo-
rum is applied if parameter is missing or NULL.

use_list_votes By default (TRUE) it’s assumed that each voter in a district has as many votes as
there are seats in a district. Thus, votes are weighted according to the num-
ber of available district seats with weight_list_votes(). Set to FALSE if
votes_matrix shows the number of voters (i.e. they can only cast one vote
for one party).

method Defines which method is used to assign seats. The following methods are rec-
ommended:

• round: Uses the Sainte-Laguë/Webster method (rounding half up) for the
upper and lower apportionment which is the standard for biproportional
apportionment and the only method guaranteed to terminate.

• wto: "winner take one" works like "round" with a condition that the party
that got the most votes in a district must get at least one seat (’Majorzbe-
dingung’) in said district. This only applies if they got enough seats in the
upper apportionment (which uses the Sainte-Laguë/Webster method). See
lower_apportionment() for more details.

It is also possible to use any divisor method name listed in proporz(). If you
want to use a different method for the upper and lower apportionment, provide
a list with two entries.

Details

Each party nominates a candidate list for every district. The voters vote for the parties of their
district. The seat allocation is calculated in two steps:

1. In the so called upper apportionment the number of seats for each party (over all districts)
is determined. Normally, the number of seats for each region are defined before the election
and are independent of the vote counts.

2. In the so called lower apportionment the seats are distributed to the regional party list re-
specting the results from the upper apportionment.

Parties failing to reach quorums cannot get seats. This function does not handle seat assignment to
candidates.

Value

Matrix with the same dimension as votes_matrix containing the number of seats with the row and
column divisors stored in attributes (hidden from print, see get_divisors()).

Note

The iterative process in the lower apportionment is only guaranteed to terminate with the default
Sainte-Laguë/Webster method.

ceil_at 5

References

Gaffke, Norbert; Pukelsheim, Friedrich (2008): Divisor methods for proportional representation
systems: An optimization approach to vector and matrix apportionment problems. Mathematical
Social Sciences, 56 (2), 166-184.

See Also

pukelsheim() for biproportional apportionment with data.frames as inputs.

Examples

votes_matrix = uri2020$votes_matrix
district_seats = uri2020$seats_vector

biproporz(votes_matrix, district_seats)

apply quorum (high values for illustrative purposes)
biproporz(votes_matrix, district_seats,

quorum_all(any_district = 0.1, total = 0.25))

ceil_at Rounding with predefined thresholds

Description

Round x up to ceiling(x) if x-floor(x) >= threshold, otherwise round down to floor(x).

Usage

ceil_at(x, threshold)

Arguments

x numeric vector or matrix >= 0 (NaN is not supported)
threshold threshold in [0,1] or "harmonic"/"geometric" to use harmonic or geometric mean

thresholds

Value

the rounded vector or matrix

Examples

ceil_at(c(0.5, 1.5, 2.49, 2.5, 2.51), 0.5)
compare to
round(c(0.5, 1.5, 2.49, 2.5, 2.51))

ceil_at(c(1.45, 2.45, 3.45), 0) # like floor()
ceil_at(c(1.45, 2.45, 3.45, 0.2), "geometric")

6 district_winner_matrix

district_winner_matrix

Find which party has the most votes in a district

Description

Create a logical matrix that shows whether a party got the most votes in a district or not.

Usage

district_winner_matrix(votes_matrix, district_seats = 1L)

Arguments

votes_matrix Vote count matrix with votes by party in rows and votes by district in columns.

district_seats Vector defining the number of seats per district. Must be the same length as
ncol(votes_matrix). Values are name-matched to votes_matrix columns if
both are named. If a single value is supplied (like 1 as default), it is used as the
number of seats for every district.

Details

If two or more parties are tied and there are not enough seats for each tied party, the matrix value is
NA.

Value

logical matrix with the same dimensions and names as votes_matrix

Examples

(vm = matrix(c(60,30,0,20,10,30), nrow = 3, dimnames = list(1:3, c("A", "B"))))

district_winner_matrix(vm)

NA values if parties are tied (here in district B)
vm[1,2] <- 30
district_winner_matrix(vm)

No NA values for tied parties if enough seats are available
district_winner_matrix(vm, c(1, 2))

divisor_methods 7

divisor_methods Divisor methods

Description

Functions to directly apply divisor apportionment methods instead of calling proporz() with a
method parameter. All divisor functions call highest_averages_method() with a different se-
quence of divisors.

Usage

divisor_round(votes, n_seats, quorum = 0)

divisor_floor(votes, n_seats, quorum = 0)

divisor_harmonic(votes, n_seats, quorum = 0)

divisor_geometric(votes, n_seats, quorum = 0)

divisor_ceiling(votes, n_seats, quorum = 0)

Arguments

votes numeric vector with number of votes for each party

n_seats total number of seats

quorum Vote threshold a party must reach. Used as fraction of total votes within if less
than 1 otherwise as number of votes.

Details

Divisor methods are known under different names:

• d’hondt, jefferson, hagenbach-bischoff: divisor_floor()

• sainte-lague, webster: divisor_round()

• adams: divisor_ceiling()

• dean: divisor_harmonic()

• huntington-hill, hill-huntington: divisor_geometric()

Value

The number of seats per party as a vector

See Also

proporz(), highest_averages_method()

8 finland2019

Examples

votes = c("Party A" = 690, "Party B" = 400,
"Party C" = 250, "Party D" = 120)

divisor_round(votes, 10)

divisor_floor(votes, 10)

divisor_ceiling(votes, 10)

divisor_ceiling(votes, 5)

divisor_geometric(votes, 10, quorum = 0.05)

divisor_harmonic(votes, 10)

finland2019 Finnish Parliamentary Elections Data (2019)

Description

Example data from the 2019 Finnish parliamentary elections. The data has been cleaned up and
only contains information relevant for this package.

Usage

finland2019

Format

List containing two data.frames:

• votes_df containing the number of votes for each party and district. 229 rows, 3 columns
(party_name, district_name, votes)

• district_seats_df with the number of seats per district. 12 rows, 2 columns (district_name,
seats)

Source

https://tulospalvelu.vaalit.fi/EKV-2019/en/ladattavat_tiedostot.html

Examples

finland2019$district_seats_df

head(finland2019$votes_df)

https://tulospalvelu.vaalit.fi/EKV-2019/en/ladattavat_tiedostot.html

get_divisors 9

get_divisors Get district and party divisors from biproporz result

Description

Show the district and party divisors used to assign seats. This method provides easier access to
divisors stored in attributes(...)$divisors.

Usage

get_divisors(biproporz_result)

Arguments

biproporz_result

a matrix created by biproporz() or a data.frame created by pukelsheim()

Value

The district and party divisors (named "districts" and "parties") in a list, each as a vector

Examples

seats_matrix = biproporz(uri2020$votes_matrix, uri2020$seats_vector)
get_divisors(seats_matrix)

seats_df = pukelsheim(pivot_to_df(uri2020$votes_matrix),
data.frame(names(uri2020$seats_vector), uri2020$seats_vector))

get_divisors(seats_df)

summary() also prints the divisors for a biproporz matrix
summary(seats_matrix)

highest_averages_method

Highest averages method

Description

Allocate seats proportionally for divisor methods.

Usage

highest_averages_method(votes, n_seats, divisors)

10 largest_remainder_method

Arguments

votes numeric vector with number of votes for each party

n_seats total number of seats

divisors sequence of divisors (length equal to the number of seats). If it is a single number
(e.g. 0.5), a sequence is generated starting with it, increasing by 1.

Details

The highest averages method requires the number of votes for each party to be divided successively
by a series of divisors. This produces a table of quotients, or averages, with a row for each divisor
and a column for each party. The nth seat is allocated to the party whose column contains the nth
largest entry in this table, up to the total number of seats available. (Wikipedia)

Value

The number of seats per party as a vector

Examples

highest_averages_method(c(5200, 1700, 3100), 15, 0.5)

highest_averages_method(votes = c(50, 0, 30), n_seats = 3,
divisors = c(0, 1.3333, 2.4))

largest_remainder_method

Largest remainder method

Description

Allocate seats based on the largest fractional remainder. The largest remainder method is also
known as: Hamilton, Hare-Niemeyer or Vinton method.

Usage

largest_remainder_method(votes, n_seats, quorum = 0)

Arguments

votes numeric vector with number of votes for each party

n_seats total number of seats

quorum Vote threshold a party must reach. Used as fraction of total votes within if less
than 1 otherwise as number of votes.

https://en.wikipedia.org/wiki/Highest_averages_method

lower_apportionment 11

Details

The numbers of votes for each party is divided by a quota representing the number of votes required
for a seat. Then, each party receives the rounded down quota value as seats. The remaining seats
are given to the party with the largest remainder until all seats have been distributed.

Value

The number of seats per party as a vector

Note

Only the quota total votes / total seats (which is used by the aforementioned methods) is
implemented.

See Also

proporz()

Examples

votes = c(47000, 16000, 15800, 12000, 6100, 3100)
largest_remainder_method(votes, 10)

lower_apportionment Lower apportionment

Description

In the second biproportional apportionment step, party and district divisors are calculated such that
the row and column sums of the resulting seats matrix satisfy the constraints given by the upper
apportionment.

Usage

lower_apportionment(votes_matrix, seats_cols, seats_rows, method = "round")

Arguments

votes_matrix matrix with votes by party in rows and votes by district in columns.

seats_cols number of seats per column (districts/regions), predetermined or calculated with
upper_apportionment().

seats_rows number of seats per row (parties/lists), calculated with upper_apportionment().

method Apportion method that defines how seats are assigned. The following methods
are supported:

• round: The default Sainte-Laguë/Webster method is the standard for bipro-
portional apportionment and the only method guaranteed to terminate.

12 lower_apportionment

• wto: "winner take one" works like round with a condition that the party
that got the most votes in a district must get at least one seat (’Majorzbedin-
gung’, also called ’strongest party constrained’ rule (SPC)). votes_matrix
must have row and column names to use this method. A district winner
can only get a seat if they are entitled to one from the upper apportionment
(seats_rows). The condition does not apply in a district if two or more
parties have the same number of votes and there are not enough seats for
these parties. A warning is issued in this case. Modify the votes matrix to
explicitly break ties.

• You can provide a custom function that rounds a matrix (i.e. the the votes_matrix
divided by party and district divisors) without further parameters.

• It is possible to use any divisor method name listed in proporz().

Details

The result is obtained by an iterative process (’Alternate Scaling Algorithm’, see Reference). Ini-
tially, for each district a divisor is chosen using the highest averages method for the votes allocated
to each regional party list in this region. For each party a party divisor is initialized with 1.

Effectively, the objective of the iterative process is to modify the regional divisors and party divisors
so that the number of seats in each regional party list equals the number of their votes divided by
both the regional and the party divisors.

The following two correction steps are executed until this objective is satisfied:

• modify the party divisors such that the apportionment within each party is correct with the
chosen rounding method,

• modify the regional divisors such that the apportionment within the region is correct with the
chosen rounding method.

Value

A seat matrix with district (columns) and party (rows) divisors stored in attributes.

Note

If the maximum number of optimization iterations is reached, an error is thrown since no solution
can be found. You can overwrite the default (1000) with options(proporz_max_iterations =
...) but it is very likely that the result is undefined given the structure of the input parameters.

References

Oelbermann, K. F. (2016): Alternate scaling algorithm for biproportional divisor methods. Mathe-
matical Social Sciences, 80, 25-32.

See Also

biproporz(), upper_apportionment(), district_winner_matrix()

pivot_to_matrix 13

Examples

votes_matrix = matrix(c(123,912,312,45,714,255,815,414,215), nrow = 3)
district_seats = c(7,5,8)
party_seats = c(5,11,4)

lower_apportionment(votes_matrix, district_seats, party_seats)

using "winner take one"
vm = matrix(c(200,100,10,11), 2,

dimnames = list(c("Party A", "Party B"), c("I", "II")))
district_seats = setNames(c(2,1), colnames(vm))
ua = upper_apportionment(vm, district_seats)

lower_apportionment(vm, ua$district, ua$party, method = "wto")

compare to standard method
lower_apportionment(vm, ua$district, ua$party, method = "round")

pivot_to_matrix Pivot long data.frame to wide matrix and vice versa

Description

Create a matrix in ’wide’ format from a data.frame with 3 columns with pivot_to_matrix or create
a data.frame in long format from a matrix with pivot_to_df.

Usage

pivot_to_matrix(df_long)

pivot_to_df(matrix_wide, value_colname = "values")

Arguments

df_long data.frame in long format with exactly 3 columns

matrix_wide matrix in wide format

value_colname name for the new value column in the resulting data.frame

Details

These pivot functions are used to prepare data for biproporz() in pukelsheim(). They are not
supposed to cover general use cases or provide customization. They mainly exist because reshape
is hard to handle and the package should have no dependencies.

14 proporz

Value

A data.frame with 3 columns or a matrix. Note that the results are sorted by the first and second
column (data.frame) or row/column names (matrix).

Examples

From data.frame to matrix
df = data.frame(party = c("A", "A", "A", "B", "B", "B"),

region = c("III", "II", "I", "I", "II", "III"),
seats = c(5L, 3L, 1L, 2L, 4L, 6L))

pivot_to_matrix(df)

from matrix to data.frame
mtrx = matrix(1:6, nrow = 2)
pivot_to_df(mtrx)

from matrix to data.frame using dimnames
dimnames(mtrx) <- list(party = c("A", "B"), region = c("I", "II", "III"))
pivot_to_df(mtrx, "seats")

Note that pivot results are sorted
pivot_to_df(pivot_to_matrix(df)) == df[order(df[[1]], df[[2]]),]

proporz Proportional apportionment

Description

Calculate seat apportionment for legislative bodies.

Usage

proporz(votes, n_seats, method, quorum = 0)

Arguments

votes numeric vector with number of votes for each party

n_seats total number of seats

method Apportionment method to use, as character. Not case sensitive. See details.

quorum Vote threshold a party must reach. Used as fraction of total votes within if less
than 1 otherwise as number of votes.

pukelsheim 15

Details

The following methods are available:

• d’hondt, jefferson, hagenbach-bischoff, floor: divisor_floor()

• sainte-lague, webster, round: divisor_round()

• adams, ceiling: divisor_ceiling()

• dean, harmonic: divisor_harmonic()

• huntington-hill, hill-huntington, geometric: divisor_geometric()

• hare-niemeyer, hamilton, vinton, largest_remainder_method: largest_remainder_method()

Value

The number of seats per party as a vector

Note

Seats can also be apportioned among regions instead of parties. The parameter votes is then nor-
mally used with census data (e.g. population counts).

Examples

votes = c("Party A" = 651, "Party B" = 349, "Party C" = 50)

proporz(votes, 10, "sainte-lague")

proporz(votes, 10, "hill-huntington")

proporz(votes, 10, "hill-huntington", quorum = 0.05)

proporz(votes, 10, "jefferson", quorum = 70)

pukelsheim Biproportional apportionment with data frames

Description

Method to proportionally allocate seats among parties/lists and districts/regions/entities (’Doppelter
Pukelsheim’).

16 pukelsheim

Usage

pukelsheim(
votes_df,
district_seats_df,
quorum,
new_seats_col = "seats",
use_list_votes = TRUE,
winner_take_one = FALSE

)

Arguments

votes_df data.frame (long format) with 3 columns (actual colnames can differ):

• party id/name
• district id/name
• votes

district_seats_df

data.frame with 2 columns (actual colnames can differ):

• district id/name
• number of seats for a district

quorum Optional list of functions which take the votes_matrix and return a logical vector
that denotes for each party/row whether they reached the quorum (i.e. are eligi-
ble for seats). The easiest way to do this is via quorum_any() or quorum_all(),
see examples. Alternatively you can pass a precalculated logical vector. No quo-
rum is applied if parameter is missing or NULL.

new_seats_col name of the new column

use_list_votes By default (TRUE) it’s assumed that each voter in a district has as many votes
as there are seats in a district. Set to FALSE if votes_df shows the number of
voters (e.g. they can only vote for one party).

winner_take_one

Set to TRUE if the party that got the most votes in a district must get at least one
seat (’Majorzbedingung’) in this district. This only applies if they are entitled to
a seat in the upper apportionment. Default is FALSE.

Details

Each party nominates a candidate list for every district. The voters vote for the parties of their
district. The seat allocation is calculated in two steps:

1. In the so called upper apportionment the number of seats for each party (over all districts)
is determined.

2. In the so called lower apportionment the seats are distributed to the regional party list re-
specting the results from the upper apportionment.

Parties failing to reach quorums cannot get seats. This function does not handle seat assignment to
candidates.

If you want to use other apportion methods than Sainte-Laguë use biproporz().

quorum_functions 17

Value

A data.frame like votes_df with a new column denoting the number seats per party and district.
Party and district divisors stored in attributes in attributes (hidden from print, see get_divisors()).

See Also

This function calls biproporz() after preparing the input data.

Examples

Zug 2018
votes_df = unique(zug2018[c("list_id", "entity_id", "list_votes")])
district_seats_df = unique(zug2018[c("entity_id", "election_mandates")])

seats_df = pukelsheim(votes_df,
district_seats_df,
quorum_any(any_district = 0.05, total = 0.03),
winner_take_one = TRUE)

head(seats_df)

Finland 2019
finland19_result = pukelsheim(finland2019$votes_df,

finland2019$district_seats_df,
new_seats_col = "mandates",
use_list_votes = FALSE)

tail(finland19_result[order(finland19_result$mandates),])

quorum_functions Create quorum functions for biproportional apportionment

Description

quorum_any() and quorum_all() are used for the quorum parameter in biproporz()/pukelsheim()
and help describe how quorums should be applied prior to seat distributions.

Usage

quorum_all(any_district, total)

quorum_any(any_district, total)

Arguments

any_district Vote threshold a party must reach in at least one district. Used as share of total
votes within a district if less than 1 otherwise as number of votes. Must be
greater than 0. Uses reached_quorum_any_district().

18 reached_quorum_any_district

total Vote threshold a party must reach for all votes cast. Used as share of total
votes if less than 1. Otherwise as number of votes. Note that votes are not
weighted with weight_list_votes() across districts. Must be greater than 0.
Uses reached_quorum_total().

Details

There’s a difference in how the functions work. With quorum_any, at least one quorum must be
reached. With quorum_all all (i.e. both) quorums must be reached. If you only use one parameter,
quorum_any() and quorum_all() are identical.

Value

a function which, when called with function(votes_matrix), returns a boolean vector with length
equal to the number of lists/parties (votes_matrix rows). The vector shows whether a party has
reached any/all quorums.

See Also

apply_quorum() for standalone quorum calculations

Examples

votes_matrix = matrix(c(502, 55, 80, 10, 104, 55, 0, 1), ncol = 2)
dimnames(votes_matrix) <- list(c("A", "B", "C", "D"), c("Z1", "Z2"))
seats = c(Z1 = 50, Z2 = 20)

use as parameter in biproporz or pukelsheim (general use case)
biproporz(votes_matrix, seats,

quorum = quorum_any(any_district = 0.1, total = 100))

biproporz(votes_matrix, seats,
quorum = quorum_all(any_district = 0.1, total = 100))

biproporz(votes_matrix, seats, quorum = quorum_any(any_district = 0.1))

biproporz(votes_matrix, seats, quorum = quorum_any(total = 100))

biproporz(votes_matrix, seats, quorum = quorum_any(total = 0.5))

the quorum parameter also accepts vectors (e.g. calculated elsewhere)
biproporz(votes_matrix, seats, quorum = c(FALSE, TRUE, TRUE, TRUE))

reached_quorum_any_district

Check if parties reached a quorum in at least one district

reached_quorum_total 19

Description

Base implementation, used by quorum_functions.

Usage

reached_quorum_any_district(votes_matrix, quorum_districts)

Arguments

votes_matrix votes matrix
quorum_districts

Vote threshold a party must reach in at least one district. Used as fraction of
total votes within a district if less than 1, otherwise as number of votes. Must be
greater than 0.

Value

Logical vector with length equal to the number of lists/parties (votes_matrix rows) showing
whether they reached the quorum or not.

See Also

reached_quorum_total()

Examples

(vm = matrix(c(239, 10, 308, 398, 20, 925), nrow = 3))
reached_quorum_any_district(vm, 25)

reached_quorum_total Check if parties reached the quorum for all votes

Description

Base implementation, used by quorum_functions.

Usage

reached_quorum_total(votes_matrix, quorum_total)

Arguments

votes_matrix votes matrix

quorum_total Vote threshold a party must reach for all votes cast. Used as fraction of total
votes if less than 1, otherwise as number of votes. Must be greater than 0.

20 run_app

Value

Logical vector with length equal to the number of lists/parties (votes_matrix rows) showing
whether they reached the quorum or not.

Note

Votes are not weighted across districts. This is relevant if the quorum threshold is the minimal
number of voters (either as percentage or absolute value). In this case, use weight_list_votes()
before calculating the quorum.

See Also

reached_quorum_any_district()

Examples

(vm = matrix(c(239, 10, 308, 398, 20, 925), nrow = 3))
reached_quorum_total(vm, 35)

run_app Use biproportional apportionment interactively in a shiny app

Description

Use biproportional apportionment interactively in a shiny app

Usage

run_app(votes_matrix = NULL, district_seats = NULL)

Arguments

votes_matrix optional votes_matrix to load upon start

district_seats optional district_seats to load upon start

Value

Calling the function starts the shiny app

Examples

if(interactive()){
You need to have the packages 'shiny' and 'shinyMatrix' installed to run the app
run_app()

It's possible to load a matrix with the app
run_app(uri2020$votes_matrix, uri2020$seats_vector)

}

upper_apportionment 21

upper_apportionment Upper apportionment

Description

In the first step of biproportional apportionment parties are given seats according to the sum of their
votes across all districts.

Usage

upper_apportionment(
votes_matrix,
district_seats,
use_list_votes = TRUE,
method = "round"

)

Arguments

votes_matrix Vote count matrix with votes by party in rows and votes by district in columns.

district_seats Vector defining the number of seats per district. Must be the same length as
ncol(votes_matrix). Values are name-matched to votes_matrix columns if
both are named. If the number of seats per district should be calculated accord-
ing to the number of votes (not the general use case), a single number for the
total number of seats can be used.

use_list_votes By default (TRUE) it’s assumed that each voter in a district has as many votes as
there are seats in a district. Thus, votes are weighted according to the num-
ber of available district seats with weight_list_votes(). Set to FALSE if
votes_matrix shows the number of voters (i.e. they can only cast one vote
for one party).

method Apportion method that defines how seats are assigned, see proporz(). Default
is the Saintë-Lague/Webster method.

Value

A named list with district seats (for votes_matrix columns) and party seats (for rows).

Note

The results from the upper apportionment define the number of seats for each party and the number
of seats for each district for the whole voting area. The lower apportionment will only determine
where (i.e. which district) the party seats are allocated. Thus, after the upper apportionment is done,
the final strength of a party/district within the parliament is definite.

See Also

biproporz(), lower_apportionment()

22 weight_list_votes

Examples

votes_matrix = matrix(c(123,912,312,45,714,255,815,414,215), nrow = 3)
district_seats = c(7,5,8)

upper_apportionment(votes_matrix, district_seats)

uri2020 Election Data for the Cantonal Council of Uri (2020)

Description

Example election data from the 2020 election for the cantonal council of Uri (Landrat) in Switzer-
land. The data has been extracted from the report "Landratswahlen 2020: Statistische Auswertung".

Usage

uri2020

Format

List containing:

• votes_matrix the number of votes for each party and district (4 rows, 4 columns)

• seats_vector with the number of seats per district (length 4)

Source

https://www.ur.ch/abstimmungen/termine/9322

weight_list_votes Create weighted votes matrix

Description

Weight list votes by dividing the votes matrix entries by the number of seats per district. This
method is used in upper_apportionment() if use_list_votes is TRUE (default).

Usage

weight_list_votes(votes_matrix, district_seats)

Arguments

votes_matrix votes matrix

district_seats seats per district, vector with same length as ncol(votes_matrix)

https://www.ur.ch/abstimmungen/termine/9322

zug2018 23

Value

the weighted votes_matrix

Note

The weighted votes are not rounded. Matrix and vector names are ignored.

Examples

weight_list_votes(uri2020$votes_matrix, uri2020$seats_vector)

zug2018 Election Data for the Cantonal Council of Zug (2018)

Description

Example election data from the 2018 election for the cantonal council of Zug (Kantonsrat) in
Switzerland.

Usage

zug2018

Format

An object of class data.frame with 267 rows and 49 columns.

Source

Kanton Zug (01.07.2022, 10:27:58). Kantonsratswahl 2018 (CSV). https://wab.zug.ch/elections/
kantonsratswahl-2018/data-csv

https://wab.zug.ch/elections/kantonsratswahl-2018/data-csv
https://wab.zug.ch/elections/kantonsratswahl-2018/data-csv

Index

∗ data
finland2019, 8
uri2020, 22
zug2018, 23

apply_quorum, 2
apply_quorum(), 18

biproporz, 3
biproporz(), 2, 9, 12, 13, 16, 17, 21

ceil_at, 5

district_winner_matrix, 6
district_winner_matrix(), 12
divisor_ceiling (divisor_methods), 7
divisor_ceiling(), 7, 15
divisor_floor (divisor_methods), 7
divisor_floor(), 7, 15
divisor_geometric (divisor_methods), 7
divisor_geometric(), 7, 15
divisor_harmonic (divisor_methods), 7
divisor_harmonic(), 7, 15
divisor_methods, 7
divisor_round (divisor_methods), 7
divisor_round(), 7, 15

finland2019, 8

get_divisors, 9
get_divisors(), 4, 17

highest_averages_method, 9
highest_averages_method(), 7

largest_remainder_method, 10
largest_remainder_method(), 15
lower_apportionment, 11
lower_apportionment(), 4, 21

pivot_to_df (pivot_to_matrix), 13

pivot_to_matrix, 13
proporz, 14
proporz(), 2, 4, 7, 11, 12, 21
pukelsheim, 15
pukelsheim(), 5, 9, 13, 17

quorum_all (quorum_functions), 17
quorum_all(), 4, 16
quorum_any (quorum_functions), 17
quorum_any(), 4, 16
quorum_functions, 2, 3, 17, 19

reached_quorum_any_district, 18
reached_quorum_any_district(), 17, 20
reached_quorum_total, 19
reached_quorum_total(), 18, 19
run_app, 20

upper_apportionment, 21
upper_apportionment(), 11, 12, 22
uri2020, 22

weight_list_votes, 22
weight_list_votes(), 4, 18, 20, 21

zug2018, 23

24

	apply_quorum
	biproporz
	ceil_at
	district_winner_matrix
	divisor_methods
	finland2019
	get_divisors
	highest_averages_method
	largest_remainder_method
	lower_apportionment
	pivot_to_matrix
	proporz
	pukelsheim
	quorum_functions
	reached_quorum_any_district
	reached_quorum_total
	run_app
	upper_apportionment
	uri2020
	weight_list_votes
	zug2018
	Index

