Package 'ppsr'

February 18, 2024

Type Package

Title Predictive Power Score

Version 0.0.5

Description The Predictive Power Score (PPS) is an asymmetric, data-type-agnostic score that can detect linear or non-linear relationships between two variables. The score ranges from 0 (no predictive power) to 1 (perfect predictive power). PPS can be useful for data exploration purposes, in the same way correlation analysis is. For more information on PPS, see https://github.com/paulvanderlaken/ppsr.

License GPL (>= 3)

Encoding UTF-8

Suggests testthat (>= 2.0.0)

Config/testthat/edition 3

Config/testthat/parallel true

RoxygenNote 7.2.3

Imports ggplot2 (>= 3.3.3), parsnip (>= 0.1.5), rpart (>= 4.1.15), withr (>= 2.4.1), gridExtra (>= 2.3)

NeedsCompilation no

Author Paul van der Laken [aut, cre, cph]

Maintainer Paul van der Laken <paulvanderlaken@gmail.com>

Repository CRAN

Date/Publication 2024-02-18 12:30:02 UTC

R topics documented:

available_algorithms	2
available_evaluation_metrics	2
normalize_score	3
ppsr	3
score	4
score_correlations	5
score_df	6

score_matrix	7
score_model	7
score_naive	8
score_predictors	9
visualize_both	10
visualize_correlations	11
visualize_pps	12
	13

available_algorithms Lists all algorithms currently supported

Description

Lists all algorithms currently supported

Usage

Index

available_algorithms()

Value

a list of all available parsnip engines

Examples

```
available_algorithms()
```

available_evaluation_metrics

Lists all evaluation metrics currently supported

Description

Lists all evaluation metrics currently supported

Usage

available_evaluation_metrics()

Value

a list of all available evaluation metrics and their implementation in functional form

Examples

available_evaluation_metrics()

2

normalize_score

Normalizes the original score compared to a naive baseline score The calculation that's being performed depends on the type of model

Description

Normalizes the original score compared to a naive baseline score The calculation that's being performed depends on the type of model

Usage

normalize_score(baseline_score, model_score, type)

Arguments

baseline_score	float, the evaluation metric score for a naive baseline (model)
model_score	float, the evaluation metric score for a statistical model
type	character, type of model

Value

numeric vector of length one, normalized score

ppsr

ppsr: An R implementation of the Predictive Power Score (PPS)

Description

The PPS is an asymmetric, data-type-agnostic score that can detect linear or non-linear relationships between two columns. The score ranges from 0 (no predictive power) to 1 (perfect predictive power). It can be used as an alternative to the correlation (matrix).

score

Description

Calculate predictive power score for x on y

Usage

```
score(
    df,
    x,
    y,
    algorithm = "tree",
    metrics = list(regression = "MAE", classification = "F1_weighted"),
    cv_folds = 5,
    seed = 1,
    verbose = TRUE
)
```

Arguments

df	data.frame containing columns for x and y
х	string, column name of predictor variable
У	string, column name of target variable
algorithm	<pre>string, see available_algorithms()</pre>
metrics	named list of eval_* functions used for regression and classification problems, see available_evaluation_metrics()
cv_folds	float, number of cross-validation folds
seed	float, seed to ensure reproducibility/stability
verbose	boolean, whether to print notifications

Value

a named list, potentially containing

x the name of the predictor variable
y the name of the target variable
result_type text showing how to interpret the resulting score
pps the predictive power score
metric the evaluation metric used to compute the PPS
baseline_score the score of a naive model on the evaluation metric
model_score the score of the predictive model on the evaluation metric

cv_folds how many cross-validation folds were usedseed the seed that was setalgorithm text shwoing what algorithm was usedmodel_type text showing whether classification or regression was used

Examples

```
score(iris, x = 'Petal.Length', y = 'Species')
```

score_correlations Calculate correlation coefficients for whole dataframe

Description

Calculate correlation coefficients for whole dataframe

Usage

```
score_correlations(df, ...)
```

Arguments

df	data.frame containing columns for x and y
	arguments to pass to stats::cor()

Value

a data.frame with x-y correlation coefficients

```
score_correlations(iris)
```

score_df

score_df

Calculate predictive power scores for whole dataframe Iterates through the columns of the dataframe, calculating the predictive power score for every possible combination of x and y.

Description

Calculate predictive power scores for whole dataframe Iterates through the columns of the dataframe, calculating the predictive power score for every possible combination of x and y.

Usage

score_df(df, ..., do_parallel = FALSE, n_cores = -1)

Arguments

df	data.frame containing columns for x and y
	any arguments passed to score
do_parallel	bool, whether to perform score calls in parallel
n_cores	numeric, number of cores to use, defaults to maximum minus 1

Value

a data.frame containing

x the name of the predictor variable

y the name of the target variable

result_type text showing how to interpret the resulting score

pps the predictive power score

metric the evaluation metric used to compute the PPS

baseline_score the score of a naive model on the evaluation metric

model_score the score of the predictive model on the evaluation metric

cv_folds how many cross-validation folds were used

seed the seed that was set

algorithm text shwoing what algorithm was used

model_type text showing whether classification or regression was used

```
score_df(iris)
score_df(mtcars, do_parallel = TRUE, n_cores = 2)
```

score_matrix	Calculate predictive power score matrix Iterates through the columns of the dataset, calculating the predictive power score for every possi-
	ble combination of x and y .

Description

Note that the targets are on the rows, and the features on the columns.

Usage

score_matrix(df, ...)

Arguments

df	data.frame containing columns for x and y
	any arguments passed to score_df, some of which will be passed on to score

Value

a matrix of numeric values, representing predictive power scores

Examples

```
score_matrix(iris)
score_matrix(mtcars, do_parallel = TRUE, n_cores=2)
```

score_model Calculates out-of-sample model performance of a statistical model

Description

Calculates out-of-sample model performance of a statistical model

Usage

```
score_model(train, test, model, x, y, metric)
```

Arguments

train	df, training data, containing variable y
test	df, test data, containing variable y
model	parsnip model object, with mode preset
х	character, column name of predictor variable
У	character, column name of target variable
metric	character, name of evaluation metric being used, see available_evaluation_metrics()

Value

numeric vector of length one, evaluation score for predictions using naive model

score_naive	Calculate out-of-sample model performance of naive baseline model
	The calculation that's being performed depends on the type of model
	For regression models, the mean is used as prediction For classifica-
	tion, a model predicting random values and a model predicting modal
	values are used and the best model is taken as baseline score

Description

Calculate out-of-sample model performance of naive baseline model The calculation that's being performed depends on the type of model For regression models, the mean is used as prediction For classification, a model predicting random values and a model predicting modal values are used and the best model is taken as baseline score

Usage

score_naive(train, test, x, y, type, metric)

Arguments

train	df, training data, containing variable y
test	df, test data, containing variable y
x	character, column name of predictor variable
У	character, column name of target variable
type	character, type of model
metric	character, evaluation metric being used

Value

numeric vector of length one, evaluation score for predictions using naive model

score_predictors

Calculate predictive power scores for y Calculates the predictive power scores for the specified y variable using every column in the dataset as x, including itself.

Description

Calculate predictive power scores for y Calculates the predictive power scores for the specified y variable using every column in the dataset as x, including itself.

Usage

```
score_predictors(df, y, ..., do_parallel = FALSE, n_cores = -1)
```

Arguments

df	data.frame containing columns for x and y
У	string, column name of target variable
	any arguments passed to score
do_parallel	bool, whether to perform score calls in parallel
n_cores	numeric, number of cores to use, defaults to maximum minus 1

Value

a data.frame containing

x the name of the predictor variable

y the name of the target variable

result_type text showing how to interpret the resulting score

pps the predictive power score

metric the evaluation metric used to compute the PPS

baseline_score the score of a naive model on the evaluation metric

model_score the score of the predictive model on the evaluation metric

cv_folds how many cross-validation folds were used

seed the seed that was set

algorithm text shwoing what algorithm was used

model_type text showing whether classification or regression was used

```
score_predictors(df = iris, y = 'Species')
score_predictors(df = mtcars, y = 'mpg', do_parallel = TRUE, n_cores = 2)
```

visualize_both

Description

Visualize the PPS & correlation matrices

Usage

```
visualize_both(
   df,
   color_value_positive = "#08306B",
   color_value_negative = "#8b0000",
   color_text = "#FFFFFF",
   include_missings = TRUE,
   nrow = 1,
   ...
)
```

Arguments

df	data.frame containing columns for x and y	
color_value_positive		
	color used for upper limit of gradient (high positive correlation)	
color_value_negative		
	color used for lower limit of gradient (high negative correlation)	
color_text	string, hex value or color name used for text, best to pick high contrast with color_value_high	
include_missings		
	bool, whether to include the variables without correlation values in the plot	
nrow	numeric, number of rows, either 1 or 2	
	any arguments passed to score	

Value

a grob object, a grid with two ggplot2 heatmap visualizations

Examples

```
visualize_both(iris)
```

visualize_both(mtcars, do_parallel = TRUE, n_cores = 2)

visualize_correlations

Visualize the correlation matrix

Description

Visualize the correlation matrix

Usage

```
visualize_correlations(
    df,
    color_value_positive = "#08306B",
    color_value_negative = "#8b0000",
    color_text = "#FFFFFF",
    include_missings = FALSE,
    ...
)
```

Arguments

df	data.frame containing columns for x and y	
color_value_positive		
	color used for upper limit of gradient (high positive correlation)	
color_value_negative		
	color used for lower limit of gradient (high negative correlation)	
color_text	color used for text, best to pick high contrast with color_value_high	
include_missings		
	bool, whether to include the variables without correlation values in the plot	
	arguments to pass to stats::cor()	

Value

a ggplot object, a heatmap visualization

```
visualize_correlations(iris)
```

visualize_pps

Description

If y is specified, visualize_pps returns a barplot of the PPS of every predictor on the specified target variable. If y is not specified, visualize_pps returns a heatmap visualization of the PPS for all X-Y combinations in a dataframe.

Usage

```
visualize_pps(
    df,
    y = NULL,
    color_value_high = "#08306B",
    color_value_low = "#FFFFFF",
    color_text = "#FFFFFF",
    include_target = TRUE,
    ...
)
```

Arguments

df	data.frame containing columns for x and y	
У	string, column name of target variable, can be left NULL to visualize all X-Y PPS	
color_value_high		
	string, hex value or color name used for upper limit of PPS gradient (high PPS)	
color_value_low		
	string, hex value or color name used for lower limit of PPS gradient (low PPS)	
color_text	string, hex value or color name used for text, best to pick high contrast with color_value_high	
include_target	boolean, whether to include the target variable in the barplot	
	any arguments passed to score	

Value

a ggplot object, a vertical barplot or heatmap visualization

```
visualize_pps(iris, y = 'Species')
visualize_pps(iris)
visualize_pps(mtcars, do_parallel = TRUE, n_cores = 2)
```

Index

available_algorithms, 2
available_evaluation_metrics, 2

 $\texttt{normalize_score, 3}$

ppsr, 3 ppsr-package (ppsr), 3

score, 4, 6, 7, 9, 10, 12 score_correlations, 5 score_df, 6, 7 score_matrix, 7 score_model, 7 score_naive, 8 score_predictors, 9

visualize_both, 10
visualize_correlations, 11
visualize_pps, 12