
Package ‘photobiology’
June 23, 2025

Type Package

Title Photobiological Calculations

Version 0.13.1

Date 2025-06-23

Maintainer Pedro J. Aphalo <pedro.aphalo@helsinki.fi>

Description Definitions of classes, methods, operators and functions for use
in photobiology and radiation meteorology and climatology. Calculation of
effective (weighted) and not-weighted irradiances/doses, fluence rates,
transmittance, reflectance, absorptance, absorbance and diverse ratios and
other derived quantities from spectral data. Local maxima and minima: peaks,
valleys and spikes. Conversion between energy-and photon-based units.
Wavelength interpolation. Astronomical calculations related solar angles and
day length. Colours and vision. This package is part of the 'r4photobiology'
suite, Aphalo, P. J. (2015) <doi:10.19232/uv4pb.2015.1.14>.

License GPL (>= 2)

Depends R (>= 4.1.0), SunCalcMeeus (>= 0.1.2)

Imports stats, grDevices, polynom (>= 1.4-1), tibble (>= 3.2.0),
stringr (>= 1.4.0), lubridate (>= 1.9.3), caTools (>= 1.18.0),
plyr (>= 1.8.9), dplyr (>= 1.1.4), tidyr (>= 1.3.1), splus2R
(>= 1.3-3), zoo (>= 1.8-12), rlang (>= 1.1.4)

Suggests knitr (>= 1.48), rmarkdown (>= 2.27), testthat (>= 3.2.1),
roxygen2 (>= 7.3.2), lutz (>= 0.3.2), covr

LazyLoad yes

LazyData yes

ByteCompile true

URL https://docs.r4photobiology.info/photobiology/,

https://github.com/aphalo/photobiology

BugReports https://github.com/aphalo/photobiology/issues

Encoding UTF-8

RoxygenNote 7.3.2

1

https://doi.org/10.19232/uv4pb.2015.1.14
https://docs.r4photobiology.info/photobiology/
https://github.com/aphalo/photobiology
https://github.com/aphalo/photobiology/issues

2 Contents

VignetteBuilder knitr

NeedsCompilation no

Author Pedro J. Aphalo [aut, cre] (ORCID:
<https://orcid.org/0000-0003-3385-972X>),

Titta K. Kotilainen [ctb] (ORCID:
<https://orcid.org/0000-0002-2822-9734>),

Glenn Davis [ctb],
Agnese Fazio [ctb]

Repository CRAN

Date/Publication 2025-06-23 18:20:02 UTC

Contents
photobiology-package . 8
A.illuminant.spct . 10
A2T . 11
absorbance . 12
absorptance . 15
add_attr2tb . 18
Afr2T . 21
any2T . 23
as.calibration_mspct . 24
as.calibration_spct . 26
as.chroma_mspct . 26
as.chroma_spct . 28
as.cps_mspct . 28
as.cps_spct . 30
as.filter_mspct . 31
as.filter_spct . 33
as.generic_mspct . 34
as.generic_spct . 36
as.matrix-mspct . 37
as.object_mspct . 38
as.object_spct . 39
as.raw_mspct . 40
as.raw_spct . 42
as.reflector_mspct . 42
as.reflector_spct . 44
as.response_mspct . 45
as.response_spct . 47
as.solute_mspct . 48
as.solute_spct . 50
as.source_mspct . 52
as.source_spct . 54
as_energy . 55
as_quantum . 55

https://orcid.org/0000-0003-3385-972X
https://orcid.org/0000-0002-2822-9734

Contents 3

as_quantum_mol . 56
average_spct . 57
beesxyzCMF.spct . 57
black_body.spct . 58
c . 59
calc_multipliers . 59
calc_source_output . 60
ccd.spct . 62
checkTimeUnit . 63
check_spct . 63
check_spectrum . 67
check_w.length . 68
check_wl_stepsize . 68
ciev10.spct . 69
ciev2.spct . 70
ciexyzCC10.spct . 71
ciexyzCC2.spct . 72
ciexyzCMF10.spct . 73
ciexyzCMF2.spct . 74
class_spct . 75
clean . 75
clear.spct . 80
clip_wl . 81
collect2mspct . 83
color_of . 84
compare_spct . 86
cone_fundamentals10.spct . 88
convertTfrType . 89
convertThickness . 90
convertTimeUnit . 91
convolve_each . 92
copy_attributes . 93
cps2irrad . 94
D2.UV653 . 95
D2_spectrum . 95
D50.illuminant.spct . 96
D65.illuminant.spct . 97
defunct . 98
despike . 99
diffraction_single_slit . 106
dim.generic_mspct . 107
div-.generic_spct . 108
div_spectra . 108
drop_user_cols . 110
e2q . 111
e2qmol_multipliers . 113
e2quantum_multipliers . 113
enable_check_spct . 114

4 Contents

energy_as_default . 115
energy_irradiance . 116
energy_ratio . 117
eq_ratio . 118
Extract . 121
Extract_mspct . 123
e_fluence . 124
e_fraction . 127
e_irrad . 130
e_ratio . 133
e_response . 137
FEL_spectrum . 139
findMultipleWl . 140
find_peaks . 141
find_spikes . 143
find_wls . 145
fit_peaks . 146
fluence . 148
formatted_range . 151
fscale . 151
fshift . 157
generic_mspct . 162
getFilterProperties . 163
getHowMeasured . 165
getIdFactor . 166
getInstrDesc . 167
getInstrSettings . 168
getKType . 169
getMspctVersion . 170
getMultipleWl . 170
getNormalized . 171
getScaled . 172
getSoluteProperties . 173
getSpctVersion . 175
getTimeUnit . 175
getWhatMeasured . 176
getWhenMeasured . 177
getWhereMeasured . 179
get_attributes . 181
get_peaks . 182
green_leaf.spct . 184
head_tail . 185
illuminance . 187
insert_hinges . 189
insert_spct_hinges . 190
integrate_spct . 191
integrate_xy . 191
interpolate_spct . 192

Contents 5

interpolate_spectrum . 193
interpolate_wl . 194
irrad . 196
irradiance . 199
is.generic_mspct . 201
is.generic_spct . 202
is.old_spct . 203
is.summary_generic_spct . 204
is.waveband . 205
isValidInstrDesc . 205
isValidInstrSettings . 206
is_absorbance_based . 207
is_effective . 208
is_mole_based . 209
is_normalized . 210
is_photon_based . 210
is_scaled . 211
is_tagged . 212
join_mspct . 213
labels . 215
Ler_leaf.spct . 215
log . 217
make_var_labels . 218
MathFun . 220
merge2object_spct . 220
merge_attributes . 221
minus-.generic_spct . 222
mod-.generic_spct . 223
msmsply . 224
mspct_classes . 225
na.omit . 225
normalization . 228
normalize . 230
normalized_diff_ind . 236
normalize_range_arg . 238
oper_spectra . 239
peaks . 240
phenylalanine.spct . 250
photodiode.spct . 251
photons_energy_ratio . 252
photon_irradiance . 253
photon_ratio . 254
plus-.generic_spct . 256
print.generic_spct . 256
print.metadata . 258
print.summary_generic_spct . 259
print.waveband . 260
prod_spectra . 260

6 Contents

pull_sample . 261
q2e . 263
qe_ratio . 265
q_fluence . 267
q_fraction . 270
q_irrad . 273
q_ratio . 277
q_response . 280
r4p_pkgs . 283
rbindspct . 283
reflectance . 285
replace_bad_pixs . 288
response . 289
Rfr_fraction . 292
Rfr_from_n . 295
Rfr_normdiff . 296
Rfr_ratio . 300
rgb_spct . 303
rmDerivedMspct . 304
rmDerivedSpct . 304
round . 305
select_spct_attributes . 306
setBSWFUsed . 307
setFilterProperties . 308
setGenericSpct . 310
setHowMeasured . 314
setIdFactor . 316
setInstrDesc . 317
setInstrSettings . 318
setKType . 319
setMultipleWl . 320
setNormalized . 321
setResponseType . 322
setRfrType . 323
setScaled . 324
setSoluteProperties . 326
setTfrType . 328
setTimeUnit . 330
setWhatMeasured . 331
setWhenMeasured . 332
setWhereMeasured . 334
shared_member_class . 335
sign . 336
slash-.generic_spct . 337
smooth_spct . 337
source_spct . 340
spct_attr2tb . 345
spct_classes . 346

Contents 7

spct_metadata . 347
spct_wide2long . 348
spikes . 350
split2mspct . 355
split_bands . 358
split_energy_irradiance . 359
split_irradiance . 360
split_photon_irradiance . 362
spread . 363
Subset . 365
subset2mspct . 366
subt_spectra . 367
summary.generic_spct . 368
summary_spct_classes . 370
sum_spectra . 371
sun.spct . 372
sun_daily.spct . 373
sun_evening.spct . 375
s_e_irrad2rgb . 376
s_mean . 377
s_mean_se . 379
s_mean_se_band . 381
s_median . 383
s_prod . 385
s_range . 387
s_sd . 389
s_se . 391
s_sum . 392
s_var . 394
T2A . 396
T2Afr . 399
tag . 401
Tfr_fraction . 403
Tfr_normdiff . 406
Tfr_ratio . 410
thin_wl . 413
times-.generic_spct . 417
transmittance . 418
Trig . 420
trimInstrDesc . 421
trimInstrSettings . 422
trim_spct . 423
trim_tails . 425
trim_waveband . 427
trim_wl . 428
two_filters.spct . 430
two_sensors.mspct . 432
uncollect2spct . 433

8 photobiology-package

untag . 434
upgrade_spct . 435
upgrade_spectra . 436
using_Tfr . 436
valleys . 437
verbose_as_default . 447
v_insert_hinges . 448
v_replace_hinges . 448
water.spct . 449
waveband . 450
waveband_ratio . 452
wb2rect_spct . 454
wb2spct . 455
wb2tagged_spct . 455
wb_trim_as_default . 456
white_led.source_spct . 457
wl2wavenumber . 458
wls_at_target . 459
wl_max . 463
wl_midpoint . 464
wl_min . 466
wl_range . 467
wl_stepsize . 468
w_length2rgb . 469
w_length_range2rgb . 470
^.generic_spct . 471

Index 472

photobiology-package photobiology: Photobiological Calculations

Description

Definitions of classes, methods, operators and functions for use in photobiology and radiation me-
teorology and climatology. Calculation of effective (weighted) and not-weighted irradiances/doses,
fluence rates, transmittance, reflectance, absorptance, absorbance and diverse ratios and other de-
rived quantities from spectral data. Local maxima and minima: peaks, valleys and spikes. Conver-
sion between energy-and photon-based units. Wavelength interpolation. Astronomical calculations
related solar angles and day length. Colours and vision. This package is part of the ’r4photobiology’
suite, Aphalo, P. J. (2015) doi:10.19232/uv4pb.2015.1.14.

Details

Package ‘photobiology’ is at the core of a suite of R packages supporting computations and plotting
relevant to photobiology (described at https://www.r4photobiology.info/). Package ’photobi-
ology’ has its main focus in the characterization of the light environment, the description of optical
properties of objects and substances and description of light responses of organisms and devices

https://doi.org/10.19232/uv4pb.2015.1.14
https://www.r4photobiology.info/

photobiology-package 9

used to measure light. The facilities for spectral data storage and manipulations are widely useful
in photobiology, chemistry, geophysics, radiation climatology and remote sensing. Astronomical
computations for the sun are also implemented. The design of object classes for spectral data sup-
ports reproducibility by facilitating the consistent use of units and physical quantities and consistent
embedding of metadata. Data are expressed throughout using SI base units, except for wavelengths
which are consistently expressed in nanometres [nm]. Please see the vignette 0: The R for photo-
biology Suite for a description of the suite.

Acknowledgements

This work was funded by the Academy of Finland (decision 252548). COST Action FA9604
‘UV4Growth’ facilitated discussions and exchanges of ideas that lead to the development of this
package. The contributions of Andy McLeod, Lars Olof Björn, Nigel Paul, Lasse Ylianttila, T.
Matthew Robson and Titta Kotilainen were specially significant. Tutorials by Hadley Wickham and
comments on my presentation at UseR!2015 allowed me to significantly improve the coding and
functionality.

Author(s)

Maintainer: Pedro J. Aphalo <pedro.aphalo@helsinki.fi> (ORCID)

Other contributors:

• Titta K. Kotilainen (ORCID) [contributor]

• Glenn Davis <gdavis@gluonics.com> [contributor]

• Agnese Fazio <agnese.fazio@uni-jena.de> [contributor]

References

Aphalo, P. J., Albert, A., Björn, L. O., McLeod, A. R., Robson, T. M., Rosenqvist, E. (Eds.). (2012).
Beyond the Visible: A handbook of best practice in plant UV photobiology (1st ed., p. xx + 174).
Helsinki: University of Helsinki, Department of Biosciences, Division of Plant Biology. ISBN
978-952-10-8363-1 (PDF), 978-952-10-8362-4 (paperback). Open access PDF download available
at doi:10.31885/9789521083631.

Aphalo, Pedro J. (2015) The r4photobiology suite. UV4Plants Bulletin, 2015:1, 21-29. doi:10.19232/
uv4pb.2015.1.14.

Maia, R., Eliason, C. M., Bitton, P. P., Doucet, S. M., Shawkey, M. D. (2013) pavo: an R package
for the analysis, visualization and organization of spectral data. Methods in Ecology and Evolution,
4(10):906-913. doi:10.1111/2041210X.12069.

See Also

Useful links:

• https://docs.r4photobiology.info/photobiology/

• https://github.com/aphalo/photobiology

• Report bugs at https://github.com/aphalo/photobiology/issues

https://orcid.org/0000-0003-3385-972X
https://orcid.org/0000-0002-2822-9734
https://doi.org/10.31885/9789521083631
https://doi.org/10.19232/uv4pb.2015.1.14
https://doi.org/10.19232/uv4pb.2015.1.14
https://doi.org/10.1111/2041-210X.12069
https://docs.r4photobiology.info/photobiology/
https://github.com/aphalo/photobiology
https://github.com/aphalo/photobiology/issues

10 A.illuminant.spct

Examples

irradiance of the whole spectrum
irrad(sun.spct)
photon irradiance 400 nm to 700 nm
q_irrad(sun.spct, waveband(c(400,700)))
energy irradiance 400 nm to 700 nm
e_irrad(sun.spct, waveband(c(400,700)))
simulating the effect of a filter on solar irradiance
e_irrad(sun.spct * yellow_gel.spct, waveband(c(400,500)))
e_irrad(sun.spct * yellow_gel.spct, waveband(c(500,700)))
daylength
sunrise_time(lubridate::today(tzone = "Europe/Helsinki"),

tz = "Europe/Helsinki",
geocode = data.frame(lat = 60, lon = 25),
unit.out = "hour")

day_length(lubridate::today(tzone = "Europe/Helsinki"),
tz = "Europe/Helsinki",
geocode = data.frame(lat = 60, lon = 25),
unit.out = "hour")

colour as seen by humans
color_of(sun.spct)
color_of(sun.spct * yellow_gel.spct)
filter transmittance
transmittance(yellow_gel.spct)
transmittance(yellow_gel.spct, waveband(c(400,500)))
transmittance(yellow_gel.spct, waveband(c(500,700)))

A.illuminant.spct CIE A illuminant data

Description

A dataset containing wavelengths at a 5 nm interval (300 nm to 830 nm) and the corresponding
spectral energy irradiance normalized to 1 at 560 nm. Spectrum approximates typical, domestic,
tungsten-filament lighting and ’corresponds’ to a black body a 2856 K. CIE standard illuminant
A is intended to represent typical, domestic, tungsten-filament lighting. Original data from CIE
downloaded on 2024-11-30.

Usage

A.illuminant.spct

Format

A source spectrum with 531 rows and 2 variables.

• w.length (nm)

• s.e.irrad (rel. units)

A2T 11

Note

This and other CIE illuminant spectra can be downloaded from https://cie.co.at/data-tables
as .CSV files.

Author(s)

CIE

References

CIE 2018, CIE standard illuminant A - 1 nm, International Commission on Illumination (CIE),
Vienna, Austria, doi:10.25039/CIE.DS.8jsxjrsn.

See Also

Other Spectral data examples: D50.illuminant.spct, D65.illuminant.spct, Ler_leaf.spct,
black_body.spct, ccd.spct, clear.spct, filter_cps.mspct, green_leaf.spct, phenylalanine.spct,
photodiode.spct, sun.spct, sun_daily.spct, sun_evening.spct, two_filters.spct, two_sensors.mspct,
water.spct, white_led.source_spct

Examples

A.illuminant.spct

A2T Convert absorbance into transmittance

Description

Function that converts absorbance (a.u.) into transmittance (fraction).

Usage

A2T(x, action, byref, ...)

Default S3 method:
A2T(x, action = NULL, byref = FALSE, ...)

S3 method for class 'numeric'
A2T(x, action = NULL, byref = FALSE, ...)

S3 method for class 'filter_spct'
A2T(x, action = "add", byref = FALSE, ...)

S3 method for class 'filter_mspct'
A2T(x, action = "add", byref = FALSE, ..., .parallel = FALSE, .paropts = NULL)

https://cie.co.at/data-tables
https://doi.org/10.25039/CIE.DS.8jsxjrsn

12 absorbance

Arguments

x an R object.

action a character string "add" or "replace".

byref logical indicating if new object will be created by reference or by copy of x.

... not used in current version.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Value

A copy of x with a column Tfr added and A and Afr possibly deleted except for w.length. If
action = "replace", in all cases, the additional columns are removed, even if no column needs to
be added.

Methods (by class)

• A2T(default): Default method for generic function

• A2T(numeric): method for numeric vectors

• A2T(filter_spct): Method for filter spectra

• A2T(filter_mspct): Method for collections of filter spectra

See Also

Other quantity conversion functions: Afr2T(), T2A(), T2Afr(), any2T(), as_quantum(), e2q(),
e2qmol_multipliers(), e2quantum_multipliers(), q2e()

absorbance Absorbance

Description

Function to calculate the mean, total, or other summary of absorbance for spectral data stored in a
filter_spct or in an object_spct.

Usage

absorbance(spct, w.band, quantity, wb.trim, use.hinges, ...)

Default S3 method:
absorbance(spct, w.band, quantity, wb.trim, use.hinges, ...)

S3 method for class 'filter_spct'

absorbance 13

absorbance(
spct,
w.band = NULL,
quantity = "average",
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = NULL,
naming = "default",
...

)

S3 method for class 'object_spct'
absorbance(
spct,
w.band = NULL,
quantity = "average",
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = NULL,
naming = "default",
...

)

S3 method for class 'filter_mspct'
absorbance(
spct,
w.band = NULL,
quantity = "average",
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = NULL,
naming = "default",
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'object_mspct'
absorbance(
spct,
w.band = NULL,
quantity = "average",
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = NULL,
naming = "default",
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,

14 absorbance

.paropts = NULL
)

Arguments

spct an R object.

w.band waveband or list of waveband objects or a numeric vector of length two. The
waveband(s) determine the region(s) of the spectrum that are summarized. If a
numeric range is supplied a waveband object is constructed on the fly from it.

quantity character string One of "average" or "mean", "total", "contribution", "contribution.pc",
"relative" or "relative.pc".

wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if
FALSE, they are discarded.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

... other arguments (possibly used by derived methods).

naming character one of "long", "default", "short" or "none". Used to select the
type of names to assign to returned value.

attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to
formal parameter col.names.

idx character Name of the column with the names of the members of the collection
of spectra.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Value

A named numeric vector in the case of methods for individual spectra, with one value for each
waveband passed to parameter w.band. A data.frame in the case of collections of spectra, con-
taining one column for each waveband object, an index column with the names of the spectra, and
optionally additional columns with metadata values retrieved from the attributes of the member
spectra.

By default values are only integrated, but depending on the argument passed to parameter quantity
they can be re-expressed as relative fractions or percentages. In the case of vector output, names
attribute is set to the name of the corresponding waveband unless a named list is supplied in which
case the names of the list members are used.

Methods (by class)

• absorbance(default): Default for generic function

• absorbance(filter_spct): Specialization for filter spectra

absorptance 15

• absorbance(object_spct): Specialization for object spectra

• absorbance(filter_mspct): Calculates absorbance from a filter_mspct

• absorbance(object_mspct): Calculates absorbance from a object_mspct

Note

The use.hinges parameter controls speed optimization. The defaults should be suitable in most
cases. Only the range of wavelengths in the wavebands is used and all BSWFs are ignored.

Examples

absorbance(polyester.spct, new_waveband(400,700))
absorbance(yellow_gel.spct, new_waveband(400,700))
absorbance(yellow_gel.spct, split_bands(c(400,700), length.out = 3))
absorbance(yellow_gel.spct, split_bands(c(400,700), length.out = 3),

quantity = "average")
absorbance(yellow_gel.spct, split_bands(c(400,700), length.out = 3),

quantity = "total")
absorbance(yellow_gel.spct, split_bands(c(400,700), length.out = 3),

quantity = "relative")
absorbance(yellow_gel.spct, split_bands(c(400,700), length.out = 3),

quantity = "relative.pc")
absorbance(yellow_gel.spct, split_bands(c(400,700), length.out = 3),

quantity = "contribution")
absorbance(yellow_gel.spct, split_bands(c(400,700), length.out = 3),

quantity = "contribution.pc")

absorptance Absorptance

Description

Function to calculate the mean, total, or other summary of absorptance for spectral data stored in a
filter_spct or in an object_spct. Absorptance is a different quantity than absorbance.

Usage

absorptance(spct, w.band, quantity, wb.trim, use.hinges, ...)

Default S3 method:
absorptance(spct, w.band, quantity, wb.trim, use.hinges, ...)

S3 method for class 'filter_spct'
absorptance(
spct,
w.band = NULL,
quantity = "average",

16 absorptance

wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = NULL,
naming = "default",
...

)

S3 method for class 'object_spct'
absorptance(
spct,
w.band = NULL,
quantity = "average",
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = NULL,
naming = "default",
...

)

S3 method for class 'filter_mspct'
absorptance(
spct,
w.band = NULL,
quantity = "average",
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = NULL,
naming = "default",
...,
attr2tb = NULL,
idx = "spct.idx"

)

S3 method for class 'object_mspct'
absorptance(
spct,
w.band = NULL,
quantity = "average",
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = NULL,
naming = "default",
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct an R object.

absorptance 17

w.band waveband or list of waveband objects or a numeric vector of length two. The
waveband(s) determine the region(s) of the spectrum that are summarized. If a
numeric range is supplied a waveband object is constructed on the fly from it.

quantity character string One of "average" or "mean", "total", "contribution", "contribution.pc",
"relative" or "relative.pc".

wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if
FALSE, they are discarded.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

... other arguments (possibly used by derived methods).

naming character one of "long", "default", "short" or "none". Used to select the
type of names to assign to returned value.

attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to
formal parameter col.names.

idx character Name of the column with the names of the members of the collection
of spectra.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Value

A named numeric vector in the case of methods for individual spectra, with one value for each
waveband passed to parameter w.band. A data.frame in the case of collections of spectra, con-
taining one column for each waveband object, an index column with the names of the spectra, and
optionally additional columns with metadata values retrieved from the attributes of the member
spectra.

By default values are only integrated, but depending on the argument passed to parameter quantity
they can be re-expressed as relative fractions or percentages. In the case of vector output, names
attribute is set to the name of the corresponding waveband unless a named list is supplied in which
case the names of the list members are used.

Methods (by class)

• absorptance(default): Default for generic function

• absorptance(filter_spct): Specialization for filter spectra

• absorptance(object_spct): Specialization for object spectra

• absorptance(filter_mspct): Calculates absorptance from a filter_mspct

• absorptance(object_mspct): Calculates absorptance from a object_mspct

18 add_attr2tb

Note

The use.hinges parameter controls speed optimization. The defaults should be suitable in most
cases. Only the range of wavelengths in the wavebands is used and all BSWFs are ignored.

Examples

absorptance(black_body.spct, new_waveband(400,500))
absorptance(white_body.spct, new_waveband(300,400))
absorptance(black_body.spct, split_bands(c(400,700), length.out = 3))
absorptance(black_body.spct, split_bands(c(400,700), length.out = 3),

quantity = "average")
absorptance(black_body.spct, split_bands(c(400,700), length.out = 3),

quantity = "total")
absorptance(black_body.spct, split_bands(c(400,700), length.out = 3),

quantity = "relative")
absorptance(black_body.spct, split_bands(c(400,700), length.out = 3),

quantity = "relative.pc")
absorptance(black_body.spct, split_bands(c(400,700), length.out = 3),

quantity = "contribution")
absorptance(black_body.spct, split_bands(c(400,700), length.out = 3),

quantity = "contribution.pc")

add_attr2tb Copy attributes from members of a generic_mspct

Description

Copy metadata attributes from members of a generic_mspct object into a data.frame or a tibble.

Usage

add_attr2tb(
tb = NULL,
mspct,
col.names = NULL,
idx = "spct.idx",
unnest = FALSE

)

when_measured2tb(mspct, tb = NULL, col.names = "when.measured", idx = NULL)

geocode2tb(mspct, tb = NULL, col.names = "geocode", idx = "spct.idx")

lonlat2tb(mspct, tb = NULL, col.names = c("lon", "lat"), idx = "spct.idx")

lon2tb(mspct, tb = NULL, col.names = "lon", idx = "spct.idx")

add_attr2tb 19

lat2tb(mspct, tb = NULL, col.names = "lat", idx = "spct.idx")

address2tb(mspct, tb = NULL, col.names = "address", idx = "spct.idx")

what_measured2tb(
mspct,
tb = NULL,
col.names = "what.measured",
idx = "spct.idx"

)

how_measured2tb(mspct, tb = NULL, col.names = "how.measured", idx = "spct.idx")

normalized2tb(mspct, tb = NULL, col.names = "normalized", idx = "spct.idx")

scaled2tb(mspct, tb = NULL, col.names = "scaled", idx = "spct.idx")

instr_desc2tb(mspct, tb = NULL, col.names = "instr.desc", idx = "spct.idx")

instr_settings2tb(
mspct,
tb = NULL,
col.names = "instr.settings",
idx = "spct.idx"

)

BSWF_used2tb(mspct, tb = NULL, col.names = "BSWF.used", idx = "spct.idx")

filter_properties2tb(
mspct,
tb = NULL,
col.names = "filter.properties",
idx = "spct.idx"

)

solute_properties2tb(
mspct,
tb = NULL,
col.names = "solute.properties",
idx = "spct.idx"

)

Tfr_type2tb(mspct, tb = NULL, col.names = "Tfr.type", idx = "spct.idx")

Rfr_type2tb(mspct, tb = NULL, col.names = "Rfr.type", idx = "spct.idx")

time_unit2tb(mspct, tb = NULL, col.names = "time.unit", idx = "spct.idx")

20 add_attr2tb

comment2tb(mspct, tb = NULL, col.names = "comment", idx = "spct.idx")

multiple_wl2tb(mspct, tb = NULL, col.names = "multiple.wl", idx = "spct.idx")

Arguments

tb tibble or data.frame to which to add the data (optional).

mspct generic_mspct or generic_spct Any collection of spectra or one or more spectra
in long form.

col.names named character vector Name(s) of metadata attributes to copy. If named, the
names provide the name for the columns.

idx character Name of the column with the names of the members of the collection
of spectra.

unnest logical Flag controlling if metadata attributes that are lists of values should be
returned in a list column or in separate columns.

Details

Each attribute is by default copied to a column in a tibble or a data.frame. If the argument for tb
is NULL, as by default, a new tibble will be created. If an existing data.frame or tibble is passed
as argument, new columns are added to it. However, the number of rows in the argument passed to
tb must match the number of spectra in the argument passed to mspct. Only in the case of methods
add_attr2tb() and spct_metadata() if the argument to col.names is a named vector, the names
of members are used as names for the columns created. This permits setting any valid name for the
new columns. If the members of the vector passed to col.names have no names, then the value is
interpreted as the name of the attributes to add, and also used as name for the new column.

Valid values accepted as argument to col.names are NULL, or a vector containing one or more
of the following character strings: "lon", "lat", "address", "geocode", "where.measured",
"when.measured", "what.measured", "how.measured", "comment", "normalised", "normalized",
"scaled", "bswf.used", "instr.desc", "instr.settings", solute.properties, "filter.properties",
"Tfr.type", "Rfr.type", "time.unit".

Value

A data.frame or a tibble With the metadata attributes in separate new variables.

Note

The order of the first two arguments is reversed in add_attr2tb(), when_measured2tb(), what_measured2tb(),
etc., compared to attribute query functions, such as spct_metadata, when_measured(), what_measured(),
how_measured(), etc. This is to allow the use of add_attr2tb() in ’pipes’ to add metadata to sum-
maries computed at earlier steps in the pipe.

See Also

Other measurement metadata functions: getFilterProperties(), getHowMeasured(), getInstrDesc(),
getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(), getWhereMeasured(),
get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),

Afr2T 21

setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setSoluteProperties(),
setWhatMeasured(), setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(),
subset_attributes(), trimInstrDesc(), trimInstrSettings()

Examples

Add attributes to irradiance
from collection of spectra
e_irrad(sun_evening.mspct) |>

add_attr2tb(sun_evening.mspct,
c(when.measured = "time"))

from spectra in long form
e_irrad(sun_evening.spct) |>

add_attr2tb(sun_evening.spct,
c(when.measured = "time"))

Add attributes to transmittance
from collection of spectra
transmittance(two_filters.mspct) |>

add_attr2tb(two_filters.mspct, col.names = "what.measured")

transmittance(two_filters.mspct) |>
add_attr2tb(two_filters.mspct,

col.names = c("filter.properties", "what.measured"),
unnest = TRUE)

Create a new data frame
add_attr2tb(mspct = two_filters.mspct,

idx = "filter",
col.names = c("filter.properties", "what.measured"),
unnest = TRUE)

Afr2T Convert transmittance into absorptance.

Description

Function that converts transmittance (fraction) into absorptance (fraction). If reflectance (fraction)
is available, it allows conversions between internal and total absorptance.

Usage

Afr2T(x, action, byref, clean, ...)

Default S3 method:
Afr2T(x, action = NULL, byref = FALSE, clean = FALSE, ...)

22 Afr2T

S3 method for class 'numeric'
Afr2T(x, action = NULL, byref = FALSE, clean = FALSE, Rfr = NA_real_, ...)

S3 method for class 'filter_spct'
Afr2T(x, action = "add", byref = FALSE, clean = FALSE, ...)

S3 method for class 'object_spct'
Afr2T(x, action = "add", byref = FALSE, clean = FALSE, ...)

S3 method for class 'filter_mspct'
Afr2T(
x,
action = "add",
byref = FALSE,
clean = FALSE,
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'object_mspct'
Afr2T(
x,
action = "add",
byref = FALSE,
clean = FALSE,
...,
.parallel = FALSE,
.paropts = NULL

)

Arguments

x an R object

action character Allowed values "replace" and "add"

byref logical indicating if new object will be created by reference or by copy of x

clean logical replace off-boundary values before conversion

... not used in current version

Rfr numeric vector. Spectral reflectance o reflectance factor. Set to zero if x is
internal reflectance,

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

any2T 23

Value

A copy of x with a column Tfr added and other columns possibly deleted except for w.length. If
action = "replace", in all cases, the additional columns are removed, even if no column needs to
be added.

Methods (by class)

• Afr2T(default): Default method for generic function

• Afr2T(numeric): Default method for generic function

• Afr2T(filter_spct): Method for filter spectra

• Afr2T(object_spct): Method for object spectra

• Afr2T(filter_mspct): Method for collections of filter spectra

• Afr2T(object_mspct): Method for collections of object spectra

See Also

Other quantity conversion functions: A2T(), T2A(), T2Afr(), any2T(), as_quantum(), e2q(),
e2qmol_multipliers(), e2quantum_multipliers(), q2e()

Examples

T2Afr(Ler_leaf.spct)

any2T Convert filter quantities.

Description

Functions that convert or add related physical quantities to filter_spct or object_spct objects.
transmittance (fraction) into absorptance (fraction).

Usage

any2T(x, action = "add", clean = FALSE)

any2A(x, action = "add", clean = FALSE)

any2Afr(x, action = "add", clean = FALSE)

Arguments

x an filter_spct or a filter_mspct object.

action character Allowed values "replace" and "add".

clean logical replace off-boundary values before conversion

24 as.calibration_mspct

Details

These functions are dispatchers for A2T, Afr2T, T2A, and T2Afr. The dispatch is based on the names
of the variables stored in x. They do not support in-place modification of x.

Value

A copy of x with the columns for the different quantities added or replaced. If action = "replace",
in all cases, the additional columns are removed, even if no column needs to be added.

See Also

Other quantity conversion functions: A2T(), Afr2T(), T2A(), T2Afr(), as_quantum(), e2q(),
e2qmol_multipliers(), e2quantum_multipliers(), q2e()

Examples

any2Afr(Ler_leaf.spct)
any2T(Ler_leaf.spct)
any2T(polyester.spct)

as.calibration_mspct Coerce to a collection-of-spectra

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

as.calibration_mspct(x, ...)

Default S3 method:
as.calibration_mspct(x, ...)

S3 method for class 'data.frame'
as.calibration_mspct(x, ...)

S3 method for class 'calibration_spct'
as.calibration_mspct(x, ...)

S3 method for class 'list'
as.calibration_mspct(x, ..., ncol = 1, byrow = FALSE)

S3 method for class 'matrix'
as.calibration_mspct(
x,

as.calibration_mspct 25

w.length,
spct.data.var = "irrad.mult",
multiplier = 1,
byrow = NULL,
spct.names = "spct_",
...

)

Arguments

x a list of spectral objects or a list of objects such as data frames that can be
converted into spectral objects.

... passed to individual spectrum object constructor

ncol integer Number of ’virtual’ columns in data

byrow logical If ncol > 1 how to read in the data

w.length numeric A vector of wavelengthvalues sorted in strictly ascending order (nm).

spct.data.var character The name of the variable that will contain the spectral data. This indi-
cates what physical quantity is stored in the matrix and the units of expression
used.

multiplier numeric A multiplier to be applied to the values in x to do unit or scale conver-
sion.

spct.names character Vector of names to be assigned to collection members, either of length
1, or with length equal to the number of spectra.

Value

A copy of x converted into a calibration_mspctt object.

Methods (by class)

• as.calibration_mspct(default):

• as.calibration_mspct(data.frame):

• as.calibration_mspct(calibration_spct):

• as.calibration_mspct(list):

• as.calibration_mspct(matrix):

Note

When x is a square matrix an explicit argument is needed for byrow to indicate how data in x should
be read. In every case the length of the w.length vector must match one of the dimensions of x.

See Also

Other Coercion methods for collections of spectra: as.chroma_mspct(), as.cps_mspct(), as.filter_mspct(),
as.generic_mspct(), as.object_mspct(), as.raw_mspct(), as.reflector_mspct(), as.response_mspct(),
as.solute_mspct(), as.source_mspct(), split2mspct(), subset2mspct()

26 as.chroma_mspct

as.calibration_spct Coerce to a spectrum

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

as.calibration_spct(x, ...)

Default S3 method:
as.calibration_spct(x, ...)

Arguments

x an R object.

... other arguments passed to "set" functions.

Value

A copy of x converted into a calibration_spct object.

Methods (by class)

• as.calibration_spct(default):

See Also

setGenericSpct

Other constructors of spectral objects: as.chroma_spct(), as.cps_spct(), as.filter_spct(),
as.generic_spct(), as.object_spct(), as.raw_spct(), as.reflector_spct(), as.response_spct(),
as.solute_spct(), as.source_spct(), source_spct()

as.chroma_mspct Coerce to a collection-of-spectra

Description

Return a copy of an R object with its class set to a given type of spectrum.

as.chroma_mspct 27

Usage

as.chroma_mspct(x, ...)

Default S3 method:
as.chroma_mspct(x, ...)

S3 method for class 'data.frame'
as.chroma_mspct(x, ...)

S3 method for class 'chroma_spct'
as.chroma_mspct(x, ...)

S3 method for class 'list'
as.chroma_mspct(x, ..., ncol = 1, byrow = FALSE)

Arguments

x a list of spectral objects or a list of objects such as data frames that can be
converted into spectral objects.

... passed to individual spectrum object constructor

ncol integer Number of ’virtual’ columns in data

byrow logical If ncol > 1 how to read in the data

Value

A copy of x converted into a chroma_mspct object.

Methods (by class)

• as.chroma_mspct(default):

• as.chroma_mspct(data.frame):

• as.chroma_mspct(chroma_spct):

• as.chroma_mspct(list):

See Also

Other Coercion methods for collections of spectra: as.calibration_mspct(), as.cps_mspct(),
as.filter_mspct(), as.generic_mspct(), as.object_mspct(), as.raw_mspct(), as.reflector_mspct(),
as.response_mspct(), as.solute_mspct(), as.source_mspct(), split2mspct(), subset2mspct()

28 as.cps_mspct

as.chroma_spct Coerce to a spectrum

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

as.chroma_spct(x, ...)

Default S3 method:
as.chroma_spct(x, ...)

Arguments

x an R object.

... other arguments passed to "set" functions.

Value

A copy of x converted into a chroma_spct object.

Methods (by class)

• as.chroma_spct(default):

See Also

setGenericSpct

Other constructors of spectral objects: as.calibration_spct(), as.cps_spct(), as.filter_spct(),
as.generic_spct(), as.object_spct(), as.raw_spct(), as.reflector_spct(), as.response_spct(),
as.solute_spct(), as.source_spct(), source_spct()

as.cps_mspct Coerce to a collection-of-spectra

Description

Return a copy of an R object with its class set to a given type of spectrum.

as.cps_mspct 29

Usage

as.cps_mspct(x, ...)

Default S3 method:
as.cps_mspct(x, ...)

S3 method for class 'data.frame'
as.cps_mspct(x, ...)

S3 method for class 'cps_spct'
as.cps_mspct(x, ...)

S3 method for class 'list'
as.cps_mspct(x, ..., ncol = 1, byrow = FALSE)

S3 method for class 'matrix'
as.cps_mspct(
x,
w.length,
spct.data.var = "cps",
multiplier = 1,
byrow = NULL,
spct.names = "spct_",
...

)

Arguments

x a list of spectral objects or a list of objects such as data frames that can be
converted into spectral objects.

... passed to individual spectrum object constructor

ncol integer Number of ’virtual’ columns in data

byrow logical If ncol > 1 how to read in the data

w.length numeric A vector of wavelengthvalues sorted in strictly ascending order (nm).

spct.data.var character The name of the variable that will contain the spectral data. This indi-
cates what physical quantity is stored in the matrix and the units of expression
used.

multiplier numeric A multiplier to be applied to the values in x to do unit or scale conver-
sion.

spct.names character Vector of names to be assigned to collection members, either of length
1, or with length equal to the number of spectra.

Value

A copy of x converted into a cps_mspct object.

30 as.cps_spct

Methods (by class)

• as.cps_mspct(default):

• as.cps_mspct(data.frame):

• as.cps_mspct(cps_spct):

• as.cps_mspct(list):

• as.cps_mspct(matrix):

Note

When x is a square matrix an explicit argument is needed for byrow to indicate how data in x should
be read. In every case the length of the w.length vector must match one of the dimensions of x.

See Also

Other Coercion methods for collections of spectra: as.calibration_mspct(), as.chroma_mspct(),
as.filter_mspct(), as.generic_mspct(), as.object_mspct(), as.raw_mspct(), as.reflector_mspct(),
as.response_mspct(), as.solute_mspct(), as.source_mspct(), split2mspct(), subset2mspct()

as.cps_spct Coerce to a spectrum

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

as.cps_spct(x, ...)

Default S3 method:
as.cps_spct(x, ...)

Arguments

x an R object.

... other arguments passed to "set" functions.

Value

A copy of x converted into a cps_spct object.

Methods (by class)

• as.cps_spct(default):

as.filter_mspct 31

See Also

setGenericSpct

Other constructors of spectral objects: as.calibration_spct(), as.chroma_spct(), as.filter_spct(),
as.generic_spct(), as.object_spct(), as.raw_spct(), as.reflector_spct(), as.response_spct(),
as.solute_spct(), as.source_spct(), source_spct()

as.filter_mspct Coerce to a collection-of-spectra

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

as.filter_mspct(x, ...)

Default S3 method:
as.filter_mspct(x, ...)

S3 method for class 'data.frame'
as.filter_mspct(x, Tfr.type = c("total", "internal"), strict.range = TRUE, ...)

S3 method for class 'filter_spct'
as.filter_mspct(x, ...)

S3 method for class 'list'
as.filter_mspct(
x,
Tfr.type = c("total", "internal"),
strict.range = TRUE,
...,
ncol = 1,
byrow = FALSE

)

S3 method for class 'matrix'
as.filter_mspct(
x,
w.length,
spct.data.var = "Tfr",
multiplier = 1,
byrow = NULL,
spct.names = "spct_",
...

)

32 as.filter_mspct

Arguments

x a list of spectral objects or a list of objects such as data frames that can be
converted into spectral objects.

... passed to individual spectrum object constructor

Tfr.type a character string, either "total" or "internal"

strict.range logical Flag indicating how off-range values are handled

ncol integer Number of ’virtual’ columns in data

byrow logical If ncol > 1 how to read in the data

w.length numeric A vector of wavelengthvalues sorted in strictly ascending order (nm).

spct.data.var character The name of the variable that will contain the spectral data. This indi-
cates what physical quantity is stored in the matrix and the units of expression
used.

multiplier numeric A multiplier to be applied to the values in x to do unit or scale conver-
sion.

spct.names character Vector of names to be assigned to collection members, either of length
1, or with length equal to the number of spectra.

Value

A copy of x converted into a filter_mspct object.

Methods (by class)

• as.filter_mspct(default):

• as.filter_mspct(data.frame):

• as.filter_mspct(filter_spct):

• as.filter_mspct(list):

• as.filter_mspct(matrix):

Note

When x is a square matrix an explicit argument is needed for byrow to indicate how data in x should
be read. In every case the length of the w.length vector must match one of the dimensions of x.

See Also

Other Coercion methods for collections of spectra: as.calibration_mspct(), as.chroma_mspct(),
as.cps_mspct(), as.generic_mspct(), as.object_mspct(), as.raw_mspct(), as.reflector_mspct(),
as.response_mspct(), as.solute_mspct(), as.source_mspct(), split2mspct(), subset2mspct()

as.filter_spct 33

as.filter_spct Coerce or convert into a filter spectrum

Description

Return a possibly modified copy of an R object with its class set to a filter spectrum. In the case
of conversion from a solute_spct object, compute the spectral quantity based on additional input
from user.

Usage

as.filter_spct(x, ...)

Default S3 method:
as.filter_spct(
x,
Tfr.type = c("total", "internal"),
strict.range = getOption("photobiology.strict.range", default = FALSE),
...

)

S3 method for class 'solute_spct'
as.filter_spct(
x,
Tfr.type = "internal",
strict.range = getOption("photobiology.strict.range", default = FALSE),
Rfr.constant = NA_real_,
comment = NULL,
molar.concentration = NULL,
mass.concentration = NULL,
path.length = 1,
...

)

Arguments

x an R object.

... other arguments passed to "set" functions.

Tfr.type a character string, either "total" or "internal".

strict.range logical Flag indicating whether off-range values result in an error instead of a
warning.

Rfr.constant numeric The value of the reflection factor (/1) to be set.

comment character A string to be added as a comment attribute to the object created. If
not supplied, the comment will be copied from x.

34 as.generic_mspct

molar.concentration, mass.concentration
numeric Concentration to be used to compute transmittance of the solute in so-
lution [molm−3 = mmol dm−3 or kgm−3 = g dm−3, respectively].

path.length numeric The length of the light path (m) used to compute transmittance of the
solute in a solution.

Value

A copy of x converted into a filter_spct. object.

Methods (by class)

• as.filter_spct(default):

• as.filter_spct(solute_spct):

See Also

setGenericSpct

Other constructors of spectral objects: as.calibration_spct(), as.chroma_spct(), as.cps_spct(),
as.generic_spct(), as.object_spct(), as.raw_spct(), as.reflector_spct(), as.response_spct(),
as.solute_spct(), as.source_spct(), source_spct()

as.generic_mspct Coerce to a collection-of-spectra

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

as.generic_mspct(x, ...)

Default S3 method:
as.generic_mspct(x, ...)

S3 method for class 'data.frame'
as.generic_mspct(x, force.spct.class = FALSE, ...)

S3 method for class 'generic_spct'
as.generic_mspct(x, force.spct.class = FALSE, ...)

S3 method for class 'list'
as.generic_mspct(x, force.spct.class = FALSE, ..., ncol = 1, byrow = FALSE)

S3 method for class 'matrix'
as.generic_mspct(

as.generic_mspct 35

x,
w.length,
member.class,
spct.data.var,
multiplier = 1,
byrow = NULL,
spct.names = "spct_",
...

)

mat2mspct(
x,
w.length,
member.class,
spct.data.var,
multiplier = 1,
byrow = NULL,
spct.names = "spct_",
...

)

Arguments

x a list of spectral objects or a list of objects such as data frames that can be
converted into spectral objects.

... passed to individual spectrum object constructor

force.spct.class

logical indicating whether to change the class of members to generic_spct or
retain the existing class.

ncol integer Number of ’virtual’ columns in data

byrow logical If ncol > 1 how to read in the data

w.length numeric A vector of wavelengthvalues sorted in strictly ascending order (nm).

member.class character The name of the class of the individual spectra to be constructed.

spct.data.var character The name of the variable that will contain the spectral data. This indi-
cates what physical quantity is stored in the matrix and the units of expression
used.

multiplier numeric A multiplier to be applied to the values in x to do unit or scale conver-
sion.

spct.names character Vector of names to be assigned to collection members, either of length
1, or with length equal to the number of spectra.

Value

A copy of x converted into a generic_mspct object.

36 as.generic_spct

Methods (by class)

• as.generic_mspct(default):

• as.generic_mspct(data.frame):

• as.generic_mspct(generic_spct):

• as.generic_mspct(list):

• as.generic_mspct(matrix):

Note

Members of generic_mspct objects can be heterogeneous: they can belong to any class derived
from generic_spct and class is not enforced. When x is a list of data frames force.spct.class
= TRUE needs to be supplied. When x is a square matrix an explicit argument is needed for byrow to
indicate how data in x should be read. In every case the length of the w.length vector must match
one of the dimensions of x.

See Also

Other Coercion methods for collections of spectra: as.calibration_mspct(), as.chroma_mspct(),
as.cps_mspct(), as.filter_mspct(), as.object_mspct(), as.raw_mspct(), as.reflector_mspct(),
as.response_mspct(), as.solute_mspct(), as.source_mspct(), split2mspct(), subset2mspct()

as.generic_spct Coerce to a spectrum

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

as.generic_spct(x, ...)

Default S3 method:
as.generic_spct(x, ...)

Arguments

x an R object

... other arguments passed to "set" functions

Value

A copy of x converted into a generic_spct object.

Methods (by class)

• as.generic_spct(default):

as.matrix-mspct 37

See Also

setGenericSpct

Other constructors of spectral objects: as.calibration_spct(), as.chroma_spct(), as.cps_spct(),
as.filter_spct(), as.object_spct(), as.raw_spct(), as.reflector_spct(), as.response_spct(),
as.solute_spct(), as.source_spct(), source_spct()

as.matrix-mspct Coerce a collection of spectra into a matrix

Description

Convert an object of class generic_mspct or a derived class into an R matrix with wavelengths
saved as an attribute and spectral data in rows or columns.

Usage

S3 method for class 'generic_mspct'
as.matrix(x, spct.data.var, byrow = attr(x, "mspct.byrow"), ...)

mspct2mat(x, spct.data.var, byrow = attr(x, "mspct.byrow"), ...)

Arguments

x generic_mspct object.

spct.data.var character The name of the variable containing the spectral data.

byrow logical. If FALSE (the default) the matrix is filled with the spectra stored by
columns, otherwise the matrix is filled by rows.

... currently ignored.

Warning!

This conversion preserves the spectral data but discards almost all the metadata contained in the
spectral objects. In other words a matrix created with this function cannot be used to recreate the
original object unless the same metadata is explicitly supplied when converting the matrix into new
collection of spectra.

Note

Only collections of spectra containing spectra with exactly the same w.length values can by con-
verted. If needed, the spectra can be re-expressed before attempting the conversion to a matrix.

38 as.object_mspct

as.object_mspct Coerce to a collection-of-spectra

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

as.object_mspct(x, ...)

Default S3 method:
as.object_mspct(x, ...)

S3 method for class 'data.frame'
as.object_mspct(
x,
Tfr.type = c("total", "internal"),
Rfr.type = c("total", "specular"),
strict.range = TRUE,
...

)

S3 method for class 'object_spct'
as.object_mspct(x, ...)

S3 method for class 'list'
as.object_mspct(
x,
Tfr.type = c("total", "internal"),
Rfr.type = c("total", "specular"),
strict.range = TRUE,
...,
ncol = 1,
byrow = FALSE

)

Arguments

x a list of spectral objects or a list of objects such as data frames that can be
converted into spectral objects.

... passed to individual spectrum object constructor
Tfr.type a character string, either "total" or "internal"
Rfr.type a character string, either "total" or "specular"
strict.range logical Flag indicating how off-range values are handled
ncol integer Number of ’virtual’ columns in data
byrow logical If ncol > 1 how to read in the data

as.object_spct 39

Value

A copy of x converted into a object_mspct object.

Methods (by class)

• as.object_mspct(default):

• as.object_mspct(data.frame):

• as.object_mspct(object_spct):

• as.object_mspct(list):

See Also

Other Coercion methods for collections of spectra: as.calibration_mspct(), as.chroma_mspct(),
as.cps_mspct(), as.filter_mspct(), as.generic_mspct(), as.raw_mspct(), as.reflector_mspct(),
as.response_mspct(), as.solute_mspct(), as.source_mspct(), split2mspct(), subset2mspct()

as.object_spct Coerce to a spectrum

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

as.object_spct(x, ...)

Default S3 method:
as.object_spct(

x,
Tfr.type = c("total", "internal"),
Rfr.type = c("total", "specular"),
strict.range = getOption("photobiology.strict.range", default = FALSE),
...

)

Arguments

x an R object.

... other arguments passed to "set" functions.

Tfr.type a character string, either "total" or "internal".

Rfr.type a character string, either "total" or "specular".

strict.range logical Flag indicating whether off-range values result in an error instead of a
warning.

40 as.raw_mspct

Value

A copy of x converted into a object_spct object.

Methods (by class)

• as.object_spct(default):

See Also

setGenericSpct

Other constructors of spectral objects: as.calibration_spct(), as.chroma_spct(), as.cps_spct(),
as.filter_spct(), as.generic_spct(), as.raw_spct(), as.reflector_spct(), as.response_spct(),
as.solute_spct(), as.source_spct(), source_spct()

as.raw_mspct Coerce to a collection-of-spectra

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

as.raw_mspct(x, ...)

Default S3 method:
as.raw_mspct(x, ...)

S3 method for class 'data.frame'
as.raw_mspct(x, ...)

S3 method for class 'raw_spct'
as.raw_mspct(x, ...)

S3 method for class 'list'
as.raw_mspct(x, ..., ncol = 1, byrow = FALSE)

S3 method for class 'matrix'
as.raw_mspct(
x,
w.length,
spct.data.var = "counts",
multiplier = 1,
byrow = NULL,
spct.names = "spct_",
...

)

as.raw_mspct 41

Arguments

x a list of spectral objects or a list of objects such as data frames that can be
converted into spectral objects.

... passed to individual spectrum object constructor

ncol integer Number of ’virtual’ columns in data

byrow logical If ncol > 1 how to read in the data

w.length numeric A vector of wavelengthvalues sorted in strictly ascending order (nm).

spct.data.var character The name of the variable that will contain the spectral data. This indi-
cates what physical quantity is stored in the matrix and the units of expression
used.

multiplier numeric A multiplier to be applied to the values in x to do unit or scale conver-
sion.

spct.names character Vector of names to be assigned to collection members, either of length
1, or with length equal to the number of spectra.

Value

A copy of x converted into a raw_mspct object.

Methods (by class)

• as.raw_mspct(default):

• as.raw_mspct(data.frame):

• as.raw_mspct(raw_spct):

• as.raw_mspct(list):

• as.raw_mspct(matrix):

Note

When x is a square matrix an explicit argument is needed for byrow to indicate how data in x should
be read. In every case the length of the w.length vector must match one of the dimensions of x.

See Also

Other Coercion methods for collections of spectra: as.calibration_mspct(), as.chroma_mspct(),
as.cps_mspct(), as.filter_mspct(), as.generic_mspct(), as.object_mspct(), as.reflector_mspct(),
as.response_mspct(), as.solute_mspct(), as.source_mspct(), split2mspct(), subset2mspct()

42 as.reflector_mspct

as.raw_spct Coerce to a spectrum

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

as.raw_spct(x, ...)

Default S3 method:
as.raw_spct(x, ...)

Arguments

x an R object.

... other arguments passed to "set" functions.

Value

A copy of x converted into a raw_spct object.

Methods (by class)

• as.raw_spct(default):

See Also

setGenericSpct

Other constructors of spectral objects: as.calibration_spct(), as.chroma_spct(), as.cps_spct(),
as.filter_spct(), as.generic_spct(), as.object_spct(), as.reflector_spct(), as.response_spct(),
as.solute_spct(), as.source_spct(), source_spct()

as.reflector_mspct Coerce to a collection-of-spectra

Description

Return a copy of an R object with its class set to a given type of spectrum.

as.reflector_mspct 43

Usage

as.reflector_mspct(x, ...)

Default S3 method:
as.reflector_mspct(x, ...)

S3 method for class 'data.frame'
as.reflector_mspct(
x,
Rfr.type = c("total", "specular"),
strict.range = TRUE,
...

)

S3 method for class 'reflector_spct'
as.reflector_mspct(x, ...)

S3 method for class 'list'
as.reflector_mspct(
x,
Rfr.type = c("total", "specular"),
strict.range = TRUE,
...,
ncol = 1,
byrow = FALSE

)

S3 method for class 'matrix'
as.reflector_mspct(
x,
w.length,
spct.data.var = "Rfr",
multiplier = 1,
byrow = NULL,
spct.names = "spct_",
...

)

Arguments

x a list of spectral objects or a list of objects such as data frames that can be
converted into spectral objects.

... passed to individual spectrum object constructor

Rfr.type a character string, either "total" or "specular"

strict.range logical Flag indicating how off-range values are handled

ncol integer Number of ’virtual’ columns in data

byrow logical If ncol > 1 how to read in the data

44 as.reflector_spct

w.length numeric A vector of wavelengthvalues sorted in strictly ascending order (nm).

spct.data.var character The name of the variable that will contain the spectral data. This indi-
cates what physical quantity is stored in the matrix and the units of expression
used.

multiplier numeric A multiplier to be applied to the values in x to do unit or scale conver-
sion.

spct.names character Vector of names to be assigned to collection members, either of length
1, or with length equal to the number of spectra.

Value

A copy of x converted into a reflector_mspct object.

Methods (by class)

• as.reflector_mspct(default):

• as.reflector_mspct(data.frame):

• as.reflector_mspct(reflector_spct):

• as.reflector_mspct(list):

• as.reflector_mspct(matrix):

Note

When x is a square matrix an explicit argument is needed for byrow to indicate how data in x should
be read. In every case the length of the w.length vector must match one of the dimensions of x.

See Also

Other Coercion methods for collections of spectra: as.calibration_mspct(), as.chroma_mspct(),
as.cps_mspct(), as.filter_mspct(), as.generic_mspct(), as.object_mspct(), as.raw_mspct(),
as.response_mspct(), as.solute_mspct(), as.source_mspct(), split2mspct(), subset2mspct()

as.reflector_spct Coerce to a spectrum

Description

Return a copy of an R object with its class set to a given type of spectrum.

as.response_mspct 45

Usage

as.reflector_spct(x, ...)

Default S3 method:
as.reflector_spct(
x,
Rfr.type = c("total", "specular"),
strict.range = getOption("photobiology.strict.range", default = FALSE),
...

)

Arguments

x an R object.

... other arguments passed to "set" functions.

Rfr.type a character string, either "total" or "specular".

strict.range logical Flag indicating whether off-range values result in an error instead of a
warning.

Value

A copy of x converted into a reflector_spct object.

Methods (by class)

• as.reflector_spct(default):

See Also

setGenericSpct

Other constructors of spectral objects: as.calibration_spct(), as.chroma_spct(), as.cps_spct(),
as.filter_spct(), as.generic_spct(), as.object_spct(), as.raw_spct(), as.response_spct(),
as.solute_spct(), as.source_spct(), source_spct()

as.response_mspct Coerce to a collection-of-spectra

Description

Return a copy of an R object with its class set to a given type of spectrum.

46 as.response_mspct

Usage

as.response_mspct(x, ...)

Default S3 method:
as.response_mspct(x, ...)

S3 method for class 'data.frame'
as.response_mspct(x, time.unit = "second", ...)

S3 method for class 'response_spct'
as.response_mspct(x, ...)

S3 method for class 'list'
as.response_mspct(x, time.unit = "second", ..., ncol = 1, byrow = FALSE)

S3 method for class 'matrix'
as.response_mspct(
x,
w.length,
spct.data.var = "s.e.response",
multiplier = 1,
byrow = NULL,
spct.names = "spct_",
...

)

Arguments

x a list of spectral objects or a list of objects such as data frames that can be
converted into spectral objects.

... passed to individual spectrum object constructor

time.unit character A string, "second", "day" or "exposure"

ncol integer Number of ’virtual’ columns in data

byrow logical If ncol > 1 how to read in the data

w.length numeric A vector of wavelengthvalues sorted in strictly ascending order (nm).

spct.data.var character The name of the variable that will contain the spectral data. This indi-
cates what physical quantity is stored in the matrix and the units of expression
used.

multiplier numeric A multiplier to be applied to the values in x to do unit or scale conver-
sion.

spct.names character Vector of names to be assigned to collection members, either of length
1, or with length equal to the number of spectra.

Value

A copy of x converted into a response_mspct object.

as.response_spct 47

Methods (by class)

• as.response_mspct(default):

• as.response_mspct(data.frame):

• as.response_mspct(response_spct):

• as.response_mspct(list):

• as.response_mspct(matrix):

Note

When x is a square matrix an explicit argument is needed for byrow to indicate how data in x should
be read. In every case the length of the w.length vector must match one of the dimensions of x.

See Also

Other Coercion methods for collections of spectra: as.calibration_mspct(), as.chroma_mspct(),
as.cps_mspct(), as.filter_mspct(), as.generic_mspct(), as.object_mspct(), as.raw_mspct(),
as.reflector_mspct(), as.solute_mspct(), as.source_mspct(), split2mspct(), subset2mspct()

as.response_spct Coerce to a spectrum

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

as.response_spct(x, ...)

Default S3 method:
as.response_spct(x, time.unit = "second", ...)

Arguments

x an R object.

... other arguments passed to "set" functions.

time.unit character string indicating the time unit used for spectral irradiance or exposure
("second", "day" or "exposure") or an object of class duration as defined in
package lubridate.

Value

A copy of x converted into a response_spct object.

48 as.solute_mspct

Methods (by class)

• as.response_spct(default):

See Also

setGenericSpct

Other constructors of spectral objects: as.calibration_spct(), as.chroma_spct(), as.cps_spct(),
as.filter_spct(), as.generic_spct(), as.object_spct(), as.raw_spct(), as.reflector_spct(),
as.solute_spct(), as.source_spct(), source_spct()

as.solute_mspct Coerce to a collection-of-spectra

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

as.solute_mspct(x, ...)

Default S3 method:
as.solute_mspct(x, ...)

S3 method for class 'data.frame'
as.solute_mspct(
x,
K.type = c("attenuation", "absorption", "scattering"),
strict.range = TRUE,
...

)

S3 method for class 'solute_spct'
as.solute_mspct(x, ...)

S3 method for class 'list'
as.solute_mspct(
x,
K.type = c("attenuation", "absorption", "scattering"),
strict.range = TRUE,
...,
ncol = 1,
byrow = FALSE

)

S3 method for class 'matrix'

as.solute_mspct 49

as.solute_mspct(
x,
w.length,
spct.data.var = "K.mole",
multiplier = 1,
byrow = NULL,
spct.names = "spct_",
...

)

Arguments

x a list of spectral objects or a list of objects such as data frames that can be
converted into spectral objects.

... passed to individual spectrum object constructor

K.type a character string, either "attenuation", "absorption" or "scattering"

strict.range logical Flag indicating how off-range values are handled

ncol integer Number of ’virtual’ columns in data

byrow logical If ncol > 1 how to read in the data

w.length numeric A vector of wavelength values sorted in strictly ascending order (nm).

spct.data.var character The name of the variable that will contain the spectral data. This indi-
cates what physical quantity is stored in the matrix and the units of expression
used.

multiplier numeric A multiplier to be applied to the values in x to do unit or scale conver-
sion.

spct.names character Vector of names to be assigned to collection members, either of length
1, or with length equal to the number of spectra.

Value

A copy of x converted into a filter_mspct object.

Methods (by class)

• as.solute_mspct(default):

• as.solute_mspct(data.frame):

• as.solute_mspct(solute_spct):

• as.solute_mspct(list):

• as.solute_mspct(matrix):

Note

When x is a square matrix an explicit argument is needed for byrow to indicate how data in x should
be read. In every case the length of the w.length vector must match one of the dimensions of x.

50 as.solute_spct

See Also

Other Coercion methods for collections of spectra: as.calibration_mspct(), as.chroma_mspct(),
as.cps_mspct(), as.filter_mspct(), as.generic_mspct(), as.object_mspct(), as.raw_mspct(),
as.reflector_mspct(), as.response_mspct(), as.source_mspct(), split2mspct(), subset2mspct()

as.solute_spct Coerce to a solute spectrum

Description

Return a possibly modified copy of an R object with its class set to solute_spct (a solute spec-
trum). In the case of conversion from a filter_spct object, compute spectral molar attenuation
based on additional input from user.

Usage

as.solute_spct(x, ...)

Default S3 method:
as.solute_spct(
x,
K.type = c("attenuation", "absorption", "scattering"),
strict.range = getOption("photobiology.strict.range", default = FALSE),
...

)

S3 method for class 'filter_spct'
as.solute_spct(
x,
K.type = c("attenuation", "absorption", "scattering"),
name = NA_character_,
mass = NA_character_,
formula = NULL,
structure = grDevices::as.raster(matrix()),
ID = NA_character_,
solvent.name = NA_character_,
solvent.ID = NA_character_,
strict.range = getOption("photobiology.strict.range", default = FALSE),
comment = NULL,
molar.concentration = NULL,
mass.concentration = NULL,
path.length = 1,
...

)

as.solute_spct 51

Arguments

x an R object.

... other arguments passed to "set" functions.

K.type a character string, one of "attenuation", "absorption" or "scattering".

strict.range logical Flag indicating whether off-range values result in an error instead of a
warning.

name, solvent.name
character The names of the substance and of the solvent. A named character
vector, with member names such as "IUPAC" for the authority.

mass numeric The mass in Dalton (Da = g/mol).

formula character The molecular formula.

structure raster A bitmap of the structure.

ID, solvent.ID character The IDs of the substance and of the solvent. A named character vector,
with member names such as "ChemSpider" or "PubChen" for the authority.

comment character A string to be added as a comment attribute to the object created. If
not supplied, the comment will be copied from x.

molar.concentration, mass.concentration
numeric Concentration to be used to compute transmittance of the solute in so-
lution [molm−3 = mmol dm−3 or kgm−3 = g dm−3, respectively].

path.length numeric The length of the light path (m) used to compute transmittance of the
solute in a solution.

Value

A copy of x converted into a solute_spct object.

Methods (by class)

• as.solute_spct(default):

• as.solute_spct(filter_spct):

See Also

setSoluteSpct

Other constructors of spectral objects: as.calibration_spct(), as.chroma_spct(), as.cps_spct(),
as.filter_spct(), as.generic_spct(), as.object_spct(), as.raw_spct(), as.reflector_spct(),
as.response_spct(), as.source_spct(), source_spct()

52 as.source_mspct

as.source_mspct Coerce to a collection-of-spectra

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

as.source_mspct(x, ...)

Default S3 method:
as.source_mspct(x, ...)

S3 method for class 'data.frame'
as.source_mspct(
x,
time.unit = c("second", "day", "exposure"),
bswf.used = c("none", "unknown"),
strict.range = getOption("photobiology.strict.range", default = FALSE),
...

)

S3 method for class 'source_spct'
as.source_mspct(x, ...)

S3 method for class 'list'
as.source_mspct(
x,
time.unit = c("second", "day", "exposure"),
bswf.used = c("none", "unknown"),
strict.range = getOption("photobiology.strict.range", default = FALSE),
...,
ncol = 1,
byrow = FALSE

)

S3 method for class 'matrix'
as.source_mspct(
x,
w.length,
spct.data.var = "s.e.irrad",
multiplier = 1,
byrow = NULL,
spct.names = "spct_",
...

)

as.source_mspct 53

Arguments

x a list of spectral objects or a list of objects such as data frames that can be
converted into spectral objects.

... passed to individual spectrum object constructor

time.unit character A string, "second", "day" or "exposure"

bswf.used character

strict.range logical Flag indicating how off-range values are handled

ncol integer Number of ’virtual’ columns in data

byrow logical If ncol > 1 how to read in the data

w.length numeric A vector of wavelengthvalues sorted in strictly ascending order (nm).

spct.data.var character The name of the variable that will contain the spectral data. This indi-
cates what physical quantity is stored in the matrix and the units of expression
used.

multiplier numeric A multiplier to be applied to the values in x to do unit or scale conver-
sion.

spct.names character Vector of names to be assigned to collection members, either of length
1, or with length equal to the number of spectra.

Value

A copy of x converted into a source_mspct object.

Methods (by class)

• as.source_mspct(default):

• as.source_mspct(data.frame):

• as.source_mspct(source_spct):

• as.source_mspct(list):

• as.source_mspct(matrix):

Note

When x is a square matrix an explicit argument is needed for byrow to indicate how data in x should
be read. In every case the length of the w.length vector must match one of the dimensions of x.

See Also

Other Coercion methods for collections of spectra: as.calibration_mspct(), as.chroma_mspct(),
as.cps_mspct(), as.filter_mspct(), as.generic_mspct(), as.object_mspct(), as.raw_mspct(),
as.reflector_mspct(), as.response_mspct(), as.solute_mspct(), split2mspct(), subset2mspct()

54 as.source_spct

as.source_spct Coerce to a spectrum

Description

Return a copy of an R object with its class set to a given type of spectrum.

Usage

as.source_spct(x, ...)

Default S3 method:
as.source_spct(

x,
time.unit = c("second", "day", "exposure"),
bswf.used = c("none", "unknown"),
strict.range = getOption("photobiology.strict.range", default = FALSE),
...

)

Arguments

x an R object.

... other arguments passed to "set" functions.

time.unit character string indicating the time unit used for spectral irradiance or exposure
("second", "day" or "exposure") or an object of class duration as defined in
package lubridate.

bswf.used character A string indicating the BSWF used, if any, for spectral effective irra-
diance or exposure ("none" or the name of the BSWF).

strict.range logical Flag indicating whether off-range values result in an error instead of a
warning.

Value

A copy of x converted into a source_spct object.

Methods (by class)

• as.source_spct(default):

See Also

setGenericSpct

Other constructors of spectral objects: as.calibration_spct(), as.chroma_spct(), as.cps_spct(),
as.filter_spct(), as.generic_spct(), as.object_spct(), as.raw_spct(), as.reflector_spct(),
as.response_spct(), as.solute_spct(), source_spct()

as_energy 55

as_energy Convert spectral photon irradiance into spectral energy irradiance

Description

Convert a spectral photon irradiance [mol s−1 m−2 nm−1] into a spectral energy irradiance [W m−2 nm−1].

Usage

as_energy(w.length, s.qmol.irrad)

Arguments

w.length numeric vector of wavelengths [nm]).

s.qmol.irrad numeric vector of spectral photon irradiance values.

Value

A numeric vector of spectral (energy) irradiances.

See Also

Other low-level functions operating on numeric vectors.: as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(),
photon_ratio(), photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(),
v_replace_hinges()

Examples

with(sun.spct, as_energy(w.length, s.q.irrad))

as_quantum Convert spectral energy irradiance into spectral photon irradiance

Description

Convert spectral energy irradiance [W m-2 nm-1] into spectral photon irradiance expressed as num-
ber of photons [s-1 m-2 nm-1]

Usage

as_quantum(w.length, s.e.irrad)

56 as_quantum_mol

Arguments

w.length numeric vector of wavelengths (nm).

s.e.irrad numeric vector of spectral (energy) irradiance values.

Value

A numeric vector of spectral photon irradiances.

See Also

Other quantity conversion functions: A2T(), Afr2T(), T2A(), T2Afr(), any2T(), e2q(), e2qmol_multipliers(),
e2quantum_multipliers(), q2e()

Examples

with(sun.data, as_quantum(w.length, s.e.irrad))

as_quantum_mol Convert spectral energy irradiance into spectral photon irradiance

Description

Convert spectral energy irradiance [W m−2 nm−1] into a spectral photon irradiance expressed in
number of molds of photons [mol s−1 m−2 nm−1].

Usage

as_quantum_mol(w.length, s.e.irrad)

Arguments

w.length numeric vector of wavelengths (nm).

s.e.irrad numeric vector of spectral (energy) irradiance values.

Value

a numeric vector of spectral photon irradiances.

See Also

Other low-level functions operating on numeric vectors.: as_energy(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(),
photon_ratio(), photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(),
v_replace_hinges()

average_spct 57

Examples

with(sun.data, as_quantum_mol(w.length, s.e.irrad))

average_spct Average spectral data.

Description

This function gives the result of integrating spectral data over wavelengths and dividing the result
by the spread or span of the wavelengths.

Usage

average_spct(spct)

Arguments

spct generic_spct

Value

One or more numeric values with no change in scale factor: e.g. [W m-2 nm-1] -> [W m-2 nm-
1]. Each value in the returned vector corresponds to a variable in the spectral object, except for
wavelength.

Examples

average_spct(sun.spct)

beesxyzCMF.spct Honeybee xyz chromaticity colour matching function data

Description

A dataset containing wavelengths at a 5 nm interval (300 nm to 700 nm) and the corresponding x,
y, and z chromaticity coordinates. Original data from XXX.

A chroma_spct object with variables as follows:

Usage

beesxyzCMF.spct

58 black_body.spct

Format

A data frame with 81 rows and 4 variables

Details

• w.length (nm)

• x

• y

• z

See Also

Other Visual response data examples: ciev10.spct, ciev2.spct, ciexyzCC10.spct, ciexyzCC2.spct,
ciexyzCMF10.spct, ciexyzCMF2.spct, cone_fundamentals10.spct

black_body.spct Theoretical optical bodies

Description

Datasets for a hypothetical objects with transmittance 0/1 (0%), reflectance 0/1 (0%), with trans-
mittance 0/1 (0%), reflectance 1/1 (100%), and with with transmittance 1/1 (100%), reflectance 0/1
(0%).

Format

A object_spct object with 4 rows and 3 variables

Details

• w.length (nm)

• Tfr (0..1)

• Rfr (0..1)

See Also

Other Spectral data examples: A.illuminant.spct, D50.illuminant.spct, D65.illuminant.spct,
Ler_leaf.spct, ccd.spct, clear.spct, filter_cps.mspct, green_leaf.spct, phenylalanine.spct,
photodiode.spct, sun.spct, sun_daily.spct, sun_evening.spct, two_filters.spct, two_sensors.mspct,
water.spct, white_led.source_spct

c 59

c Combine collections of spectra

Description

Combine two or more generic_mspct objects into a single object.

Usage

S3 method for class 'generic_mspct'
c(..., recursive = FALSE, ncol = 1, byrow = FALSE)

Arguments

... one or more generic_mspct objects to combine.

recursive logical ignored as nesting of collections of spectra is not supported.

ncol numeric Virtual number of columns

byrow logical When object has two dimensions, how to map member objects to columns
and rows.

Value

A collection of spectra object belonging to the most derived class shared among the combined
objects.

calc_multipliers Spectral weights

Description

Calculate multipliers for selecting a range of wavelengths and optionally applying a biological
spectral weighting function (BSWF) and wavelength normalization. This function returns numeric
multipliers that can be used to select a waveband and apply a weight.

Usage

calc_multipliers(
w.length,
w.band,
unit.out = "energy",
unit.in = "energy",
use.cached.mult = FALSE,
fill = 0

)

60 calc_source_output

Arguments

w.length numeric vector of wavelengths (nm).

w.band waveband object.

unit.out character One of "photon" or "energy", default is "energy".

unit.in character One of "photon" or "energy", default is "energy".
use.cached.mult

logical Flag indicating whether multiplier values should be cached between
calls.

fill numeric If fill = NA then values returned for wavelengths outside the range of
the waveband are set to NA.

Value

a numeric vector of multipliers of the same length as w.length.

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), div_spectra(),
energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(), interpolate_spectrum(),
irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(), photon_ratio(),
photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(),
v_replace_hinges()

Examples

with(sun.data,
calc_multipliers(w.length = w.length,

w.band = new_waveband(400,700),
unit.out = "photon"))

with(sun.data,
calc_multipliers(w.length = w.length,

w.band = new_waveband(400,700),
unit.out = "photon"),
use.cached.mult = TRUE)

calc_source_output Scaled and/or interpolated light-source spectral output

Description

Values calculated by interpolation from user-supplied spectral emission data or by name for light
source data included in the packages photobiologySun, photobiologyLamps, or photobiologyLEDs,
optionally re-scaling the spectral data values.

calc_source_output 61

Usage

calc_source_output(
w.length.out,
w.length.in,
s.irrad.in,
unit.in = "energy",
scaled = NULL,
fill = NA,
...

)

Arguments

w.length.out numeric vector of wavelengths (nm) for output.

w.length.in numeric vector of wavelengths (nm) for input.

s.irrad.in numeric vector of spectral transmittance value (fractions or percent).

unit.in a character string "energy" or "photon".

scaled NULL, "peak", "area"; div ignored if !is.null(scaled).

fill if NA, no extrapolation is done, and NA is returned for wavelengths outside the
range of the input. If NULL then the tails are deleted. If 0 then the tails are set
to zero.

... Additional arguments passed to spline if called.

Value

a source_spct with three numeric vectors with wavelength values (w.length), scaled and interpo-
lated spectral energy irradiance (s.e.irrad), scaled and interpolated spectral photon irradiance values
(s.q.irrad).

Note

This is a convenience function that adds no new functionality but makes it a little easier to plot lamp
spectral emission data consistently. It automates interpolation, extrapolation/trimming and scaling.

Examples

with(sun.data,
calc_source_output(290:1100,

w.length.in = w.length,
s.irrad.in = s.e.irrad)

)

62 ccd.spct

ccd.spct Spectral response of a back-thinned CCD image sensor.

Description

A dataset containing wavelengths at a 1 nm interval and spectral response as quantum efficiency for
CCD sensor type S11071/S10420 from Hamamatsu (measured without a quartz window). These
vectors are frequently used as sensors in high-UV-sensitivity vector spectrometers. Data digitized
from manufacturer’s data sheet. The original data is expressed as percent quantum efficiency with
a value of 77% at the peak. The data have been re-expressed as fractions of one.

Usage

ccd.spct

Format

A response_spct object with 186 rows and 2 variables

Details

• w.length (nm).

• s.q.response (fractional quantum efficiency)

References

Hamamatsu (2014) Datasheet: CCD Image Sensors S11071/S10420-01 Series. Hamamatsu Pho-
tonics KK, Hamamatsu, City. http://www.hamamatsu.com/jp/en/S11071-1004.html. Visited 2017-
12-15.

See Also

Other Spectral data examples: A.illuminant.spct, D50.illuminant.spct, D65.illuminant.spct,
Ler_leaf.spct, black_body.spct, clear.spct, filter_cps.mspct, green_leaf.spct, phenylalanine.spct,
photodiode.spct, sun.spct, sun_daily.spct, sun_evening.spct, two_filters.spct, two_sensors.mspct,
water.spct, white_led.source_spct

Examples

ccd.spct

checkTimeUnit 63

checkTimeUnit Check the "time.unit" attribute of an existing source_spct object

Description

Function to read the "time.unit" attribute

Usage

checkTimeUnit(x)

Arguments

x a source_spct object

Value

x possibly with the time.unit attribute modified

Note

if x is not a source_spct or a response_spct object, NA is returned

See Also

Other time attribute functions: convertThickness(), convertTimeUnit(), getTimeUnit(), setTimeUnit()

check_spct Check validity of spectral objects

Description

Check that an R object contains the expected data members and within range values in them. For
wavelengths also check if ordered and if unique or not.

Usage

check_spct(x, byref, strict.range, force = FALSE, ...)

Default S3 method:
check_spct(x, byref = FALSE, strict.range = NA, force = FALSE, ...)

S3 method for class 'generic_spct'
check_spct(
x,
byref = TRUE,

64 check_spct

strict.range = NA,
force = FALSE,
multiple.wl = getMultipleWl(x),
...

)

S3 method for class 'calibration_spct'
check_spct(
x,
byref = TRUE,
strict.range = getOption("photobiology.strict.range", default = FALSE),
force = FALSE,
multiple.wl = getMultipleWl(x),
...

)

S3 method for class 'raw_spct'
check_spct(
x,
byref = TRUE,
strict.range = getOption("photobiology.strict.range", default = FALSE),
force = FALSE,
multiple.wl = getMultipleWl(x),
...

)

S3 method for class 'cps_spct'
check_spct(
x,
byref = TRUE,
strict.range = getOption("photobiology.strict.range", default = FALSE),
force = FALSE,
multiple.wl = getMultipleWl(x),
...

)

S3 method for class 'filter_spct'
check_spct(
x,
byref = TRUE,
strict.range = getOption("photobiology.strict.range", default = FALSE),
force = FALSE,
multiple.wl = getMultipleWl(x),
...

)

S3 method for class 'solute_spct'
check_spct(

check_spct 65

x,
byref = TRUE,
strict.range = getOption("photobiology.strict.range", default = FALSE),
force = FALSE,
multiple.wl = getMultipleWl(x),
...

)

S3 method for class 'reflector_spct'
check_spct(
x,
byref = TRUE,
strict.range = getOption("photobiology.strict.range", default = FALSE),
force = FALSE,
multiple.wl = getMultipleWl(x),
...

)

S3 method for class 'object_spct'
check_spct(
x,
byref = TRUE,
strict.range = getOption("photobiology.strict.range", default = FALSE),
force = FALSE,
multiple.wl = getMultipleWl(x),
...

)

S3 method for class 'response_spct'
check_spct(
x,
byref = TRUE,
strict.range = NA,
force = FALSE,
multiple.wl = getMultipleWl(x),
...

)

S3 method for class 'source_spct'
check_spct(
x,
byref = TRUE,
strict.range = getOption("photobiology.strict.range", default = FALSE),
force = FALSE,
multiple.wl = getMultipleWl(x),
...

)

66 check_spct

S3 method for class 'chroma_spct'
check_spct(
x,
byref = TRUE,
strict.range = getOption("photobiology.strict.range", default = FALSE),
force = FALSE,
multiple.wl = getMultipleWl(x),
...

)

Arguments

x An R object

byref logical indicating if new object will be created by reference or by copy of x

strict.range logical indicating whether off-range values result in an error instead of a warn-
ing, with NA a message is issued on failure, and with NULL the range test is
skipped.

force logical If TRUE check is done even if checks are disabled.

... additional parameters possible in derived methods

multiple.wl numeric Maximum number of repeated w.length entries with same value. If
NULL skip check of ordering and multiple wavelengths.

Details

These methods are exported and can be called by user code if needed, for example, when the checks
have been disabled by setting an R option with disable_check_spct.

Methods (by class)

• check_spct(default): Default for generic function.

• check_spct(generic_spct): Specialization for generic_spct.

• check_spct(calibration_spct): Specialization for calibration_spct.

• check_spct(raw_spct): Specialization for raw_spct.

• check_spct(cps_spct): Specialization for cps_spct.

• check_spct(filter_spct): Specialization for filter_spct.

• check_spct(solute_spct): Specialization for solute_spct.

• check_spct(reflector_spct): Specialization for reflector_spct.

• check_spct(object_spct): Specialization for object_spct.

• check_spct(response_spct): Specialization for response_spct.

• check_spct(source_spct): Specialization for source_spct.

• check_spct(chroma_spct): Specialization for chroma_spct.

See Also

Other data validity check functions: check_spectrum(), check_w.length(), enable_check_spct()

check_spectrum 67

Examples

check_spct(sun.spct)

check_spct(sun.spct)
try(check_spct(-sun.spct))
try(check_spct((sun.spct[1, "w.length"] <- 1000)))

check_spectrum Sanity check a spectrum

Description

Checks spectral irradiance data in numeric vectors for compliance with assumptions used in calcu-
lations.

Usage

check_spectrum(w.length, s.irrad)

Arguments

w.length numeric vector of wavelengths [nm].

s.irrad numeric Corresponding vector of spectral (energy) irradiances [W m−2 nm−1].

Value

A single logical value indicating whether test was passed or not

See Also

Other data validity check functions: check_spct(), check_w.length(), enable_check_spct()

Examples

with(sun.data, check_spectrum(w.length, s.e.irrad))

68 check_wl_stepsize

check_w.length Sanity check of wavelengths (internal function).

Description

This function checks a w.length vector for compliance with assumptions expected for valid calcu-
lations.

Usage

check_w.length(w.length)

Arguments

w.length numeric array of wavelength (nm)

Value

a single logical value indicating whether test was passed or not

See Also

Other data validity check functions: check_spct(), check_spectrum(), enable_check_spct()

Examples

with(sun.data, photobiology:::check_w.length(w.length))

check_wl_stepsize Check consistency of wavelength step size

Description

Check the spread of wavelength step sizes in an ordered numeric vector, or in the "w.length"
column of a spectral object containing a single spectrum.

Usage

check_wl_stepsize(x, span = Inf, na.rm = FALSE)

ciev10.spct 69

Arguments

x numeric vector. Hint: to find valleys, change the sign of the argument with the
unnary operator -.

span odd positive integer A peak is defined as an element in a sequence which is
greater than all other elements within a moving window of width span centred
at that element. The default value is 5, meaning that a peak is taller than its four
nearest neighbours. span = NULL extends the span to the whole length of x.

na.rm logical indicating whether NA values should be stripped before searching for
peaks.

Details

As the search for peaks uses a window based on a fixed number of observations at neighbour-
ing wavelengths, if the wavelength step between observations varies drastically, the window ex-
pressed in nanometres of wavelength becomes very irregular. With the default span = 5 in peaks(),
valleys(), and wls_at_target() the search in most cases still works for "thinned" spectra, and
the check is skipped. With spikes() and despike() methods the check is always done as these
methods do not override span = Inf.

The typical case when the step can vary strongly are spectra returned by thin_wl(). As when
using default arguments, including span = 21, thin_wl() retains the original local maxima and
global maximum, and a reasonably narrow wavelength maximum step a call to peaks with span =
NULL or span = 5 tends to discover the original peaks missing at most a few.

Value

A logical TRUE is returned invisibly if check is passed and otherwise FALSE with a warning. A
warning is issued on failure as a side effect.

Examples

check_wl_stepsize(sun.spct)
check_wl_stepsize(1:20, 30)

ciev10.spct Linear energy CIE 2008 luminous efficiency function 10 deg data

Description

A dataset containing wavelengths at a 1 nm interval (390 nm to 830 nm) and the corresponding
response values for a 10 degrees target. Original data from http://www.cvrl.org/ downloaded
on 2014-04-29 The variables are as follows:

• w.length (nm)

• s.e.response

http://www.cvrl.org/

70 ciev2.spct

Usage

ciev10.spct

Format

A chroma_spct object with 441 rows and 4 variables

Author(s)

CIE

See Also

Other Visual response data examples: beesxyzCMF.spct, ciev2.spct, ciexyzCC10.spct, ciexyzCC2.spct,
ciexyzCMF10.spct, ciexyzCMF2.spct, cone_fundamentals10.spct

Examples

ciev10.spct

ciev2.spct Linear energy CIE 2008 luminous efficiency function 2 deg data

Description

A dataset containing wavelengths at a 1 nm interval (390 nm to 830 nm) and the corresponding
response values for a 2 degrees target. Original data from http://www.cvrl.org/ downloaded on
2014-04-29 The variables are as follows:

Usage

ciev2.spct

Format

A chroma_spct object with 441 rows and 4 variables

Details

• w.length (nm)

• s.e.response

Note

These data are not from the official CIE on-line distribution but are retained for backwards compat-
ibility. It is recommended to download the latest version from https://cie.co.at/data-tables.

http://www.cvrl.org/
https://cie.co.at/data-tables

ciexyzCC10.spct 71

Author(s)

CIE

See Also

Other Visual response data examples: beesxyzCMF.spct, ciev10.spct, ciexyzCC10.spct, ciexyzCC2.spct,
ciexyzCMF10.spct, ciexyzCMF2.spct, cone_fundamentals10.spct

Examples

ciev2.spct

ciexyzCC10.spct CIE xyz chromaticity coordinates (CC) 10 deg data

Description

A dataset containing wavelengths at a 1 nm interval (390 nm to 830 nm) and the corresponding x,
y, and z chromaticity coordinates. Derived from proposed CIE 2006 standard. Original data from
http://www.cvrl.org/ downloaded on 2014-04-29 The variables are as follows:

• w.length (nm)

• x

• y

• z

Usage

ciexyzCC10.spct

Format

A chroma_spct object with 441 rows and 4 variables

Note

These data are not from the official CIE on-line distribution but are retained for backwards compat-
ibility. It is recommended to download the latest version from https://cie.co.at/data-tables.

Author(s)

CIE

See Also

Other Visual response data examples: beesxyzCMF.spct, ciev10.spct, ciev2.spct, ciexyzCC2.spct,
ciexyzCMF10.spct, ciexyzCMF2.spct, cone_fundamentals10.spct

http://www.cvrl.org/
https://cie.co.at/data-tables

72 ciexyzCC2.spct

Examples

ciexyzCC10.spct

ciexyzCC2.spct CIE xyz chromaticity coordinates 2 deg data

Description

A dataset containing wavelengths at a 1 nm interval (390 nm to 830 nm) and the corresponding x,
y, and z chromaticity coordinates. According to proposed CIE 2006 standard. Original data from
http://www.cvrl.org/ downloaded on 2014-04-28 The variables are as follows:

• w.length (nm)

• x

• y

• z

Usage

ciexyzCC2.spct

Format

A chroma_spct object with 441 rows and 4 variables

Note

These data are not from the official CIE on-line distribution but are retained for backwards compat-
ibility. It is recommended to download the latest version from https://cie.co.at/data-tables.

Author(s)

CIE

See Also

Other Visual response data examples: beesxyzCMF.spct, ciev10.spct, ciev2.spct, ciexyzCC10.spct,
ciexyzCMF10.spct, ciexyzCMF2.spct, cone_fundamentals10.spct

Examples

ciexyzCC2.spct

http://www.cvrl.org/
https://cie.co.at/data-tables

ciexyzCMF10.spct 73

ciexyzCMF10.spct Linear energy CIE xyz colour matching function (CMF) 10 deg data

Description

A dataset containing wavelengths at a 1 nm interval (390 nm to 830 nm) and the corresponding x,
y, and z 10 degrees CMF values. Derived from proposed CIE 2006 standard. Original data from
http://www.cvrl.org/ downloaded on 2014-04-29 The variables are as follows:

• w.length (nm)

• x

• y

• z

Usage

ciexyzCMF10.spct

Format

A chroma_spct object with 441 rows and 4 variables

Note

These data are not from the official CIE on-line distribution but are retained for backwards compat-
ibility. It is recommended to download the latest version from https://cie.co.at/data-tables.

These data are not from the official CIE on-line distribution but are retained for backwards compat-
ibility. It is recommended to download the latest version from https://cie.co.at/data-tables.

Author(s)

CIE

See Also

Other Visual response data examples: beesxyzCMF.spct, ciev10.spct, ciev2.spct, ciexyzCC10.spct,
ciexyzCC2.spct, ciexyzCMF2.spct, cone_fundamentals10.spct

Examples

ciexyzCMF10.spct

http://www.cvrl.org/
https://cie.co.at/data-tables
https://cie.co.at/data-tables

74 ciexyzCMF2.spct

ciexyzCMF2.spct Linear energy CIE xyz colour matching function (CMF) 2 deg data

Description

A dataset containing wavelengths at a 1 nm interval (390 nm to 830 nm) and the corresponding x,
y, and z 2 degrees CMF values. Derived from proposed CIE 2006 standard. Original data from
http://www.cvrl.org/ downloaded on 2014-04-29 The variables are as follows:

• w.length (nm)

• x

• y

• z

Usage

ciexyzCMF2.spct

Format

A chroma_spct object with 441 rows and 4 variables

Note

These data are not from the official CIE on-line distribution but are retained for backwards compat-
ibility. It is recommended to download the latest version from https://cie.co.at/data-tables.

Author(s)

CIE

See Also

Other Visual response data examples: beesxyzCMF.spct, ciev10.spct, ciev2.spct, ciexyzCC10.spct,
ciexyzCC2.spct, ciexyzCMF10.spct, cone_fundamentals10.spct

Examples

ciexyzCMF2.spct

http://www.cvrl.org/
https://cie.co.at/data-tables

class_spct 75

class_spct Query which is the class of a spectrum

Description

Extract class information from a generic spectrum.

Usage

class_spct(x)

Arguments

x any R object

Details

The value returned is equivalent to the set intersection of the value returned by class(x) and the
value returned by spct_classes, but preserving the order of the members of the character vector.

Value

A character vector containing all matching xxxx.spct S3 classes.

Examples

class_spct(sun.spct)
class(sun.spct)

clean Clean (=replace) off-range values in a spectrum

Description

These functions implement the equivalent of replace() but for spectral objects instead of vectors.

Usage

clean(x, range, range.s.data, fill, ...)

Default S3 method:
clean(x, range, range.s.data, fill, ...)

S3 method for class 'source_spct'
clean(

76 clean

x,
range = x,
range.s.data = c(0, NA),
fill = range.s.data,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
...

)

S3 method for class 'filter_spct'
clean(
x,
range = x,
range.s.data = NULL,
fill = range.s.data,
qty.out = getOption("photobiology.filter.qty", default = "transmittance"),
...

)

S3 method for class 'reflector_spct'
clean(x, range = x, range.s.data = c(0, 1), fill = range.s.data, ...)

S3 method for class 'solute_spct'
clean(x, range = x, range.s.data = c(0, NA), fill = range.s.data, ...)

S3 method for class 'object_spct'
clean(
x,
range = x,
range.s.data = c(0, 1),
fill = range.s.data,
min.Afr = NULL,
...

)

S3 method for class 'response_spct'
clean(
x,
range = x,
range.s.data = c(0, NA),
fill = range.s.data,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
...

)

S3 method for class 'cps_spct'
clean(x, range = x, range.s.data = c(0, NA), fill = range.s.data, ...)

S3 method for class 'raw_spct'

clean 77

clean(
x,
range = x,
range.s.data = c(NA_real_, NA_real_),
fill = range.s.data,
...

)

S3 method for class 'generic_spct'
clean(
x,
range = x,
range.s.data = c(NA_real_, NA_real_),
fill = range.s.data,
col.names,
...

)

S3 method for class 'source_mspct'
clean(
x,
range = NULL,
range.s.data = c(0, NA),
fill = range.s.data,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'filter_mspct'
clean(
x,
range = NULL,
range.s.data = NULL,
fill = range.s.data,
qty.out = getOption("photobiology.filter.qty", default = "transmittance"),
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'reflector_mspct'
clean(
x,
range = NULL,
range.s.data = c(0, 1),
fill = range.s.data,

78 clean

...,

.parallel = FALSE,

.paropts = NULL
)

S3 method for class 'object_mspct'
clean(
x,
range = NULL,
range.s.data = c(0, 1),
fill = range.s.data,
min.Afr = NULL,
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'solute_mspct'
clean(
x,
range = NULL,
range.s.data = c(0, NA),
fill = range.s.data,
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'response_mspct'
clean(
x,
range = NULL,
range.s.data = c(0, NA),
fill = range.s.data,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'cps_mspct'
clean(
x,
range = NULL,
range.s.data = c(0, NA),
fill = range.s.data,
...,
.parallel = FALSE,

clean 79

.paropts = NULL
)

S3 method for class 'raw_mspct'
clean(
x,
range = NULL,
range.s.data = c(0, NA),
fill = range.s.data,
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'generic_mspct'
clean(
x,
range = x,
range.s.data = c(NA_real_, NA_real_),
fill = range.s.data,
col.names,
...,
.parallel = FALSE,
.paropts = NULL

)

Arguments

x an R object
range numeric vector of wavelengths
range.s.data numeric vector of length two giving the allowable range for the spectral data.
fill numeric vector of length 1 or 2, giving the replacement values to use at each

extreme of the range.
... currently ignored
unit.out character string with allowed values "energy", and "photon", or its alias "quan-

tum"
qty.out character string with allowed values "energy", and "photon", or its alias "quan-

tum"
min.Afr numeric Gives the minimum value accepted for the computed absorptance. The

default NULL sets a valid value (Afr >= 0) with a warning. If an integer value is
passed to digits values are adjusted silently.

col.names character The name of the variable to clean
.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts a list of additional options passed into the foreach function when parallel compu-

tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

80 clear.spct

Value

A copy of x, possibly with some of the spectral data values replaced by the value passed to fill.

Methods (by class)

• clean(default): Default for generic function

• clean(source_spct): Replace off-range values in a source spectrum

• clean(filter_spct): Replace off-range values in a filter spectrum

• clean(reflector_spct): Replace off-range values in a reflector spectrum

• clean(solute_spct): Replace off-range values in a solute spectrum

• clean(object_spct): Replace off-range values in an object spectrum

• clean(response_spct): Replace off-range values in a response spectrum

• clean(cps_spct): Replace off-range values in a counts per second spectrum

• clean(raw_spct): Replace off-range values in a raw counts spectrum

• clean(generic_spct): Replace off-range values in a generic spectrum

• clean(source_mspct):

• clean(filter_mspct):

• clean(reflector_mspct):

• clean(object_mspct):

• clean(solute_mspct):

• clean(response_mspct):

• clean(cps_mspct):

• clean(raw_mspct):

• clean(generic_mspct):

Note

In the case of object_spct objects, cleaning is done first on the Rfr and Tfr columns and sub-
sequently Afr estimated and if needed half of deviation of Afr from the expected minimum value
subtracted from each of Rfr and Tfr.

clear.spct Theoretical spectrum of clear and apaque materials

Description

Dataset for hypothetical objects with transmittance 1/1 (100%) and transmittance 0/1 (0%)

Usage

clear.spct

opaque.spct

clip_wl 81

Format

A filter_spct object with 4 rows and 2 variables

An object of class filter_spct (inherits from generic_spct, tbl_df, tbl, data.frame) with 4
rows and 2 columns.

Details

• w.length (nm).

• Tfr (0..1)

See Also

Other Spectral data examples: A.illuminant.spct, D50.illuminant.spct, D65.illuminant.spct,
Ler_leaf.spct, black_body.spct, ccd.spct, filter_cps.mspct, green_leaf.spct, phenylalanine.spct,
photodiode.spct, sun.spct, sun_daily.spct, sun_evening.spct, two_filters.spct, two_sensors.mspct,
water.spct, white_led.source_spct

Examples

clear.spct
opaque.spct

clip_wl Clip head and/or tail of a spectrum

Description

Clip head and tail of a spectrum based on wavelength limits, no interpolation used at range bound-
aries.

Usage

clip_wl(x, range, ...)

Default S3 method:
clip_wl(x, range, ...)

S3 method for class 'generic_spct'
clip_wl(x, range = NULL, ...)

S3 method for class 'generic_mspct'
clip_wl(x, range = NULL, expand = TRUE, ...)

S3 method for class 'waveband'
clip_wl(x, range = NULL, ...)

82 clip_wl

S3 method for class 'list'
clip_wl(x, range = NULL, ...)

Arguments

x an R object.

range a numeric vector of length two, or any other object for which function range()
will return range of wavelengths expressed in nanometres.

... ignored (possibly used by derived methods).

expand logical Expand or not members containing spectra in long form.

Value

a spectrum object or a collection of spectral objects of the same class as x with wavelength heads
and tails clipped.

Methods (by class)

• clip_wl(default): Default for generic function

• clip_wl(generic_spct): Clip an object of class "generic_spct" or derived.

• clip_wl(generic_mspct): Clip an object of class "generic_mspct" or derived.

• clip_wl(waveband): Clip an object of class "waveband".

• clip_wl(list): Clip a list (of objects of class "waveband").

Note

The condition tested is wl >= range[1] & wl < (range[2] + 1e-13).

See Also

Other trim functions: trim_spct(), trim_waveband(), trim_wl()

Examples

clip_wl(sun.spct, range = c(400, 500))
clip_wl(sun.spct, range = c(NA, 500))
clip_wl(sun.spct, range = c(400, NA))

collect2mspct 83

collect2mspct Form a new collection

Description

Form a collection of spectra from separate objects in the parent frame of the call.

Usage

collect2mspct(
.list = NULL,
pattern = "*\\.spct$",
collection.class = NULL,
...

)

Arguments

.list list of R objects

pattern character an optional regular expression, ignored if .list is not NULL.

collection.class

character vector

... additional named arguments passed down to the collection constructor.

Details

This is a convenience function that simplifies the creation of collections from existing objects of
class generic_spct or a derived class. A list of objects con be passed as argument, or a search
pattern. If a list is passed, no search is done. If collection.class is NULL, then all objects
of class generic_spct or of a class derived from it are added to the collection. If objects of
only one derived class are to be collected this class or that of the matching collection should be
passed as argument to collection.class. Objects of other R classes are silently discarded, which
simplifies the specification of search patterns. By default, i.e., if collection.class is NULL, if
all the objects collected belong to the same class then the corresponding collection class will be
returned, otherwise a generic_mspct object with heterogeneous members will be returned. To
force the return of a generic_mspct even when the collected spectra all belong to the same class,
pass generic_mspct as argument to collection.class. If the argument to collection.class
is a vector containing two of more class names, only the matching spectra will be collected, and a
generic_mspct will be returned. The returned object is created with the constructor for the class,
and validated.

Value

By default a collection of spectra.

84 color_of

See Also

Other experimental utility functions: drop_user_cols(), thin_wl(), uncollect2spct()

Examples

collect2mspct() # returns empty generic_mspct object

sun1.spct <- sun.spct
sun2.spct <- sun.spct
kk.spct <- 10:30 # ignored
collect2mspct()
collect2mspct(collection.class = "generic_mspct")

pet1.spct <- polyester.spct
collect2mspct()
collect2mspct(collection.class = "source_mspct")
collect2mspct(collection.class = "filter_mspct")
collect2mspct(collection.class = "response_mspct")

color_of Color of an object

Description

Equivalent RGB color of an object such as a spectrum, wavelength or waveband.

Usage

color_of(x, ...)

Default S3 method:
color_of(x, ...)

S3 method for class 'numeric'
color_of(x, type = "CMF", chroma.type = type, ...)

S3 method for class 'list'
color_of(x, short.names = TRUE, type = "CMF", chroma.type = type, ...)

S3 method for class 'waveband'
color_of(x, short.names = TRUE, type = "CMF", chroma.type = type, ...)

S3 method for class 'source_spct'
color_of(x, type = "CMF", chroma.type = type, ...)

S3 method for class 'source_mspct'
color_of(x, ..., idx = "spct.idx")

color_of 85

colour_of(x, ...)

color(x, ...)

fast_color_of_wl(x, type = "CMF", ...)

fast_color_of_wb(x, type = "CMF", ...)

Arguments

x an R object.

... ignored (possibly used by derived methods).

type, chroma.type
character telling whether "CMF", "CC", or "both" should be returned for human
vision, or an object of class chroma_spct for any other trichromic visual system.

short.names logical indicating whether to use short or long names for wavebands

idx character Name of the column with the names of the members of the collection
of spectra.

Value

A color definition in hexadecimal format as a character string of 7 characters, "#" followed by the
red, blue, and green values in hexadecimal (scaled to 0 ... 255). In the case of the specialization for
list, a list of such definitions is returned. In the case of a collection of spectra, a data.frame with
one column with such definitions and by default an additional column with names of the spectra as
index. In case of missing input the returned value is NA.

Methods (by class)

• color_of(default): Default method (returns always "black").

• color_of(numeric): Method that returns Color definitions corresponding to numeric values
representing a wavelengths in nm.

• color_of(list): Method that returns Color of elements in a list.

• color_of(waveband): Color at midpoint of a waveband object.

• color_of(source_spct):

• color_of(source_mspct):

Deprecated

Use of color() is deprecated as this wrapper function may be removed in future versions of the
package because of name clashes. Use color_of() instead.

86 compare_spct

Note

The specialization of color_of() for numeric and function fast_color_of_wl() accept both
positive and negative values in x as long as all values have the same sign. This makes its use in
’ggspectra’ simpler as the reverse scale transform changes the sign of the data. This should be
considered a temporary fix.

When x is a list but not a waveband, if a method color_of is not available for the class of each
element of the list, then color_of.default will be called.

Function fast_color_of_wl() should be used only when high performance is needed. It speeds
up performance by rounding the wavelength values in the numeric vector passed as argument to x
and then retrieves the corresponding pre-computed color definitions if type is either "CMF" or "CC".
In other cases it falls-back to calling color_of.numeric(). Returned color definitions always have
default names irrespective of names of x, which is different from the behavior of color_of()
methods.

Function fast_color_of_wb() accepts waveband objects and lists of waveband objects. If all
wavebands are narrow, it issues a vectotized call to fast_color_of_wl() with a vector of wave-
band midpoint wavelengths.

Examples

wavelengths <- c(300, 420, 500, 600, NA) # nanometres
color_of(wavelengths)
color_of(waveband(c(300,400)))
color_of(list(blue = waveband(c(400,480)), red = waveband(c(600,700))))
color_of(numeric())
color_of(NA_real_)

color_of(sun.spct)

compare_spct Coarse-grained comparison of two spectra

Description

Compare two spectra using a specified summary function pre-applied to wavelength intervals.

Usage

compare_spct(
x,
w.band = 10,
.summary.fun = NULL,
...,
.comparison.fun = `/`,
returned.value = "spectrum",
use.hinges = FALSE,
short.names = TRUE

)

compare_spct 87

Arguments

x A collection of two spectral objects of the same type.

w.band waveband object or a numeric stepsize in nanometres.

.summary.fun function. The summary function to use. It must be a method accepting object x
as first argument.

... additional named arguments passed down to .summary.fun.

.comparison.fun

function. The comparison function to use.

returned.value character One of "data.frame", "spectrum", "tagged.spectrum".

use.hinges logical Flag indicating whether to insert "hinges" into the returned spectrum
when tagging it.

short.names logical Flag indicating whether to use short or long names for wavebands when
tagging.

Details

Summaries are computed for each of the wavebands in w.band by applying function .summary.fun
separately to each spectrum, after trimming them to the overlapping wavelength region. Next the
matching summaries are compared by means of .comparison.fun. Both the summaries and the
result of the comparison are returned. Columns containing summary values are named by concate-
nating the name each member spectrum with the name of the argument passed to .summary.fun.

Tagging is useful for plotting using wavelength based colours, or when names for wavebands
are used as annotations. When tagging is requested, the spectrum is passed to method tag with
use.hinges and short.names as additional arguments.

Value

A generic_spct, tagged or not with the wavebdans, or a data.frame object containing the sum-
mary values per waveband for each spectrum and the result of applying the comparison function to
these summaries.

Examples

compare_spct(source_mspct(list(sun1 = sun.spct, sun2 = sun.spct * 2)))
compare_spct(source_mspct(list(sun1 = sun.spct, sun2 = sun.spct * 2)),

w.band = NULL)
compare_spct(source_mspct(list(sun1 = sun.spct, sun2 = sun.spct * 2)),

w.band = list(waveband(c(640, 650)), waveband(c(720, 740))))

compare_spct(filter_mspct(list(pet = polyester.spct,
yllw = yellow_gel.spct)),

w.band = 50,
.comparison.fun = `<`)

head(
compare_spct(source_mspct(list(sun1 = sun.spct, sun2 = sun.spct * 2)),

returned.value = "data.frame")

88 cone_fundamentals10.spct

)
compare_spct(source_mspct(list(sun1 = sun.spct, sun2 = sun.spct * 2)),

returned.value = "tagged.spectrum")
compare_spct(source_mspct(list(sun1 = sun.spct, sun2 = sun.spct * 2)),

returned.value = "tagged.spectrum",
use.hinges = TRUE)

cone_fundamentals10.spct

Ten-degree cone fundamentals

Description

A dataset containing wavelengths at a 1 nm interval (390 nm to 830 nm) and the corresponding
response values for a 2 degrees target. Original data from http://www.cvrl.org/ downloaded on
2014-04-29 The variables are as follows:

Usage

cone_fundamentals10.spct

cone_fundamentals10.mspct

Format

A chroma_spct object with 440 rows and 4 variables

An object of class response_mspct (inherits from generic_mspct, list) with 3 rows and 1
columns.

Details

• w.length (nm)
• x
• y
• z

Value

A chroma_spct object.

A response_mspct object containing the same data in three response_spct objects, one for each
of x, y and z.

Note

These data are not from the official CIE on-line distribution but are retained for backwards compat-
ibility. It is recommended to download the latest version from https://cie.co.at/data-tables.

The missing data for z in the NIR have been filled with zeros.

http://www.cvrl.org/
https://cie.co.at/data-tables

convertTfrType 89

Author(s)

CIE

See Also

Other Visual response data examples: beesxyzCMF.spct, ciev10.spct, ciev2.spct, ciexyzCC10.spct,
ciexyzCC2.spct, ciexyzCMF10.spct, ciexyzCMF2.spct

Examples

cone_fundamentals10.spct

convertTfrType Convert the "Tfr.type" attribute

Description

Function to set the "Tfr.type" attribute and simultaneously convert the spectral data to correspond
to the new type.

Usage

convertTfrType(x, Tfr.type = NULL)

Arguments

x a filter_spct, object_spct, filter_mspct or object_mspct object.
Tfr.type character One of "internal" or "total".

Details

Internal transmittance, τ , uses as reference the light entering the object while total transmittance,
T , takes the incident light as reference. The conversion is possible only if total reflectance, ρ, is
known. Either as spectral data in an object_spct object, a filter_spct object that is "under-the-
hood" an object_spct, or if a fixed reflectance factor applicable to all wavelengths is stored in the
filter.properties attribute of the filter_spct object.

Conversions are computed as:

τ =
T − ρ

1− ρ

and

T = τ ∗ (1− ρ) + ρ

For the conversion to take place the object passed as argument to x, must contain a column with
transmittance data, named Tfr. Any necessary conversion from absorbance A or from Afr into
transmittance, must be done before calling convertTfrType().

90 convertThickness

Value

x if possible, with the value of the "Tfr.type" attribute modified and the values stored in the Tfr
variable converted to the new quantity.

Note

if x is not a filter_spct object, x is returned unchanged. If x does not have the "filter.properties"
attribute set if it is missing data, x is returned with Tfr set to NA values.

See Also

setTfrType, filter_spct

Examples

getTfrType(polyester.spct)
filter_properties(polyester.spct)
convertTfrType(polyester.spct, Tfr.type = "internal")

convertThickness Convert the "thickness" attribute of an existing filter_spct object.

Description

Function to set the "thickness" attribute and simultaneously converting the spectral data to corre-
spond to the new thickness.

Usage

convertThickness(x, thickness = NULL)

Arguments

x a filter_spct, object_spct, filter_mspct or object_mspct object.

thickness numeric [m].

Details

For spectral transmittance at a different thickness to be exactly computed, it needs to be based on
internal transmittance. This function will apply converTfrType() to x if needed, but to succeed
metadata should be available. Please, see convertTfrType.

Value

x possibly with the "thickness" field of the "filter.properties" attribute modified and Tfr or
A computed for the requested thickness.

convertTimeUnit 91

Note

if x is not a filter_spct, object_spct, filter_mspct or object_mspct object or a collection of
such objects, x is returned unchanged. If x does not have the "filter.properties" attribute set
or has it with missing member data, x is returned with Tfr set to NA values.

See Also

Other time attribute functions: checkTimeUnit(), convertTimeUnit(), getTimeUnit(), setTimeUnit()

Examples

my.spct <- polyester.spct
filter_properties(my.spct)
convertThickness(my.spct, thickness = 250e-6)

convertTimeUnit Convert the "time.unit" attribute of an existing source_spct object

Description

Function to set the "time.unit" attribute and simultaneously rescaling the spectral data to be ex-
pressed using the new time unit as basis of expression. The change is done by reference (’in place’).

Usage

convertTimeUnit(x, time.unit = NULL, ...)

Arguments

x source_spct or response_spct object

time.unit a character string, either "second", "hour", "day", "exposure" or "none", or a
lubridate::duration

... (currently ignored)

Value

x possibly with the time.unit attribute modified

Note

if x is not a source_spct or a response_spct object, or time.unit is NULL x is returned un-
changed, if the existing or new time.unit cannot be converted to a duration, then the returned spec-
trum will contain NAs.

See Also

Other time attribute functions: checkTimeUnit(), convertThickness(), getTimeUnit(), setTimeUnit()

92 convolve_each

Examples

my.spct <- sun.spct
my.spct
convertTimeUnit(my.spct, "day")
my.spct

convolve_each Convolve function for collections of spectra

Description

Convolve function for collections of spectra which applies an operation on all the individual mem-
bers of the collection(s) of spectra.

Usage

convolve_each(e1, e2, oper = `*`, sep = "_", ...)

Arguments

e1 an object of class generic_mspct or generic_scpt or numeric

e2 an object of class generic_mspct or generic_scpt or numeric

oper function, usually but not necessarily an operator with two arguments.

sep character Used when pasting the names of members of e1 and e2 to form the
names of members of the returned collection of spectra.

... additional arguments passed to oper if present.

Note

At least one of e1 and e2 must be a generic_mspct object or derived.

See Also

Other math operators and functions: MathFun, ^.generic_spct(), div-.generic_spct, log(),
minus-.generic_spct, mod-.generic_spct, plus-.generic_spct, round(), sign(), slash-.generic_spct,
times-.generic_spct

copy_attributes 93

copy_attributes Copy attributes

Description

Copy attributes from x to y. Methods defined for spectral and waveband objects of classes from
package ’photobiology’.

Usage

copy_attributes(x, y, which, ...)

Default S3 method:
copy_attributes(x, y, which = NULL, ...)

S3 method for class 'generic_spct'
copy_attributes(x, y, which = NULL, which.not = NULL, copy.class = FALSE, ...)

S3 method for class 'generic_mspct'
copy_attributes(x, y, which = NULL, which.not = NULL, copy.class = FALSE, ...)

S3 method for class 'waveband'
copy_attributes(x, y, which = NULL, ...)

Arguments

x, y R objects

which character Names of attributes to copy, if NULL all those relevant according to
the class of x is used as defaul,

... not used

which.not character Names of attributes not to be copied. The names passed here are re-
moved from the list for which, which is most useful when we want to modify
the default.

copy.class logical If TRUE class attributes are also copied.

Value

A copy of y with additional attributes set.

Methods (by class)

• copy_attributes(default): Default for generic function

• copy_attributes(generic_spct):

• copy_attributes(generic_mspct):

• copy_attributes(waveband):

94 cps2irrad

cps2irrad Conversion from counts per second to physical quantities

Description

Conversion of spectral data expressed as cps into irradiance, transmittance or reflectance.

Usage

cps2irrad(x.sample, pre.fun = NULL, missing.pixs = numeric(0), ...)

cps2Rfr(x.sample, x.white, x.black = NULL, dyn.range = NULL)

cps2Tfr(x.sample, x.clear, x.opaque = NULL, dyn.range = NULL)

Arguments

x.sample, x.clear, x.opaque, x.white, x.black
cps_spct objects.

pre.fun function A function applied to x.sample before conversion.

missing.pixs integer Index to positions in the detector array or scan missing in x.sample but
present in the embedded calibration data. (Use only for emergency recovery of
incomplete data!!)

... Additional arguments passed to pre.fun.

dyn.range numeric The effective dynamic range of the instrument, if NULL it is automati-
cally set based on integration time bracketing.

Value

A source_spct, filter_spct or reflector_spct object containing the spectral values expressed in phys-
ical units.

Note

In contrast to other classes defined in package ’photobiology’, class "cps_spct" can have more
than one column of cps counts in cases where the intention is to merge these values as part of the
processing at the time the calibration is applied. However, being these functions the final step in
the conversion to physical units, they accept as input only objects with a single "cps" column, as
merging is expected to have been already done.

D2.UV653 95

D2.UV653 Data for typical calibration lamps

Description

A dataset containing fitted constants to be used as input for functions D2_spectrum and FEL_spectrum
for computing example spectral curves based on fitted polynomials.

Format

A polynom::polynomial object with 6 constants.

Details

An object of class polynom::polynomial.

Author(s)

Lasse Ylianttila (data)

Examples

D2.UV653
as.character(D2.UV653)

D2_spectrum Calculate deuterium lamp output spectrum from fitted constants

Description

Calculate values by means of a nth degree polynomial from user-supplied constants (for example
from a lamp calibration certificate).

Usage

D2_spectrum(w.length, k = photobiology::D2.UV653, fill = NA_real_)

Arguments

w.length numeric vector of wavelengths (nm) for output

k a polynom:polynomial object with n constants for the polynomial

fill if NA, no extrapolation is done, and NA is returned for wavelengths outside the
range 190 nm to 450 nm. If NULL then the tails are deleted. If 0 then the tails
are set to zero, etc. NA is default.

96 D50.illuminant.spct

Value

a dataframe with four numeric vectors with wavelength values (w.length), energy and photon irra-
diance (s.e.irrad, s.q.irrad) depending on the argument passed to unit.out (s.irrad).

Note

This is function is valid for wavelengths in the range 180 nm to 495 nm, for wavelengths outside
this range NAs are returned.

Examples

D2_spectrum(200)
D2_spectrum(170:220)

D50.illuminant.spct CIE D50 illuminant data

Description

A dataset containing wavelengths at a 5 nm interval (300 nm to 830 nm) and the corresponding
spectral energy irradiance normalized to 1 at 560 nm. Spectrum approximates the midday solar
spectrum at middle latitude as ’corresponds’ to the white point of a black body a 6504 K. Original
data from CIE downloaded on 2024-11-30 The variables are as follows:

Usage

D50.illuminant.spct

Format

A source spectrum with 531 rows and 2 variables

• w.length (nm)

• s.e.irrad (rel. units)

Note

This and other CIE illuminant spectra can be downloaded from https://cie.co.at/data-tables
as .CSV files.

Author(s)

CIE

https://cie.co.at/data-tables

D65.illuminant.spct 97

References

CIE 2022, Relative spectral power distributions of CIE standard illuminants A, D65 and D50 (wave-
lengths in standard air) (data table), International Commission on Illumination (CIE), Vienna, Aus-
tria, doi:10.25039/CIE.DS.etgmuqt5.

See Also

Other Spectral data examples: A.illuminant.spct, D65.illuminant.spct, Ler_leaf.spct, black_body.spct,
ccd.spct, clear.spct, filter_cps.mspct, green_leaf.spct, phenylalanine.spct, photodiode.spct,
sun.spct, sun_daily.spct, sun_evening.spct, two_filters.spct, two_sensors.mspct, water.spct,
white_led.source_spct

Examples

D50.illuminant.spct

D65.illuminant.spct CIE D65 illuminant data

Description

A dataset containing wavelengths at a 5 nm interval (300 nm to 830 nm) and the corresponding
spectral energy irradiance normalized to 1 at 560 nm. Spectrum approximates the midday solar
spectrum at middle latitude as ’corresponds’ to the white point of a black body a 6504 K. Original
data from CIE downloaded on 2024-11-30 The variables are as follows:

Usage

D65.illuminant.spct

Format

A source spectrum with 531 rows and 2 variables

• w.length (nm)

• s.e.irrad (rel. units)

Note

This and other CIE illuminant spectra can be downloaded from https://cie.co.at/data-tables
as .CSV files.

Author(s)

CIE

https://doi.org/10.25039/CIE.DS.etgmuqt5
https://cie.co.at/data-tables

98 defunct

References

CIE 2022, CIE standard illuminant D65, International Commission on Illumination (CIE), Vienna,
Austria, doi:10.25039/CIE.DS.hjfjmt59.

See Also

Other Spectral data examples: A.illuminant.spct, D50.illuminant.spct, Ler_leaf.spct, black_body.spct,
ccd.spct, clear.spct, filter_cps.mspct, green_leaf.spct, phenylalanine.spct, photodiode.spct,
sun.spct, sun_daily.spct, sun_evening.spct, two_filters.spct, two_sensors.mspct, water.spct,
white_led.source_spct

Examples

D65.illuminant.spct

defunct Defunct functions and methods

Description

Functions listed here have been removed or deleted, and temporarily replaced by stubs that report
this when they are called.

Usage

f_mspct(...)

mutate_mspct(...)

calc_filter_multipliers(...)

T2T(...)

getAfrType(...)

setAfrType(...)

sample_spct(...)

sample_mspct(...)

Arguments

... ignored

https://doi.org/10.25039/CIE.DS.hjfjmt59

despike 99

Note

Function f_mspct() has been renamed msdply().

Function mutate_mspct() has been renamed msmsply().

Function calc_filter_multipliers() has been removed.

Function calc_filter_multipliers() has been removed.

Method getAfrType() has been removed.

Method setAfrType() has been removed.

Function sample_spct() has been removed.

Function sample_mspct() has been removed.

despike Remove spikes from spectrum

Description

Function that returns an R object with observations corresponding to spikes replaced by values
computed from neighboring pixels. Spikes are values in spectra that are unusually high compared
to neighbors. They are usually individual values or very short runs of similar "unusual" values.
Spikes caused by cosmic radiation are a frequent problem in Raman spectra. Another source of
spikes are "hot pixels" in CCD and diode array detectors.

Usage

despike(x, z.threshold, max.spike.width, window.width, method, na.rm, ...)

Default S3 method:
despike(

x,
z.threshold = NA,
max.spike.width = NA,
window.width = NA,
method = "run.mean",
na.rm = FALSE,
...

)

S3 method for class 'numeric'
despike(
x,
z.threshold = 9,
max.spike.width = 8,
window.width = 11,
method = "run.mean",
na.rm = FALSE,

100 despike

...
)

S3 method for class 'data.frame'
despike(
x,
z.threshold = 9,
max.spike.width = 8,
window.width = 11,
method = "run.mean",
na.rm = FALSE,
...,
y.var.name = NULL,
var.name = y.var.name

)

S3 method for class 'generic_spct'
despike(
x,
z.threshold = 9,
max.spike.width = 8,
window.width = 11,
method = "run.mean",
na.rm = FALSE,
y.var.name = NULL,
var.name = y.var.name,
...

)

S3 method for class 'source_spct'
despike(
x,
z.threshold = 9,
max.spike.width = 8,
window.width = 11,
method = "run.mean",
na.rm = FALSE,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
...

)

S3 method for class 'response_spct'
despike(
x,
z.threshold = 9,
max.spike.width = 8,
window.width = 11,
method = "run.mean",

despike 101

na.rm = FALSE,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
...

)

S3 method for class 'filter_spct'
despike(
x,
z.threshold = 9,
max.spike.width = 8,
window.width = 11,
method = "run.mean",
na.rm = FALSE,
filter.qty = getOption("photobiology.filter.qty", default = "transmittance"),
...

)

S3 method for class 'reflector_spct'
despike(
x,
z.threshold = 9,
max.spike.width = 8,
window.width = 11,
method = "run.mean",
na.rm = FALSE,
...

)

S3 method for class 'solute_spct'
despike(
x,
z.threshold = 9,
max.spike.width = 8,
window.width = 11,
method = "run.mean",
na.rm = FALSE,
...

)

S3 method for class 'cps_spct'
despike(
x,
z.threshold = 9,
max.spike.width = 8,
window.width = 11,
method = "run.mean",
na.rm = FALSE,
...

102 despike

)

S3 method for class 'raw_spct'
despike(
x,
z.threshold = 9,
max.spike.width = 8,
window.width = 11,
method = "run.mean",
na.rm = FALSE,
...

)

S3 method for class 'generic_mspct'
despike(
x,
z.threshold = 9,
max.spike.width = 8,
window.width = 11,
method = "run.mean",
na.rm = FALSE,
...,
y.var.name = NULL,
var.name = y.var.name,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'source_mspct'
despike(
x,
z.threshold = 9,
max.spike.width = 8,
window.width = 11,
method = "run.mean",
na.rm = FALSE,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'response_mspct'
despike(
x,
z.threshold = 9,
max.spike.width = 8,
window.width = 11,

despike 103

method = "run.mean",
na.rm = FALSE,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'filter_mspct'
despike(
x,
z.threshold = 9,
max.spike.width = 8,
window.width = 11,
method = "run.mean",
na.rm = FALSE,
filter.qty = getOption("photobiology.filter.qty", default = "transmittance"),
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'reflector_mspct'
despike(
x,
z.threshold = 9,
max.spike.width = 8,
window.width = 11,
method = "run.mean",
na.rm = FALSE,
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'solute_mspct'
despike(
x,
z.threshold = 9,
max.spike.width = 8,
window.width = 11,
method = "run.mean",
na.rm = FALSE,
...,
.parallel = FALSE,
.paropts = NULL

)

104 despike

S3 method for class 'cps_mspct'
despike(
x,
z.threshold = 9,
max.spike.width = 8,
window.width = 11,
method = "run.mean",
na.rm = FALSE,
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'raw_mspct'
despike(
x,
z.threshold = 9,
max.spike.width = 8,
window.width = 11,
method = "run.mean",
na.rm = FALSE,
...,
.parallel = FALSE,
.paropts = NULL

)

Arguments

x an R object

z.threshold numeric Modified Z values larger than z.threshold are considered to corre-
spond to spikes.

max.spike.width

integer Wider regions with high Z values are not detected as spikes.

window.width integer. The full width of the window used for the running mean used as re-
placement.

method character The name of the method: "run.mean" is running mean as described
in Whitaker and Hayes (2018); "adj.mean" is mean of adjacent neighbors (iso-
lated bad pixels only).

na.rm logical indicating whether NA values should be treated as spikes and replaced.

... Arguments passed by name to find_spikes().
var.name, y.var.name

character Names of columns where to look for spikes to remove.

unit.out character One of "energy" or "photon"

filter.qty character One of "transmittance" or "absorbance"

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

despike 105

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Details

Spikes are detected based on a modified Z score calculated from the differenced spectrum. The Z
threshold used should be adjusted to the characteristics of the input and desired sensitivity. The
lower the threshold the more stringent the test becomes, resulting in most cases in more spikes
being detected. A modified version of the algorithm is used if a value different from NULL is passed
as argument to max.spike.width. In such a case, an additional step filters out broader spikes (or
falsely detected steep slopes) from the returned values.

Simple interpolation replaces values of isolated bad pixels by the mean of their two closest neigh-
bors. The running mean approach allows the replacement of short runs of bad pixels by the running
mean of neighboring pixels within a window of user-specified width. The first approach works well
for spectra from array spectrometers to correct for hot and dead pixels in an instrument. The second
approach is most suitable for Raman spectra in which spikes triggered by radiation are wider than a
single pixel but usually not more than five pixels wide.

When the argument passed to x contains multiple spectra, the spikes are searched for and replaced
in each spectrum independently of other spectra.

Value

A copy of the object passed as argument to x with values detected as spikes replaced by a local
average of adjacent neighbors outside the spike.

Methods (by class)

• despike(default): Default returning always NA.

• despike(numeric): Default function usable on numeric vectors.

• despike(data.frame): Method for "data.frame" objects.

• despike(generic_spct): Method for "generic_spct" objects.

• despike(source_spct): Method for "source_spct" objects.

• despike(response_spct): Method for "response_spct" objects.

• despike(filter_spct): Method for "filter_spct" objects.

• despike(reflector_spct): Method for "reflector_spct" objects.

• despike(solute_spct): Method for "solute_spct" objects.

• despike(cps_spct): Method for "cps_spct" objects.

• despike(raw_spct): Method for "raw_spct" objects.

• despike(generic_mspct): Method for "generic_mspct" objects.

• despike(source_mspct): Method for "source_mspct" objects.

• despike(response_mspct): Method for "cps_mspct" objects.

• despike(filter_mspct): Method for "filter_mspct" objects.

106 diffraction_single_slit

• despike(reflector_mspct): Method for "reflector_mspct" objects.

• despike(solute_mspct): Method for "solute_mspct" objects.

• despike(cps_mspct): Method for "cps_mspct" objects.

• despike(raw_mspct): Method for "raw_mspct" objects.

Note

Current algorithm misidentifies steep smooth slopes as spikes, so manual inspection is needed to-
gether with adjustment by trial and error of a suitable argument value for z.threshold.

See Also

See the documentation for find_spikes and replace_bad_pixs for details of the algorithm and
implementation.

Examples

white_led.raw_spct[120:125,]

find and replace spike at 245.93 nm
despike(white_led.raw_spct,

z.threshold = 10,
window.width = 25)[120:125,]

diffraction_single_slit

Diffraction

Description

Diffraction of optical radiation passing through a single slit can be computed with function diffraction_single_slit(),
which implements Fraunhofer’s equation. Diffraction plus interference for a pair of slits can be
computed with diffraction_double_slit().

Usage

diffraction_single_slit(w.length, slit.width, angle)

diffraction_double_slit(w.length, slit.width, slit.distance, angle)

Arguments

w.length numeric Wavelength (nm).

slit.width numeric Width of the slit (m).

angle numeric vector Angle (radians).

slit.distance numeric Distance between the centres of the two slits (m).

dim.generic_mspct 107

Value

A numeric vector of the same length as angle, containing relative intensities.

Examples

diffraction_single_slit(w.length = 550,
slit.width = 1e-5,
angle = 0)

use odd number for length.out so that 0 is in the sequence
angles <- pi * seq(from = -1/2, to = 1/2, length.out = 501)

plot(angles,
diffraction_single_slit(w.length = 550, # 550 nm

slit.width = 6e-6, # 6 um
angle = angles),

type = "l",
ylab = "Relative irradiance (/1)",
xlab = "Angle (radian)")

plot(angles,
diffraction_double_slit(w.length = 550, # 550 nm

slit.width = 6e-6, # 6 um
slit.distance = 18e-6, # 18 um
angle = angles),

type = "l",
ylab = "Relative irradiance (/1)",
xlab = "Angle (radian)")

dim.generic_mspct Dimensions of an Object

Description

Retrieve or set the dimension of an object.

Usage

S3 method for class 'generic_mspct'
dim(x)

S3 replacement method for class 'generic_mspct'
dim(x) <- value

Arguments

x A generic_mspct object or of a derived class.

value Either NULL or a numeric vector, which is coerced to integer (by truncation).

108 div_spectra

Value

Either NULL or a numeric vector, which is coerced to integer (by truncation).

div-.generic_spct Arithmetic Operators

Description

Integer-division operator for generic spectra.

Usage

S3 method for class 'generic_spct'
e1 %/% e2

Arguments

e1 an object of class "generic_spct"

e2 an object of class "generic_spct"

See Also

Other math operators and functions: MathFun, ^.generic_spct(), convolve_each(), log(),
minus-.generic_spct, mod-.generic_spct, plus-.generic_spct, round(), sign(), slash-.generic_spct,
times-.generic_spct

div_spectra Divide two spectra, even if the wavelengths values differ

Description

The wavelength vectors of the two spectra are merged, and the missing spectral values are calculated
by interpolation. After this, the two spectral values at each wavelength are operated upon.

Usage

div_spectra(
w.length1,
w.length2 = NULL,
s.irrad1,
s.irrad2,
trim = "union",
na.rm = FALSE

)

div_spectra 109

Arguments

w.length1 numeric vector of wavelength (nm) of denominator.

w.length2 numeric vector of wavelength (nm) of divisor.

s.irrad1 a numeric vector of spectral values of denominator.

s.irrad2 a numeric vector of spectral values of divisor.

trim a character string with value "union" or "intersection".

na.rm a logical value, if TRUE, not the default, NAs in the input are replaced with
zeros.

Details

If trim=="union" spectral values are calculated for the whole range of wavelengths covered by at
least one of the input spectra, and missing values are set in each input spectrum to zero before
addition. If trim=="intersection" then the range of wavelengths covered by both input spectra is
returned, and the non-overlapping regions discarded. If w.length2==NULL, it is assumed that both
spectra are measured at the same wavelengths, and a simple addition is used, ensuring fast calcula-
tion.

Value

a dataframe with two numeric variables.

w.length A numeric vector with the wavelengths (nm) obtained by "fusing" w.length1 and
w.length2. w.length contains all the unique vales, sorted in ascending order.

s.irrad A numeric vector with the ratio between the two spectral values at each wave-
length.

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(), interpolate_spectrum(),
irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(), photon_ratio(),
photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(),
v_replace_hinges()

Examples

head(sun.data)
one.data <-

with(sun.data, div_spectra(w.length, w.length, s.e.irrad, s.e.irrad))
head(one.data)
tail(one.data)

110 drop_user_cols

drop_user_cols Drop user columns

Description

Remove from spectral object additional columns that are user defined.

Usage

drop_user_cols(x, keep.also, ...)

Default S3 method:
drop_user_cols(x, keep.also = NULL, ...)

S3 method for class 'generic_spct'
drop_user_cols(x, keep.also, ...)

S3 method for class 'source_spct'
drop_user_cols(x, keep.also = NULL, ...)

S3 method for class 'response_spct'
drop_user_cols(x, keep.also = NULL, ...)

S3 method for class 'object_spct'
drop_user_cols(x, keep.also = NULL, ...)

S3 method for class 'filter_spct'
drop_user_cols(x, keep.also = NULL, ...)

S3 method for class 'reflector_spct'
drop_user_cols(x, keep.also = NULL, ...)

S3 method for class 'solute_spct'
drop_user_cols(x, keep.also = NULL, ...)

S3 method for class 'chroma_spct'
drop_user_cols(x, keep.also = NULL, ...)

S3 method for class 'calibration_spct'
drop_user_cols(x, keep.also = NULL, ...)

S3 method for class 'cps_spct'
drop_user_cols(x, keep.also = NULL, ...)

S3 method for class 'raw_spct'
drop_user_cols(x, keep.also = NULL, ...)

e2q 111

S3 method for class 'generic_mspct'
drop_user_cols(x, keep.also = NULL, ...)

Arguments

x An R object

keep.also character Additionlal columns to preserve.

... needed to allow derivation.

Value

A copy of x possibly with some columns removed.

Methods (by class)

• drop_user_cols(default):

• drop_user_cols(generic_spct):

• drop_user_cols(source_spct):

• drop_user_cols(response_spct):

• drop_user_cols(object_spct):

• drop_user_cols(filter_spct):

• drop_user_cols(reflector_spct):

• drop_user_cols(solute_spct):

• drop_user_cols(chroma_spct):

• drop_user_cols(calibration_spct):

• drop_user_cols(cps_spct):

• drop_user_cols(raw_spct):

• drop_user_cols(generic_mspct):

See Also

Other experimental utility functions: collect2mspct(), thin_wl(), uncollect2spct()

e2q Convert energy-based quantities into photon-based quantities.

Description

Conversion methods for spectral energy irradiance into spectral photon irradiance and for spectral
energy response into spectral photon response.

112 e2q

Usage

e2q(x, action, byref, ...)

Default S3 method:
e2q(x, action = "add", byref = FALSE, ...)

S3 method for class 'source_spct'
e2q(x, action = NULL, byref = FALSE, ...)

S3 method for class 'response_spct'
e2q(x, action = "add", byref = FALSE, ...)

S3 method for class 'source_mspct'
e2q(x, action = "add", byref = FALSE, ..., .parallel = FALSE, .paropts = NULL)

S3 method for class 'response_mspct'
e2q(x, action = "add", byref = FALSE, ..., .parallel = FALSE, .paropts = NULL)

Arguments

x an R object.

action a character string, one of "add", or "replace".

byref logical indicating if a new object will be created by reference or a new object
returned.

... not used in current version.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Details

The converted spectral values are added to or replace the existing spectral values depending on the
argument passed to parameter action. Addition is currently not supported for normalized spectra.
If the spectrum has been normalized with a recent version of package ’photobiology’ the spectrum
will be renormalized after conversion using the same arguments as previously.

Methods (by class)

• e2q(default): Default method

• e2q(source_spct): Method for spectral irradiance

• e2q(response_spct): Method for spectral responsiveness

• e2q(source_mspct): Method for collections of (light) source spectra

• e2q(response_mspct): Method for collections of response spectra

e2qmol_multipliers 113

See Also

Other quantity conversion functions: A2T(), Afr2T(), T2A(), T2Afr(), any2T(), as_quantum(),
e2qmol_multipliers(), e2quantum_multipliers(), q2e()

e2qmol_multipliers Calculate energy to quantum (mol) multipliers

Description

Multipliers as a function of wavelength, for converting from energy to photon (quantum) molar
units.

Usage

e2qmol_multipliers(w.length)

Arguments

w.length numeric Vector of wavelengths (nm)

Value

A numeric vector of multipliers

See Also

Other quantity conversion functions: A2T(), Afr2T(), T2A(), T2Afr(), any2T(), as_quantum(),
e2q(), e2quantum_multipliers(), q2e()

Examples

with(sun.data, e2qmol_multipliers(w.length))

e2quantum_multipliers Calculate energy to quantum multipliers

Description

Gives multipliers as a function of wavelength, for converting from energy to photon (quantum) units
(number of photons as default, or moles of photons).

Usage

e2quantum_multipliers(w.length, molar = FALSE)

114 enable_check_spct

Arguments

w.length numeric Vector of wavelengths (nm)

molar logical Flag indicating whether output should be in moles or numbers

Value

A numeric vector of multipliers

See Also

Other quantity conversion functions: A2T(), Afr2T(), T2A(), T2Afr(), any2T(), as_quantum(),
e2q(), e2qmol_multipliers(), q2e()

Examples

with(sun.data, e2quantum_multipliers(w.length))
with(sun.data, e2quantum_multipliers(w.length, molar = TRUE))

enable_check_spct Enable or disable checks

Description

Choose between protection against errors or faster performance by enabling (the default) or dis-
abling data-consistency and sanity checks.

Usage

enable_check_spct()

disable_check_spct()

set_check_spct(x)

Arguments

x logical Flag to enable (TRUE), disable (FALSE) or unset (NULL) option.

Details

Checks are applied by default after each operation that modifies the data. This can be excessive in
production code. Some functions within this package disable checks for partial computations and
apply them to the value they return. It is possible for users to apply this same approach, in which
case it is best to schedule the restore of the previous setting using ‘on.exit()‘.

energy_as_default 115

Value

The previous value of the option, which can be passed as argument to function set_check_spct()
to restore the previous state of the option.

See Also

[check_spct()]

Other data validity check functions: check_spct(), check_spectrum(), check_w.length()

energy_as_default Set spectral-data options

Description

Set spectral-data related options easily.

Usage

energy_as_default()

photon_as_default()

quantum_as_default()

Tfr_as_default()

Afr_as_default()

A_as_default()

unset_radiation_unit_default()

unset_filter_qty_default()

unset_user_defaults()

Value

Previous value of the modified option.

116 energy_irradiance

energy_irradiance Calculate (energy) irradiance from spectral irradiance

Description

Energy irradiance for a waveband from a radiation spectrum, optionally applying a "biological
spectral weighting function" or BSWF.

Usage

energy_irradiance(
w.length,
s.irrad,
w.band = NULL,
unit.in = "energy",
check.spectrum = TRUE,
use.cached.mult = FALSE,
use.hinges = getOption("photobiology.use.hinges", default = NULL)

)

Arguments

w.length numeric vector of wavelength [nm].
s.irrad numeric vector of spectral irradiances in [W m−2 nm−1] or [mol s−1 sm−2 nm−1]

as indicated by the argument pased to unit.in.
w.band waveband.
unit.in character Allowed values "energy", and "photon", or its alias "quantum".
check.spectrum logical Flag indicating whether to sanity check input data, default is TRUE.
use.cached.mult

logical Flag indicating whether multiplier values should be cached between
calls.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

Value

A single numeric value with no change in scale factor: [W m−2].

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_ratio(), insert_hinges(), integrate_xy(), interpolate_spectrum(),
irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(), photon_ratio(),
photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(),
v_replace_hinges()

energy_ratio 117

Examples

with(sun.data, energy_irradiance(w.length, s.e.irrad))
with(sun.data, energy_irradiance(w.length, s.e.irrad, new_waveband(400,700)))

energy_ratio Energy:energy ratio

Description

Energy irradiance ratio between two wavebands for a radiation spectrum.

Usage

energy_ratio(
w.length,
s.irrad,
w.band.num = NULL,
w.band.denom = NULL,
unit.in = "energy",
check.spectrum = TRUE,
use.cached.mult = FALSE,
use.hinges = NULL

)

Arguments

w.length numeric vector of wavelengths [nm].

s.irrad numeric vector of spectral irradiances in [W m−2 nm−1] or [mol s−1 sm−2 nm−1]
as indicated by the argument pased to unit.in.

w.band.num waveband object used to compute the numerator of the ratio.

w.band.denom waveband object used to compute the denominator of the ratio.

unit.in character Allowed values "energy", and "photon", or its alias "quantum".

check.spectrum logical Flag indicating whether to sanity check input data, default is TRUE.
use.cached.mult

logical Flag indicating whether multiplier values should be cached between
calls.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

Value

a single numeric value giving the unitless energy ratio.

118 eq_ratio

Note

The default for both w.band parameters is a waveband covering the whole range of w.length.

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), insert_hinges(), integrate_xy(), interpolate_spectrum(),
irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(), photon_ratio(),
photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(),
v_replace_hinges()

Examples

with(sun.data,
energy_ratio(w.length, s.e.irrad,

new_waveband(400,500), new_waveband(400,700)))

eq_ratio Energy:photon ratio

Description

This function returns the energy to mole of photons ratio for each waveband and a light source
spectrum.

Usage

eq_ratio(spct, w.band, scale.factor, wb.trim, use.cached.mult, use.hinges, ...)

Default S3 method:
eq_ratio(spct, w.band, scale.factor, wb.trim, use.cached.mult, use.hinges, ...)

S3 method for class 'source_spct'
eq_ratio(
spct,
w.band = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
naming = "short",
name.tag = ifelse(naming != "none", "[e:q]", ""),
...

)

eq_ratio 119

S3 method for class 'source_mspct'
eq_ratio(
spct,
w.band = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
naming = "short",
name.tag = ifelse(naming != "none", "[e:q]", ""),
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct source_spct.

w.band waveband or list of waveband objects.

scale.factor numeric vector of length 1, or length equal to that of w.band. Numeric multiplier
applied to returned values.

wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if
FALSE, they are discarded.

use.cached.mult

logical Flag telling whether multiplier values should be cached between calls.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

... other arguments (possibly used by derived methods).

naming character one of "long", "default", "short" or "none". Used to select the type of
names to assign to returned value.

name.tag character Used to tag the name of the returned values.

attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to
formal parameter col.names.

idx character Name of the column with the names of the members of the collection
of spectra.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

120 eq_ratio

Details

The ratio is based on one photon irradiance and one energy irradiance, both computed for the same
waveband.

I(s, wb)

Q(s, wb)

The last two parameters control speed optimizations. The defaults should be suitable in most cases.
If you will use repeatedly the same SWFs on many spectra measured at exactly the same wave-
lengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that
you are responsible for ensuring that the wavelengths are the same in each call, as the only test done
is for the length of the w.length vector.#’ @return Computed values are ratios between energy
irradiance and photon irradiance for a given waveband. A named numeric vector in the case of
methods for individual spectra, with one value for each waveband passed to parameter w.band. A
data.frame in the case of collections of spectra, containing one column for each waveband object,
an index column with the names of the spectra, and optionally additional columns with metadata
values retrieved from the attributes of the member spectra.

By default values are only integrated, but depending on the argument passed to parameter quantity
they can be re-expressed as relative fractions or percentages. In the case of vector output, names
attribute is set to the name of the corresponding waveband unless a named list is supplied in which
case the names of the list members are used, with "[e:q]" prepended. Units [J mol-1].

Value

Computed values are ratios between energy irradiance and photon irradiance for a given waveband.
A named numeric vector in the case of methods for individual spectra, with one value for each
waveband passed to parameter w.band. A data.frame in the case of multiple spectra, containing
one column with ratios for each waveband object, an index column with the names of the spectra,
and optionally additional columns with metadata values retrieved from the attributes of the member
spectra.

By default values are only integrated, but depending on the argument passed to parameter quantity
they are expressed as relative fractions or percentages. In the case of vector output, names attribute
is set to the name of the corresponding waveband unless a named list is supplied in which case the
names of the list members are used, with "[e:q]" prepended. Units [mol J-1].

Methods (by class)

• eq_ratio(default): Default for generic function

• eq_ratio(source_spct): Method for source_spct objects

• eq_ratio(source_mspct): Calculates energy:photon from a source_mspct object.

Performance

As this method accepts spectra as its input, it computes irradiances before computing the ratios.
If you need to compute both ratios and irradiances from several hundreds or thousands of spectra,
computing the ratios from previously computed irradiances avoids their repeated computation. A
less dramatic, but still important, increase in performance is available when computing in the same
function call ratios that share the same denominator.

Extract 121

See Also

Other photon and energy ratio functions: e_fraction(), e_ratio(), q_fraction(), q_ratio(),
qe_ratio()

Examples

eq_ratio(sun.spct,
waveband(c(400,700), wb.name = "White")) # J mol-1

eq_ratio(sun.spct,
waveband(c(400,700), wb.name = "White"),
scale.factor = 1e-6) # J umol-1

Extract Extract or replace parts of a spectrum

Description

Just like extraction and replacement with indexes in base R, but preserving the special attributes
used in spectral classes and checking for validity of remaining spectral data.

Usage

S3 method for class 'generic_spct'
x[i, j, drop = NULL]

S3 method for class 'raw_spct'
x[i, j, drop = NULL]

S3 method for class 'cps_spct'
x[i, j, drop = NULL]

S3 method for class 'source_spct'
x[i, j, drop = NULL]

S3 method for class 'response_spct'
x[i, j, drop = NULL]

S3 method for class 'filter_spct'
x[i, j, drop = NULL]

S3 method for class 'reflector_spct'
x[i, j, drop = NULL]

S3 method for class 'solute_spct'
x[i, j, drop = NULL]

122 Extract

S3 method for class 'object_spct'
x[i, j, drop = NULL]

S3 method for class 'chroma_spct'
x[i, j, drop = NULL]

S3 replacement method for class 'generic_spct'
x[i, j] <- value

S3 replacement method for class 'generic_spct'
x$name <- value

Arguments

x spectral object from which to extract element(s) or in which to replace ele-
ment(s)

i index for rows,

j index for columns, specifying elements to extract or replace. Indices are numeric
or character vectors or empty (missing) or NULL. Please, see Extract for more
details.

drop logical. If TRUE the result is coerced to the lowest possible dimension. The
default is FALSE unless the result is a single column.

value A suitable replacement value: it will be repeated a whole number of times if
necessary and it may be coerced: see the Coercion section. If NULL, deletes the
column if a single column is selected.

name A literal character string or a name (possibly backtick quoted). For extraction,
this is normally (see under ’Environments’) partially matched to the names of
the object.

Details

These methods are just wrappers on the method for data.frame objects which copy the additional
attributes used by these classes, and validate the extracted object as a spectral object. When drop
is TRUE and the returned object has only one column, then a vector is returned. If the extracted
columns are more than one but do not include w.length, a data frame is returned instead of a
spectral object.

Value

An object of the same class as x but containing only the subset of rows and columns that are selected.
See details for special cases.

Note

If any argument is passed to j, even TRUE, some metadata attributes are removed from the returned
object. This is how the extraction operator works with data.frames in R. For the time being we
retain this behaviour for spectra, but it may change in the future.

Extract_mspct 123

See Also

subset and trim_spct

Examples

sun.spct[sun.spct[["w.length"]] > 400,]
subset(sun.spct, w.length > 400)

tmp.spct <- sun.spct
tmp.spct[tmp.spct[["s.e.irrad"]] < 1e-5 , "s.e.irrad"] <- 0
e2q(tmp.spct[, c("w.length", "s.e.irrad")]) # restore data consistency!

Extract_mspct Extract or replace members of a collection of spectra

Description

Just like extraction and replacement with indexes for base R lists, but preserving the special at-
tributes used in spectral classes.

Usage

S3 method for class 'generic_mspct'
x[i, drop = NULL]

S3 replacement method for class 'generic_mspct'
x[i] <- value

S3 replacement method for class 'generic_mspct'
x$name <- value

S3 replacement method for class 'generic_mspct'
x[[name]] <- value

Arguments

x Collection of spectra object from which to extract member(s) or in which to
replace member(s)

i Index specifying elements to extract or replace. Indices are numeric or character
vectors. Please, see Extract for more details.

drop If TRUE the result is coerced to the lowest possible dimension (see the exam-
ples). This only works for extracting elements, not for the replacement.

value A suitable replacement value: it will be repeated a whole number of times if
necessary and it may be coerced: see the Coercion section. If NULL, deletes the
column if a single column is selected.

124 e_fluence

name A literal character string or a name (possibly backtick quoted). For extraction,
this is normally (see under ’Environments’) partially matched to the names of
the object.

Details

This method is a wrapper on base R’s extract method for lists that sets additional attributes used by
these classes.

Value

An object of the same class as x but containing only the subset of members that are selected.

e_fluence Energy fluence

Description

Energy fluence for one or more wavebands of a light source spectrum and a duration of the exposure.

Usage

e_fluence(
spct,
w.band,
exposure.time,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
allow.scaled,
...

)

Default S3 method:
e_fluence(
spct,
w.band,
exposure.time,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
allow.scaled,
...

)

e_fluence 125

S3 method for class 'source_spct'
e_fluence(
spct,
w.band = NULL,
exposure.time,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = getOption("photobiology.use.cached.mult", default = FALSE),
use.hinges = NULL,
allow.scaled = FALSE,
naming = "default",
...

)

S3 method for class 'source_mspct'
e_fluence(
spct,
w.band = NULL,
exposure.time,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = getOption("photobiology.use.cached.mult", default = FALSE),
use.hinges = NULL,
allow.scaled = FALSE,
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct an R object

w.band a list of waveband objects or a waveband object

exposure.time lubridate::duration object.

scale.factor numeric vector of length 1, or length equal to that of w.band. Numeric multiplier
applied to returned values.

wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if
FALSE, they are discarded

use.cached.mult

logical indicating whether multiplier values should be cached between calls

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

allow.scaled logical indicating whether scaled or normalized spectra as argument to spct are
flagged as an error

126 e_fluence

... other arguments (possibly ignored)

naming character one of "long", "default", "short" or "none". Used to select the type of
names to assign to returned value.

attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to
formal parameter col.names.

idx character Name of the column with the names of the members of the collection
of spectra.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Value

One numeric value for each waveband with no change in scale factor, with name attribute set to the
name of each waveband unless a named list is supplied in which case the names of the list elements
are used. The exposure.time is copied to the output as an attribute. Units are as follows: (J) joules
per exposure.

Methods (by class)

• e_fluence(default): Default for generic function

• e_fluence(source_spct): Calculate energy fluence from a source_spct object and the
duration of the exposure.

• e_fluence(source_mspct): Calculates energy fluence from a source_mspct object.

Note

The last two parameters control speed optimizations. The defaults should be suitable in most cases.
If you will use repeatedly the same SWFs on many spectra measured at exactly the same wave-
lengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that
you are responsible for ensuring that the wavelengths are the same in each call, as the only test done
is for the length of the w.length vector.

See Also

Other irradiance functions: e_irrad(), fluence(), irrad(), q_fluence(), q_irrad()

Examples

library(lubridate)
e_fluence(sun.spct, w.band = waveband(c(400,700)),

exposure.time = lubridate::duration(3, "minutes"))

e_fraction 127

e_fraction Energy:energy fraction

Description

This function returns the energy fraction for a given pair of wavebands of a light source spectrum.

Usage

e_fraction(
spct,
w.band.num,
w.band.denom,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
...

)

Default S3 method:
e_fraction(
spct,
w.band.num,
w.band.denom,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
...

)

S3 method for class 'source_spct'
e_fraction(
spct,
w.band.num = NULL,
w.band.denom = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
quantity = "total",
naming = "short",
name.tag = NULL,
...

)

128 e_fraction

S3 method for class 'source_mspct'
e_fraction(
spct,
w.band.num = NULL,
w.band.denom = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
quantity = "total",
naming = "short",
name.tag = ifelse(naming != "none", "[e:e]", ""),
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct source_spct

w.band.num waveband object or a list of waveband objects used to compute the numerator(s)
and denominator(s) of the fraction(s).

w.band.denom waveband object or a list of waveband objects used to compute the denomina-
tor(s) of the fraction(s).

scale.factor numeric vector of length 1, or length equal to that of w.band. Numeric multiplier
applied to returned values.

wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if
FALSE, they are discarded

use.cached.mult

logical Flag telling whether multiplier values should be cached between calls.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

... other arguments (possibly used by derived methods).

quantity character One of "total", "average" or "mean".

naming character one of "long", "default", "short" or "none". Used to select the type of
names to assign to returned value.

name.tag character Used to tag the name of the returned values.

attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to
formal parameter col.names.

idx character Name of the column with the names of the members of the collection
of spectra.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach.

e_fraction 129

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Details

With the default quantity = "total" the fraction is based on two energy irradiances, one com-
puted for each waveband.

E(s, wbnum)

E(s, wbdenom) + E(s, wbnum)

If the argument is set to quantity = "mean" or quantity = "average" the ratio is based on two
mean spectral energy irradiances, one computed for each waveband.

Qλ(s, wbnum)

Qλ(s, wbdenom) +Qλ(s, wbnum)

Only if the wavelength expanse of the two wavebands is the same, these two ratios are numerically
identical.

Value

In the case of methods for individual spectra, a numeric vector with name attribute set. The name is
based on the name of the wavebands unless a named list of wavebands is supplied in which case the
names of the list elements are used. "[e:e]" is appended if quantity = "total" and "[e(wl):e(wl)]"
if quantity = "mean" or quantity = "average".

A data.frame is returned in the case of collections of spectra, containing one column for each frac-
tion definition, an index column with the names of the spectra, and optionally additional columns
with metadata values retrieved from the attributes of the member spectra.

Fraction definitions are "assembled" from the arguments passed to w.band.num and w.band.denom.
If both arguments are lists of waveband definitions, with an equal number of members, then the
wavebands are paired to obtain as many fractions as the number of wavebands in each list. Recy-
cling for wavebands takes place when the number of denominator and numerator wavebands differ.

Methods (by class)

• e_fraction(default): Default for generic function

• e_fraction(source_spct): Method for source_spct objects

• e_fraction(source_mspct): Calculates energy:energy fraction from a source_mspct ob-
ject.

Note

Recycling for wavebands takes place when the number of denominator and denominator wavebands
differ. The last two parameters control speed optimizations. The defaults should be suitable in
most cases. If you will use repeatedly the same SWFs on many spectra measured at exactly the

130 e_irrad

same wavelengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be
aware that you are responsible for ensuring that the wavelengths are the same in each call, as the
only test done is for the length of the w.length vector.

See Also

Other photon and energy ratio functions: e_ratio(), eq_ratio(), q_fraction(), q_ratio(),
qe_ratio()

Examples

e_fraction(sun.spct, new_waveband(400,700), new_waveband(400,500))

e_irrad Energy irradiance

Description

Energy irradiance for one or more wavebands of a light source spectrum.

Usage

e_irrad(
spct,
w.band,
quantity,
time.unit,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
allow.scaled,
...

)

Default S3 method:
e_irrad(
spct,
w.band,
quantity,
time.unit,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
allow.scaled,

e_irrad 131

...
)

S3 method for class 'source_spct'
e_irrad(
spct,
w.band = NULL,
quantity = "total",
time.unit = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = getOption("photobiology.use.cached.mult", default = FALSE),
use.hinges = NULL,
allow.scaled = !quantity %in% c("average", "mean", "total"),
naming = "default",
return.tb = FALSE,
...

)

S3 method for class 'source_mspct'
e_irrad(
spct,
w.band = NULL,
quantity = "total",
time.unit = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = getOption("photobiology.use.cached.mult", default = FALSE),
use.hinges = NULL,
allow.scaled = !quantity %in% c("average", "mean", "total"),
naming = "default",
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct an R object.

w.band a list of waveband objects or a waveband object.

quantity character string One of "total", "average" or "mean", "contribution", "contribu-
tion.pc", "relative" or "relative.pc".

time.unit character or lubridate::duration object.

scale.factor numeric vector of length 1, or length equal to that of w.band. Numeric multiplier
applied to returned values.

132 e_irrad

wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if
FALSE, they are discarded.

use.cached.mult

logical indicating whether multiplier values should be cached between calls.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

allow.scaled logical indicating whether scaled or normalized spectra as argument to spct are
flagged as an error.

... other arguments (possibly used by derived methods).

naming character one of "long", "default", "short" or "none". Used to select the type of
names to assign to returned value.

return.tb logical Flag forcing a tibble to be always returned, even for a single spectrum as
argumnet to spct. The default is FALSE for backwards compatibility.

attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to
formal parameter col.names.

idx character Name of the column with the names of the members of the collection
of spectra.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Value

A named numeric vector in the case of a _spct object containing a single spectrum and return.tb
= FALSE. The vector has one member one value for each waveband passed to parameter w.band. In
all other cases a tibble, containing one column for each waveband object, an index column with
the names of the spectra, and optionally additional columns with metadata values retrieved from the
attributes of the member spectra.

By default values are only integrated, but depending on the argument passed to parameter quantity
they can be re-expressed as relative fractions or percentages. In the case of vector output, names
attribute is set to the name of the corresponding waveband unless a named list is supplied in which
case the names of the list members are used. The time.unit attribute is copied from the spectrum
object to the output. Units are as follows: If units are absolute and time.unit is second, [W m-2
nm-1] -> [W m-2] If time.unit is day, [J d-1 m-2 nm-1] -> [J m-2]; if units are relative, fraction of
one or percent.

Methods (by class)

• e_irrad(default): Default for generic function

• e_irrad(source_spct): Calculates energy irradiance from a source_spct object.

• e_irrad(source_mspct): Calculates energy irradiance from a source_mspct object.

e_ratio 133

Note

The last two parameters control speed optimizations. The defaults should be suitable in most cases.
If you will use repeatedly the same SWFs on many spectra measured at exactly the same wave-
lengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that
you are responsible for ensuring that the wavelengths are the same in each call, as the only test done
is for the length of the w.length vector.

See Also

Other irradiance functions: e_fluence(), fluence(), irrad(), q_fluence(), q_irrad()

Examples

e_irrad(sun.spct, waveband(c(400,700)))
e_irrad(sun.spct, split_bands(c(400,700), length.out = 3))
e_irrad(sun.spct, split_bands(c(400,700), length.out = 3),

quantity = "total")
e_irrad(sun.spct, split_bands(c(400,700), length.out = 3),

quantity = "average")
e_irrad(sun.spct, split_bands(c(400,700), length.out = 3),

quantity = "relative")
e_irrad(sun.spct, split_bands(c(400,700), length.out = 3),

quantity = "relative.pc")
e_irrad(sun.spct, split_bands(c(400,700), length.out = 3),

quantity = "contribution")
e_irrad(sun.spct, split_bands(c(400,700), length.out = 3),

quantity = "contribution.pc")

e_ratio Energy:energy ratio

Description

This function returns the photon ratio for a given pair of wavebands of a light source spectrum.

Usage

e_ratio(
spct,
w.band.num,
w.band.denom,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
...

)

134 e_ratio

Default S3 method:
e_ratio(
spct,
w.band.num,
w.band.denom,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
...

)

S3 method for class 'source_spct'
e_ratio(
spct,
w.band.num = NULL,
w.band.denom = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
quantity = "total",
naming = "short",
name.tag = NULL,
...

)

S3 method for class 'source_mspct'
e_ratio(
spct,
w.band.num = NULL,
w.band.denom = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
quantity = "total",
naming = "short",
name.tag = ifelse(naming != "none", "[e:e]", ""),
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

e_ratio 135

Arguments

spct source_spct

w.band.num waveband object or a list of waveband objects used to compute the numerator(s)
of the ratio(s).

w.band.denom waveband object or a list of waveband objects used to compute the denomina-
tor(s) of the ratio(s).

scale.factor numeric vector of length 1, or length equal to that of w.band. Numeric multiplier
applied to returned values.

wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if
FALSE, they are discarded

use.cached.mult

logical Flag telling whether multiplier values should be cached between calls.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

... other arguments (possibly used by derived methods).

quantity character One of "total", "average" or "mean".

naming character one of "long", "default", "short" or "none". Used to select the type of
names to assign to returned value.

name.tag character Used to tag the name of the returned values.

attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to
formal parameter col.names.

idx character Name of the column with the names of the members of the collection
of spectra.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach.

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Details

With the default quantity = "total" the ratio is based on two energy irradiances, one computed
for each waveband.

I(s, wbnum)

I(s, wbdenom)

If the argument is set to quantity = "mean" or quantity = "average" the ratio is based on two
mean spectral photon irradiances, one computed for each waveband.

Iλ(s, wbnum)

Iλ(s, wbdenom)

136 e_ratio

Only if the wavelength expanse of the two wavebands is the same, these two ratios are numerically
identical.

Fraction definitions are "assembled" from the arguments passed to w.band.num and w.band.denom.
If both arguments are lists of waveband definitions, with an equal number of members, then the
wavebands are paired to obtain as many fractions as the number of wavebands in each list. Recy-
cling for wavebands takes place when the number of denominator and numerator wavebands differ.

The last two parameters control speed optimizations. The defaults should be suitable in most cases.
If you will use repeatedly the same SWFs on many spectra measured at exactly the same wave-
lengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that
you are responsible for ensuring that the wavelengths are the same in each call, as the only test done
is for the length of the w.length vector.

Value

In the case of methods for individual spectra, a numeric vector with name attribute set. The name is
based on the name of the wavebands unless a named list of wavebands is supplied in which case the
names of the list elements are used. "[e:e]" is appended if quantity = "total" and "[e(wl):e(wl)]"
if quantity = "mean" or quantity = "average".

A data.frame is returned in the case of collections of spectra, containing one column for each frac-
tion definition, an index column with the names of the spectra, and optionally additional columns
with metadata values retrieved from the attributes of the member spectra.

Methods (by class)

• e_ratio(default): Default for generic function

• e_ratio(source_spct): Method for source_spct objects

• e_ratio(source_mspct): Calculates energy:energy ratio from a source_mspct object.

Performance

As this method accepts spectra as its input, it computes irradiances before computing the ratios.
If you need to compute both ratios and irradiances from several hundreds or thousands of spectra,
computing the ratios from previously computed irradiances avoids their repeated computation. A
less dramatic, but still important, increase in performance is available when computing in the same
function call ratios that share the same denominator.

See Also

Other photon and energy ratio functions: e_fraction(), eq_ratio(), q_fraction(), q_ratio(),
qe_ratio()

Examples

e_ratio(sun.spct,
waveband(c(400,500), wb.name = "Blue"),
waveband(c(400,700), wb.name = "White"))

e_response 137

e_response Energy-based photo-response

Description

This function returns the mean, total, or contribution of response for each waveband and a response
spectrum.

Usage

e_response(
spct,
w.band,
quantity,
time.unit,
scale.factor,
wb.trim,
use.hinges,
...

)

Default S3 method:
e_response(
spct,
w.band,
quantity,
time.unit,
scale.factor,
wb.trim,
use.hinges,
...

)

S3 method for class 'response_spct'
e_response(
spct,
w.band = NULL,
quantity = "total",
time.unit = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = getOption("photobiology.use.hinges", default = NULL),
naming = "default",
...

)

S3 method for class 'response_mspct'

138 e_response

e_response(
spct,
w.band = NULL,
quantity = "total",
time.unit = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = getOption("photobiology.use.hinges", default = NULL),
naming = "default",
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct an R object.

w.band waveband or list of waveband objects or a numeric vector of length two. The
waveband(s) determine the region(s) of the spectrum that are summarized. If a
numeric range is supplied a waveband object is constructed on the fly from it.

quantity character string One of "total", "average" or "mean", "contribution", "contribu-
tion.pc", "relative" or "relative.pc".

time.unit character or lubridate::duration object.

scale.factor numeric vector of length 1, or length equal to that of w.band. Numeric multiplier
applied to returned values.

wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if
FALSE, they are discarded.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

... other arguments (possibly used by derived methods).

naming character one of "long", "default", "short" or "none". Used to select the type of
names to assign to returned value.

attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to
formal parameter col.names.

idx character Name of the column with the names of the members of the collection
of spectra.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

FEL_spectrum 139

Value

A named numeric vector in the case of methods for individual spectra, with one value for each
waveband passed to parameter w.band. A data.frame in the case of collections of spectra, con-
taining one column for each waveband object, an index column with the names of the spectra, and
optionally additional columns with metadata values retrieved from the attributes of the member
spectra.

By default values are only integrated, but depending on the argument passed to parameter quantity
they can be re-expressed as relative fractions or percentages. In the case of vector output, names
attribute is set to the name of the corresponding waveband unless a named list is supplied in which
case the names of the list members are used.

Methods (by class)

• e_response(default): Default method for generic function

• e_response(response_spct): Method for response spectra.

• e_response(response_mspct): Calculates energy response from a response_mspct

Note

The parameter use.hinges controls speed optimization. The defaults should be suitable in most
cases. Only the range of wavelengths in the wavebands is used and all BSWFs are ignored.

See Also

Other response functions: q_response(), response()

Examples

e_response(ccd.spct, new_waveband(200,300))
e_response(photodiode.spct)

FEL_spectrum Incandescent "FEL" lamp emission spectrum

Description

Calculate values by means of a nth degree polynomial from user-supplied constants (for example
from a lamp calibration certificate).

Usage

FEL_spectrum(w.length, k = photobiology::FEL.BN.9101.165, fill = NA_real_)

140 findMultipleWl

Arguments

w.length numeric vector of wavelengths (nm) for output

k a numeric vector with n constants for the function

fill if NA, no extrapolation is done, and NA is returned for wavelengths outside the
range 250 nm to 900 nm. If NULL then the tails are deleted. If 0 then the tails
are set to zero, etc. NA is default.

Value

a dataframe with four numeric vectors with wavelength values (w.length), energy and photon irra-
diance (s.e.irrad, s.q.irrad) depending on the argument passed to unit.out (s.irrad).

Note

This is function is valid for wavelengths in the range 250 nm to 900 nm, for wavelengths outside
this range NAs are returned.

Examples

FEL_spectrum(400)
FEL_spectrum(250:900)

findMultipleWl Find repeated w.length values

Description

Find repeated w.length values

Usage

findMultipleWl(x, same.wls = TRUE)

Arguments

x a generic_spct object

same.wls logical If TRUE all spectra spected to share same w.length values.

Value

integer Number of spectra, guessed from the number of copies of each individual w.length value.

find_peaks 141

find_peaks Find local maxima or global maximum (peaks)

Description

These functions find peaks (local maxima) and valleys (local minima) in a numeric vector, using a
user selectable span and global and local size thresholds, returning a logical vector.

Usage

find_peaks(
x,
global.threshold = NULL,
local.threshold = NULL,
local.reference = "median",
threshold.range = NULL,
span = 3,
strict = FALSE,
na.rm = FALSE

)

find_valleys(
x,
global.threshold = NULL,
local.threshold = NULL,
local.reference = "median",
threshold.range = NULL,
span = 3,
strict = FALSE,
na.rm = FALSE

)

Arguments

x numeric vector. Hint: to find valleys, change the sign of the argument with the
unnary operator -.

global.threshold

numeric A value belonging to class "AsIs" is interpreted as an absolute mini-
mum height or depth expressed in data units. A bare numeric value (normally
between 0.0 and 1.0), is interpreted as relative to threshold.range. In both
cases it sets a global height (depth) threshold below which peaks (valleys) are
ignored. A bare negative numeric value indicates the global height (depth)
threshold below which peaks (valleys) are be ignored. If global.threshold =
NULL, no threshold is applied and all peaks returned.

142 find_peaks

local.threshold

numeric A value belonging to class "AsIs" is interpreted as an absolute min-
imum height (depth) expressed in data units relative to a within-window com-
puted reference value. A bare numeric value (normally between 0.0 and 1.0),
is interpreted as expressed in units relative to threshold.range. In both cases
local.threshold sets a local height (depth) threshold below which peaks (val-
leys) are ignored. If local.threshold = NULL or if span spans the whole of x,
no threshold is applied.

local.reference

character One of "median" or "farthest". The reference used to assess the
height of the peak, either the minimum/maximum value within the window or
the median of all values in the window.

threshold.range

numeric vector If of length 2 or a longer vector range(threshold.range) is
used to scale both thresholds. With NULL, the default, range(x) is used, and with
a vector of length one range(threshold.range, x) is used, i.e., the range is
expanded.

span odd positive integer A peak is defined as an element in a sequence which is
greater than all other elements within a moving window of width span centred
at that element. The default value is 5, meaning that a peak is taller than its four
nearest neighbours. span = NULL extends the span to the whole length of x.

strict logical flag: if TRUE, an element must be strictly greater than all other values in
its window to be considered a peak. Default: FALSE (since version 0.13.1).

na.rm logical indicating whether NA values should be stripped before searching for
peaks.

Details

Function find_peaks is a wrapper built onto function peaks from splus2R, adds support for peak
height thresholds and handles span = NULL and non-finite (including NA) values differently than
splus2R::peaks. Instead of giving an error when na.rm = FALSE and x contains NA values, NA
values are replaced with the smallest finite value in x. span = NULL is treated as a special case and
selects max(x). Passing ‘strict = TRUE‘ ensures that multiple global and within window maxima
are ignored, and can result in no peaks being returned.

Two tests make it possible to ignore irrelevant peaks. One test (global.threshold) is based on
the absolute height of the peaks and can be used in all cases to ignore globally low peaks. A
second test (local.threshold) is available when the window defined by ‘span‘ does not include all
observations and can be used to ignore peaks that are not locally prominent. In this second approach
the height of each peak is compared to a summary computed from other values within the window
of width equal to span where it was found. In this second case, the reference value used within each
window containing a peak is given by local.reference. Parameter threshold.range determines
how the values passed as argument to global.threshold and local.threshold are scaled. The
default, NULL uses the range of x. Thresholds for ignoring too small peaks are applied after peaks
are searched for, and threshold values can in some cases result in no peaks being returned.

While functions find_peaks and find_valleys() accept as input a numeric vector and return a
logical vector, methods peaks and valleys accept as input different R objects, including spectra
and collections of spectra and return a subset of the object. These methods are implemented using
calls to functions find_peaks and fit_peaks.

find_spikes 143

Value

A vector of logical values of the same length as x. Values that are TRUE correspond to local peaks
in vector x and can be used to extract the rows corresponding to peaks from a data frame.

Note

The default for parameter strict is FALSE in functions peaks() and find_peaks(), as in stat_peaks()
and in stat_valleys(), while the default in peaks is strict = FALSE.

See Also

peaks.

Other peaks and valleys functions: find_spikes(), get_peaks(), peaks(), replace_bad_pixs(),
spikes(), valleys(), wls_at_target()

Examples

with(sun.data, which(find_peaks(s.e.irrad, span = NULL)))
with(sun.data, which(find_peaks(s.e.irrad, span = 51)))
with(sun.data, w.length[find_peaks(s.e.irrad, span = 51)])
with(sun.data, sum(find_peaks(s.e.irrad, span = NULL, strict = TRUE)))

with(sun.data, which(find_valleys(s.e.irrad, span = NULL)))
with(sun.data, which(find_valleys(s.e.irrad, span = 51)))

find_spikes Find spikes

Description

This function finds spikes in a numeric vector using the algorithm of Whitaker and Hayes (2018).
Spikes are values in spectra that are unusually high or low compared to neighbours. They are usually
individual values or very short runs of similar "unusual" values. Spikes caused by cosmic radiation
are a frequent problem in Raman spectra. Another source of spikes are "hot pixels" in CCD and
diode arrays. Other kinds of accidental "outliers" will be also detected.

Usage

find_spikes(
x,
x.is.delta = FALSE,
z.threshold = 9,
max.spike.width = 8,
na.rm = FALSE

)

144 find_spikes

Arguments

x numeric vector containing spectral data.

x.is.delta logical Flag indicating if x contains already differences.

z.threshold numeric Modified Z values larger than z.threshold are considered to be spikes.

max.spike.width

integer Wider regions with high Z values are not detected as spikes.

na.rm logical indicating whether NA values should be stripped before searching for
spikes.

Details

Spikes are detected based on a modified Z score calculated from the differenced spectrum. The Z
threshold used should be adjusted to the characteristics of the input and desired sensitivity. The
lower the threshold the more stringent the test becomes, resulting in most cases in more spikes
being detected. A modified version of the algorithm is used if a value different from NULL is passed
as argument to max.spike.width. In such a case, an additional step filters out broader spikes (or
falsely detected steep slopes) from the returned values.

Value

A logical vector of the same length as x. Values that are TRUE correspond to local spikes in the
data.

References

Whitaker, D. A.; Hayes, K. (2018) A simple algorithm for despiking Raman spectra. Chemometrics
and Intelligent Laboratory Systems, 179, 82-84.

See Also

Other peaks and valleys functions: find_peaks(), get_peaks(), peaks(), replace_bad_pixs(),
spikes(), valleys(), wls_at_target()

Examples

with(white_led.raw_spct,
which(find_spikes(counts_3, z.threshold = 30)))

find_wls 145

find_wls Find wavelength values in a spectrum

Description

Find wavelength values corresponding to a target y value in any spectrum. The name of the column
of the spectral data to be used to match the target needs to be passed as argument unless the spectrum
contains a single numerical variable in addition to "w.length".

Usage

find_wls(
x,
target = NULL,
col.name.x = NULL,
col.name = NULL,
.fun = `<=`,
interpolate = FALSE,
idfactor = length(target) > 1,
na.rm = FALSE

)

Arguments

x an R object

target numeric or character. A numeric value indicates the spectral quantity value for
which wavelengths are to be searched. A character representing a number is con-
verted to a number. A character value representing a number followed by a func-
tion name, will be also accepted and decoded, such that "0.1max" is interpreted
as targetting one tenthof the maximum value in a column. The character strings
"half.maximum" and "HM" are synonyms for "0.5max" while "half.range" and
"HR" are synonyms for "0.5range". These synonyms are converted to the can-
nonical form before saving them to the returned value.

col.name.x character The name of the column in which to the independent variable is stored.
Defaults to "w.length" for objects of class "generic_spct" or derived.

col.name character The name of the column in which to search for the target value.

.fun function A binary comparison function or operator.

interpolate logical Indicating whether the nearest wavelength value in x should be returned
or a value calculated by linear interpolation between wavelength values stradling
the target.

idfactor logical or character Generates an index column of factor type. If idfactor =
TRUE then the column is auto named target.idx. Alternatively the column name
can be directly passed as argument to idfactor as a character string.

na.rm logical indicating whether NA values should be stripped before searching for the
target.

146 fit_peaks

Value

A spectrum object of the same class as x with fewer rows, possibly even no rows. If FALSE is passed
to interpolate a subset of x is returned, otherwise a new object of the same class containing
interpolated wavelenths for the target value is returned.

Note

This function is used internally by method wls_at_target(), and these methods should be pre-
ferred in user code and scripts.

Examples

find_wls(white_led.source_spct)
find_wls(white_led.source_spct, target = "0.5max")
find_wls(white_led.source_spct, target = 0.4)
find_wls(white_led.source_spct, target = 0.4, interpolate = TRUE)
find_wls(white_led.source_spct, target = c(0.3, 0.4))
find_wls(white_led.source_spct, target = c(0.3, 0.4), idfactor = "target")
find_wls(white_led.source_spct, target = c(0.3, 0.4), idfactor = TRUE)
find_wls(white_led.source_spct, target = "0.5max")
find_wls(white_led.source_spct, target = "0.05max")
find_wls(white_led.source_spct, target = "0.5range")

led.df <- as.data.frame(white_led.source_spct)
find_wls(led.df)
find_wls(led.df, col.name = "s.e.irrad", col.name.x = "w.length")
find_wls(led.df, col.name = "s.e.irrad", col.name.x = "w.length",

target = 0.4)
find_wls(led.df, col.name = "s.e.irrad", col.name.x = "w.length",

target = c(0.3, 0.4))
find_wls(led.df, col.name = "s.e.irrad", col.name.x = "w.length",

target = 0.4, idfactor = "target")

fit_peaks Refine position and value of extremes by fitting

Description

Functions implementing fitting of peaks in a class-agnostic way. The fitting refines the location of
peaks and value of peaks based on the location of maxima and minima supplied. This function is to
be used together with find_peaks() or find_valleys().

Usage

fit_peaks(
x,
peaks.idx,

fit_peaks 147

span,
x.col.name = NULL,
y.col.name,
method,
max.span = 5L,
maximum = TRUE,
keep.cols = NULL

)

fit_valleys(
x,
valleys.idx,
span,
x.col.name = NULL,
y.col.name,
method,
max.span = 5L,
maximum = FALSE,
keep.cols = NULL

)

Arguments

x generic_spct or data.frame object.
peaks.idx, valleys.idx

logical or integer Indexes into x selecting global or local extremes.

span odd integer The span used when refining the location of maxima or minima of
x.

x.col.name, y.col.name
character Name of the column of x on which to operate.

method character The method to use for the fit.

max.span odd integer The maximum number of data points used when when refining the
location of maxima and minima.

maximum logical A flag indicating whether to search for maxima or minima.

keep.cols logical Keep unrecognized columns in data frames

Details

The only method currently implemented is "spline" based on a call to splinefun in a window of
width span centred on each peak pointed at by peaks.idx. A spline fitted to a narrow window will
usually locate the position of the peak in the column named by the argument passed to x.col.name
better than estimating the true height of the peak in the column named by the argument passed to
y.col.name.

Value

An R object of the same class as x containing the fitted values for the peaks, and optionally the
unmodified values at the rows matching peaks.idx or valleys.idx for other retained columns.

148 fluence

Note

These functions are not meant for everyday use. Use option refine.wl = TRUE of methods peaks()
and valleys() instead.

Examples

peaks <- find_peaks(sun.spct[["s.e.irrad"]], span = 31)
fit_peaks(sun.spct, peaks, span = 31,

y.col.name = "s.e.irrad", method = "spline")

fluence Fluence

Description

Energy or photon fluence for one or more wavebands of a light source spectrum and a duration of
exposure.

Usage

fluence(
spct,
w.band,
unit.out,
exposure.time,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
allow.scaled,
...

)

Default S3 method:
fluence(
spct,
w.band,
unit.out,
exposure.time,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
allow.scaled,
...

)

fluence 149

S3 method for class 'source_spct'
fluence(
spct,
w.band = NULL,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
exposure.time,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = getOption("photobiology.use.cached.mult", default = FALSE),
use.hinges = NULL,
allow.scaled = FALSE,
naming = "default",
...

)

S3 method for class 'source_mspct'
fluence(
spct,
w.band = NULL,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
exposure.time,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = getOption("photobiology.use.cached.mult", default = FALSE),
use.hinges = NULL,
allow.scaled = FALSE,
naming = "default",
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct an R object.
w.band a list of waveband objects or a waveband object.
unit.out character string with allowed values "energy", and "photon", or its alias "quan-

tum".
exposure.time lubridate::duration object.
scale.factor numeric vector of length 1, or length equal to that of w.band. Numeric multiplier

applied to returned values.
wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if

FALSE, they are discarded.
use.cached.mult

logical indicating whether multiplier values should be cached between calls.

150 fluence

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

allow.scaled logical indicating whether scaled or normalized spectra as argument to spct are
flagged as an error.

... other arguments (possibly used by derived methods).

naming character one of "long", "default", "short" or "none". Used to select the type of
names to assign to returned value.

attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to
formal parameter col.names.

idx character Name of the column with the names of the members of the collection
of spectra.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Value

One numeric value for each waveband with no change in scale factor, with name attribute set to the
name of each waveband unless a named list is supplied in which case the names of the list elements
are used. The time.unit attribute is copied from the spectrum object to the output. Units are as
follows: If time.unit is second, [W m-2 nm-1] -> [mol s-1 m-2] If time.unit is day, [J d-1 m-2 nm-1]
-> [mol d-1 m-2]

Methods (by class)

• fluence(default): Default for generic function

• fluence(source_spct): Calculate photon fluence from a source_spct object and the dura-
tion of the exposure

• fluence(source_mspct): Calculates fluence from a source_mspct object.

Note

The last two parameters control speed optimizations. The defaults should be suitable in most cases.
If you will use repeatedly the same SWFs on many spectra measured at exactly the same wave-
lengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that
you are responsible for ensuring that the wavelengths are the same in each call, as the only test done
is for the length of the w.length vector.

See Also

Other irradiance functions: e_fluence(), e_irrad(), irrad(), q_fluence(), q_irrad()

formatted_range 151

Examples

library(lubridate)
fluence(sun.spct,

w.band = waveband(c(400,700)),
exposure.time = lubridate::duration(3, "minutes"))

formatted_range Compute range and format it

Description

Compute the range of an R object, and format it as string suitable for printing.

Usage

formatted_range(x, na.rm = TRUE, digits = 3, nsmall = 2, collapse = "..")

Arguments

x an R object

na.rm logical, indicating if NA’s should be omitted.

digits, nsmall numeric, passed to same name parameters of format().

collapse character, passed to same name parameter of paste().

See Also

range, format and paste.

Examples

formatted_range(c(1, 3.5, -0.01))

fscale Rescale a spectrum using a summary function

Description

These methods return a spectral object of the same class as the one supplied as argument but with the
spectral data rescaled based on a summary function f applied over a specific range of wavelengths
and a target value for the summary value. When the object contains multiple spectra, the rescaling
is applied separately to each spectrum.

152 fscale

Usage

fscale(x, ...)

Default S3 method:
fscale(x, ...)

S3 method for class 'source_spct'
fscale(
x,
range = NULL,
f = "mean",
target = 1,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
set.scaled = target == 1,
...

)

S3 method for class 'response_spct'
fscale(
x,
range = NULL,
f = "mean",
target = 1,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
set.scaled = target == 1,
...

)

S3 method for class 'filter_spct'
fscale(
x,
range = NULL,
f = "mean",
target = 1,
qty.out = getOption("photobiology.filter.qty", default = "transmittance"),
set.scaled = target == 1,
...

)

S3 method for class 'reflector_spct'
fscale(
x,
range = NULL,
f = "mean",
target = 1,
qty.out = NULL,
set.scaled = target == 1,
...

fscale 153

)

S3 method for class 'solute_spct'
fscale(
x,
range = NULL,
f = "mean",
target = 1,
qty.out = NULL,
set.scaled = target == 1,
...

)

S3 method for class 'raw_spct'
fscale(x, range = NULL, f = "mean", target = 1, set.scaled = target == 1, ...)

S3 method for class 'cps_spct'
fscale(x, range = NULL, f = "mean", target = 1, set.scaled = target == 1, ...)

S3 method for class 'generic_spct'
fscale(
x,
range = NULL,
f = "mean",
target = 1,
set.scaled = target == 1,
col.names,
...

)

S3 method for class 'source_mspct'
fscale(
x,
range = NULL,
f = "mean",
target = 1,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
set.scaled = target == 1,
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'response_mspct'
fscale(
x,
range = NULL,
f = "mean",

154 fscale

target = 1,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
set.scaled = target == 1,
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'filter_mspct'
fscale(
x,
range = NULL,
f = "mean",
target = 1,
qty.out = getOption("photobiology.filter.qty", default = "transmittance"),
set.scaled = target == 1,
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'reflector_mspct'
fscale(
x,
range = NULL,
f = "mean",
target = 1,
qty.out = NULL,
set.scaled = target == 1,
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'solute_mspct'
fscale(
x,
range = NULL,
f = "mean",
target = 1,
set.scaled = target == 1,
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'raw_mspct'
fscale(

fscale 155

x,
range = NULL,
f = "mean",
target = 1,
set.scaled = target == 1,
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'cps_mspct'
fscale(
x,
range = NULL,
f = "mean",
target = 1,
set.scaled = target == 1,
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'generic_mspct'
fscale(
x,
range = NULL,
f = "mean",
target = 1,
set.scaled = target == 1,
col.names,
...,
.parallel = FALSE,
.paropts = NULL

)

Arguments

x An R object

... additional named arguments passed down to f.

range numeric. An R object on which range() returns a numeric vector of length 2
with the limits of a range of wavelengths in nm, with min and max wavelengths
(nm)

f character string. "mean" or "total" for scaling so that this summary value be-
comes 1 for the returned object, or the name of a function taking x as first argu-
ment and returning a numeric value.

target numeric A constant used as target value for scaling.

unit.out character. Allowed values "energy", and "photon", or its alias "quantum".

156 fscale

set.scaled logical or NULL Flag indicating if the data is to be marked as "scaled" or not.

qty.out character. Allowed values "transmittance", and "absorbance".

col.names character vector containing the names of columns or variables to which to apply
the scaling.

.parallel logical if TRUE, apply function in parallel, using parallel backend provided by
foreach.

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Details

After scaling, calling the function passed as argument to f with the scaled spectrum as argument,
will return the value passed as argument to target. The default for set.scaled depends dynam-
ically on the value passed to target. Sometimes we rescale a spectrum to a "theoretical" value
for the summary, while in other cases we rescale the spectrum to a real-world target value of, e.g.,
a reference energy irradiance. In the first case we say that the data are expressed in relative units,
while in the second case we retain actual physical units. To indicate this, the default argument for
‘set.scaled‘ is TRUE when target == 1, assuming the first of these two situations, and false oth-
erwise, assuming the second situation. These defaults can be overriden with an explicit logical
argument passed to set.scaled. Scaling overrides any previous normalization with the spectrum
tagged as not normalized.

Method fscale is implemented for solute_spct objects but as the spectral data stored in them
are a description of an intensive property of a substance, scaling is unlikely to useful. To represent
solutions of specific concentrations of solutes, filter_spct objects should be used instead.

Value

A copy of the object passed as argument to x with the original spectral data values replaced with
rescaled values, and the "scaled" attribute set to a list describing the scaling applied.

a new object of the same class as x.

Methods (by class)

• fscale(default): Default for generic function

• fscale(source_spct):

• fscale(response_spct):

• fscale(filter_spct):

• fscale(reflector_spct):

• fscale(solute_spct):

• fscale(raw_spct):

• fscale(cps_spct):

• fscale(generic_spct):

• fscale(source_mspct):

fshift 157

• fscale(response_mspct):

• fscale(filter_mspct):

• fscale(reflector_mspct):

• fscale(solute_mspct):

• fscale(raw_mspct):

• fscale(cps_mspct):

• fscale(generic_mspct):

Important changes

Metadata describing the rescaling operation are stored in an attribute only if set.scaled = TRUE
is passed to the call. The exact format and data stored in the attribute "scaled" has changed
during the development history of the package. Spectra re-scaled with earlier versions will lack
some information. To obtain the metadata in a consistent format irrespective of this variation use
accessor getScaling(), which fills missing fields with NA.

See Also

Other rescaling functions: fshift(), getNormalized(), getScaled(), is_normalized(), is_scaled(),
normalize(), setNormalized(), setScaled()

Examples

fscale(sun.spct)
fscale(sun.spct, f = "mean") # same as default
fscale(sun.spct, f = "mean", na.rm = TRUE)
fscale(sun.spct, range = c(400, 700)) # default is whole spectrum
fscale(sun.spct, f = "e_irrad", range = c(400, 700))
s400.spct <- fscale(sun.spct,

f = e_irrad,
range = c(400, 700),
target = 400) # a target in W m-2

s400.spct
e_irrad(s400.spct, c(400, 700))

fshift Shift the scale of a spectrum using a summary function

Description

The fshift() methods return a spectral object of the same class as the one supplied as argument
but with the spectral data on a zero-shifted scale. A range of wavelengths is taken as a zero reference
and the summary calculated with f for this waveband is substracted. This results in a zero shift (=
additive correction) to the values in the returned object. Metadata attributes are retained unchanged.

158 fshift

Usage

fshift(x, ...)

Default S3 method:
fshift(x, ...)

S3 method for class 'source_spct'
fshift(
x,
range = c(wl_min(x), wl_min(x) + 10),
f = "mean",
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
...

)

S3 method for class 'response_spct'
fshift(
x,
range = c(wl_min(x), wl_min(x) + 10),
f = "mean",
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
...

)

S3 method for class 'filter_spct'
fshift(
x,
range = c(wl_min(x), wl_min(x) + 10),
f = "min",
qty.out = getOption("photobiology.filter.qty", default = "transmittance"),
...

)

S3 method for class 'reflector_spct'
fshift(x, range = c(wl_min(x), wl_min(x) + 10), f = "min", qty.out = NULL, ...)

S3 method for class 'source_mspct'
fshift(
x,
range = c(wl_min(x), wl_min(x) + 10),
f = "mean",
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
...

)

S3 method for class 'raw_spct'
fshift(
x,

fshift 159

range = c(wl_min(x), wl_min(x) + 10),
f = "mean",
qty.out = NULL,
...

)

S3 method for class 'cps_spct'
fshift(
x,
range = c(wl_min(x), wl_min(x) + 10),
f = "mean",
qty.out = NULL,
...

)

S3 method for class 'generic_spct'
fshift(x, range = c(wl_min(x), wl_min(x) + 10), f = "mean", col.names, ...)

S3 method for class 'response_mspct'
fshift(
x,
range = c(wl_min(x), wl_min(x) + 10),
f = "mean",
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'filter_mspct'
fshift(
x,
range = c(wl_min(x), wl_min(x) + 10),
f = "min",
qty.out = getOption("photobiology.filter.qty", default = "transmittance"),
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'reflector_mspct'
fshift(
x,
range = c(wl_min(x), wl_min(x) + 10),
f = "min",
qty.out = NULL,
...,
.parallel = FALSE,

160 fshift

.paropts = NULL
)

S3 method for class 'raw_mspct'
fshift(
x,
range = c(wl_min(x), wl_min(x) + 10),
f = "min",
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'cps_mspct'
fshift(
x,
range = c(wl_min(x), wl_min(x) + 10),
f = "min",
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'generic_mspct'
fshift(
x,
range = c(wl_min(x), wl_min(x) + 10),
f = "min",
col.names,
...,
.parallel = FALSE,
.paropts = NULL

)

Arguments

x An R object

... additional named arguments passed down to f.

range An R object on which range() returns a numeric vector of length 2 with the
limits of a range of wavelengths in nm, with min and max wavelengths (nm)

f character string "mean", "min" or "max" for scaling so that this summary value
becomes the origin of the spectral data scale in the returned object, or the name
of a function taking x as first argument and returning a numeric value.

unit.out character Allowed values "energy", and "photon", or its alias "quantum"

qty.out character Allowed values "transmittance", and "absorbance"

col.names character vector containing the names of columns or variables to which to apply
the scale shift.

fshift 161

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Value

A copy of x with the spectral data values replaced with values zero-shifted.

a new object of the same class as x.

Methods (by class)

• fshift(default): Default for generic function

• fshift(source_spct):

• fshift(response_spct):

• fshift(filter_spct):

• fshift(reflector_spct):

• fshift(source_mspct):

• fshift(raw_spct):

• fshift(cps_spct):

• fshift(generic_spct):

• fshift(response_mspct):

• fshift(filter_mspct):

• fshift(reflector_mspct):

• fshift(raw_mspct):

• fshift(cps_mspct):

• fshift(generic_mspct):

Note

Method fshift is not implemented for solute_spct objects as the spectral data stored in them are
a description of an intensive property of a substance. To represent solutions of specific concentra-
tions of solutes, filter_spct objects can be used.

See Also

Other rescaling functions: fscale(), getNormalized(), getScaled(), is_normalized(), is_scaled(),
normalize(), setNormalized(), setScaled()

162 generic_mspct

generic_mspct Collection-of-spectra constructor

Description

Converts a list of spectral objects into a "multi spectrum" object by setting the class attribute of the
list of spectra to the corresponding multi-spct class, check that components of the list belong to the
expected class.

Usage

generic_mspct(
l = NULL,
class = "generic_spct",
ncol = 1,
byrow = FALSE,
dim = c(length(l)%/%ncol, ncol)

)

calibration_mspct(l = NULL, ncol = 1, byrow = FALSE, ...)

raw_mspct(l = NULL, ncol = 1, byrow = FALSE, ...)

cps_mspct(l = NULL, ncol = 1, byrow = FALSE, ...)

source_mspct(l = NULL, ncol = 1, byrow = FALSE, ...)

filter_mspct(l = NULL, ncol = 1, byrow = FALSE, ...)

reflector_mspct(l = NULL, ncol = 1, byrow = FALSE, ...)

object_mspct(l = NULL, ncol = 1, byrow = FALSE, ...)

solute_mspct(l = NULL, ncol = 1, byrow = FALSE, ...)

response_mspct(l = NULL, ncol = 1, byrow = FALSE, ...)

chroma_mspct(l = NULL, ncol = 1, byrow = FALSE, ...)

Arguments

l list of generic_spct or derived classes

class character The multi spectrum object class or the expected class for the elements
of l

ncol integer Number of ’virtual’ columns in data

byrow logical If ncol > 1 how to read in the data

getFilterProperties 163

dim integer vector of dimensions

... ignored

Functions

• calibration_mspct(): Specialization for collections of calibration_spct objects.

• raw_mspct(): Specialization for collections of raw_spct objects.

• cps_mspct(): Specialization for collections of cps_spct objects.

• source_mspct(): Specialization for collections of source_spct objects.

• filter_mspct(): Specialization for collections of filter_spct objects.

• reflector_mspct(): Specialization for collections of reflector_spct objects.

• object_mspct(): Specialization for collections of object_spct objects.

• solute_mspct(): Specialization for collections of solute_spct objects.

• response_mspct(): Specialization for collections of response_spct objects.

• chroma_mspct(): Specialization for collections of chroma_spct objects.

Note

Setting class = source_spct or class = source_mspct makes no difference

Examples

filter_mspct(list(polyester.spct, yellow_gel.spct))

getFilterProperties Get the "filter.properties" attribute

Description

Function to read the "filter.properties" attribute of an existing filter_spct or a filter_mspct.

Usage

getFilterProperties(x, return.null, ...)

filter_properties(x, return.null, ...)

Default S3 method:
getFilterProperties(x, return.null = FALSE, ...)

S3 method for class 'filter_spct'
getFilterProperties(x, return.null = FALSE, ...)

S3 method for class 'summary_filter_spct'

164 getFilterProperties

getFilterProperties(x, return.null = FALSE, ...)

S3 method for class 'generic_mspct'
getFilterProperties(x, return.null = FALSE, ..., idx = "spct.idx")

Arguments

x a filter_spct object

return.null logical If true, NULL is returned if the attribute is not set, otherwise the expected
list is returned with all fields set to NA.

... Allows use of additional arguments in methods for other classes.

idx character Name of the column with the names of the members of the collection
of spectra.

Value

a list with fields named "Rfr.constant" [/1], "thickness" [m] and "attenuation.mode". If the
attribute is not set, and return.null is FALSE, a list with fields set to NA is returned, otherwise,
NULL.

Methods (by class)

• getFilterProperties(default): default

• getFilterProperties(filter_spct): generic_spct

• getFilterProperties(summary_filter_spct): summary_generic_spct

• getFilterProperties(generic_mspct): filter_mspct

Note

The method for collections of spectra returns the a tibble with a column of lists.

See Also

Other measurement metadata functions: add_attr2tb(), getHowMeasured(), getInstrDesc(),
getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(), getWhereMeasured(),
get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),
setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setSoluteProperties(),
setWhatMeasured(), setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(),
subset_attributes(), trimInstrDesc(), trimInstrSettings()

Examples

filter_properties(polyester.spct)

getHowMeasured 165

getHowMeasured Get the "how.measured" attribute

Description

Method to read the "how.measured" attribute of an R object.

Usage

getHowMeasured(x, ...)

how_measured(x, ...)

Default S3 method:
getHowMeasured(x, ...)

S3 method for class 'generic_spct'
getHowMeasured(x, ..., simplify = FALSE)

S3 method for class 'summary_generic_spct'
getHowMeasured(x, ..., simplify = FALSE)

S3 method for class 'data.frame'
getHowMeasured(x, ..., simplify = FALSE)

S3 method for class 'generic_mspct'
getHowMeasured(x, ..., idx = "spct.idx", simplify = FALSE)

Arguments

x an R object.

... Allows use of additional arguments in methods for other classes.

simplify logical If all members share the same attribute value return one copy instead of
a data.frame.

idx character Name of the column with the names of the members of the collection
of spectra.

Value

character vector An object containing a verbal description of the data.

Methods (by class)

• getHowMeasured(default): default

• getHowMeasured(generic_spct): generic_spct

• getHowMeasured(summary_generic_spct): summary_generic_spct

166 getIdFactor

• getHowMeasured(data.frame): data.frame

• getHowMeasured(generic_mspct): generic_mspct

Note

The method for collections of spectra returns the a data frame with a column of character strings.

See Also

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getInstrDesc(),
getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(), getWhereMeasured(),
get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),
setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setSoluteProperties(),
setWhatMeasured(), setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(),
subset_attributes(), trimInstrDesc(), trimInstrSettings()

Examples

my.spct <- sun.spct
how_measured(my.spct)
how_measured(my.spct) <- "Simulated with a radiation transfer model"
how_measured(my.spct)
how_measured(my.spct) <- NULL
how_measured(my.spct)

getIdFactor Get the "idfactor" attribute

Description

Function to read the idfactor attribute of an existing generic_spct.

Usage

getIdFactor(x)

id_factor(x)

Arguments

x a generic_spct object

Value

character

getInstrDesc 167

Note

If x is not a generic_spct or an object of a derived class NA is returned.

See Also

Other idfactor attribute functions: setIdFactor()

Examples

id_factor(sun_evening.spct)

getInstrDesc Get the "instr.desc" attribute

Description

Function to query the "instr.desc" attribute of an existing generic_spct or derived-class object,
or of a summary_generic_spct or derived-class object.

Usage

getInstrDesc(x)

instr_descriptor(x)

Arguments

x a generic_spct object or a summary_generic_spct object.

Value

an object of class "instr_desc" derived from "list". The fields spectrometer.name, spectrometer.sn,
bench.grating and bench.slit are always present, although may be set to NA. Additional fields
can be present depending on the origin of the data.

See Also

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(), getWhereMeasured(),
get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),
setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setSoluteProperties(),
setWhatMeasured(), setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(),
subset_attributes(), trimInstrDesc(), trimInstrSettings()

168 getInstrSettings

Examples

valid.descriptor <- getInstrDesc(white_led.cps_spct)
class(valid.descriptor)
print(valid.descriptor)
print(str(valid.descriptor))

missing.descriptor <- getInstrDesc(white_body.spct)
class(missing.descriptor)
print(missing.descriptor)
print(str(missing.descriptor))

getInstrSettings Get the "instr.settings" attribute

Description

Function to extract the "instr.settings" attribute from generic_spct object or from a summary_generic_spct.

Usage

getInstrSettings(x)

instr_settings(x)

Arguments

x a generic_spct object or a summary_generic_spct object.

Details

If x is derived from generic_spct or from summary_generic_spct, the value of attribute "instr.settings"
is returned (NULL, if missing). Otherwise list() is returned.

Value

an object of class "instr_settings" derived from "list".

See Also

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrDesc(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(), getWhereMeasured(),
get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),
setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setSoluteProperties(),
setWhatMeasured(), setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(),
subset_attributes(), trimInstrDesc(), trimInstrSettings()

getKType 169

Examples

settings <- getInstrSettings(white_led.cps_spct)
class(settings)
print(settings)
print(str(settings))

getKType Get the "K.type" attribute

Description

Function to read the "K.type" attribute of an existing solute_spct object.

Usage

getKType(x)

Arguments

x a solute_spct object

Value

character string

Note

If x is not a solute_spct or a summary_solute_spct object, NA is returned.

See Also

Other K attribute functions: setKType()

Examples

print("missing example")

170 getMultipleWl

getMspctVersion Get the "mspct.version" attribute

Description

Function to read the "mspct.version" attribute of an existing generic_mspct object.

Usage

getMspctVersion(x)

Arguments

x a generic_mspct object

Value

numeric value

Note

if x is not a generic_mspct object, NA is returned, and if it the attribute is missing, zero is returned
with a warning.

getMultipleWl Get the "multiple.wl" attribute

Description

Function to query the value of the multiple.wl attribute of an existing generic_spct.

Usage

getMultipleWl(x)

multiple_wl(x)

Arguments

x a generic_spct object

Value

integer value, the value of attribute multiple.wl, or NA if the attribute is not set, or if x is not a
generic_spct object or an object of a derived class.

getNormalized 171

See Also

Other multiple.wl attribute functions: setMultipleWl()

Examples

multiple_wl(sun.spct)
multiple_wl(sun_evening.spct)

getNormalized Query the "normalized" and "normalization" attributes

Description

Functions to read the "normalized" and "normalization" attributes of an existing generic_spct object.

Usage

getNormalized(x, .force.numeric = FALSE)

getNormalised(x, .force.numeric = FALSE)

getNormalization(x)

getNormalisation(x)

Arguments

x a generic_spct object.
.force.numeric logical If TRUE always silently return a numeric value, with FALSE encoded as

zero, and character values as NA.

Details

Spectral data that has been normalized needs to be used diffferently in computations than data
expresed in original units. These two functions make it possible to query if data stored in an object
of class generic_spct or of a derived class contains data expressed in physical units or normalized.
In the later case, it is possible to also query how the normalization was done.

Value

getNormalized() returns numeric or logical (possibly character for objects created with earlier
versions); for collections of spectra, a named list, with one member for each spectrum. If x is not a
generic_spct object, NA or a list with fields set to NAs is returned. Objects created with versions
of package ’photobiology’ earlier than 0.10.8 are lacking the detailed normalization metadata.

getNormalization() returns a list with five fields: norm.type, norm.wl, norm.factors, norm.cols,
norm.range. For collections of spectra, a named list of lists, with one member list for each member
of the collection of spectra. See setNormalized() for the values stored in the fields.

172 getScaled

Note

getNormalised() is a synonym for this getNormalized() method.

See Also

Other rescaling functions: fscale(), fshift(), getScaled(), is_normalized(), is_scaled(),
normalize(), setNormalized(), setScaled()

Examples

getNormalized(sun.spct)
getNormalization(sun.spct)

sun_norm.spct <- normalize(sun.spct)

getNormalized(sun_norm.spct)
getNormalization(sun_norm.spct)

getNormalization(e2q(sun_norm.spct))

gel_norm.spct <- normalize(yellow_gel.spct)

getNormalized(gel_norm.spct)
getNormalization(gel_norm.spct)

getNormalization(T2Afr(gel_norm.spct))
getNormalization(any2A(gel_norm.spct))

getScaled Get the "scaled" attribute

Description

Function to read the "scaled" attribute of an existing generic_spct object.

Usage

getScaled(x, .force.list = FALSE)

getScaling(x)

Arguments

x a generic_spct object

.force.list logical If TRUE always silently return a list, with FALSE encoded field multiplier
= 1.

getSoluteProperties 173

Value

logical

Note

if x is not a filter_spct object, NA is returned

See Also

Other rescaling functions: fscale(), fshift(), getNormalized(), is_normalized(), is_scaled(),
normalize(), setNormalized(), setScaled()

Examples

scaled.spct <- fscale(sun.spct)
getScaled(scaled.spct)

getSoluteProperties Get the "solute.properties" attribute

Description

Function to read the "solute.properties" attribute of an existing solute_spct or a solute_mspct
objects.

Usage

getSoluteProperties(x, return.null, ...)

solute_properties(x, return.null, ...)

Default S3 method:
getSoluteProperties(x, return.null = FALSE, ...)

S3 method for class 'solute_spct'
getSoluteProperties(x, return.null = FALSE, ...)

S3 method for class 'summary_solute_spct'
getSoluteProperties(x, return.null = FALSE, ...)

S3 method for class 'solute_mspct'
getSoluteProperties(x, return.null = FALSE, ..., idx = "spct.idx")

174 getSoluteProperties

Arguments

x solute_spct A spectrum of coefficients of attenuation.

return.null logical If true, NULL is returned if the attribute is not set, otherwise the expected
list is returned with all fields set to NA.

... Allows use of additional arguments in methods for other classes.

idx character Name of the column with the names of the members of the collection
of spectra.

Value

a list with fields named "mass", "formula", "structure", "name" and "ID". If the attribute is
not set, and return.null is FALSE, a list with fields set to NA is returned, otherwise, NULL.

Methods (by class)

• getSoluteProperties(default): default

• getSoluteProperties(solute_spct): solute_spct

• getSoluteProperties(summary_solute_spct): summary_solute_spct

• getSoluteProperties(solute_mspct): solute_mspct

Note

The method for collections of spectra returns the a tibble with a column of lists.

See Also

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrDesc(), getInstrSettings(), getWhatMeasured(), getWhenMeasured(), getWhereMeasured(),
get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),
setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setSoluteProperties(),
setWhatMeasured(), setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(),
subset_attributes(), trimInstrDesc(), trimInstrSettings()

Examples

solute_properties(water.spct)

getSpctVersion 175

getSpctVersion Get the "spct.version" attribute

Description

Function to read the "spct.version" attribute of an existing generic_spct object.

Usage

getSpctVersion(x)

Arguments

x a generic_spct object

Value

integer value

Note

if x is not a generic_spct object, NA is returned, and if it the attribute is missing, zero is returned
with a warning.

getTimeUnit Get the "time.unit" attribute of an existing source_spct object

Description

Function to read the "time.unit" attribute

Usage

getTimeUnit(x, force.duration = FALSE)

Arguments

x a source_spct object

force.duration logical If TRUE a lubridate::duration is returned even if the object attribute is a
character string, if no conversion is possible NA is returned.

Value

character string or a lubridate::duration

176 getWhatMeasured

Note

if x is not a source_spct or a response_spct object, NA is returned

See Also

Other time attribute functions: checkTimeUnit(), convertThickness(), convertTimeUnit(),
setTimeUnit()

Examples

getTimeUnit(sun.spct)

getWhatMeasured Get the "what.measured" attribute

Description

Method to read the "what.measured" attribute of an R object.

Usage

getWhatMeasured(x, ...)

what_measured(x, ...)

Default S3 method:
getWhatMeasured(x, ...)

S3 method for class 'generic_spct'
getWhatMeasured(x, ..., simplify = FALSE)

S3 method for class 'summary_generic_spct'
getWhatMeasured(x, ..., simplify = FALSE)

S3 method for class 'data.frame'
getWhatMeasured(x, ..., simplify = FALSE)

S3 method for class 'generic_mspct'
getWhatMeasured(x, ..., idx = "spct.idx", simplify = FALSE)

Arguments

x an R object.

... Allows use of additional arguments in methods for other classes.

simplify logical If all members share the same attribute value return one copy instead of
a data.frame.

getWhenMeasured 177

idx character Name of the column with the names of the members of the collection
of spectra.

Value

character vector An object containing a description of the data. If x does not belong to a supported
class NA is returned.

Methods (by class)

• getWhatMeasured(default): default

• getWhatMeasured(generic_spct): generic_spct

• getWhatMeasured(summary_generic_spct): summary_generic_spct

• getWhatMeasured(data.frame): data.frame

• getWhatMeasured(generic_mspct): generic_mspct

Note

The method for collections of spectra returns the a data.frame with a column of character strings.

See Also

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrDesc(), getInstrSettings(), getSoluteProperties(), getWhenMeasured(), getWhereMeasured(),
get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),
setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setSoluteProperties(),
setWhatMeasured(), setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(),
subset_attributes(), trimInstrDesc(), trimInstrSettings()

Examples

my.spct <- sun.spct
what_measured(my.spct)
what_measured(my.spct) <- "Sun"
what_measured(my.spct)
what_measured(my.spct) <- NULL
what_measured(my.spct)

getWhenMeasured Get the "when.measured" attribute

Description

Method to read the "when.measured" attribute of an R object.

178 getWhenMeasured

Usage

getWhenMeasured(x, ...)

when_measured(x, ...)

Default S3 method:
getWhenMeasured(x, ...)

S3 method for class 'generic_spct'
getWhenMeasured(x, as.df = FALSE, ..., simplify = FALSE)

S3 method for class 'summary_generic_spct'
getWhenMeasured(x, as.df = FALSE, ..., simplify = FALSE)

S3 method for class 'data.frame'
getWhenMeasured(x, as.df = FALSE, ..., simplify = FALSE)

S3 method for class 'generic_mspct'
getWhenMeasured(x, ..., idx = "spct.idx", simplify = FALSE)

Arguments

x an R object
... Allows use of additional arguments in methods for other classes.
as.df logical If TRUE return a data frame instead of a list, when the value stored in the

attribute is a list.
simplify logical If all members share the same attribute value return one copy instead of

a data.frame.
idx character Name of the column with the names of the members of the collection

of spectra.

Value

a POSIXct object with date and time, or named list of such objects, or, on user request, a data frame.

Methods (by class)

• getWhenMeasured(default): default
• getWhenMeasured(generic_spct): generic_spct
• getWhenMeasured(summary_generic_spct): summary_generic_spct
• getWhenMeasured(data.frame): data.frame
• getWhenMeasured(generic_mspct): generic_mspct

Note

If x is not an object of one of the supported classes, NA is returned.

The method for collections of spectra returns a tibble with the times expressed in TZ = "UTC".

getWhereMeasured 179

See Also

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrDesc(), getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhereMeasured(),
get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),
setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setSoluteProperties(),
setWhatMeasured(), setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(),
subset_attributes(), trimInstrDesc(), trimInstrSettings()

Examples

my.spct <- sun.spct
when_measured(my.spct)
when_measured(my.spct) <- lubridate::ymd_hms("2020-01-01 08:00:00")
when_measured(my.spct)
when_measured(my.spct) <- NULL
when_measured(my.spct)

getWhereMeasured Get the "where.measured" attribute

Description

Method to read the "where.measured" attribute of generic_spct, generic_mspct, summary_generic_spct,
data.frame or a derived-class object.

Usage

getWhereMeasured(x, ...)

where_measured(x, ...)

Default S3 method:
getWhereMeasured(x, ...)

S3 method for class 'generic_spct'
getWhereMeasured(x, ..., simplify = FALSE)

S3 method for class 'summary_generic_spct'
getWhereMeasured(x, ..., simplify = FALSE)

S3 method for class 'generic_mspct'
getWhereMeasured(
x,
...,
idx = "spct.idx",
.bind.geocodes = TRUE,

180 getWhereMeasured

simplify = FALSE
)

S3 method for class 'data.frame'
getWhereMeasured(x, ...)

Arguments

x a generic_spct object

... Allows use of additional arguments in methods for other classes.

simplify logical If all members share the same attribute value return one copy instead of
a data.frame.

idx character Name of the column with the names of the members of the collection
of spectra.

.bind.geocodes logical In the case of collections of spectra if .bind.geocodes = TRUE, the de-
fault, the returned value is a single geocode with one row for each member
spectrum. Otherwise the individual geocode data frames are returned in a list
column within a tibble.

Value

a data.frame with a single row and at least columns "lon" and "lat", unless expand is set to FALSE.

Methods (by class)

• getWhereMeasured(default): default

• getWhereMeasured(generic_spct): generic_spct

• getWhereMeasured(summary_generic_spct): summary_generic_spct

• getWhereMeasured(generic_mspct): generic_mspct

• getWhereMeasured(data.frame): data.frame

Note

If x is not a generic_spct or an object of a derived class NA is returned.

See Also

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrDesc(), getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(),
get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),
setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setSoluteProperties(),
setWhatMeasured(), setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(),
subset_attributes(), trimInstrDesc(), trimInstrSettings()

get_attributes 181

Examples

my.spct <- sun.spct
where_measured(my.spct)
where_measured(my.spct) <- data.frame(lon = 0, lat = -60)
where_measured(my.spct)
where_measured(my.spct) <- NULL
where_measured(my.spct)

get_attributes Get the metadata attributes

Description

Method returning attributes of an object of class generic_spct or derived, or of class waveband.
Only attributes defined and/or set by package ’photobiology’ for objects of the corresponding class
are returned. Parameter which can be used to subset the list of attributes.

Usage

get_attributes(x, which, ...)

S3 method for class 'generic_spct'
get_attributes(x, which = NULL, allowed = all.attributes, ...)

S3 method for class 'source_spct'
get_attributes(x, which = NULL, ...)

S3 method for class 'filter_spct'
get_attributes(x, which = NULL, ...)

S3 method for class 'reflector_spct'
get_attributes(x, which = NULL, ...)

S3 method for class 'object_spct'
get_attributes(x, which = NULL, ...)

S3 method for class 'solute_spct'
get_attributes(x, which = NULL, ...)

S3 method for class 'waveband'
get_attributes(x, which = NULL, ...)

Arguments

x a generic_spct object.

which character vector Names of attributes to retrieve.

182 get_peaks

... currently ignored

allowed character vector Names of attributes accepted by which.

Details

Vectors of character strings passed as argument to which are parsed so that if the first member
string is "-" the remaining members are removed from the allowed; and if it is "=" the remaining
members are used if in allowed. If the first member is none of these three strings, the behaviour
is the same as if the first string is "=". If which is NULL all the attributes in allowed are used. The
string "" means no attributes, and has precedence over any other values in the character vector. The
order of the names of annotations has no meaning: the vector is interpreted as a set except for the
three possible "operators" at position 1.

Value

Named list of attribute values.

Methods (by class)

• get_attributes(generic_spct): generic_spct

• get_attributes(source_spct): source_spct

• get_attributes(filter_spct): filter_spct

• get_attributes(reflector_spct): reflector_spct

• get_attributes(object_spct): object_spct

• get_attributes(solute_spct): solute_spct

• get_attributes(waveband): waveband

See Also

select_spct_attributes

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrDesc(), getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(),
getWhereMeasured(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),
setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setSoluteProperties(),
setWhatMeasured(), setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(),
subset_attributes(), trimInstrDesc(), trimInstrSettings()

get_peaks Get peaks and valleys from a spectrum

Description

These functions "get" (or extract) peaks (maxima) and valleys (minima) in two vectors, usually a
spectral quantity and wavelength, using a user selectable span for window width and global and
local (within moving window) size thresholds. They also generate character values for x.

get_peaks 183

Usage

get_peaks(
x,
y,
global.threshold = 0,
span = 5,
strict = TRUE,
x_unit = "",
x_digits = 3,
na.rm = FALSE

)

get_valleys(
x,
y,
global.threshold = 0,
span = 5,
strict = TRUE,
x_unit = "",
x_digits = 3,
na.rm = FALSE

)

Arguments

x, y numeric

global.threshold

numeric A value belonging to class "AsIs" is interpreted as an absolute mini-
mum height or depth expressed in data units. A bare numeric value (normally
between 0.0 and 1.0), is interpreted as relative to threshold.range. In both
cases it sets a global height (depth) threshold below which peaks (valleys) are
ignored. A bare negative numeric value indicates the global height (depth)
threshold below which peaks (valleys) are be ignored. If global.threshold =
NULL, no threshold is applied and all peaks returned.

span odd positive integer A peak is defined as an element in a sequence which is
greater than all other elements within a moving window of width span centred
at that element. The default value is 5, meaning that a peak is taller than its four
nearest neighbours. span = NULL extends the span to the whole length of x.

strict logical flag: if TRUE, an element must be strictly greater than all other values in
its window to be considered a peak. Default: FALSE (since version 0.13.1).

x_unit character Vector of texts to be pasted at end of labels built from x value at peaks.

x_digits numeric Number of significant digits in wavelength label.

na.rm logical indicating whether NA values should be stripped before searching for
peaks.

184 green_leaf.spct

Details

Function find_peaks is a wrapper built onto function peaks from splus2R, adds support for peak
height thresholds and handles span = NULL and non-finite (including NA) values differently than
splus2R::peaks. Instead of giving an error when na.rm = FALSE and x contains NA values, NA
values are replaced with the smallest finite value in x. span = NULL is treated as a special case and
selects max(x). Passing ‘strict = TRUE‘ ensures that multiple global and within window maxima
are ignored, and can result in no peaks being returned.

Two tests make it possible to ignore irrelevant peaks. One test (global.threshold) is based on
the absolute height of the peaks and can be used in all cases to ignore globally low peaks. A
second test (local.threshold) is available when the window defined by ‘span‘ does not include all
observations and can be used to ignore peaks that are not locally prominent. In this second approach
the height of each peak is compared to a summary computed from other values within the window
of width equal to span where it was found. In this second case, the reference value used within each
window containing a peak is given by local.reference. Parameter threshold.range determines
how the values passed as argument to global.threshold and local.threshold are scaled. The
default, NULL uses the range of x. Thresholds for ignoring too small peaks are applied after peaks
are searched for, and threshold values can in some cases result in no peaks being returned.

While functions find_peaks and find_valleys() accept as input a numeric vector and return a
logical vector, methods peaks and valleys accept as input different R objects, including spectra
and collections of spectra and return a subset of the object. These methods are implemented using
calls to functions find_peaks and fit_peaks.

Value

A data frame with variables w.length and s.irrad with their values at the peaks or valleys plus a
character variable of labels.

Note

The use of these two functions is deprecated. They are retained for backwards compatibility and
will be removed in the near future.

See Also

Other peaks and valleys functions: find_peaks(), find_spikes(), peaks(), replace_bad_pixs(),
spikes(), valleys(), wls_at_target()

green_leaf.spct Green birch leaf reflectance.

Description

A dataset of spectral reflectance expressed as a fraction of one.

Usage

green_leaf.spct

head_tail 185

Format

A reflector_spct object with 226 rows and 2 variables

Details

• w.length (nm)

• Rfr (0..1)

References

Aphalo, P. J. & Lehto, T. Effects of light quality on growth and N accumulation in birch seedlings
Tree Physiology, 1997, 17, 125-132

See Also

Other Spectral data examples: A.illuminant.spct, D50.illuminant.spct, D65.illuminant.spct,
Ler_leaf.spct, black_body.spct, ccd.spct, clear.spct, filter_cps.mspct, phenylalanine.spct,
photodiode.spct, sun.spct, sun_daily.spct, sun_evening.spct, two_filters.spct, two_sensors.mspct,
water.spct, white_led.source_spct

Examples

green_leaf.spct

head_tail Return the First and Last Parts of an Object

Description

Returns the first and last "parts" (rows or members) of a spectrum, dataframe, vector, function, table
or ftable. In other words, the combined output from methods head and tail.

Usage

head_tail(x, n, ...)

Default S3 method:
head_tail(x, n = 3L, ...)

S3 method for class 'data.frame'
head_tail(x, n = 3L, ...)

S3 method for class 'matrix'
head_tail(x, n = 3L, ...)

S3 method for class '`function`'

186 head_tail

head_tail(x, n = 6L, ...)

S3 method for class 'table'
head_tail(x, n = 6L, ...)

S3 method for class 'ftable'
head_tail(x, n = 6L, ...)

Arguments

x an R object.

n integer. If positive, n rows or members in the returned object are copied from
each of "head" and "tail" of x. If negative, all except n elements of x from each
of "head" and "tail" are returned.

... arguments to be passed to or from other methods.

Details

The value returned by head_tail() is equivalent to row binding the the values returned by head()
and tail(), although not implemented in this way. The same specializations as defined in package
’utils’ for head() and tail() have been implemented.

Value

An object (usually) like x but smaller, except when n = 0. For ftable objects x, a transformed
format(x).

Methods (by class)

• head_tail(default):

• head_tail(data.frame):

• head_tail(matrix):

• head_tail(`function`):

• head_tail(table):

• head_tail(ftable):

Note

For some types of input, like functions, the output may be confusing, however, we have opted for
consistency with existing functions. The code is in part a revision of that of head() and tail()
from package ‘utils’. This method is especially useful when checking spectral data, as both ends
are of interest.

head_tail() methods for function, table and ftable classes, are wrappers for head() method.

See Also

head, and compare the examples and the values returned to the examples below.

illuminance 187

Examples

head_tail(1:20)
head_tail(1:20, 12)
head_tail(1:20, -7)
head_tail(1:20, -10)
head_tail(letters)
head_tail(sun.spct)
head_tail(sun.spct, 6)
head_tail(sun.data)
head_tail(as.matrix(sun.data))
head_tail(sun_evening.spct)
head_tail(sun_evening.mspct, 1L)

illuminance Irradiance

Description

Computes illuminance (lux), or the luminous flux incident on a surface, from spectral irradiance
stored in a source_spct object.

Usage

illuminance(spct, std, scale.factor, allow.scaled, ...)

Default S3 method:
illuminance(spct, std, scale.factor, allow.scaled, ...)

S3 method for class 'source_spct'
illuminance(
spct,
std = "CIE2deg",
scale.factor = 1,
allow.scaled = FALSE,
naming = "default",
...

)

S3 method for class 'source_mspct'
illuminance(
spct,
std = "CIE2deg",
scale.factor = 1,
allow.scaled = FALSE,
naming = "default",
...,
attr2tb = NULL,

188 illuminance

idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct an R object.

std character The luminous efficiency function to use, "CIE2deg" or "CIE10deg".

scale.factor numeric vector of length 1, or the character string exposure.

allow.scaled logical indicating whether scaled or normalized spectra as argument to spct are
flagged as an error.

... other arguments (possibly ignored)

naming character one of "long", "default", "short" or "none". Used to select the
type of names to assign to returned value.

attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to
formal parameter col.names.

idx character Name of the column with the names of the members of the collection
of spectra.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach.

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Value

A named numeric vector of length one in the case of methods for individual spectra. A data.frame
in the case of collections of spectra, containing one column with illuminance, an index column with
the names of the spectra, and optionally additional columns with metadata values retrieved from the
attributes of the member spectra.

The time.unit attribute is always second. Units are as follows: if time.unit of the argument
passed to spct is second, [W m-2 nm-1] -> [lx], otherwise average value [lx] for the period un-
less exposure = TRUE.

Methods (by class)

• illuminance(default): Default for generic function

• illuminance(source_spct): Calculates illuminance from a source_spct object.

• illuminance(source_mspct): Calculates illuminance from a source_mspct object.

Note

Formal parameter allow.scaled is used internally for calculation of ratios, as rescaling and nor-
malization do not invalidate the calculation of ratios within one spectrum.

insert_hinges 189

References

Stockman, A. (2019) Cone fundamentals and CIE standards. Current Opinion in Behavioral Sci-
ences, 30, 87-93. doi:10.1016/j.cobeha.2019.06.005

Examples

illuminance(sun.spct)
illuminance(sun.daily.spct)
illuminance(sun.daily.spct, scale.factor = "exposure")
illuminance(sun.daily.spct, scale.factor = 1e-3)

insert_hinges Insert wavelength values into spectral data.

Description

Inserting wavelengths values immediately before and after a discontinuity in the SWF, greatly re-
duces the errors caused by interpolating the weighted irradiance during integration of the effective
spectral irradiance. This is specially true when data have a large wavelength step size.

Usage

insert_hinges(x, y, h)

Arguments

x numeric vector (sorted in increasing order)

y numeric vector

h a numeric vector giving the wavelengths at which the y values should be inserted
by interpolation, no interpolation is indicated by an empty vector (numeric(0))

Value

a data.frame with variables x and y. Unless the hinge values were already present in y, each inserted
hinge, expands the vectors returned in the data frame by one value.

Note

Insertion is a costly operation but I have tried to optimize this function as much as possible by
avoiding loops. Earlier this function was implemented in C++, but a bug was discovered and I have
now rewritten it using R.

https://doi.org/10.1016/j.cobeha.2019.06.005

190 insert_spct_hinges

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), integrate_xy(), interpolate_spectrum(),
irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(), photon_ratio(),
photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(),
v_replace_hinges()

Examples

with(sun.data,
insert_hinges(w.length, s.e.irrad,

c(399.99, 400.00, 699.99, 700.00)))

insert_spct_hinges Insert new wavelength values into a spectrum

Description

Insert new wavelength values into a spectrum interpolating the corresponding spectral data values.

Usage

insert_spct_hinges(spct, hinges = NULL, byref = FALSE)

Arguments

spct an object of class "generic_spct"
hinges numeric vector of wavelengths (nm) at which the s.irrad should be inserted by

interpolation, no interpolation is indicated by an empty vector (numeric(0))
byref logical indicating if new object will be created by reference or by copy of spct

Value

a generic_spct or a derived type with variables w.length and other numeric variables.

Note

Inserting wavelengths values "hinges" immediately before and after a discontinuity in the SWF,
greatly reduces the errors caused by interpolating the weighted irradiance during integration of the
effective spectral irradiance. This is specially true when data has a large wavelength step size.

Examples

insert_spct_hinges(sun.spct, c(399.99,400.00,699.99,700.00))
insert_spct_hinges(sun.spct,

c(199.99,200.00,399.50,399.99,400.00,699.99,
700.00,799.99,1000.00))

integrate_spct 191

integrate_spct Integrate spectral data.

Description

This function gives the result of integrating spectral data over wavelengths.

Usage

integrate_spct(spct)

Arguments

spct generic_spct

Value

One or more numeric values with no change in scale factor: e.g. [W m-2 nm-1] -> [W m-2]. Each
value in the returned vector corresponds to a variable in the spectral object, except for wavelength.
For non-numeric variables the returned value is NA.

Examples

integrate_spct(sun.spct)

integrate_xy Gives irradiance from spectral irradiance.

Description

This function gives the result of integrating spectral irradiance over wavelengths.

Usage

integrate_xy(x, y)

Arguments

x numeric vector.

y numeric vector.

Value

a single numeric value with no change in scale factor: e.g. [W m-2 nm-1] -> [W m-2]

192 interpolate_spct

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), interpolate_spectrum(),
irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(), photon_ratio(),
photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(),
v_replace_hinges()

Examples

with(sun.data, integrate_xy(w.length, s.e.irrad))

interpolate_spct Map a spectrum to new wavelength values.

Description

This function gives the result of interpolating spectral data from the original set of wavelengths to a
new one.

Usage

interpolate_spct(spct, w.length.out = NULL, fill = NA, length.out = NULL)

interpolate_mspct(
mspct,
w.length.out = NULL,
fill = NA,
length.out = NULL,
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct generic_spct

w.length.out numeric vector of wavelengths (nm)

fill a value to be assigned to out of range wavelengths

length.out numeric value

mspct an object of class "generic_mspct"

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

interpolate_spectrum 193

Details

If length.out it is a numeric value, then gives the number of rows in the output, if it is NULL,
the values in the numeric vector w.length.out are used. If both are not NULL then the range of
w.length.out and length.out are used to generate a vector of wavelength. A value of NULL for
fill prevents extrapolation. If both w.length.out and length.out are NULL the input is returned
as is. If w.length.out has length equal to zero, zero rows from the input are returned.

Value

A new spectral object of the same class as argument spct.

Note

The default fill = NA fills extrapolated values with NA. Giving NULL as argument for fill deletes
wavelengths outside the input data range from the returned spectrum. A numerical value can be also
be provided as fill. This function calls interpolate_spectrum for each non-wavelength column
in the input spectra object.

Examples

interpolate_spct(sun.spct, 400:500, NA)
interpolate_spct(sun.spct, 400:500, NULL)
interpolate_spct(sun.spct, seq(200, 1000, by=0.1), 0)
interpolate_spct(sun.spct, c(400,500), length.out=201)

interpolate_spectrum Calculate spectral values at a different set of wavelengths

Description

Interpolate/re-express spectral irradiance (or other spectral quantity) values at new wavelengths val-
ues. This is a low-level function operating on numeric vectors and called by higher level functions
in the package, such as mathematical operators for classes for spectral data.

Usage

interpolate_spectrum(w.length.in, s.irrad, w.length.out, fill = NA, ...)

Arguments

w.length.in numeric vector of wavelengths (nm).

s.irrad a numeric vector of spectral values.

w.length.out numeric vector of wavelengths (nm).

fill a value to be assigned to out of range wavelengths.

... additional arguments passed to spline().

194 interpolate_wl

Value

a numeric vector of interpolated spectral values.

Note

The current version of interpolate uses spline if fewer than 25 data points are available. Otherwise
it uses approx. In the first case a cubic spline is used, in the second case linear interpolation, which
should be faster.

See Also

splinefun.

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(), photon_ratio(),
photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(),
v_replace_hinges()

Examples

my.w.length <- 300:700
with(sun.data, interpolate_spectrum(w.length, s.e.irrad, my.w.length))

interpolate_wl Map spectra to new wavelength values.

Description

This function returns the result of interpolating spectral data from the original set of wavelengths to
a new one.

Usage

interpolate_wl(x, w.length.out, fill, length.out, ...)

Default S3 method:
interpolate_wl(x, w.length.out, fill, length.out, ...)

S3 method for class 'generic_spct'
interpolate_wl(x, w.length.out = NULL, fill = NA, length.out = NULL, ...)

S3 method for class 'generic_mspct'
interpolate_wl(
x,
w.length.out = NULL,

interpolate_wl 195

fill = NA,
length.out = NULL,
...,
.parallel = FALSE,
.paropts = NULL

)

Arguments

x an R object

w.length.out numeric vector of wavelengths (nm)

fill a value to be assigned to out of range wavelengths

length.out numeric value

... not used

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Details

If length.out it is a numeric value, then gives the number of rows in the output, if it is NULL,
the values in the numeric vector w.length.out are used. If both are not NULL then the range of
w.length.out and length.out are used to generate a vector of wavelength. A value of NULL for
fill prevents extrapolation.

Value

A new spectral object of the same class as argument spct.

Methods (by class)

• interpolate_wl(default): Default for generic function

• interpolate_wl(generic_spct): Interpolate wavelength in an object of class "generic_spct"
or derived.

• interpolate_wl(generic_mspct): Interpolate wavelength in an object of class "generic_mspct"
or derived.

Note

The default fill = NA fills extrapolated values with NA. Giving NULL as argument for fill deletes
wavelengths outside the input data range from the returned spectrum. A numerical value can be also
be provided as fill. This function calls interpolate_spectrum for each non-wavelength column
in the input spectra object.

196 irrad

Examples

interpolate_wl(sun.spct, 400:500, NA)
interpolate_wl(sun.spct, 400:500, NULL)
interpolate_wl(sun.spct, seq(200, 1000, by=0.1), 0)
interpolate_wl(sun.spct, c(400,500), length.out=201)

irrad Irradiance

Description

This function returns the irradiance for a given waveband of a light source spectrum.

Usage

irrad(
spct,
w.band,
unit.out,
quantity,
time.unit,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
allow.scaled,
...

)

Default S3 method:
irrad(
spct,
w.band,
unit.out,
quantity,
time.unit,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
allow.scaled,
...

)

S3 method for class 'source_spct'
irrad(

irrad 197

spct,
w.band = NULL,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
quantity = "total",
time.unit = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = getOption("photobiology.use.cached.mult", default = FALSE),
use.hinges = NULL,
allow.scaled = !quantity %in% c("average", "mean", "total"),
naming = "default",
return.tb = FALSE,
...

)

S3 method for class 'source_mspct'
irrad(
spct,
w.band = NULL,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
quantity = "total",
time.unit = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = getOption("photobiology.use.cached.mult", default = FALSE),
use.hinges = NULL,
allow.scaled = !quantity %in% c("average", "mean", "total"),
naming = "default",
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct an R object.
w.band waveband or list of waveband objects The waveband(s) determine the region(s)

of the spectrum that are summarized.
unit.out character Allowed values "energy", and "photon", or its alias "quantum".
quantity character string One of "total", "average" or "mean", "contribution", "contribu-

tion.pc", "relative" or "relative.pc".
time.unit character or lubridate::duration object.
scale.factor numeric vector of length 1, or length equal to that of w.band. Numeric multiplier

applied to returned values.
wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if

FALSE, they are discarded.

198 irrad

use.cached.mult

logical indicating whether multiplier values should be cached between calls.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before in-
tegration so as to reduce interpolation errors at the boundaries of the wavebands.
If NULL, default is chosen based on data.

allow.scaled logical indicating whether scaled or normalized spectra as argument to spct are
flagged as an error.

... other arguments (possibly ignored)

naming character one of "long", "default", "short" or "none". Used to select the
type of names to assign to returned value.

return.tb logical Flag forcing a tibble to be always returned, even for a single spectrum as
argumnet to spct. The default is FALSE for backwards compatibility.

attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to
formal parameter col.names.

idx character Name of the column with the names of the members of the collection
of spectra.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach.

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Value

A named numeric vector in the case of a _spct object containing a single spectrum and return.tb
= FALSE. The vector has one member one value for each waveband passed to parameter w.band. In
all other cases a tibble, containing one column for each waveband object, an index column with
the names of the spectra, and optionally additional columns with metadata values retrieved from the
attributes of the member spectra.

If naming = "long" the names generated reflect both quantity and waveband, if naming = "short",
names are based only on the wavebands, and if naming = "none" the returned vector has no names.

By default values are only integrated, but depending on the argument passed to parameter quantity
they can be re-expressed as relative fractions or percentages. In the case of vector output, names
attribute is set to the name of the corresponding waveband unless a named list is supplied in which
case the names of the list members are used. The time.unit attribute is copied from the spectrum
object to the output. Units are as follows: If time.unit is second, [W m-2 nm-1] -> [mol s-1 m-2]
or [W m-2 nm-1] -> [W m-2] If time.unit is day, [J d-1 m-2 nm-1] -> [mol d-1 m-2] or [J d-1 m-2
nm-1] -> [J m-2]

Methods (by class)

• irrad(default): Default for generic function

• irrad(source_spct): Calculates irradiance from a source_spct object.

• irrad(source_mspct): Calculates irradiance from a source_mspct object.

irradiance 199

Note

Formal parameter allow.scaled is used internally for calculation of ratios, as rescaling and nor-
malization do not invalidate the calculation of ratios.

The last two parameters control speed optimizations. The defaults should be suitable in most cases.
If you will use repeatedly the same SWFs on many spectra measured at exactly the same wave-
lengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that
you are responsible for ensuring that the wavelengths are the same in each call, as the only test done
is for the length of the w.length vector.

See Also

Other irradiance functions: e_fluence(), e_irrad(), fluence(), q_fluence(), q_irrad()

Examples

irrad(sun.spct, waveband(c(400,700)))
irrad(sun.spct, waveband(c(400,700)), "energy")
irrad(sun.spct, waveband(c(400,700)), "photon")
irrad(sun.spct, split_bands(c(400,700), length.out = 3))
irrad(sun.spct, split_bands(c(400,700), length.out = 3), quantity = "total")
irrad(sun.spct, split_bands(c(400,700), length.out = 3), quantity = "average")
irrad(sun.spct, split_bands(c(400,700), length.out = 3), quantity = "relative")
irrad(sun.spct, split_bands(c(400,700), length.out = 3), quantity = "relative.pc")
irrad(sun.spct, split_bands(c(400,700), length.out = 3), quantity = "contribution")
irrad(sun.spct, split_bands(c(400,700), length.out = 3), quantity = "contribution.pc")

irradiance Photon or energy irradiance from spectral energy or photon irradi-
ance.

Description

Energy or photon irradiance for one or more wavebands of a radiation spectrum.

Usage

irradiance(
w.length,
s.irrad,
w.band = NULL,
unit.out = NULL,
unit.in = "energy",
check.spectrum = TRUE,
use.cached.mult = FALSE,
use.hinges = getOption("photobiology.use.hinges", default = NULL)

)

200 irradiance

Arguments

w.length numeric Vector of wavelength [nm].

s.irrad numeric vector of spectral (energy) irradiances [W m−2 nm−1].

w.band waveband or list of waveband objects The waveband(s) determine the region(s)
of the spectrum that are summarized.

unit.out, unit.in
character Allowed values "energy", and "photon", or its alias "quantum".

check.spectrum logical Flag indicating whether to sanity check input data, default is TRUE.

use.cached.mult

logical Flag indicating whether multiplier values should be cached between
calls.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

Value

A single numeric value or a vector of numeric values with no change in scale factor: [mol s−1 sm−2 nm−1]
yields [mol s−1 sm−2]

Note

The last three parameters control speed optimizations. The defaults should be suitable in most
cases. If you set check.spectrum=FALSE then you should call check_spectrum() at least once
for your spectrum before using any of the other functions. If you will use repeatedly the same
SWFs on many spectra measured at exactly the same wavelengths you may obtain some speed up
by setting use.cached.mult=TRUE. However, be aware that you are responsible for ensuring that
the wavelengths are the same in each call, as the only test done is for the length of the w.length
vector. The is no reason for setting use.cpp.code=FALSE other than for testing the improvement
in speed, or in cases where there is no suitable C++ compiler for building the package.

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), l_insert_hinges(), oper_spectra(), photon_irradiance(), photon_ratio(),
photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(),
v_replace_hinges()

Examples

with(sun.data, irradiance(w.length, s.e.irrad, new_waveband(400,700), "photon"))

is.generic_mspct 201

is.generic_mspct Query class of spectrum objects

Description

Functions to check if an object is of a given type of spectrum, or coerce it if possible.

Usage

is.generic_mspct(x)

is.calibration_mspct(x)

is.raw_mspct(x)

is.cps_mspct(x)

is.source_mspct(x)

is.response_mspct(x)

is.filter_mspct(x)

is.reflector_mspct(x)

is.object_mspct(x)

is.solute_mspct(x)

is.chroma_mspct(x)

is.any_mspct(x)

Arguments

x an R object.

Value

These functions return TRUE if its argument is a of the queried type of spectrum and FALSE otherwise.

Note

Derived types also return TRUE for a query for a base type such as generic_mspct.

202 is.generic_spct

Examples

my.mspct <- filter_mspct(list(polyester.spct, yellow_gel.spct))
is.any_mspct(my.mspct)
is.filter_mspct(my.mspct)
is.source_mspct(my.mspct)

is.generic_spct Query class of spectrum objects

Description

Functions to query whether an object is of a given type of spectrum.

Usage

is.generic_spct(x)

is.raw_spct(x)

is.calibration_spct(x)

is.cps_spct(x)

is.source_spct(x)

is.response_spct(x)

is.filter_spct(x)

is.reflector_spct(x)

is.object_spct(x)

is.solute_spct(x)

is.chroma_spct(x)

is.any_spct(x)

Arguments

x an R object.

Value

A logical value, TRUE if the argument passed to x is an object of the queried type of spectrum and
FALSE otherwise.

is.old_spct 203

Note

Derived types also return TRUE for a query for a base type such as generic_spct, following R’s
practice.

Examples

is.source_spct(sun.spct)
is.filter_spct(sun.spct)
is.generic_spct(sun.spct)
is.generic_spct(sun.spct)

is.source_spct(sun.spct)
is.filter_spct(sun.spct)
is.generic_spct(sun.spct)
is.generic_spct(sun.spct)

is.old_spct Query if an object has old class names

Description

Query if an object has old class names Query if an object has old class names as used in photobiol-
ogy (>= 0.6.0).

Usage

is.old_spct(object)

Arguments

object an R object

Value

logical

See Also

Other upgrade from earlier versions: upgrade_spct(), upgrade_spectra()

204 is.summary_generic_spct

is.summary_generic_spct

Query class of spectrum summary objects

Description

Functions to check if an object is of a given type of spectrum, or coerce it if possible.

Usage

is.summary_generic_spct(x)

is.summary_raw_spct(x)

is.summary_cps_spct(x)

is.summary_source_spct(x)

is.summary_response_spct(x)

is.summary_filter_spct(x)

is.summary_reflector_spct(x)

is.summary_object_spct(x)

is.summary_solute_spct(x)

is.summary_chroma_spct(x)

is.any_summary_spct(x)

Arguments

x an R object.

Value

These functions return TRUE if its argument is a of the queried type of spectrum and FALSE otherwise.

Note

Derived types also return TRUE for a query for a base type such as generic_spct.

is.waveband 205

Examples

sm <- summary(sun.spct)
is.summary_source_spct(sm)

is.waveband Query if it is a waveband

Description

Functions to check if an object is waveband.

Usage

is.waveband(x)

Arguments

x any R object

Value

is.waveband returns TRUE if its argument is a waveband and FALSE otherwise.

isValidInstrDesc Check the "instr.desc" attribute

Description

Function to validate the "instr.settings" attribute of an existing generic_spct object or summary_generic_spct
object.

Usage

isValidInstrDesc(x)

Arguments

x a generic_spct object or a summary_generic_spct object.

Details

Test if at least one of instrument name (field spectrometer.name) or serial number (field spectrometer.sn)
is found in the value of the R attribute "instr.desc" of x. FALSE is silently returned if x does not
belong to a class derived from class generic_spct or from class summary_generic_spct, or if it
is derived from these classes but the attribute is not set.

206 isValidInstrSettings

Value

A logical vector of length one.

See Also

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrDesc(), getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(),
getWhereMeasured(), get_attributes(), isValidInstrSettings(), select_spct_attributes(),
setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setSoluteProperties(),
setWhatMeasured(), setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(),
subset_attributes(), trimInstrDesc(), trimInstrSettings()

Examples

isValidInstrDesc(white_led.cps_spct)
isValidInstrDesc(white_body.spct)

isValidInstrSettings Check the "instr.settings" attribute

Description

Function to validate the "instr.settings" attribute of an existing generic_spct or summary_generic_spct
object.

Usage

isValidInstrSettings(x)

Arguments

x a generic_spct object or a summary_generic_spct object.

Value

logical TRUE if at least the integration time is found in the metadata attribute. If x is not a
generic_spct or a summary_generic_spct object, NA is returned.

See Also

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrDesc(), getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(),
getWhereMeasured(), get_attributes(), isValidInstrDesc(), select_spct_attributes(),
setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setSoluteProperties(),
setWhatMeasured(), setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(),
subset_attributes(), trimInstrDesc(), trimInstrSettings()

is_absorbance_based 207

is_absorbance_based Query if a spectrum contains absorbance or transmittance data

Description

Functions to query if an filter spectrum contains spectral absorbance data or spectral transmittance
data.

Usage

is_absorbance_based(x)

is_absorptance_based(x)

is_transmittance_based(x)

Arguments

x an R object

Value

is_absorbance_based returns a logical value, TRUE if its argument is a filter_spct object that
contains spectral absorbance data and FALSE otherwise, but returns NA for any other R object, in-
cluding those belonging other generic_spct-derived classes.

is_absorptance_based returns a logical value, if its argument is a filter_spct object, TRUE if
it contains data as spectral absorptance and FALSE otherwise, but returns NA for any other R object,
including those belonging other generic_spct-derived classes.

is_transmittance_based returns TRUE if its argument is a filter_spct object that contains
spectral transmittance data and FALSE if it does not contain such data, but returns NA for any other
R object, including those belonging other generic_spct-derived classes.

See Also

Other query units functions: is_mole_based(), is_photon_based()

Examples

is_absorbance_based(polyester.spct)
my.spct <- T2A(polyester.spct)
is.filter_spct(my.spct)
is_absorbance_based(my.spct)

is_absorptance_based(polyester.spct)

is_transmittance_based(polyester.spct)

208 is_effective

is_effective Is an R object "effective"

Description

A generic function for querying if a biological spectral weighting function (BSWF) has been applied
to an object or is included in its definition.

Usage

is_effective(x)

Default S3 method:
is_effective(x)

S3 method for class 'waveband'
is_effective(x)

S3 method for class 'generic_spct'
is_effective(x)

S3 method for class 'source_spct'
is_effective(x)

S3 method for class 'summary_generic_spct'
is_effective(x)

S3 method for class 'summary_source_spct'
is_effective(x)

Arguments

x an R object

Value

A logical.

Methods (by class)

• is_effective(default): Default method.

• is_effective(waveband): Is a waveband object defining a method for calculating effective
irradiance.

• is_effective(generic_spct): Does a source_spct object contain effective spectral irra-
diance values.

• is_effective(source_spct): Does a source_spct object contain effective spectral irradi-
ance values.

is_mole_based 209

• is_effective(summary_generic_spct): Method for "summary_generic_spct".

• is_effective(summary_source_spct): Method for "summary_source_spct".

See Also

Other waveband attributes: labels(), normalization()

Examples

is_effective(summary(sun.spct))

is_mole_based Query if a spectrum contains mole or mass based data

Description

Functions to check if an solute attenuation spectrum contains coefficients on expressed on mole of
mass base.

Usage

is_mole_based(x)

is_mass_based(x)

Arguments

x an R object

Value

is_mole_based returns TRUE if its argument is a solute_spct object that contains spectral K.mole
data and FALSE if it contains K.mass data, but returns NA for any other R object, including those be-
longing other generic_spct-derived classes. is_mass_based returns the complement of is_mole_based.

See Also

Other query units functions: is_absorbance_based(), is_photon_based()

Examples

print("missing example")

210 is_photon_based

is_normalized Query whether a generic spectrum has been normalized.

Description

This function tests a generic_spct object for an attribute that signals whether the spectral data has
been normalized or not after the object was created.

Usage

is_normalized(x)

is_normalised(x)

Arguments

x An R object.

Value

A logical value indicating if x is normalized or not, for collections of spectra, a named list with
logicals as members. If x is not a generic_spct or generic_mspct object the value returned is
NA.

Note

is_normalised() is a synonym for this is_normalized() method.

See Also

Other rescaling functions: fscale(), fshift(), getNormalized(), getScaled(), is_scaled(),
normalize(), setNormalized(), setScaled()

is_photon_based Query if a spectrum contains photon- or energy-based data.

Description

Functions to query if source_spct and response_spct objects contain photon-based or energy-
based data.

Usage

is_photon_based(x)

is_energy_based(x)

is_scaled 211

Arguments

x any R object

Value

is_photon_based returns a logical value, TRUE if its argument is a source_spct or a response_spct
object that contains photon base data and FALSE otherwise, but returns NA for any other R object,
including those belonging other generic_spct-derived classes.

is_energy_based returns a logical value, TRUE if its argument is a source_spct or a response_spct
object that contains energy base data and FALSE otherwise, but returns NA for any other R object,
including those belonging other generic_spct-derived classes

See Also

Other query units functions: is_absorbance_based(), is_mole_based()

Examples

colnames(sun.spct)
is_photon_based(sun.spct)
my.spct <- sun.spct[, c("w.length", "s.e.irrad")]
is.source_spct(my.spct)
is_photon_based(my.spct)

colnames(sun.spct)
is_energy_based(sun.spct)
my.spct <- sun.spct[, c("w.length", "s.q.irrad")]
is.source_spct(my.spct)
is_energy_based(my.spct)

is_scaled Query whether a generic spectrum has been scaled

Description

This function tests a generic_spct object for an attribute that signals whether the spectral data has
been rescaled or not after the object was created.

Usage

is_scaled(x)

Arguments

x An R object.

212 is_tagged

Value

A logical value. If x is not scaled or x is not a generic_spct object the value returned is FALSE.

See Also

Other rescaling functions: fscale(), fshift(), getNormalized(), getScaled(), is_normalized(),
normalize(), setNormalized(), setScaled()

Examples

scaled.spct <- fscale(sun.spct)
is_scaled(sun.spct)
is_scaled(scaled.spct)

is_tagged Query if a spectrum is tagged

Description

Functions to check if an spct object contains tags.

Usage

is_tagged(x)

Arguments

x any R object

Value

is_tagged returns a logical value, TRUE if its argument is a a spectrum that contains tags and FALSE
if it is an untagged spectrum, but returns NA for any other R object.

See Also

Other tagging and related functions: tag(), untag(), wb2rect_spct(), wb2spct(), wb2tagged_spct()

Examples

is_tagged(sun.spct)

join_mspct 213

join_mspct Join all spectra in a collection

Description

Join all the spectra contained in a homogeneous collection, returning a data frame with spectral-
data columns named according to the names of the spectra in the collection. By default a full join is
done within the overlapping range of wavelengths, after interpolating the spectra to a shared set of
wavelength values, and discarding data for wavelength not shared. Alternatively, filling the spectral
data for wavelengths outside the overlapping range with with NA when data is not available.

Usage

join_mspct(x, type, ...)

Default S3 method:
join_mspct(x, type = "full", ...)

S3 method for class 'generic_mspct'
join_mspct(x, type = "full", col.name, validate.names = TRUE, ...)

S3 method for class 'source_mspct'
join_mspct(x, type = "full", unit.out = "energy", validate.names = TRUE, ...)

S3 method for class 'response_mspct'
join_mspct(x, type = "full", unit.out = "energy", validate.names = TRUE, ...)

S3 method for class 'filter_mspct'
join_mspct(
x,
type = "full",
qty.out = "transmittance",
validate.names = TRUE,
...

)

S3 method for class 'reflector_mspct'
join_mspct(x, type = "full", validate.names = TRUE, ...)

S3 method for class 'object_mspct'
join_mspct(x, type = "full", qty.out, validate.names = TRUE, ...)

S3 method for class 'solute_mspct'
join_mspct(x, type = "full", validate.names = TRUE, ...)

Arguments

x generic_mspct object, or an object of a class derived from generic_mspct.

214 join_mspct

type character Type of join: "inner" (default) or "full". See details for more infor-
mation.

... ignored (possibly used by derived methods).

col.name character, name of the column in the spectra to be preserved, in addition to
"w.length".

validate.names logical A flag to enable (default) or disable validation of column names with
make.names.

unit.out character Allowed values "energy", and "photon", or its alias "quantum".

qty.out character Allowed values "transmittance", "absorptance", and "absorbance"
and in the method for object_spct, also "reflectance" (.

Value

A data.frame with the spectra joined by, possibly interpolated, wavelength, with rows sorted by
wavelength (variable w.length) and data columns named according to the names of members in x,
by default made unique and valid.

Methods (by class)

• join_mspct(default):

• join_mspct(generic_mspct):

• join_mspct(source_mspct):

• join_mspct(response_mspct):

• join_mspct(filter_mspct):

• join_mspct(reflector_mspct):

• join_mspct(object_mspct):

• join_mspct(solute_mspct):

Note

Currently only generic_spct, source_mspct, response_mspct, filter_mspct, reflector_mspct,
object_mspct and solute_mspct classes have this method implemented.

Examples

my.mspct <- solute_mspct(list(water = water.spct, pha = phenylalanine.spct))
join_mspct(my.mspct, type = "inner")
join_mspct(my.mspct, type = "full")

labels 215

labels Find labels from "waveband" object

Description

A method specialization that extracts the name and label of objects of class waveband.

Usage

S3 method for class 'waveband'
labels(object, ...)

S3 method for class 'generic_spct'
labels(object, ...)

Arguments

object an object of class "waveband"

... not used in current version

Methods (by class)

• labels(generic_spct):

See Also

Other waveband attributes: is_effective(), normalization()

Examples

labels(sun.spct)

Ler_leaf.spct Green Arabidopsis leaf reflectance and transmittance.

Description

A dataset of total spectral reflectance and total spectral transmittance expressed as fractions of one
from the upper surface of a leaf of an Arabidopsis thaliana ’Ler’ rosette.

216 Ler_leaf.spct

Usage

Ler_leaf.spct

Ler_leaf_rflt.spct

Ler_leaf_trns.spct

Ler_leaf_trns_i.spct

Format

Datasets stored as object_spct, reflector_spct and filter_spct objects, containing transmit-
tance and reflectance data.

An object of class reflector_spct (inherits from generic_spct, tbl_df, tbl, data.frame) with
1750 rows and 2 columns.

An object of class filter_spct (inherits from generic_spct, tbl_df, tbl, data.frame) with
1753 rows and 2 columns.

An object of class filter_spct (inherits from generic_spct, tbl_df, tbl, data.frame) with
2401 rows and 3 columns.

Details

• w.length (nm)

• Rfr (0..1)

• Tfr (0..1)

Note

Measured with a Jaz spectrometer from Ocean Optics (USA) configured with a PX Xenon lamp
module and Spectroclip double integrating spheres.

Author(s)

Aphalo, P. J. & Wang, F (unpublished data)

See Also

Other Spectral data examples: A.illuminant.spct, D50.illuminant.spct, D65.illuminant.spct,
black_body.spct, ccd.spct, clear.spct, filter_cps.mspct, green_leaf.spct, phenylalanine.spct,
photodiode.spct, sun.spct, sun_daily.spct, sun_evening.spct, two_filters.spct, two_sensors.mspct,
water.spct, white_led.source_spct

Examples

Ler_leaf.spct
Ler_leaf_rflt.spct

log 217

log Logarithms and Exponentials

Description

Logarithms and Exponentials for Spectra. The functions are applied to the spectral data, not the
wavelengths. The quantity in the spectrum to which the function is applied depends on the class of
x and the current value of output options

Usage

S3 method for class 'generic_spct'
log(x, base = exp(1))

S3 method for class 'generic_spct'
log2(x)

S3 method for class 'generic_spct'
log10(x)

S3 method for class 'generic_spct'
exp(x)

Arguments

x an object of class "generic_spct"

base a positive number: the base with respect to which logarithms are computed.
Defaults to e=exp(1).

Value

An object of the same class as x.

Note

In most cases a logarithm of an spectral quantity will yield off-range values. For this reason unless x
is an object of base class generic_spct, checks will not be passed, resulting in warnings or errors.

See Also

Other math operators and functions: MathFun, ^.generic_spct(), convolve_each(), div-.generic_spct,
minus-.generic_spct, mod-.generic_spct, plus-.generic_spct, round(), sign(), slash-.generic_spct,
times-.generic_spct

218 make_var_labels

make_var_labels Column or variable labels

Description

Create a named list of character strings describing the variables contained in a spectrum object.

Usage

make_var_labels(x, ...)

Default S3 method:
make_var_labels(x, ...)

S3 method for class 'source_spct'
make_var_labels(x, ...)

S3 method for class 'response_spct'
make_var_labels(x, ...)

S3 method for class 'filter_spct'
make_var_labels(x, ...)

S3 method for class 'reflector_spct'
make_var_labels(x, ...)

S3 method for class 'object_spct'
make_var_labels(x, ...)

S3 method for class 'solute_spct'
make_var_labels(x, ...)

S3 method for class 'chroma_spct'
make_var_labels(x, ...)

S3 method for class 'calibration_spct'
make_var_labels(x, ...)

S3 method for class 'raw_spct'
make_var_labels(x, ...)

S3 method for class 'cps_spct'
make_var_labels(x, ...)

Arguments

x An object of a class derived from generic_spct.

make_var_labels 219

... Currently ignored.

Details

Objects of classes derived from generic_spct are used to store different types of spectral data.
The data stored in some of the classes needs to be interpreted differently depending on how they
were measured or are expressed and this information is stored in attributes of the objects. In other
cases, even if consistent across different objects, the units of expression may not be obvious to
users. The names of the variables are concise, thus using variable labels makes it possible to make
these features visible when exploring the data. The methods provided do not add the labels, only
supply the character strings. Variable labels are implemented in packages ’labelled’ by setting the
label attribute in each variable (= column) of a data frame or tibble. This is compatible with the
approach used by package ’haven’.

Value

A named list of character strings with one member for each recognized column in x. This list can be
used to set variable labels with methods from package ’labelled’. However, package ’photobiology’
does not natively support variable labels stored in attribute label.

Methods (by class)

• make_var_labels(default):

• make_var_labels(source_spct):

• make_var_labels(response_spct):

• make_var_labels(filter_spct):

• make_var_labels(reflector_spct):

• make_var_labels(object_spct):

• make_var_labels(solute_spct):

• make_var_labels(chroma_spct):

• make_var_labels(calibration_spct):

• make_var_labels(raw_spct):

• make_var_labels(cps_spct):

Note

These methods are still under development and the text of the labels may change. Not all classes
derived from generic_spct are yet supported.

Examples

make_var_labels(sun.spct)
str() prints more compactly than print()
str(make_var_labels(sun.spct))
str(make_var_labels(normalize(sun.spct)))
str(make_var_labels(fscale(sun.spct)))

220 merge2object_spct

str(make_var_labels(sun_daily.spct))

str(make_var_labels(polyester.spct))
str(make_var_labels(normalize(polyester.spct)))
str(make_var_labels(fscale(polyester.spct)))

str(make_var_labels(white_led.cps_spct))
str(make_var_labels(white_led.raw_spct))

MathFun Miscellaneous Mathematical Functions

Description

abs(x) computes the absolute value of x, sqrt(x) computes the (principal) square root of x. The
functions are applied to the spectral data, not the wavelengths. The quantity in the spectrum to
which the function is applied depends on the class of x and the current value of output options.

Usage

S3 method for class 'generic_spct'
sqrt(x)

S3 method for class 'generic_spct'
abs(x)

Arguments

x an object of class "generic_spct"

See Also

Other math operators and functions: ^.generic_spct(), convolve_each(), div-.generic_spct,
log(), minus-.generic_spct, mod-.generic_spct, plus-.generic_spct, round(), sign(),
slash-.generic_spct, times-.generic_spct

merge2object_spct Merge into object_spct

Description

Merge a filter_spct with a reflector_spct returning an object_spct object, even if wave-
length values are mismatched.

merge_attributes 221

Usage

merge2object_spct(
x,
y,
by = "w.length",
...,
w.length.out = x[["w.length"]],
Tfr.type.out = "total"

)

Arguments

x, y a filter_spct object and a reflector_spct object.

by a vector of shared column names in x and y to merge on; by defaults to w.length.

... other arguments passed to dplyr::inner_join().

w.length.out numeric vector of wavelengths to be used for the returned object (nm).

Tfr.type.out character string indicating whether transmittance values in the returned object
should be expressed as "total" or "internal". This applies only to the case
when an object_spct is returned.

Value

An object_spct is returned as the result of merging a filter_spct and a reflector_spct object.

Note

If a numeric vector is supplied as argument for w.length.out, the two spectra are interpolated to
the new wavelength values before merging. The default argument for w.length.out is x[["w.length"]].

See Also

join

merge_attributes Merge and copy attributes

Description

Merge attributes from x and y and copy them to z. Methods defined for spectral objects of classes
from package ’photobiology’.

222 minus-.generic_spct

Usage

merge_attributes(x, y, z, which, which.not, ...)

Default S3 method:
merge_attributes(x, y, z, which = NULL, which.not = NULL, ...)

S3 method for class 'generic_spct'
merge_attributes(
x,
y,
z,
which = NULL,
which.not = NULL,
copy.class = FALSE,
...

)

Arguments

x, y, z R objects. Objects x and y must be of the same class, z must be an object with
a structure valid for this same class.

which character Names of attributes to copy, if NULL all those relevant according to
the class of x are used as default,

which.not character Names of attributes not to be copied. The names passed here are re-
moved from the list for which, which is most useful when we want to modify
the default.

... not used

copy.class logical If TRUE class attributes are also copied.

Value

A copy of z with additional attributes set.

Methods (by class)

• merge_attributes(default): Default for generic function

• merge_attributes(generic_spct):

minus-.generic_spct Arithmetic Operators

Description

Subtraction operator for generic spectra.

mod-.generic_spct 223

Usage

S3 method for class 'generic_spct'
e1 - e2 = NULL

Arguments

e1 an object of class "generic_spct"

e2 an object of class "generic_spct"

See Also

Other math operators and functions: MathFun, ^.generic_spct(), convolve_each(), div-.generic_spct,
log(), mod-.generic_spct, plus-.generic_spct, round(), sign(), slash-.generic_spct,
times-.generic_spct

mod-.generic_spct Arithmetic Operators

Description

Reminder operator for generic spectra.

Usage

S3 method for class 'generic_spct'
e1 %% e2

Arguments

e1 an object of class "generic_spct"

e2 an object of class "generic_spct"

See Also

Other math operators and functions: MathFun, ^.generic_spct(), convolve_each(), div-.generic_spct,
log(), minus-.generic_spct, plus-.generic_spct, round(), sign(), slash-.generic_spct,
times-.generic_spct

224 msmsply

msmsply Multi-spct transform methods

Description

Apply a function or operator to a collection of spectra.

Usage

msmsply(mspct, .fun, ..., .parallel = FALSE, .paropts = NULL)

msdply(
mspct,
.fun,
...,
idx = NULL,
col.names = NULL,
.parallel = FALSE,
.paropts = NULL

)

mslply(mspct, .fun, ..., .parallel = FALSE, .paropts = NULL)

msaply(mspct, .fun, ..., .drop = TRUE, .parallel = FALSE, .paropts = NULL)

Arguments

mspct an object of class generic_mspct or a derived class

.fun a function

... other arguments passed to .fun

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

idx character Name of the column with the names of the members of the collection
of spectra.

col.names character Names to be used for data columns.

.drop should extra dimensions of length 1 in the output be dropped, simplifying the
output. Defaults to TRUE

mspct_classes 225

Value

a collection of spectra in the case of msmsply, belonging to a different class than mspct if .fun
modifies the class of the member spectra.

a data frame in the case of msdply

a list in the case of mslply

an vector in the case of msaply

mspct_classes Names of multi-spectra classes

Description

Function that returns a vector containing the names of multi-spectra classes using for collections of
spectra.

Usage

mspct_classes()

Value

A character vector of class names.

Examples

mspct_classes()

na.omit Handle Missing Values in Objects

Description

These methods are useful for dealing with NAs in e.g., source_spct, response_spct, filter_spct
and reflector_spct.

226 na.omit

Usage

S3 method for class 'generic_spct'
na.omit(object, na.action = "omit", fill = NULL, target.colnames, ...)

S3 method for class 'source_spct'
na.omit(object, na.action = "omit", fill = NULL, ...)

S3 method for class 'response_spct'
na.omit(object, na.action = "omit", fill = NULL, ...)

S3 method for class 'filter_spct'
na.omit(object, na.action = "omit", fill = NULL, ...)

S3 method for class 'reflector_spct'
na.omit(object, na.action = "omit", fill = NULL, ...)

S3 method for class 'object_spct'
na.omit(object, na.action = "omit", fill = NULL, ...)

S3 method for class 'solute_spct'
na.omit(object, na.action = "omit", fill = NULL, ...)

S3 method for class 'cps_spct'
na.omit(object, na.action = "omit", fill = NULL, ...)

S3 method for class 'raw_spct'
na.omit(object, na.action = "omit", fill = NULL, ...)

S3 method for class 'chroma_spct'
na.omit(object, na.action = "omit", fill = NULL, ...)

S3 method for class 'generic_mspct'
na.omit(object, na.action = "omit", fill = NULL, ...)

S3 method for class 'generic_spct'
na.exclude(object, na.action = "exclude", fill = NULL, target.colnames, ...)

S3 method for class 'source_spct'
na.exclude(object, na.action = "exclude", fill = NULL, ...)

S3 method for class 'response_spct'
na.exclude(object, na.action = "exclude", fill = NULL, ...)

S3 method for class 'filter_spct'
na.exclude(object, na.action = "exclude", fill = NULL, ...)

S3 method for class 'reflector_spct'
na.exclude(object, na.action = "exclude", fill = NULL, ...)

na.omit 227

S3 method for class 'object_spct'
na.exclude(object, na.action = "exclude", fill = NULL, ...)

S3 method for class 'solute_spct'
na.exclude(object, na.action = "exclude", fill = NULL, ...)

S3 method for class 'cps_spct'
na.exclude(object, na.action = "exclude", fill = NULL, ...)

S3 method for class 'raw_spct'
na.exclude(object, na.action = "exclude", fill = NULL, ...)

S3 method for class 'chroma_spct'
na.exclude(object, na.action = "exclude", fill = NULL, ...)

S3 method for class 'generic_mspct'
na.exclude(object, na.action = "exclude", fill = NULL, ...)

Arguments

object an R object

na.action character One of "omit", "exclude" or "replace".

fill numeric Value used to replace NAs unless NULL, in which case interpolation is
attempted.

target.colnames

character Vector of names for the target columns to operate upon, if present in
object.

... further arguments other special methods could require

Details

If na.omit removes cases, the row numbers of the cases form the "na.action" attribute of the
result, of class "omit".

na.exclude differs from na.omit only in the class of the "na.action" attribute of the result, which
is "exclude".

Note

na.fail and na.pass do not require a specialisation for spectral objects. R’s definitions work
as expected with no need to override them. We do not define a method na.replace, just pass
"replace" as argument. The current implementation replaces by interpolation only individual NAs
which are flanked on both sides by valid data. Runs of multiple NAs con only replaced by a constant
value passed through parameter fill.

See Also

na.fail and na.action

228 normalization

Examples

my_sun.spct <- sun.spct
my_sun.spct[3, "s.e.irrad"] <- NA
my_sun.spct[5, "s.q.irrad"] <- NA

head(my_sun.spct)

rows omitted
zo <- na.omit(my_sun.spct)
head(zo)
na.action(zo)

rows excluded
ze <- na.exclude(my_sun.spct)
head(ze)
na.action(ze)

data in both rows replaced
zr <- na.omit(my_sun.spct, na.action = "replace")
head(zr)
na.action(zr)

normalization Normalization of an R object

Description

Normalization wavelength [nm] and other normalization metadata of an R object, retrieved from
the object’s attributes.

Usage

normalization(x)

Default S3 method:
normalization(x)

S3 method for class 'waveband'
normalization(x)

S3 method for class 'generic_spct'
normalization(x)

S3 method for class 'summary_generic_spct'
normalization(x)

S3 method for class 'generic_mspct'
normalization(x)

normalization 229

Arguments

x an R object

Details

In the case of wavebands for spectral weighting functions (waveband objects), the normalization
wavelength is returned. For spectral objects (generic_spct and derived), the normalization de-
scriptor, a list object, is returned. This list contains in addition to the normalization wavelength,
the multiplier used and type of normalization applied. These metadata makes it possible to "undo"
the normalization and to "update" the normalization after a transformation, such as conversion to a
related physical quantity, of the spectral data.

Value

A single numeric value of wavelength [nm] or a list with with members.

Methods (by class)

• normalization(default): Default methods.

• normalization(waveband): Normalization of a waveband object.

• normalization(generic_spct): Normalization of a generic_spct object.

• normalization(summary_generic_spct): Normalization of a summary.generic_spct ob-
ject.

• normalization(generic_mspct): Normalization of a generic_mspct object.

Note

Older versions of the package stored only a subset of the metadata or only a flag to indicate that
normalization had been applied. For such objects some or even all fields in the returned list are set
to NA.

See Also

Other waveband attributes: is_effective(), labels()

Examples

is_normalized(sun.spct)
normalization(sun.spct)
sun_norm.spct <- normalize(sun.spct)
is_normalized(sun_norm.spct)
normalization(sun_norm.spct)

my_wband <- waveband(c(400,700))
is_normalized(my_wband)
normalization(my_wband)

230 normalize

normalize Normalize spectral data

Description

This method returns a spectral object of the same class as the one supplied as argument but with the
spectral data normalized to 1.0 at a specific wavelength. When the object contains multiple spectra,
the normalisation is applied to each spectrum individually.

Usage

normalize(x, ...)

normalise(x, ...)

Default S3 method:
normalize(x, ...)

S3 method for class 'source_spct'
normalize(
x,
...,
range = NULL,
norm = "max",
unit.out = NA,
keep.scaling = FALSE,
na.rm = FALSE

)

S3 method for class 'response_spct'
normalize(
x,
...,
range = NULL,
norm = "max",
unit.out = NA,
keep.scaling = FALSE,
na.rm = FALSE

)

S3 method for class 'filter_spct'
normalize(
x,
...,
range = NULL,
norm = "max",
qty.out = NA,

normalize 231

keep.scaling = FALSE,
na.rm = FALSE

)

S3 method for class 'reflector_spct'
normalize(
x,
...,
range = NULL,
norm = "max",
qty.out = NA,
keep.scaling = FALSE,
na.rm = FALSE

)

S3 method for class 'solute_spct'
normalize(
x,
...,
range = NULL,
norm = "max",
qty.out = NA,
keep.scaling = FALSE,
na.rm = FALSE

)

S3 method for class 'raw_spct'
normalize(
x,
...,
range = NULL,
norm = "max",
keep.scaling = FALSE,
na.rm = FALSE

)

S3 method for class 'cps_spct'
normalize(
x,
...,
range = NULL,
norm = "max",
keep.scaling = FALSE,
na.rm = FALSE

)

S3 method for class 'generic_spct'
normalize(

232 normalize

x,
...,
range = NULL,
norm = "max",
col.names,
keep.scaling = FALSE,
na.rm = FALSE

)

S3 method for class 'source_mspct'
normalize(
x,
...,
range = NULL,
norm = "max",
unit.out = NA,
keep.scaling = FALSE,
na.rm = FALSE,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'response_mspct'
normalize(
x,
...,
range = NULL,
norm = "max",
unit.out = NA,
keep.scaling = FALSE,
na.rm = FALSE,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'filter_mspct'
normalize(
x,
...,
range = NULL,
norm = "max",
qty.out = NA,
keep.scaling = FALSE,
na.rm = FALSE,
.parallel = FALSE,
.paropts = NULL

)

normalize 233

S3 method for class 'reflector_mspct'
normalize(
x,
...,
range = x,
norm = "max",
qty.out = NA,
keep.scaling = FALSE,
na.rm = FALSE,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'raw_mspct'
normalize(
x,
...,
range = x,
norm = "max",
keep.scaling = FALSE,
na.rm = FALSE,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'cps_mspct'
normalize(
x,
...,
range = x,
norm = "max",
keep.scaling = FALSE,
na.rm = FALSE,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'solute_mspct'
normalize(
x,
...,
range = x,
norm = "max",
qty.out = NA,
keep.scaling = FALSE,
na.rm = FALSE,
.parallel = FALSE,
.paropts = NULL

234 normalize

)

S3 method for class 'generic_mspct'
normalize(
x,
...,
range = NULL,
norm = "max",
col.names,
keep.scaling = FALSE,
na.rm = FALSE,
.parallel = FALSE,
.paropts = NULL

)

Arguments

x An R object

... not used in current version

range An R object on which range() returns a numeric vector of length 2 with the
limits of a range of wavelengths in nm, with min and max wavelengths (nm)
used to set boundaries for search for normalization.

norm numeric Normalization wavelength (nm) or character string "max", or "min" for
normalization at the corresponding wavelength, "update" to update the normal-
ization after modifying units of expression, quantity or range but respecting the
previously used criterion, "undo" to revert an existing normalization or "skip" to
force return of x unchanged.

unit.out No longer supported and is ignored with a warning.

keep.scaling logical or numeric Flag to indicate if any existing scaling should be preserved
or not. The default, FALSE, preserves the behaviour of versions (<= 0.10.9). If
numeric, the spectrum is scaled to this value before normalization and marked
as not scaled.

na.rm logical indicating whether NA values should be stripped before calculating the
summary (e.g. "max") used for normalization.

qty.out No longer supported and is ignored with a warning..

col.names character vector containing the names of columns or variables. Columns in x
matching the names in col.names are normalized, other columns are returned
unchanged.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

normalize 235

Details

By default normalization is done based on the maximum of the spectral data. It is possible to also do
the normalization based on a user-supplied wavelength expressed in nanometres or the minimum.
An existing normalization can be updated for a different unit of expression or after a conversion to
a related spectral quantity.

By default the function is applied to the whole spectrum, but by passing a range of wavelengths as
input, the search, e.g., for the maximum, can be limited to a range of wavelengths of interest instead
of the whole spectrum.

In ’photobiology’ (>= 0.10.8) detailed information about the normalization is stored in an attribute.
In ’photobiology’ (>= 0.10.10) applying a new normalization to an already normalized spectrum
recomputes the multiplier factors stored in the attributes whenever possible. This ensures that the
returned object is identical, except for possible accumulated loss of precision due to floating-point
arithmetic, independently of the previous application of a different normalization.

Value

A copy of the object passed as argument to x with the values of the spectral quantity rescaled to
1 at the normalization wavelength. If the normalization wavelength is not already present in x,
it is added by interpolation—i.e. the returned value may be one row longer than x. Attributes
normalized and normalization are set to keep a log of the computations applied.

Methods (by class)

• normalize(default): Default for generic function

• normalize(source_spct): Normalize a source_spct object.

• normalize(response_spct): Normalize a response spectrum.

• normalize(filter_spct): Normalize a filter spectrum.

• normalize(reflector_spct): Normalize a reflector spectrum.

• normalize(solute_spct): Normalize a solute spectrum.

• normalize(raw_spct): Normalize a raw spectrum.

• normalize(cps_spct): Normalize a cps spectrum.

• normalize(generic_spct): Normalize a raw spectrum.

• normalize(source_mspct): Normalize the members of a source_mspct object.

• normalize(response_mspct): Normalize the members of a response_mspct object.

• normalize(filter_mspct): Normalize the members of a filter_mspct object.

• normalize(reflector_mspct): Normalize the members of a reflector_mspct object.

• normalize(raw_mspct): Normalize the members of a raw_mspct object.

• normalize(cps_mspct): Normalize the members of a cps_mspct object.

• normalize(solute_mspct): Normalize the members of a solute_mspct object.

• normalize(generic_mspct): Normalize the members of a solute_mspct object.

236 normalized_diff_ind

Note

When the spectrum passed as argument to x had been previously scaled, in ’photobiology’ (<=
0.10.9) the scaling attribute was always removed and no normalization factors returned. In ’photo-
biology’ (>= 0.10.10) scaling information can be preserved by passing keep.scaling = TRUE.

By default if x contains one or more NA values and the normalization is based on a summary quantity,
the returned spectrum will contain only NA values. If na.rm == TRUE then the summary quantity will
be calculated after striping NA values, and only the values that were NA in x will be NA values in the
returned spectrum.

When a numeric value is passed as argument to keep.scaling, the scaling uses f = "total" or f =
"mean" depending on the class of x. Prescaling is only occasionally needed.

Method normalize is implemented for solute_spct objects but as the spectral data stored in them
are a description of an intensive property of a substance, normalization is unlikely to useful. To rep-
resent solutions of specific concentrations of solutes, filter_spct objects should be used instead.

normalise() is a synonym for this normalize() method.

See Also

Other rescaling functions: fscale(), fshift(), getNormalized(), getScaled(), is_normalized(),
is_scaled(), setNormalized(), setScaled()

Examples

normalize(sun.spct)
normalise(sun.spct) # equivalent

normalize(sun.spct, norm = "max")
normalize(sun.spct, norm = 400)

normalized_diff_ind Calculate a normalized difference.

Description

This method returns a normalized difference index value for an arbitrary pair of wavebands. There
are many such indexes in use, such as NDVI (normalized difference vegetation index), NDWI
(normalized difference water index), NDMI (normalized difference moisture index), etc., the only
difference among then is in the wavebands used.

Usage

normalized_diff_ind(spct, w.band.plus, w.band.minus, f, ...)

normalised_diff_ind(spct, w.band.plus, w.band.minus, f, ...)

NDxI(spct, w.band.plus, w.band.minus, f, ...)

normalized_diff_ind 237

Default S3 method:
normalized_diff_ind(spct, w.band.plus, w.band.minus, f, ...)

S3 method for class 'generic_spct'
normalized_diff_ind(spct, w.band.plus, w.band.minus, f, ...)

S3 method for class 'generic_mspct'
normalized_diff_ind(spct, w.band.plus, w.band.minus, f, ...)

Arguments

spct an R object
w.band.plus, w.band.minus

waveband objects The wavebands determine the regions of the spectrum used in
the calculations.

f function used for integration taking spct as first argument and a list of wavebands
as second argument.

... additional arguments passed to f

Details

f is most frequently reflectance, but also transmittance, or even absorbance, response,
irradiance or a user-defined function can be used if there is a good reason for it. In every case
spct should be of the class expected by f. When using two wavebands of different widths do
consider passing to f a suitable quantity argument, for example to compare averages rather than
integrals. Wavebands can describe weighting functions if desired.

NDxI =
f(s, wbplus)− f(s, wbminus)

f(s, wbplus) + f(s, wbminus)

Value

A named numeric value for the index, or a tibble depending on whether a spectrum or a collection
of spectra is passed as first argument. If the wavelength range of spct does not fully overlap with
both wavebands NA is silently returned.

Methods (by class)

• normalized_diff_ind(default): default

• normalized_diff_ind(generic_spct):

• normalized_diff_ind(generic_mspct):

Note

Some NDxI indexes are directly based on satellite instrument data, such as those in the Landsat
satellites. To simulate such indexes using spectral reflectande as input, constructors of waveband
definitions from package ’photobiologyWavebands’ can be useful.

238 normalize_range_arg

normalised_diff_ind() is a synonym for normalized_diff_ind().

NDxI() is a shorthand for normalized_diff_ind().

See Also

Rfr_normdiff

normalize_range_arg Normalize a range argument into a true numeric range

Description

Several functions in this package and the suite accept a range argument with a flexible syntax. To
ensure that all functions and methods behave in the same way this code has been factored out into a
separate function.

Usage

normalize_range_arg(arg.range, wl.range, trim = TRUE)

Arguments

arg.range a numeric vector of length two, or any other object for which function range()
will return a range of wavelengths (nm).

wl.range a numeric vector of length two, or any other object for which function range()
will return a range of wavelengths (nm), missing values are not allowed.

trim logical If TRUE the range returned is bound within wl.range while if FALSE
it can be broader.

Details

The arg.range argument can contain NAs which are replaced by the value at the same position in
wl.range. In addition a NULL argument for range is converted into wl.range. The wl.range
is also the limit to which the returned value is trimmed if trim == TRUE. The idea is that the value
supplied as wl.range is the wavelength range of the data.

Value

a numeric vector of length two, guaranteed not to have missing values.

Examples

normalize_range_arg(c(NA, 500), range(sun.spct))
normalize_range_arg(c(300, NA), range(sun.spct))
normalize_range_arg(c(100, 5000), range(sun.spct), FALSE)
normalize_range_arg(c(NA, NA), range(sun.spct))
normalize_range_arg(c(NA, NA), sun.spct)

oper_spectra 239

oper_spectra Binary operation on two spectra, even if the wavelengths values differ

Description

The wavelength vectors of the two spectra are merged, and the missing spectral values are calculated
by interpolation. After this, the two spectral values at each wavelength are added.

Usage

oper_spectra(
w.length1,
w.length2 = NULL,
s.irrad1,
s.irrad2,
trim = "union",
na.rm = FALSE,
bin.oper = NULL,
...

)

Arguments

w.length1 numeric vector of wavelength (nm)

w.length2 numeric vector of wavelength (nm)

s.irrad1 a numeric vector of spectral values

s.irrad2 a numeric vector of spectral values

trim a character string with value "union" or "intersection"

na.rm a logical value, if TRUE, not the default, NAs in the input are replaced with
zeros

bin.oper a function defining a binary operator (for the usual math operators enclose argu-
ment in backticks)

... additional arguments (by name) passed to bin.oper

Details

If trim=="union" spectral values are calculated for the whole range of wavelengths covered by at
least one of the input spectra, and missing values are set in each input spectrum to zero before
addition. If trim=="intersection" then the range of wavelengths covered by both input spectra is
returned, and the non-overlapping regions discarded. If w.length2==NULL, it is assumed that both
spectra are measured at the same wavelengths, and a simple addition is used, ensuring fast calcula-
tion.

240 peaks

Value

a dataframe with two numeric variables

w.length A numeric vector with the wavelengths (nm) obtained by "fusing" w.length1 and
w.length2. w.length contains all the unique vales, sorted in ascending order.

s.irrad A numeric vector with the sum of the two spectral values at each wavelength.

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), irradiance(), l_insert_hinges(), photon_irradiance(), photon_ratio(),
photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(),
v_replace_hinges()

Examples

head(sun.data)
result.data <-

with(sun.data,
oper_spectra(w.length, w.length, s.e.irrad, s.e.irrad, bin.oper=`+`))

head(result.data)
tail(result.data)
my_fun <- function(e1, e2, k) {return((e1 + e2) / k)}
result.data <-

with(sun.data,
oper_spectra(w.length, w.length, s.e.irrad, s.e.irrad, bin.oper=my_fun, k=2))

head(result.data)
tail(result.data)

peaks Peaks or local maxima

Description

Function that returns a subset of an R object with observations corresponding to local maxima.

Usage

peaks(
x,
span,
global.threshold,
local.threshold,
local.reference,
threshold.range,

peaks 241

strict,
na.rm,
...

)

Default S3 method:
peaks(
x,
span = NA,
global.threshold = NA,
local.threshold = NA,
local.reference = NA,
threshold.range = NA,
strict = NA,
na.rm = FALSE,
...

)

S3 method for class 'numeric'
peaks(
x,
span = 5,
global.threshold = NULL,
local.threshold = NULL,
local.reference = "median",
threshold.range = NULL,
strict = FALSE,
na.rm = FALSE,
...

)

S3 method for class 'data.frame'
peaks(
x,
span = 5,
global.threshold = NULL,
local.threshold = NULL,
local.reference = "median",
threshold.range = NULL,
strict = FALSE,
na.rm = FALSE,
x.var.name = NULL,
y.var.name = NULL,
var.name = y.var.name,
refine.wl = FALSE,
method = "spline",
...

)

242 peaks

S3 method for class 'generic_spct'
peaks(
x,
span = 5,
global.threshold = NULL,
local.threshold = NULL,
local.reference = "median",
threshold.range = NULL,
strict = FALSE,
na.rm = FALSE,
var.name = NULL,
refine.wl = FALSE,
method = "spline",
...

)

S3 method for class 'source_spct'
peaks(
x,
span = 5,
global.threshold = NULL,
local.threshold = NULL,
local.reference = "median",
threshold.range = NULL,
strict = FALSE,
na.rm = FALSE,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
refine.wl = FALSE,
method = "spline",
...

)

S3 method for class 'response_spct'
peaks(
x,
span = 5,
global.threshold = NULL,
local.threshold = NULL,
local.reference = "median",
threshold.range = NULL,
strict = FALSE,
na.rm = FALSE,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
refine.wl = FALSE,
method = "spline",
...

)

peaks 243

S3 method for class 'filter_spct'
peaks(
x,
span = 5,
global.threshold = NULL,
local.threshold = NULL,
local.reference = "median",
threshold.range = NULL,
strict = FALSE,
na.rm = FALSE,
filter.qty = getOption("photobiology.filter.qty", default = "transmittance"),
refine.wl = FALSE,
method = "spline",
...

)

S3 method for class 'reflector_spct'
peaks(
x,
span = 5,
global.threshold = NULL,
local.threshold = NULL,
local.reference = "median",
threshold.range = NULL,
strict = FALSE,
na.rm = FALSE,
refine.wl = FALSE,
method = "spline",
...

)

S3 method for class 'solute_spct'
peaks(
x,
span = 5,
global.threshold = NULL,
local.threshold = NULL,
local.reference = "median",
threshold.range = NULL,
strict = FALSE,
na.rm = FALSE,
refine.wl = FALSE,
method = "spline",
...

)

S3 method for class 'cps_spct'

244 peaks

peaks(
x,
span = 5,
global.threshold = NULL,
local.threshold = NULL,
local.reference = "median",
threshold.range = NULL,
strict = FALSE,
na.rm = FALSE,
var.name = "cps",
refine.wl = FALSE,
method = "spline",
...

)

S3 method for class 'raw_spct'
peaks(
x,
span = 5,
global.threshold = NULL,
local.threshold = NULL,
local.reference = "median",
threshold.range = NULL,
strict = FALSE,
na.rm = FALSE,
var.name = "counts",
refine.wl = FALSE,
method = "spline",
...

)

S3 method for class 'generic_mspct'
peaks(
x,
span = 5,
global.threshold = NULL,
local.threshold = NULL,
local.reference = "median",
threshold.range = NULL,
strict = FALSE,
na.rm = FALSE,
var.name = NULL,
refine.wl = FALSE,
method = "spline",
...,
.parallel = FALSE,
.paropts = NULL

)

peaks 245

S3 method for class 'source_mspct'
peaks(
x,
span = 5,
global.threshold = NULL,
local.threshold = NULL,
local.reference = "median",
threshold.range = NULL,
strict = FALSE,
na.rm = FALSE,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
refine.wl = FALSE,
method = "spline",
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'response_mspct'
peaks(
x,
span = 5,
global.threshold = NULL,
local.threshold = NULL,
local.reference = "median",
threshold.range = NULL,
strict = FALSE,
na.rm = FALSE,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
refine.wl = FALSE,
method = "spline",
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'filter_mspct'
peaks(
x,
span = 5,
global.threshold = NULL,
local.threshold = NULL,
local.reference = "median",
threshold.range = NULL,
strict = FALSE,
na.rm = FALSE,
filter.qty = getOption("photobiology.filter.qty", default = "transmittance"),

246 peaks

refine.wl = FALSE,
method = "spline",
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'reflector_mspct'
peaks(
x,
span = 5,
global.threshold = NULL,
local.threshold = NULL,
local.reference = "median",
threshold.range = NULL,
strict = FALSE,
na.rm = FALSE,
refine.wl = FALSE,
method = "spline",
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'solute_mspct'
peaks(
x,
span = 5,
global.threshold = NULL,
local.threshold = NULL,
local.reference = "median",
threshold.range = NULL,
strict = FALSE,
na.rm = FALSE,
refine.wl = FALSE,
method = "spline",
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'cps_mspct'
peaks(
x,
span = 5,
global.threshold = NULL,
local.threshold = NULL,
local.reference = "median",

peaks 247

threshold.range = NULL,
strict = FALSE,
na.rm = FALSE,
var.name = "cps",
refine.wl = FALSE,
method = "spline",
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'raw_mspct'
peaks(
x,
span = 5,
global.threshold = NULL,
local.threshold = NULL,
local.reference = "median",
threshold.range = NULL,
strict = FALSE,
na.rm = FALSE,
var.name = "counts",
refine.wl = FALSE,
method = "spline",
...,
.parallel = FALSE,
.paropts = NULL

)

Arguments

x numeric vector. Hint: to find valleys, change the sign of the argument with the
unnary operator -.

span odd positive integer A peak is defined as an element in a sequence which is
greater than all other elements within a moving window of width span centred
at that element. The default value is 5, meaning that a peak is taller than its four
nearest neighbours. span = NULL extends the span to the whole length of x.

global.threshold

numeric A value belonging to class "AsIs" is interpreted as an absolute mini-
mum height or depth expressed in data units. A bare numeric value (normally
between 0.0 and 1.0), is interpreted as relative to threshold.range. In both
cases it sets a global height (depth) threshold below which peaks (valleys) are
ignored. A bare negative numeric value indicates the global height (depth)
threshold below which peaks (valleys) are be ignored. If global.threshold =
NULL, no threshold is applied and all peaks returned.

local.threshold

numeric A value belonging to class "AsIs" is interpreted as an absolute min-
imum height (depth) expressed in data units relative to a within-window com-

248 peaks

puted reference value. A bare numeric value (normally between 0.0 and 1.0),
is interpreted as expressed in units relative to threshold.range. In both cases
local.threshold sets a local height (depth) threshold below which peaks (val-
leys) are ignored. If local.threshold = NULL or if span spans the whole of x,
no threshold is applied.

local.reference

character One of "median" or "farthest". The reference used to assess the
height of the peak, either the minimum/maximum value within the window or
the median of all values in the window.

threshold.range

numeric vector If of length 2 or a longer vector range(threshold.range) is
used to scale both thresholds. With NULL, the default, range(x) is used, and with
a vector of length one range(threshold.range, x) is used, i.e., the range is
expanded.

strict logical flag: if TRUE, an element must be strictly greater than all other values in
its window to be considered a peak. Default: FALSE (since version 0.13.1).

na.rm logical indicating whether NA values should be stripped before searching for
peaks.

... ignored
var.name, x.var.name, y.var.name

character Name of column where to look for peaks.

refine.wl logical Flag indicating if peak location should be refined by fitting a function.

method character String with the name of a method. Currently only spline interpolation
is implemented.

unit.out character One of "energy" or "photon"

filter.qty character One of "transmittance" or "absorbance"

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Details

Function find_peaks is a wrapper built onto function peaks from splus2R, adds support for peak
height thresholds and handles span = NULL and non-finite (including NA) values differently than
splus2R::peaks. Instead of giving an error when na.rm = FALSE and x contains NA values, NA
values are replaced with the smallest finite value in x. span = NULL is treated as a special case and
selects max(x). Passing ‘strict = TRUE‘ ensures that multiple global and within window maxima
are ignored, and can result in no peaks being returned.

Two tests make it possible to ignore irrelevant peaks. One test (global.threshold) is based on
the absolute height of the peaks and can be used in all cases to ignore globally low peaks. A
second test (local.threshold) is available when the window defined by ‘span‘ does not include all
observations and can be used to ignore peaks that are not locally prominent. In this second approach
the height of each peak is compared to a summary computed from other values within the window

peaks 249

of width equal to span where it was found. In this second case, the reference value used within each
window containing a peak is given by local.reference. Parameter threshold.range determines
how the values passed as argument to global.threshold and local.threshold are scaled. The
default, NULL uses the range of x. Thresholds for ignoring too small peaks are applied after peaks
are searched for, and threshold values can in some cases result in no peaks being returned.

While functions find_peaks and find_valleys() accept as input a numeric vector and return a
logical vector, methods peaks and valleys accept as input different R objects, including spectra
and collections of spectra and return a subset of the object. These methods are implemented using
calls to functions find_peaks and fit_peaks.

Value

A subset of x with rows corresponding to local maxima.

Methods (by class)

• peaks(default): Default returning always NA.
• peaks(numeric): Default function usable on numeric vectors.
• peaks(data.frame): Method for "data.frame" objects.
• peaks(generic_spct): Method for "generic_spct" objects.
• peaks(source_spct): Method for "source_spct" objects.
• peaks(response_spct): Method for "response_spct" objects.
• peaks(filter_spct): Method for "filter_spct" objects.
• peaks(reflector_spct): Method for "reflector_spct" objects.
• peaks(solute_spct): Method for "solute_spct" objects.
• peaks(cps_spct): Method for "cps_spct" objects.
• peaks(raw_spct): Method for "raw_spct" objects.
• peaks(generic_mspct): Method for "generic_mspct" objects.
• peaks(source_mspct): Method for "source_mspct" objects.
• peaks(response_mspct): Method for "cps_mspct" objects.
• peaks(filter_mspct): Method for "filter_mspct" objects.
• peaks(reflector_mspct): Method for "reflector_mspct" objects.
• peaks(solute_mspct): Method for "solute_mspct" objects.
• peaks(cps_mspct): Method for "cps_mspct" objects.
• peaks(raw_mspct): Method for "raw_mspct" objects.

Note

The default for parameter strict is FALSE in functions peaks() and find_peaks(), as in stat_peaks()
and in stat_valleys(), while the default in peaks is strict = FALSE.

See Also

Other peaks and valleys functions: find_peaks(), find_spikes(), get_peaks(), replace_bad_pixs(),
spikes(), valleys(), wls_at_target()

250 phenylalanine.spct

Examples

default span = 5
peaks(sun.spct)
global maximum
peaks(sun.spct, span = NULL)
peaks(sun.spct, span = NULL)$w.length
fitted peak wavelength
peaks(sun.spct, span = NULL, refine.wl = TRUE)
peaks(sun.spct, span = NULL, refine.wl = TRUE)$w.length
a wider window
peaks(sun.spct, span = 51)
global threshold relative to the range of s.e.irrad values
peaks(sun.spct, global.threshold = 0.7)
peaks(sun.spct, global.threshold = -0.3)
global threshold in actual s.e.irrad values
peaks(sun.spct, global.threshold = 0.7, threshold.range = c(0, 1))
local threshold relative to the range of s.e.irrad values
peaks(sun.spct, local.threshold = 0.1)
local threshold in actual s.e.irrad values
peaks(sun.spct, local.threshold = 0.1, threshold.range = c(0, 1))
local threshold relative to the range of s.e.irrad values, using window
median instead of window minimum
peaks(sun.spct, local.threshold = 0.05, local.reference = "median")
minimum, the default.
peaks(sun.spct, local.threshold = 0.05, local.reference = "farthest")

peaks(sun.spct)

phenylalanine.spct Molar spectral attenuation coefficient of phenylalanine

Description

A dataset containing the wavelengths at a 0.25 nm interval and the corresponding attenuation coef-
ficients.

Usage

phenylalanine.spct

Format

A solute_spct object with 1993 rows and 2 variables

Details

• w.length (nm), range 222 to 720 nm.

• K.mole (cm-1/M)

photodiode.spct 251

Author(s)

Du et ql. (original data); Scott Prahl (included data).

References

https://omlc.org/spectra/PhotochemCAD/html/073.html

H. Du, R. A. Fuh, J. Li, A. Corkan, J. S. Lindsey, "PhotochemCAD: A computer-aided design and
research tool in photochemistry," Photochem. Photobiol., 68, 141-142, 1998.

J. M. Dixon, M. Taniguchi and J. S. Lindsey "PhotochemCAD 2. A refined program with accom-
panying spectral databases for photochemical calculations", Photochem. Photobiol., 81, 212-213,
2005.

See Also

Other Spectral data examples: A.illuminant.spct, D50.illuminant.spct, D65.illuminant.spct,
Ler_leaf.spct, black_body.spct, ccd.spct, clear.spct, filter_cps.mspct, green_leaf.spct,
photodiode.spct, sun.spct, sun_daily.spct, sun_evening.spct, two_filters.spct, two_sensors.mspct,
water.spct, white_led.source_spct

Examples

head(phenylalanine.spct)
summary(phenylalanine.spct)
solute_properties(phenylalanine.spct)
cat(comment(phenylalanine.spct))

photodiode.spct Spectral response of a GaAsP photodiode

Description

A dataset containing wavelengths at a 1 nm interval and spectral response as A/(W/nm) for GaAsP
photodiode type G6262 from Hamamatsu. Data digitized from manufacturer’s data sheet. The value
at the peak is 0.19 A/W .

Usage

photodiode.spct

Format

A response_spct object with 94 rows and 2 variables

Details

• w.length (nm).

• s.e.response (A/W)

https://omlc.org/spectra/PhotochemCAD/html/073.html

252 photons_energy_ratio

References

Hamamatsu (2011) Datasheet: GaAsP Photodiodes G5645 G5842 G6262. Hamamatsu Photonics
KK, Hamamatsu, City. http://www.hamamatsu.com/jp/en/G6262.html. Visited 2017-12-15.

See Also

Other Spectral data examples: A.illuminant.spct, D50.illuminant.spct, D65.illuminant.spct,
Ler_leaf.spct, black_body.spct, ccd.spct, clear.spct, filter_cps.mspct, green_leaf.spct,
phenylalanine.spct, sun.spct, sun_daily.spct, sun_evening.spct, two_filters.spct, two_sensors.mspct,
water.spct, white_led.source_spct

Examples

photodiode.spct

photons_energy_ratio Photon:energy ratio

Description

This function gives the photons:energy ratio between for one given waveband of a radiation spec-
trum.

Usage

photons_energy_ratio(
w.length,
s.irrad,
w.band = NULL,
unit.in = "energy",
check.spectrum = TRUE,
use.cached.mult = FALSE,
use.hinges = getOption("photobiology.use.hinges", default = NULL)

)

Arguments

w.length numeric vector of wavelength (nm).

s.irrad numeric vector of spectral irradiances in [W m−2 nm−1] or [mol s−1 sm−2 nm−1]
as indicated by the argument pased to unit.in.

w.band waveband object.

unit.in character Allowed values "energy", and "photon", or its alias "quantum".

check.spectrum logical Flag telling whether to sanity check input data, default is TRUE.
use.cached.mult

logical Flag telling whether multiplier values should be cached between calls.

photon_irradiance 253

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

Value

A single numeric value giving the ratio moles-photons per Joule.

Note

The default for the w.band parameter is a waveband covering the whole range of w.length.

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(),
photon_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(), split_photon_irradiance(),
subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(), v_replace_hinges()

Examples

photons:energy ratio
with(sun.data,

photons_energy_ratio(w.length, s.e.irrad, new_waveband(400,500)))
photons:energy ratio for whole spectrum
with(sun.data, photons_energy_ratio(w.length, s.e.irrad))

photon_irradiance Photon irradiance

Description

This function returns the photon irradiance for a given waveband of a radiation spectrum, optionally
applies a BSWF.

Usage

photon_irradiance(
w.length,
s.irrad,
w.band = NULL,
unit.in = "energy",
check.spectrum = TRUE,
use.cached.mult = FALSE,
use.hinges = getOption("photobiology.use.hinges", default = NULL)

)

254 photon_ratio

Arguments

w.length numeric vector of wavelength [nm].

s.irrad numeric vector of spectral irradiances in [W m−2 nm−1] or [mol s−1 sm−2 nm−1]
as indicated by the argument pased to unit.in.

w.band waveband.

unit.in character Allowed values "energy", and "photon", or its alias "quantum".

check.spectrum logical Flag telling whether to sanity check input data, default is TRUE.

use.cached.mult

logical Flag telling whether multiplier values should be cached between calls.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

Value

A single numeric value with no change in scale factor: [mol s−1 sm−2].

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_ratio(),
photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(),
v_replace_hinges()

Examples

with(sun.data, photon_irradiance(w.length, s.e.irrad))
with(sun.data, photon_irradiance(w.length, s.e.irrad, new_waveband(400,700)))

photon_ratio Photo:photon ratio

Description

This function gives the photon ratio between two given wavebands of a radiation spectrum.

photon_ratio 255

Usage

photon_ratio(
w.length,
s.irrad,
w.band.num = NULL,
w.band.denom = NULL,
unit.in = "energy",
check.spectrum = TRUE,
use.cached.mult = FALSE,
use.hinges = getOption("photobiology.use.hinges", default = NULL)

)

Arguments

w.length numeric vector of wavelength (nm).

s.irrad numeric vector of spectral irradiances in [W m−2 nm−1] or [mol s−1 sm−2 nm−1]
as indicated by the argument pased to unit.in.

w.band.num waveband object used to compute the numerator of the ratio.

w.band.denom waveband object used to compute the denominator of the ratio.

unit.in character Allowed values "energy", and "photon", or its alias "quantum".

check.spectrum logical Flag telling whether to sanity check input data, default is TRUE.

use.cached.mult

logical Flag telling whether multiplier values should be cached between calls.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

Value

a single numeric value giving the unitless ratio.

Note

The default for both w.band parameters is a waveband covering the whole range of w.length.

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(),
photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(),
v_replace_hinges()

256 print.generic_spct

Examples

with(sun.data,
photon_ratio(w.length,

s.e.irrad, new_waveband(400,500), new_waveband(400,700)))

plus-.generic_spct Arithmetic Operators

Description

Division operator for generic spectra.

Usage

S3 method for class 'generic_spct'
e1 + e2 = NULL

Arguments

e1 an object of class "generic_spct"

e2 an object of class "generic_spct"

See Also

Other math operators and functions: MathFun, ^.generic_spct(), convolve_each(), div-.generic_spct,
log(), minus-.generic_spct, mod-.generic_spct, round(), sign(), slash-.generic_spct,
times-.generic_spct

print.generic_spct Print spectral objects

Description

Print methods for objects of spectral classes, including collections of spectra.

Usage

S3 method for class 'generic_spct'
print(x, ..., attr.simplify = TRUE, n = NULL, width = NULL)

S3 method for class 'generic_mspct'
print(x, ..., attr.simplify = TRUE, n = NULL, width = NULL, n.members = 10)

print.generic_spct 257

Arguments

x An object of one of the summary classes for spectra.

... not used in current version.

attr.simplify logical If all members share the same attribute value return one copy instead of
a data.frame, list or vector.

n Number of rows to show. If NULL, the default, will print all rows if less than
option dplyr.print_max. Otherwise, will print dplyr.print_min rows.

width Width of text output to generate. This defaults to NULL, which means use
getOption("width") and only display the columns that fit on one screen. You can
also set option(dplyr.width = Inf) to override this default and always print all
columns.

n.members numeric Number of members of the collection to print.

Details

This is simply a wrapper on the print method for tibbles, with additional information in the header.
Currently, width applies only to the table of data.

Objects are printed as is, ignoring the current settings of R options photobiology.radiation.unit
and photobiology.filter.qty.

Value

Returns x invisibly.

Functions

• print(generic_mspct):

Examples

print(sun.spct)
print(sun.spct, n = 5)

print(q2e(sun.spct, action = "replace"))
print(e2q(sun.spct, action = "replace"))

print(polyester.spct)
print(any2A(polyester.spct))
print(any2Afr(polyester.spct))

print(two_filters.spct)

258 print.metadata

print.metadata Print methods for metadata records

Description

Print methods for objects of classes used to store different meta data properties in the classes for
different types of spectra.

Usage

S3 method for class 'instr_desc'
print(x, ...)

S3 method for class 'instr_settings'
print(x, ...)

S3 method for class 'filter_properties'
print(x, ...)

S3 method for class 'solute_properties'
print(x, ...)

Arguments

x An object of one of the summary classes for spectra.

... not used in current version.

Details

These methods print an abbreviated representaion of objects used to store metadata in attributes.
They are similar to records and formatted printing is useful both on its own and in the print methods
for spectra and their summaries.

Examples

print(getInstrDesc(sun_evening.spct))
str(getInstrDesc(sun_evening.spct))

print(getInstrSettings(sun_evening.spct))
str(getInstrSettings(sun_evening.spct))

print(filter_properties(polyester.spct))
str(filter_properties(polyester.spct))

print(solute_properties(phenylalanine.spct))
str(solute_properties(phenylalanine.spct))

print.summary_generic_spct 259

print.summary_generic_spct

Print spectral summary

Description

A function to nicely print objects of classes "summary...spct".

Usage

S3 method for class 'summary_generic_spct'
print(x, ..., attr.simplify = TRUE)

S3 method for class 'summary_generic_mspct'
print(x, width = NULL, ..., n = NULL)

Arguments

x An object of one of the summary classes for spectra

... named arguments passed to the print() method for class "tbl_df".

attr.simplify logical If all members share the same attribute value return one copy instead of
a data.frame, list or vector.

width integer Width of text output to generate. This defaults to NULL, which means
use the width option.

n integer Number of member spectra for which information is printed.

Functions

• print(summary_generic_mspct):

See Also

formatting

Examples

print(summary(sun.spct))

print(summary(sun_evening.mspct))

260 prod_spectra

print.waveband Print a "waveband" object

Description

A function to more nicely print objects of class "waveband".

Usage

S3 method for class 'waveband'
print(x, ...)

Arguments

x an object of class "waveband"

... not used in current version

prod_spectra Multiply two spectra, even if the wavelengths values differ

Description

The wavelength vectors of the two spectra are merged, and the missing spectral values are calculated
by interpolation. After this, the two spectral values at each wavelength are added.

Usage

prod_spectra(
w.length1,
w.length2 = NULL,
s.irrad1,
s.irrad2,
trim = "union",
na.rm = FALSE

)

Arguments

w.length1 numeric vector of wavelength (nm).

w.length2 numeric vector of wavelength (nm).

s.irrad1 a numeric vector of spectral values.

s.irrad2 a numeric vector of spectral values.

trim a character string with value "union" or "intersection".

na.rm a logical value, if TRUE, not the default, NAs in the input are replaced with
zeros.

pull_sample 261

Details

If trim=="union" spectral values are calculated for the whole range of wavelengths covered by at
least one of the input spectra, and missing values are set in each input spectrum to zero before
addition. If trim=="intersection" then the range of wavelengths covered by both input spectra is
returned, and the non-overlapping regions discarded. If w.length2==NULL, it is assumed that both
spectra are measured at the same wavelengths, and a simple addition is used, ensuring fast calcula-
tion.

Value

a dataframe with two numeric variables

w.length A numeric vector with the wavelengths (nm) obtained by "fusing" w.length1 and
w.length2. w.length contains all the unique vales, sorted in ascending order.

s.irrad A numeric vector with the sum of the two spectral values at each wavelength.

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(),
photon_ratio(), photons_energy_ratio(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(),
v_replace_hinges()

Examples

head(sun.data)
square.sun.data <-

with(sun.data, prod_spectra(w.length, w.length, s.e.irrad, s.e.irrad))
head(square.sun.data)
tail(square.sun.data)

pull_sample Random sample of spectra

Description

A method to extract a random sample of members from a list, a collection of spectra or a spectrum
object containing multiple spectra in long form.

262 pull_sample

Usage

pull_sample(x, size, ...)

Default S3 method:
pull_sample(x, size, ...)

S3 method for class 'list'
pull_sample(
x,
size = 1,
replace = FALSE,
keep.order = TRUE,
simplify = FALSE,
...

)

S3 method for class 'generic_spct'
pull_sample(x, size = 1, replace = FALSE, keep.order = TRUE, ...)

S3 method for class 'generic_mspct'
pull_sample(
x,
size = 1,
replace = FALSE,
recursive = FALSE,
keep.order = TRUE,
simplify = FALSE,
...

)

Arguments

x An R object possibly containing multiple spectra or other components.

size integer The number of spectra to extract, if available.

... currently ignored.

replace logical Sample with or without replacement.

keep.order logical Return the spectra ordered as in x or in random order.

simplify logical If size = 1, and x is a collection return the spectrum object instead of a
collection with it as only member.

recursive logical If x is a collection, expand or not member spectra containing multiple
spectra in long form into individual members before sampling.

Value

If x is an spectrum object, such as a "filter_spct" object, the returned object is of the same class
but in most cases containing fewer spectra in long form than x. If x is a collection of spectrum

q2e 263

objecta, such as a "filter_mspct" object, the returned object is of the same class but in most cases
containing fewer member spectra than x.

Methods (by class)

• pull_sample(default): Default for generic function

• pull_sample(list): Specialization for generic_spct

• pull_sample(generic_spct): Specialization for generic_spct

• pull_sample(generic_mspct): Specialization for generic_mspct

See Also

See sample for the method used for the sampling.

Examples

a.list <- as.list(letters)
names(a.list) <- LETTERS
set.seed(12345678)
pull_sample(a.list, size = 8)
pull_sample(a.list, size = 8, keep.order = FALSE)
pull_sample(a.list, size = 8, replace = TRUE)
pull_sample(a.list, size = 8, replace = TRUE, keep.order = FALSE)
pull_sample(a.list, size = 1)
pull_sample(a.list, size = 1, simplify = TRUE)

q2e Convert photon-based quantities into energy-based quantities

Description

Conversion methods for spectral photon irradiance into spectral energy irradiance and for spectral
photon response into spectral energy response.

Usage

q2e(x, action, byref, ...)

Default S3 method:
q2e(x, action = "add", byref = FALSE, ...)

S3 method for class 'source_spct'
q2e(x, action = "add", byref = FALSE, ...)

S3 method for class 'response_spct'
q2e(x, action = "add", byref = FALSE, ...)

264 q2e

S3 method for class 'source_mspct'
q2e(x, action = "add", byref = FALSE, ..., .parallel = FALSE, .paropts = NULL)

S3 method for class 'response_mspct'
q2e(x, action = "add", byref = FALSE, ..., .parallel = FALSE, .paropts = NULL)

Arguments

x an R object.

action a character string, one of "add", or "replace".

byref logical indicating if a new object will be created by reference or a new object
returned.

... not used in current version.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Details

The converted spectral values are added to or replace the existing spectral values depending on the
argument passed to parameter action. Addition is currently not supported for normalized spectra.
If the spectrum has been normalized with a recent version of package ’photobiology’ the spectrum
will be renormalized after conversion using the same arguments as previously.

Methods (by class)

• q2e(default): Default method

• q2e(source_spct): Method for spectral irradiance

• q2e(response_spct): Method for spectral responsiveness

• q2e(source_mspct): Method for collections of (light) source spectra

• q2e(response_mspct): Method for collections of response spectra

See Also

Other quantity conversion functions: A2T(), Afr2T(), T2A(), T2Afr(), any2T(), as_quantum(),
e2q(), e2qmol_multipliers(), e2quantum_multipliers()

qe_ratio 265

qe_ratio Photon:energy ratio

Description

This function returns the photon to energy ratio for each waveband of a light source spectrum.

Usage

qe_ratio(spct, w.band, scale.factor, wb.trim, use.cached.mult, use.hinges, ...)

Default S3 method:
qe_ratio(spct, w.band, scale.factor, wb.trim, use.cached.mult, use.hinges, ...)

S3 method for class 'source_spct'
qe_ratio(
spct,
w.band = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
naming = "short",
name.tag = ifelse(naming != "none", "[q:e]", ""),
...

)

S3 method for class 'source_mspct'
qe_ratio(
spct,
w.band = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
naming = "short",
name.tag = ifelse(naming != "none", "[q:e]", ""),
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct source_spct.

266 qe_ratio

w.band waveband or list of waveband objects.

scale.factor numeric vector of length 1, or length equal to that of w.band. Numeric multiplier
applied to returned values.

wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if
FALSE, they are discarded.

use.cached.mult

logical Flag telling whether multiplier values should be cached between calls.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

... other arguments (possibly used by derived methods).

naming character one of "long", "default", "short" or "none". Used to select the type of
names to assign to returned value.

name.tag character Used to tag the name of the returned values.

attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to
formal parameter col.names.

idx character Name of the column with the names of the members of the collection
of spectra.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Details

The ratio is based on one photon irrandiance and one energy irradiance, both computed for the same
waveband.

Q(s, wb)

I(s, wb)

The last two parameters control speed optimizations. The defaults should be suitable in most cases.
If you will use repeatedly the same SWFs on many spectra measured at exactly the same wave-
lengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that
you are responsible for ensuring that the wavelengths are the same in each call, as the only test done
is for the length of the w.length vector.

Value

Computed values are ratios between photon irradiance and energy irradiance for a given waveband.
A named numeric vector in the case of methods for individual spectra, with one value for each
waveband passed to parameter w.band. A data.frame in the case of collections of spectra, con-
taining one column for each waveband object, an index column with the names of the spectra, and
optionally additional columns with metadata values retrieved from the attributes of the member
spectra.

q_fluence 267

By default values are only integrated, but depending on the argument passed to parameter quantity
they can be re-expressed as relative fractions or percentages. In the case of vector output, names
attribute is set to the name of the corresponding waveband unless a named list is supplied in which
case the names of the list members are used, with "[q:e]" prepended. Units are [mol J-1].

Methods (by class)

• qe_ratio(default): Default for generic function

• qe_ratio(source_spct): Method for source_spct objects

• qe_ratio(source_mspct): Calculates photon:energy ratio from a source_mspct object.

Performance

As this method accepts spectra as its input, it computes irradiances before computing the ratios.
If you need to compute both ratios and irradiances from several hundreds or thousands of spectra,
computing the ratios from previously computed irradiances avoids their repeated computation. A
less dramatic, but still important, increase in performance is available when computing in the same
function call ratios that share the same denominator.

See Also

Other photon and energy ratio functions: e_fraction(), e_ratio(), eq_ratio(), q_fraction(),
q_ratio()

Examples

qe_ratio(sun.spct,
waveband(c(400,700), wb.name = "White")) # mol J-1

qe_ratio(sun.spct,
waveband(c(400,700), wb.name = "White"),
scale.factor = 1e6) # umol J-1

q_fluence Photon fluence

Description

Photon irradiance (i.e. quantum irradiance) for one or more waveband of a light source spectrum.

Usage

q_fluence(
spct,
w.band,
exposure.time,
scale.factor,
wb.trim,

268 q_fluence

use.cached.mult,
use.hinges,
allow.scaled,
...

)

Default S3 method:
q_fluence(
spct,
w.band,
exposure.time,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
allow.scaled,
...

)

S3 method for class 'source_spct'
q_fluence(
spct,
w.band = NULL,
exposure.time,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = getOption("photobiology.use.cached.mult", default = FALSE),
use.hinges = NULL,
allow.scaled = FALSE,
naming = "default",
...

)

S3 method for class 'source_mspct'
q_fluence(
spct,
w.band = NULL,
exposure.time,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = getOption("photobiology.use.cached.mult", default = FALSE),
use.hinges = NULL,
allow.scaled = FALSE,
naming = "default",
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,

q_fluence 269

.paropts = NULL
)

Arguments

spct an R object.
w.band a list of waveband objects or a waveband object
exposure.time lubridate::duration object.
scale.factor numeric vector of length 1, or length equal to that of w.band. Numeric multiplier

applied to returned values.
wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if

FALSE, they are discarded.
use.cached.mult

logical indicating whether multiplier values should be cached between calls.
use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before

integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

allow.scaled logical indicating whether scaled or normalized spectra as argument to spct are
flagged as an error.

... other arguments (possibly ignored).
naming character one of "long", "default", "short" or "none". Used to select the type of

names to assign to returned value.
attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to

formal parameter col.names.
idx character Name of the column with the names of the members of the collection

of spectra.
.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts a list of additional options passed into the foreach function when parallel compu-

tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Value

One numeric value for each waveband with no change in scale factor, with name attribute set to the
name of each waveband unless a named list is supplied in which case the names of the list elements
are used. The exposure.time is copied from the spectrum object to the output as an attribute. Units
are as follows: moles of photons per exposure.

Methods (by class)

• q_fluence(default): Default for generic function
• q_fluence(source_spct): Calculate photon fluence from a source_spct object and the

duration of the exposure
• q_fluence(source_mspct): Calculates photon (quantum) fluence from a source_mspct ob-

ject.

270 q_fraction

Note

The last two parameters control speed optimizations. The defaults should be suitable in most cases.
If you will use repeatedly the same SWFs on many spectra measured at exactly the same wave-
lengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that
you are responsible for ensuring that the wavelengths are the same in each call, as the only test done
is for the length of the w.length vector.

See Also

Other irradiance functions: e_fluence(), e_irrad(), fluence(), irrad(), q_irrad()

Examples

library(lubridate)
q_fluence(sun.spct,

w.band = waveband(c(400,700)),
exposure.time = lubridate::duration(3, "minutes"))

q_fraction Photon:photon fraction

Description

This function returns the photon fraction for a given pair of wavebands of a light source spectrum.

Usage

q_fraction(
spct,
w.band.num,
w.band.denom,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
...

)

Default S3 method:
q_fraction(
spct,
w.band.num,
w.band.denom,
scale.factor,
wb.trim,
use.cached.mult,

q_fraction 271

use.hinges,
...

)

S3 method for class 'source_spct'
q_fraction(
spct,
w.band.num = NULL,
w.band.denom = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
quantity = "total",
naming = "short",
name.tag = NULL,
...

)

S3 method for class 'source_mspct'
q_fraction(
spct,
w.band.num = NULL,
w.band.denom = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
quantity = "total",
naming = "short",
name.tag = ifelse(naming != "none", "[q:q]", ""),
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct an object of class "source_spct".

w.band.num waveband object or a list of waveband objects used to compute the numerator(s)
and denominator(s) of the fraction(s).

w.band.denom waveband object or a list of waveband objects used to compute the denomina-
tor(s) of the fraction(s).

scale.factor numeric vector of length 1, or length equal to that of w.band. Numeric multiplier
applied to returned values.

272 q_fraction

wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if
FALSE, they are discarded

use.cached.mult

logical indicating whether multiplier values should be cached between calls

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

... other arguments (possibly ignored)

quantity character One of "total", "average" or "mean".

naming character one of "long", "default", "short" or "none". Used to select the type of
names to assign to returned value.

name.tag character Used to tag the name of the returned values.

attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to
formal parameter col.names.

idx character Name of the column with the names of the members of the collection
of spectra.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Details

With the default quantity = "total" the fraction is based on two photon irradiances, one com-
puted for each waveband.

Q(s, wbnum)

Q(s, wbdenom) +Q(s, wbnum)

If the argument is set to quantity = "mean" or quantity = "average" the ratio is based on two
mean spectral photon irradiances, one computed for each waveband.

Qλ(s, wbnum)

Qλ(s, wbdenom) +Qλ(s, wbnum)

Only if the wavelength expanse of the two wavebands is the same, these two ratios are numerically
identical.

Value

In the case of methods for individual spectra, a numeric vector with name attribute set. The name is
based on the name of the wavebands unless a named list of wavebands is supplied in which case the
names of the list elements are used. "[q:q]" is appended if quantity = "total" and "[q(wl):q(wl)]"
if quantity = "mean" or quantity = "average".

q_irrad 273

A data.frame is returned in the case of collections of spectra, containing one column for each frac-
tion definition, an index column with the names of the spectra, and optionally additional columns
with metadata values retrieved from the attributes of the member spectra.

Fraction definitions are "assembled" from the arguments passed to w.band.num and w.band.denom.
If both arguments are lists of waveband definitions, with an equal number of members, then the
wavebands are paired to obtain as many fractions as the number of wavebands in each list. Recy-
cling for wavebands takes place when the number of denominator and numerator wavebands differ.

Methods (by class)

• q_fraction(default): Default for generic function

• q_fraction(source_spct): Method for source_spct objects

• q_fraction(source_mspct): Calculates photon:photon from a source_mspct object.

Note

The last two parameters control speed optimizations. The defaults should be suitable in most cases.
If you will use repeatedly the same SWFs on many spectra measured at exactly the same wave-
lengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that
you are responsible for ensuring that the wavelengths are the same in each call, as the only test done
is for the length of the w.length vector.

See Also

Other photon and energy ratio functions: e_fraction(), e_ratio(), eq_ratio(), q_ratio(),
qe_ratio()

Examples

q_fraction(sun.spct, new_waveband(400,500), new_waveband(400,700))

q_irrad Photon irradiance

Description

Photon irradiance (i.e. quantum irradiance) for one or more wavebands of a light source spectrum.

Usage

q_irrad(
spct,
w.band,
quantity,
time.unit,
scale.factor,

274 q_irrad

wb.trim,
use.cached.mult,
use.hinges,
allow.scaled,
...

)

Default S3 method:
q_irrad(
spct,
w.band,
quantity,
time.unit,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
allow.scaled,
...

)

S3 method for class 'source_spct'
q_irrad(
spct,
w.band = NULL,
quantity = "total",
time.unit = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = getOption("photobiology.use.cached.mult", default = FALSE),
use.hinges = NULL,
allow.scaled = !quantity %in% c("average", "mean", "total"),
naming = "default",
return.tb = FALSE,
...

)

S3 method for class 'source_mspct'
q_irrad(
spct,
w.band = NULL,
quantity = "total",
time.unit = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = getOption("photobiology.use.cached.mult", default = FALSE),
use.hinges = NULL,
allow.scaled = !quantity %in% c("average", "mean", "total"),

q_irrad 275

naming = "default",
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct an R object.

w.band a list of waveband objects or a waveband object.

quantity character string One of "total", "average" or "mean", "contribution", "contribu-
tion.pc", "relative" or "relative.pc".

time.unit character or lubridate::duration object.

scale.factor numeric vector of length 1, or length equal to that of w.band. Numeric multiplier
applied to returned values.

wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if
FALSE, they are discarded.

use.cached.mult

logical indicating whether multiplier values should be cached between calls.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

allow.scaled logical indicating whether scaled or normalized spectra as argument to spct are
flagged as an error.

... other arguments (possibly ignored).

naming character one of "long", "default", "short" or "none". Used to select the type of
names to assign to returned value.

return.tb logical Flag forcing a tibble to be always returned, even for a single spectrum as
argumnet to spct. The default is FALSE for backwards compatibility.

attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to
formal parameter col.names.

idx character Name of the column with the names of the members of the collection
of spectra.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

276 q_irrad

Value

A named numeric vector in the case of a _spct object containing a single spectrum and return.tb
= FALSE. The vector has one member one value for each waveband passed to parameter w.band. In
all other cases a tibble, containing one column for each waveband object, an index column with
the names of the spectra, and optionally additional columns with metadata values retrieved from the
attributes of the member spectra.

By default values are only integrated, but depending on the argument passed to parameter quantity
they can be re-expressed as relative fractions or percentages. In the case of vector output, names
attribute is set to the name of the corresponding waveband unless a named list is supplied in which
case the names of the list members are used. The time.unit attribute is copied from the spectrum
object to the output. Units are as follows: If time.unit is second, [W m-2 nm-1] -> [mol s-1 m-2] If
time.unit is day, [J d-1 m-2 nm-1] -> [mol d-1 m-2]

Methods (by class)

• q_irrad(default): Default for generic function

• q_irrad(source_spct): Calculates photon irradiance from a source_spct object.

• q_irrad(source_mspct): Calculates photon (quantum) irradiance from a source_mspct ob-
ject.

Note

The last two parameters control speed optimizations. The defaults should be suitable in most cases.
If you will use repeatedly the same SWFs on many spectra measured at exactly the same wave-
lengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that
you are responsible for ensuring that the wavelengths are the same in each call, as the only test done
is for the length of the w.length vector.

See Also

Other irradiance functions: e_fluence(), e_irrad(), fluence(), irrad(), q_fluence()

Examples

q_irrad(sun.spct, waveband(c(400,700)))
q_irrad(sun.spct, split_bands(c(400,700), length.out = 3))
q_irrad(sun.spct, split_bands(c(400,700), length.out = 3), quantity = "total")
q_irrad(sun.spct, split_bands(c(400,700), length.out = 3), quantity = "average")
q_irrad(sun.spct, split_bands(c(400,700), length.out = 3), quantity = "relative")
q_irrad(sun.spct, split_bands(c(400,700), length.out = 3), quantity = "relative.pc")
q_irrad(sun.spct, split_bands(c(400,700), length.out = 3), quantity = "contribution")
q_irrad(sun.spct, split_bands(c(400,700), length.out = 3), quantity = "contribution.pc")

q_ratio 277

q_ratio Photon:photon ratio

Description

This function returns the photon ratio for a given pair of wavebands of a light source spectrum.

Usage

q_ratio(
spct,
w.band.num,
w.band.denom,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
...

)

Default S3 method:
q_ratio(
spct,
w.band.num,
w.band.denom,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
...

)

S3 method for class 'source_spct'
q_ratio(
spct,
w.band.num = NULL,
w.band.denom = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
quantity = "total",
naming = "short",
name.tag = NULL,
...

)

278 q_ratio

S3 method for class 'source_mspct'
q_ratio(
spct,
w.band.num = NULL,
w.band.denom = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
quantity = "total",
naming = "short",
name.tag = ifelse(naming != "none", "[q:q]", ""),
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct an object of class "source_spct".

w.band.num waveband object or a list of waveband objects used to compute the numerator(s)
of the ratio(s).

w.band.denom waveband object or a list of waveband objects used to compute the denomina-
tor(s) of the ratio(s).

scale.factor numeric vector of length 1, or length equal to that of w.band. Numeric multiplier
applied to returned values.

wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if
FALSE, they are discarded

use.cached.mult

logical indicating whether multiplier values should be cached between calls

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

... other arguments (possibly ignored)

quantity character One of "total", "average" or "mean".

naming character one of "long", "default", "short" or "none". Used to select the type of
names to assign to returned value.

name.tag character Used to tag the name of the returned values.

attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to
formal parameter col.names.

idx character Name of the column with the names of the members of the collection
of spectra.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

q_ratio 279

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Details

With the default quantity = "total" the ratio is based on two photon irradiances, one computed
for each waveband.

Q(s, wbnum)

Q(s, wbdenom)

If the argument is set to quantity = "mean" or quantity = "average" the ratio is based on two
mean spectral photon irradiances, one computed for each waveband.

Qλ(s, wbnum)

Qλ(s, wbdenom)

Ratios based on totals and means are numerically identical only if the wavelength expanse of the
two wavebands is the same.

Fraction definitions are "assembled" from the arguments passed to w.band.num and w.band.denom.
If both arguments are lists of waveband definitions, with an equal number of members, then the
wavebands are paired to obtain as many fractions as the number of wavebands in each list. Recy-
cling for wavebands takes place when the number of denominator and numerator wavebands differ.

The last two parameters control speed optimizations. The defaults should be suitable in most cases.
If you will use repeatedly the same SWFs on many spectra measured at exactly the same wave-
lengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that
you are responsible for ensuring that the wavelengths are the same in each call, as the only test done
is for the length of the w.length vector.

Value

In the case of methods for individual spectra, a numeric vector with name attribute set. The name is
based on the name of the wavebands unless a named list of wavebands is supplied in which case the
names of the list elements are used. "[q:q]" is appended if quantity = "total" and "[q(wl):q(wl)]"
if quantity = "mean" or quantity = "average".

A data.frame is returned in the case of collections of spectra, containing one column for each frac-
tion definition, an index column with the names of the spectra, and optionally additional columns
with metadata values retrieved from the attributes of the member spectra.

Methods (by class)

• q_ratio(default): Default for generic function

• q_ratio(source_spct): Method for source_spct objects

• q_ratio(source_mspct): Calculates photon:photon from a source_mspct object.

280 q_response

Performance

As this method accepts spectra as its input, it computes irradiances before computing the ratios.
If you need to compute both ratios and irradiances from several hundreds or thousands of spectra,
computing the ratios from previously computed irradiances avoids their repeated computation. A
less dramatic, but still important, increase in performance is available when computing in the same
function call ratios that share the same denominator.

See Also

Other photon and energy ratio functions: e_fraction(), e_ratio(), eq_ratio(), q_fraction(),
qe_ratio()

Examples

q_ratio(sun.spct,
waveband(c(400,500), wb.name = "Blue"),
waveband(c(400,700), wb.name = "White"))

q_response Photon-based photo-response

Description

This function returns the mean response for a given waveband and a response spectrum.

Usage

q_response(
spct,
w.band,
quantity,
time.unit,
scale.factor,
wb.trim,
use.hinges,
...

)

Default S3 method:
q_response(
spct,
w.band,
quantity,
time.unit,
scale.factor,
wb.trim,

q_response 281

use.hinges,
...

)

S3 method for class 'response_spct'
q_response(
spct,
w.band = NULL,
quantity = "total",
time.unit = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = getOption("photobiology.use.hinges", default = NULL),
naming = "default",
...

)

S3 method for class 'response_mspct'
q_response(
spct,
w.band = NULL,
quantity = "total",
time.unit = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = getOption("photobiology.use.hinges", default = NULL),
naming = "default",
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct an R object.

w.band waveband or list of waveband objects or a numeric vector of length two. The
waveband(s) determine the region(s) of the spectrum that are summarized. If a
numeric range is supplied a waveband object is constructed on the fly from it.

quantity character string One of "total", "average" or "mean", "contribution", "contribu-
tion.pc", "relative" or "relative.pc".

time.unit character or lubridate::duration object.

scale.factor numeric vector of length 1, or length equal to that of w.band. Numeric multiplier
applied to returned values.

wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if
FALSE, they are discarded.

282 q_response

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

... other arguments (possibly used by derived methods).
naming character one of "long", "default", "short" or "none". Used to select the type of

names to assign to returned value.
attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to

formal parameter col.names.
idx character Name of the column with the names of the members of the collection

of spectra.
.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts a list of additional options passed into the foreach function when parallel compu-

tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Value

A named numeric vector in the case of methods for individual spectra, with one value for each
waveband passed to parameter w.band. A data.frame in the case of collections of spectra, con-
taining one column for each waveband object, an index column with the names of the spectra, and
optionally additional columns with metadata values retrieved from the attributes of the member
spectra.

By default values are only integrated, but depending on the argument passed to parameter quantity
they can be re-expressed as relative fractions or percentages. In the case of vector output, names
attribute is set to the name of the corresponding waveband unless a named list is supplied in which
case the names of the list members are used.

Methods (by class)

• q_response(default): Default method for generic function
• q_response(response_spct): Method for response spectra.
• q_response(response_mspct): Calculates photon (quantum) response from a response_mspct

Note

The parameter use.hinges controls speed optimization. The defaults should be suitable in most
cases. Only the range of wavelengths in the wavebands is used and all BSWFs are ignored.

See Also

Other response functions: e_response(), response()

Examples

q_response(ccd.spct, new_waveband(200,300))
q_response(photodiode.spct)

r4p_pkgs 283

r4p_pkgs Packages in R for Photobiology suite

Description

A dataset containing the names of all the packages in this suite.

Usage

r4p_pkgs

Format

A character vector.

Details

A character vector.

Examples

r4p_pkgs

rbindspct Row-bind spectra

Description

A wrapper on dplyr::rbind_fill that preserves class and other attributes of spectral objects.

Usage

rbindspct(
l,
use.names = TRUE,
fill = TRUE,
idfactor = TRUE,
attrs.source = NULL,
attrs.simplify = FALSE

)

284 rbindspct

Arguments

l A source_mspct, filter_mspct, reflector_mspct, response_mspct, chroma_mspct,
cps_mspct, generic_mspct object or a list containing source_spct, filter_spct,
reflector_spct, response_spct, chroma_spct, cps_spct, or generic_spct
objects.

use.names logical If TRUE items will be bound by matching column names. By default
TRUE for rbindspct. Columns with duplicate names are bound in the order of
occurrence, similar to base. When TRUE, at least one item of the input list has
to have non-null column names.

fill logical If TRUE fills missing columns with NAs. By default TRUE. When TRUE,
use.names has also to be TRUE, and all items of the input list have to have non-
null column names.

idfactor logical or character Generates an index column of factor type. Default is
(idfactor=TRUE) for both lists and _mspct objects. If idfactor=TRUE then
the column is auto named spct.idx. Alternatively the column name can be
directly provided to idfactor as a character string.

attrs.source integer Index into the members of the list from which attributes should be copied.
If NULL, all attributes are collected into named lists, except that unique comments
are pasted.

attrs.simplify logical Flag indicating that when all values of an attribute are equal for all mem-
bers, the named list will be replaced by a single copy of the value.

Details

Each item of l should be a spectrum, including NULL (skipped) or an empty object (0 rows).
rbindspc is most useful when there are a variable number of (potentially many) objects to stack.
rbindspct always returns at least a generic_spct as long as all elements in l are spectra.

Value

An spectral object of a type common to all bound items containing a concatenation of all the items
passed in. If the argument ’idfactor’ is TRUE, then a factor ’spct.idx’ will be added to the returned
spectral object.

Note

Note that any additional ’user added’ attributes that might exist on individual items of the input list
will not be preserved in the result. The attributes used by the photobiology package are preserved,
and if they are not consistent across the bound spectral objects, a warning is issued.

dplyr::rbind_fill is called internally and the result returned is the highest class in the inher-
itance hierarchy which is common to all elements in the list. If not all members of the list be-
long to one of the _spct classes, an error is triggered. The function sets all data in source_spct
and response_spct objects supplied as arguments into energy-based quantities, and all data in
filter_spct objects into transmittance before the row binding is done. If any member spectrum is
tagged, it is untagged before row binding.

reflectance 285

Examples

default, adds factor 'spct.idx' with letters as levels
spct <- rbindspct(list(sun.spct, sun.spct))
spct
class(spct)

adds factor 'spct.idx' with letters as levels
spct <- rbindspct(list(sun.spct, sun.spct), idfactor = TRUE)
head(spct)
class(spct)

adds factor 'spct.idx' with the names given to the spectra in the list
supplied as formal argument 'l' as levels
spct <- rbindspct(list(one = sun.spct, two = sun.spct), idfactor = TRUE)
head(spct)
class(spct)

adds factor 'ID' with the names given to the spectra in the list
supplied as formal argument 'l' as levels
spct <- rbindspct(list(one = sun.spct, two = sun.spct),

idfactor = "ID")
head(spct)
class(spct)

reflectance Reflectance

Description

Function to calculate the mean, total, or other summary of reflectance for spectral data stored in a
reflector_spct or in an object_spct.

Usage

reflectance(spct, w.band, quantity, wb.trim, use.hinges, ...)

Default S3 method:
reflectance(spct, w.band, quantity, wb.trim, use.hinges, ...)

S3 method for class 'reflector_spct'
reflectance(
spct,
w.band = NULL,
quantity = "average",
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = NULL,
naming = "default",

286 reflectance

...
)

S3 method for class 'object_spct'
reflectance(
spct,
w.band = NULL,
quantity = "average",
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = NULL,
naming = "default",
...

)

S3 method for class 'reflector_mspct'
reflectance(
spct,
w.band = NULL,
quantity = "average",
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = NULL,
naming = "default",
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'object_mspct'
reflectance(
spct,
w.band = NULL,
quantity = "average",
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = NULL,
naming = "default",
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct an R object

w.band waveband or list of waveband objects or a numeric vector of length two. The

reflectance 287

waveband(s) determine the region(s) of the spectrum that are summarized. If a
numeric range is supplied a waveband object is constructed on the fly from it.

quantity character string One of "average" or "mean", "total", "contribution", "contribution.pc",
"relative" or "relative.pc".

wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if
FALSE, they are discarded.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

... other arguments
naming character one of "long", "default", "short" or "none". Used to select the

type of names to assign to returned value.
attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to

formal parameter col.names.
idx character Name of the column with the names of the members of the collection

of spectra.
.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts a list of additional options passed into the foreach function when parallel compu-

tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Value

A named numeric vector in the case of methods for individual spectra, with one value for each
waveband passed to parameter w.band. A data.frame in the case of collections of spectra, con-
taining one column for each waveband object, an index column with the names of the spectra, and
optionally additional columns with metadata values retrieved from the attributes of the member
spectra.

By default values are only integrated, but depending on the argument passed to parameter quantity
they can be re-expressed as relative fractions or percentages. In the case of vector output, names
attribute is set to the name of the corresponding waveband unless a named list is supplied in which
case the names of the list members are used.

Methods (by class)

• reflectance(default): Default for generic function
• reflectance(reflector_spct): Specialization for reflector_spct
• reflectance(object_spct): Specialization for object_spct
• reflectance(reflector_mspct): Calculates reflectance from a reflector_mspct

• reflectance(object_mspct): Calculates reflectance from a object_mspct

Note

The use.hinges parameter controls speed optimization. The defaults should be suitable in most
cases. Only the range of wavelengths in the wavebands is used and all BSWFs are ignored.

288 replace_bad_pixs

Examples

reflectance(black_body.spct, waveband(c(400,700)))
reflectance(white_body.spct, waveband(c(400,700)))

replace_bad_pixs Replace bad pixels in a spectrum

Description

This function replaces data for bad pixels by a local estimate, by either simple interpolation or using
the algorithm of Whitaker and Hayes (2018).

Usage

replace_bad_pixs(
x,
bad.pix.idx = FALSE,
window.width = 11,
method = "run.mean",
na.rm = TRUE

)

Arguments

x numeric vector containing spectral data.

bad.pix.idx logical vector or integer. Index into bad pixels in x.

window.width integer. The full width of the window used for the running mean.

method character The name of the method: "run.mean" is running mean as described
in Whitaker and Hayes (2018); "adj.mean" is mean of adjacent neighbors (iso-
lated bad pixels only).

na.rm logical Treat NA values as additional bad pixels and replace them.

Details

Simple interpolation replaces values of isolated bad pixels by the mean of their two closest neigh-
bors. The running mean approach allows the replacement of short runs of bad pixels by the running
mean of neighboring pixels within a window of user-specified width. The first approach works well
for spectra from array spectrometers to correct for hot and dead pixels in an instrument. The second
approach is most suitable for Raman spectra in which spikes triggered by radiation are wider than a
single pixel but usually not more than five pixels wide.

Value

A logical vector of the same length as x. Values that are TRUE correspond to local spikes in the
data.

response 289

Note

In the current implementation NA values are not removed, and if they are in the neighborhood of bad
pixels, they will result in the generation of additional NAs during their replacement.

References

Whitaker, D. A.; Hayes, K. (2018) A simple algorithm for despiking Raman spectra. Chemometrics
and Intelligent Laboratory Systems, 179, 82-84.

See Also

Other peaks and valleys functions: find_peaks(), find_spikes(), get_peaks(), peaks(), spikes(),
valleys(), wls_at_target()

Examples

in a vector
replace_bad_pixs(c(1, 1, 45, 1, 1), bad.pix.idx = 3)

before replacement
white_led.raw_spct$counts_3[120:125]

replacing bad pixels at index positions 123 and 1994
with(white_led.raw_spct,

replace_bad_pixs(counts_3, bad.pix.idx = c(123, 1994)))[120:125]

response Integrated response

Description

Calculate average photon- or energy-based photo-response.

Usage

response(
spct,
w.band,
unit.out,
quantity,
time.unit,
scale.factor,
wb.trim,
use.hinges,
...

)

290 response

Default S3 method:
response(
spct,
w.band,
unit.out,
quantity,
time.unit,
scale.factor,
wb.trim,
use.hinges,
...

)

S3 method for class 'response_spct'
response(
spct,
w.band = NULL,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
quantity = "total",
time.unit = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = getOption("photobiology.use.hinges", default = NULL),
naming = "default",
...

)

S3 method for class 'response_mspct'
response(
spct,
w.band = NULL,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
quantity = "total",
time.unit = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = getOption("photobiology.use.hinges", default = NULL),
naming = "default",
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct an R object of class "generic_spct".

response 291

w.band waveband or list of waveband objects or a numeric vector of length two. The
waveband(s) determine the region(s) of the spectrum that are summarized. If a
numeric range is supplied a waveband object is constructed on the fly from it.

unit.out character Allowed values "energy", and "photon", or its alias "quantum".

quantity character string One of "average" or "mean", "total", "contribution", "contribution.pc",
"relative" or "relative.pc".

time.unit character or lubridate::duration object.

scale.factor numeric vector of length 1, or length equal to that of w.band. Numeric multiplier
applied to returned values.

wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if
FALSE, they are discarded.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

... other arguments (possibly used by derived methods).

naming character one of "long", "default", "short" or "none". Used to select the
type of names to assign to returned value.

attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to
formal parameter col.names.

idx character Name of the column with the names of the members of the collection
of spectra.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Value

A named numeric vector in the case of methods for individual spectra, with one value for each
waveband passed to parameter w.band. A data.frame in the case of collections of spectra, con-
taining one column for each waveband object, an index column with the names of the spectra, and
optionally additional columns with metadata values retrieved from the attributes of the member
spectra.

Whether returned values are expressed in energy-based or photon-based units depends on unit.out.
By default values are only integrated, but depending on the argument passed to parameter quantity
they can be re-expressed as relative fractions or percentages. In the case of vector output, names
attribute is set to the name of the corresponding waveband unless a named list is supplied in which
case the names of the list members are used.

Methods (by class)

• response(default): Default for generic function

• response(response_spct): Method for response spectra.

• response(response_mspct): Calculates response from a response_mspct

292 Rfr_fraction

Note

The parameter use.hinges controls speed optimization. The defaults should be suitable in most
cases. Only the range of wavelengths in the wavebands is used and all BSWFs are ignored.

See Also

Other response functions: e_response(), q_response()

Rfr_fraction reflectance:reflectance fraction

Description

This function returns the reflectance fraction for a given pair of wavebands of a reflector spectrum.

Usage

Rfr_fraction(
spct,
w.band.num,
w.band.denom,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
...

)

Default S3 method:
Rfr_fraction(
spct,
w.band.num,
w.band.denom,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
...

)

S3 method for class 'reflector_spct'
Rfr_fraction(
spct,
w.band.num = NULL,
w.band.denom = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),

Rfr_fraction 293

use.cached.mult = FALSE,
use.hinges = NULL,
quantity = "mean",
naming = "short",
name.tag = NULL,
...

)

S3 method for class 'reflector_mspct'
Rfr_fraction(
spct,
w.band.num = NULL,
w.band.denom = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
quantity = "mean",
naming = "short",
name.tag = NULL,
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct an object of class "reflector_spct".
w.band.num waveband object or a list of waveband objects used to compute the numerator(s)

and denominator(s) of the fraction(s).
w.band.denom waveband object or a list of waveband objects used to compute the denomina-

tor(s) of the fraction(s).
scale.factor numeric vector of length 1, or length equal to that of w.band. Numeric multiplier

applied to returned values.
wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if

FALSE, they are discarded
use.cached.mult

logical indicating whether multiplier values should be cached between calls
use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before

integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

... other arguments (possibly ignored)
quantity character One of "total", "average" or "mean".
naming character one of "long", "default", "short" or "none". Used to select the type of

names to assign to returned value.

294 Rfr_fraction

name.tag character Used to tag the name of the returned values.

attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to
formal parameter col.names.

idx character Name of the column with the names of the members of the collection
of spectra.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Details

With the default quantity = "mean" or quantity = "average" the ratio is based on two mean
spectral reflectance, one computed for each waveband.

Rfrλ(s, wbnum)

Rfrλ(s, wbdenom) + Rfrλ(s, wbnum)

If the argument is set to quantity = "total" the fraction is based on two integrated reflectance,
one computed for each waveband.

Rfr(s, wbnum)

Rfr(s, wbdenom) + Rfr(s, wbnum)

Only if the wavelength expanse of the two wavebands is the same, these two ratios are numerically
identical.

Value

In the case of methods for individual spectra, a numeric vector with name attribute set. The name
is based on the name of the wavebands unless a named list of wavebands is supplied in which
case the names of the list elements are used. "[Rfr:Rfr]" is appended if quantity = "total" and
"[Rfr(wl):Rfr(wl)]" if quantity = "mean" or quantity = "average".

A data.frame is returned in the case of collections of spectra, containing one column for each frac-
tion definition, an index column with the names of the spectra, and optionally additional columns
with metadata values retrieved from the attributes of the member spectra.

Fraction definitions are "assembled" from the arguments passed to w.band.num and w.band.denom.
If both arguments are lists of waveband definitions, with an equal number of members, then the
wavebands are paired to obtain as many fractions as the number of wavebands in each list. Recy-
cling for wavebands takes place when the number of denominator and numerator wavebands differ.

Methods (by class)

• Rfr_fraction(default): Default for generic function

• Rfr_fraction(reflector_spct): Method for reflector_spct objects

• Rfr_fraction(reflector_mspct): Calculates Rfr:Rfr from a reflector_mspct object.

Rfr_from_n 295

Note

The last two parameters control speed optimizations. The defaults should be suitable in most cases.
If you will use repeatedly the same SWFs on many spectra measured at exactly the same wave-
lengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that
you are responsible for ensuring that the wavelengths are the same in each call, as the only test done
is for the length of the w.length vector.

See Also

Other Reflectance ratio functions: Rfr_normdiff(), Rfr_ratio()

Examples

Rfr_fraction(Ler_leaf_rflt.spct,
waveband(c(400,500), wb.name = "Blue"),
waveband(c(600,700), wb.name = "Red"))

Rfr_fraction(Ler_leaf_rflt.spct,
waveband(c(400,500), wb.name = "Blue"),
waveband(c(600,700), wb.name = "Red"),
quantity = "total")

Rfr_fraction(Ler_leaf_rflt.spct,
waveband(c(400,500), wb.name = "Blue"),
waveband(c(600,700), wb.name = "Red"),
quantity = "mean")

Rfr_from_n Reflectance at a planar boundary

Description

The reflectance at the planar boundary between two media, or interface, can be computed from
the relative refractive index. Reflectance depends on polarization, and the process of reflection can
generate polarized light through selective reflection of s and p components. A perfectly flat (i.e.,
polished) interface creates specular reflection, and this is the case that these functions describe.
These function describe a single interface, and for example in a glass pane, a light beam will cross
two air-glass interfaces.

Usage

Rfr_from_n(angle_deg, angle = angle_deg/180 * pi, n = 1.5, p_fraction = 0.5)

Rfr_p_from_n(angle_deg, angle = angle_deg/180 * pi, n = 1.5)

Rfr_s_from_n(angle_deg, angle = angle_deg/180 * pi, n = 1.5)

296 Rfr_normdiff

Arguments

angle_deg, angle
numeric vector Angle of incidence of the light beam, in degrees or radians. If
both are supplied, radians take precedence.

n numeric vector, or generic_spct object Relative refractive index. The default 1.5
is suitable for crown glass or acrylic interacting with visible light. n depends on
wavelength, more or less strongly depending on the material.

p_fraction numeric in range 0 to 1. Polarization, defaults to 0.5 assuming light that is not
polarized.

Details

These functions implement Fresnel’s formulae. All parameters accept vectors as arguments. If
both n and angle are vectors with length different from one, they should both have the same length.
Reflectance depends on polarization, the s and p components need to be computed separately and
added up. Rfr_from_n() is for non-polarized light, i.e., with equal contribution of the two compo-
nents.

Value

If n is a numeric vector the returned value is a vector of reflectances, while if n is a generic_spct
object the returned value is a reflector_spct object.

Examples

Rfr_from_n(0:90)
Rfr_from_n(0:90, p_fraction = 1)
Rfr_from_n(0:90, n = 1.333) # water

Rfr_normdiff reflectance:reflectance normalised difference

Description

This function returns the reflectance normalized difference index for a given pair of wavebands of
a reflector spectrum.

Usage

Rfr_normdiff(
spct,
w.band.plus,
w.band.minus,
scale.factor,
wb.trim,
use.cached.mult,

Rfr_normdiff 297

use.hinges,
...

)

Default S3 method:
Rfr_normdiff(
spct,
w.band.plus,
w.band.minus,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
...

)

S3 method for class 'reflector_spct'
Rfr_normdiff(
spct,
w.band.plus = NULL,
w.band.minus = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
quantity = "mean",
naming = "short",
name.tag = NULL,
...

)

S3 method for class 'reflector_mspct'
Rfr_normdiff(
spct,
w.band.plus = NULL,
w.band.minus = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
quantity = "mean",
naming = "short",
name.tag = NULL,
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

298 Rfr_normdiff

)

Arguments

spct an object of class "reflector_spct".
w.band.plus, w.band.minus

waveband object(s) or a list(s) of waveband objects used to compute the additive
and subtractive reflectance terms of the normalized difference index.

scale.factor numeric vector of length 1, or length equal to that of w.band. Numeric multiplier
applied to returned values.

wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if
FALSE, they are discarded

use.cached.mult

logical indicating whether multiplier values should be cached between calls
use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before

integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

... other arguments (possibly ignored)
quantity character One of "total", "average" or "mean".
naming character one of "long", "default", "short" or "none". Used to select the type of

names to assign to returned value.
name.tag character Used to tag the name of the returned values.
attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to

formal parameter col.names.
idx character Name of the column with the names of the members of the collection

of spectra.
.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts a list of additional options passed into the foreach function when parallel compu-

tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Details

With the default quantity = "mean" or quantity = "average" the ratio is based on two values of
mean spectral photon reflectance, one computed for each waveband.

Rfrλ(s, wbplus)− Rfrλ(s, wbminus)

Rfrλ(s, wbplus) + Rfrλ(s, wbminus)

If the argument is set to quantity = "total" the fraction is based on two photon reflectances, one
computed for each waveband.

Rfr(s, wbplus)− Rfr(s, wbminus)

Rfr(s, wbplus) + Rfr(s, wbminus)

Only if the wavelength expanse of the two wavebands is the same, these two ratios are numerically
identical.

Rfr_normdiff 299

Value

In the case of methods for individual spectra, a numeric vector with name attribute set. The name
is based on the name of the wavebands unless a named list of wavebands is supplied in which
case the names of the list elements are used. "[Rfr:Rfr]" is appended if quantity = "total" and
"[Rfr(wl):Rfr(wl)]" if quantity = "mean" or quantity = "average".

A data.frame is returned in the case of collections of spectra, containing one column for each frac-
tion definition, an index column with the names of the spectra, and optionally additional columns
with metadata values retrieved from the attributes of the member spectra.

Fraction definitions are "assembled" from the arguments passed to w.band.num and w.band.denom.
If both arguments are lists of waveband definitions, with an equal number of members, then the
wavebands are paired to obtain as many fractions as the number of wavebands in each list. Recy-
cling for wavebands takes place when the number of denominator and numerator wavebands differ.

Methods (by class)

• Rfr_normdiff(default): Default for generic function

• Rfr_normdiff(reflector_spct): Method for reflector_spct objects

• Rfr_normdiff(reflector_mspct): Calculates Rfr:Rfr from a reflector_mspct object.

Note

The last two parameters control speed optimizations. The defaults should be suitable in most cases.
If you will use repeatedly the same SWFs on many spectra measured at exactly the same wave-
lengths you may obtain some speed up by setting use.cached.mult =T RUE. However, be aware
that you are responsible for ensuring that the wavelengths are the same in each call, as the only test
done is for the length of the w.length vector.

See Also

normalized_diff_ind, accepts different summary functions.

Other Reflectance ratio functions: Rfr_fraction(), Rfr_ratio()

Examples

Rfr_normdiff(Ler_leaf_rflt.spct,
waveband(c(400,500), wb.name = "Blue"),
waveband(c(600,700), wb.name = "Red"))

Rfr_normdiff(Ler_leaf_rflt.spct,
waveband(c(400,500), wb.name = "Blue"),
waveband(c(600,700), wb.name = "Red"),
quantity = "total")

Rfr_normdiff(Ler_leaf_rflt.spct,
waveband(c(400,500), wb.name = "Blue"),
waveband(c(600,700), wb.name = "Red"),
quantity = "mean")

300 Rfr_ratio

Rfr_ratio reflectance:reflectance ratio

Description

This function returns the reflectance ratio for a given pair of wavebands of a reflector spectrum.

Usage

Rfr_ratio(
spct,
w.band.num,
w.band.denom,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
...

)

Default S3 method:
Rfr_ratio(
spct,
w.band.num,
w.band.denom,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
...

)

S3 method for class 'reflector_spct'
Rfr_ratio(
spct,
w.band.num = NULL,
w.band.denom = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
quantity = "mean",
naming = "short",
name.tag = NULL,
...

)

Rfr_ratio 301

S3 method for class 'reflector_mspct'
Rfr_ratio(
spct,
w.band.num = NULL,
w.band.denom = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
quantity = "mean",
naming = "short",
name.tag = NULL,
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct an object of class "reflector_spct".

w.band.num waveband object or a list of waveband objects used to compute the numerator(s)
and denominator(s) of the ratio(s).

w.band.denom waveband object or a list of waveband objects used to compute the denomina-
tor(s) of the ratio(s).

scale.factor numeric vector of length 1, or length equal to that of w.band. Numeric multiplier
applied to returned values.

wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if
FALSE, they are discarded

use.cached.mult

logical indicating whether multiplier values should be cached between calls

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

... other arguments (possibly ignored)

quantity character One of "total", "average" or "mean".

naming character one of "long", "default", "short" or "none". Used to select the type of
names to assign to returned value.

name.tag character Used to tag the name of the returned values.

attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to
formal parameter col.names.

idx character Name of the column with the names of the members of the collection
of spectra.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

302 Rfr_ratio

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Details

With the default quantity = "mean" or quantity = "average" the ratio is based on two mean
spectral reflectance, one computed for each waveband.

Rfrλ(s, wbnum)

Rfrλ(s, wbdenom))

If the argument is set to quantity = "total" the ratio is based on two integrated reflectance, one
computed for each waveband.

Rfr(s, wbnum)

Rfr(s, wbdenom)

Only if the wavelength expanse of the two wavebands is the same, these two ratios are numerically
identical.

Value

In the case of methods for individual spectra, a numeric vector with name attribute set. The name
is based on the name of the wavebands unless a named list of wavebands is supplied in which
case the names of the list elements are used. "[Rfr:Rfr]" is appended if quantity = "total" and
"[Rfr(wl):Rfr(wl)]" if quantity = "mean" or quantity = "average".

A data.frame is returned in the case of collections of spectra, containing one column for each frac-
tion definition, an index column with the names of the spectra, and optionally additional columns
with metadata values retrieved from the attributes of the member spectra.

Fraction definitions are "assembled" from the arguments passed to w.band.num and w.band.denom.
If both arguments are lists of waveband definitions, with an equal number of members, then the
wavebands are paired to obtain as many fractions as the number of wavebands in each list. Recy-
cling for wavebands takes place when the number of denominator and numerator wavebands differ.

Methods (by class)

• Rfr_ratio(default): Default for generic function

• Rfr_ratio(reflector_spct): Method for reflector_spct objects

• Rfr_ratio(reflector_mspct): Calculates Rfr:Rfr from a reflector_mspct object.

Note

The last two parameters control speed optimizations. The defaults should be suitable in most cases.
If you will use repeatedly the same SWFs on many spectra measured at exactly the same wave-
lengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that
you are responsible for ensuring that the wavelengths are the same in each call, as the only test done
is for the length of the w.length vector.

rgb_spct 303

See Also

Other Reflectance ratio functions: Rfr_fraction(), Rfr_normdiff()

Examples

Rfr_ratio(Ler_leaf_rflt.spct,
waveband(c(400,500), wb.name = "Blue"),
waveband(c(600,700), wb.name = "Red"))

Rfr_ratio(Ler_leaf_rflt.spct,
waveband(c(400,500), wb.name = "Blue"),
waveband(c(600,700), wb.name = "Red"),
quantity = "total")

Rfr_ratio(Ler_leaf_rflt.spct,
waveband(c(400,500), wb.name = "Blue"),
waveband(c(600,700), wb.name = "Red"),
quantity = "mean")

rgb_spct RGB color values

Description

This function returns the RGB values for a source spectrum.

Usage

rgb_spct(spct, sens = photobiology::ciexyzCMF2.spct, color.name = NULL)

Arguments

spct an object of class "source_spct"

sens a chroma_spct object with variables w.length, x, y, and z, giving the CC or CMF
definition (default is the proposed human CMF according to CIE 2006.)

color.name character string for naming the rgb color definition

Value

A color defined using rgb(). The numeric values of the RGB components can be obtained

See Also

Other color functions: w_length2rgb(), w_length_range2rgb()

Examples

rgb_spct(sun.spct)

304 rmDerivedSpct

rmDerivedMspct Remove "generic_mspct" and derived class attributes.

Description

Removes from a spectrum object the class attributes "generic_mspct" and any derived class attribute
such as "source_mspct". This operation is done by reference!

Usage

rmDerivedMspct(x)

Arguments

x an R object.

Value

A character vector containing the removed class attribute values. This is different to the behaviour
of function unlist in base R!

Note

If x is an object of any of the multi spectral classes defined in this package, this function changes
by reference the multi spectrum object into the underlying list object. Otherwise, it just leaves x
unchanged. The modified x is also returned invisibly.

See Also

Other set and unset ’multi spectral’ class functions: shared_member_class()

rmDerivedSpct Remove "generic_spct" and derived class attributes.

Description

Removes from a spectrum object the class attributes "generic_spct" and any derived class at-
tribute such as "source_spct". This operation is done by reference!

Usage

rmDerivedSpct(x, keep.classes = NULL)

round 305

Arguments

x an R object.
keep.classes character vector Names of classes to keep. Can be used to retain base class

"generic_spct".

Details

This function alters x itself by reference. If x is not a generic_spct object, x is not modified. This
function behaves similarly to setdiff() but preserving the original order of the character vector of
the S3 class names.

Value

A character vector containing the removed class attribute values. This is different to the behaviour
of function unlist in base R!

Note

If x is an object of any of the spectral classes defined in this package, this function changes by
reference the spectrum object into the underlying data.frame object. Otherwise, it just leaves x
unchanged.

See Also

Other set and unset spectral class functions: setGenericSpct()

Examples

my.spct <- sun.spct
removed <- rmDerivedSpct(my.spct)
removed
class(sun.spct)
class(my.spct)

round Rounding of Numbers

Description

ceiling takes a single numeric argument x and returns a numeric vector containing the smallest
integers not less than the corresponding elements of x. \ floor takes a single numeric argument
x and returns a numeric vector containing the largest integers not greater than the corresponding
elements of x. \ trunc takes a single numeric argument x and returns a numeric vector containing
the integers formed by truncating the values in x toward 0. \ round rounds the values in its first
argument to the specified number of decimal places (default 0). \ signif rounds the values in its
first argument to the specified number of significant digits. \ The functions are applied to the spectral
data, not the wavelengths. The quantity in the spectrum to which the function is applied depends on
the class of x and the current value of output options.

306 select_spct_attributes

Usage

S3 method for class 'generic_spct'
round(x, digits = 0)

S3 method for class 'generic_spct'
signif(x, digits = 6)

S3 method for class 'generic_spct'
ceiling(x)

S3 method for class 'generic_spct'
floor(x)

S3 method for class 'generic_spct'
trunc(x, ...)

Arguments

x an object of class "generic_spct" or a derived class.

digits integer indicating the number of decimal places (round) or significant digits (sig-
nif) to be used. Negative values are allowed (see ’Details’).

... arguments to be passed to methods.

See Also

Other math operators and functions: MathFun, ^.generic_spct(), convolve_each(), div-.generic_spct,
log(), minus-.generic_spct, mod-.generic_spct, plus-.generic_spct, sign(), slash-.generic_spct,
times-.generic_spct

select_spct_attributes

Merge user supplied attribute names with default ones

Description

Allow users to add and subtract from default attributes in addition to providing a given set of at-
tributes.

Usage

select_spct_attributes(attributes, attributes.default = spct_attributes())

spct_attributes(.class = "all", attributes = "*")

setBSWFUsed 307

Arguments

attributes, attributes.default
character vector or a list of character vectors.

.class character Name of spectral class.

Details

Vectors of character strings passed as argument to attributes are parsed so that if the first member
string is "+", the remaining members are added to those in attributes.default; if it is "-" the
remaining members are removed from in attributes.default; and if it is "=" the remaining
members replace those in in attributes.default. If the first member is none of these three
strings, the behaviour is the same as when the first string is "=". If attributes is NULL all the
attributes in attributes.default are used and if it is "" no attribute names are returned, "" has
precedence over other member values. The order of the names of annotations has no meaning: the
vector is interpreted as a set except for the three possible "operators" at position 1.

Value

A character vector of attribute names.

See Also

get_attributes

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrDesc(), getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(),
getWhereMeasured(), get_attributes(), isValidInstrDesc(), isValidInstrSettings(), setFilterProperties(),
setHowMeasured(), setInstrDesc(), setInstrSettings(), setSoluteProperties(), setWhatMeasured(),
setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(), subset_attributes(),
trimInstrDesc(), trimInstrSettings()

setBSWFUsed The "bswf.used" attribute

Description

Function to set by reference the "time.unit" attribute of an existing source_spct object, and
function to query its value.

Usage

setBSWFUsed(x, bswf.used = c("none", "unknown"))

getBSWFUsed(x)

Arguments

x a source_spct object.
bswf.used a character string, either "none" or the name of a BSWF.

308 setFilterProperties

Details

Effective spectral irradiance, describes an estimate of the strength of the radiation towards eliciting
a given response, frequently, but not only a biological response. The biological spectral weighting
function, BSWF, used, can be for example that of the human eye, or an action spectrum, such as the
erythema, or reddening of the human skin, action spectrum.

IBE(λ) = I(λ)× fBE(λ)

where, IBE(λ) is the biologically effective spectral irradiance, I(λ) is the spectral irradiance and
fBE(λ) is one of many possible BSWF.

When the values stored in a source_spct object have been multiplied by those from a curve de-
scribing a certain response or effect, the attribute "time.unit" is set accordingly to track the trans-
formation applied to the data. When a spectral response data have been directly measured, they
should be stored in an object of class response_spct as they are expressed in actual response units,
not of class source_spct expressed in irradiance units, even if weighted. However, when like in
the case of spectral illuminance, the aim is technical measure of a light source, class source_spct
should be used and the BSWF set in the metadata.

This attribute is normally set by the function or operator used to apply the BSWF to spectral irradi-
ance data, or set when the source_spct object is created.

Value

x or the character value stored in x.

Note

Function setBSWFUsed() alters x itself by reference and in addition returns x invisibly. If x is
not a source_spct, x is not modified. The behaviour of this function is ’unusual’ in that the
default for parameter bswf.used is used only if x does not already have this attribute set. Function
getBSWFUsed() returns the value to which the attribute is set as a character string and otherwise
NA.

Examples

getBSWFUsed(sun.spct)

setFilterProperties Set the "filter.properties" attribute

Description

Function to set by reference the "filter.properties" attribute of an existing filter_spct object.

setFilterProperties 309

Usage

setFilterProperties(
x,
filter.properties = NULL,
pass.null = FALSE,
Rfr.constant = NA_real_,
thickness = NA_real_,
attenuation.mode = NA_character_,
verbose = TRUE

)

filter_properties(x) <- value

Arguments

x a filter_spct object
filter.properties, value

a list with fields named "Rfr.constant", "thickness" and "attenuation.mode".

pass.null logical If TRUE, the parameters to the next three parameters will be always ig-
nored, otherwise they will be used to build an object of class "filter.properties"
when the argument passed to parameter filter.properties is NULL.

Rfr.constant numeric The value of the reflection factor [/1].

thickness numeric The thickness of the material [m].
attenuation.mode

character One of "reflection", "absorption", "absorption.layer", "scattering",
"mixed" or "stack".

verbose logical Flag to enable warning when applied to object of unsuported class.

Details

Storing filter properties allows inter-conversion between internal and total transmittance, as well
as computation of transmittance for arbitrary thickness of the material. Whether computations are
valid depend on the homogeneity of the material. The parameter pass.null makes it possible to
remove the attribute.

Value

x

Note

This function alters x itself by reference and in addition returns x invisibly. If x is not a filter_spct
object, x is not modified.

The values of attenuation.mode "reflection", "absorption", "absorption.layer" or "scattering"
should be used when one of these processes is clearly the main one; "mixed" is for when multiple
modes play a significanr role, i.e., when a simple correction using a single value of Rfr across wave-
lengths is not possible; "absorption.layer" is for cases when a thin absorbing layer is deposited

310 setGenericSpct

on the surface of a transparent support or enclosed between two sheets of glass or other transparent
material. Finally "stack" is for multiple individual filters piled. If in doubt, set this argument to NA
to ensure that computation of spectra for a different thickness remains disabled.

See Also

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrDesc(), getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(),
getWhereMeasured(), get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),
setHowMeasured(), setInstrDesc(), setInstrSettings(), setSoluteProperties(), setWhatMeasured(),
setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(), subset_attributes(),
trimInstrDesc(), trimInstrSettings()

Examples

my.spct <- polyester.spct
filter_properties(my.spct)
filter_properties(my.spct) <- NULL
filter_properties(my.spct)
filter_properties(my.spct, return.null = TRUE)
filter_properties(my.spct) <- list(Rfr.constant = 0.01,

thickness = 125e-6,
attenuation.mode = "absorption")

filter_properties(my.spct)

setGenericSpct Convert an R object into a spectrum object.

Description

Sets the class attribute of a data.frame or an object of a derived class to "generic_spct".

Usage

setGenericSpct(x, multiple.wl = 1L, idfactor = NULL)

setCalibrationSpct(
x,
strict.range = getOption("photobiology.strict.range", default = FALSE),
multiple.wl = 1L,
idfactor = NULL

)

setRawSpct(
x,
strict.range = getOption("photobiology.strict.range", default = FALSE),
multiple.wl = 1L,

setGenericSpct 311

idfactor = NULL
)

setCpsSpct(
x,
time.unit = "second",
strict.range = getOption("photobiology.strict.range", default = FALSE),
multiple.wl = 1L,
idfactor = NULL

)

setFilterSpct(
x,
Tfr.type = c("total", "internal"),
Rfr.constant = NA_real_,
thickness = NA_real_,
attenuation.mode = NA_character_,
strict.range = getOption("photobiology.strict.range", default = FALSE),
multiple.wl = 1L,
idfactor = NULL

)

setSoluteSpct(
x,
K.type = c("attenuation", "absorption", "scattering"),
name = NA_character_,
mass = NA_character_,
formula = NA_character_,
structure = grDevices::as.raster(matrix()),
ID = NA_character_,
solvent.name = NA_character_,
solvent.ID = NA_character_,
strict.range = getOption("photobiology.strict.range", default = FALSE),
multiple.wl = 1L,
idfactor = NULL

)

setReflectorSpct(
x,
Rfr.type = c("total", "specular"),
strict.range = getOption("photobiology.strict.range", default = FALSE),
multiple.wl = 1L,
idfactor = NULL

)

setObjectSpct(
x,
Tfr.type = c("total", "internal"),

312 setGenericSpct

Rfr.type = c("total", "specular"),
strict.range = getOption("photobiology.strict.range", default = FALSE),
multiple.wl = 1L,
idfactor = NULL

)

setResponseSpct(
x,
time.unit = "second",
response.type = "response",
multiple.wl = 1L,
idfactor = NULL

)

setSourceSpct(
x,
time.unit = "second",
bswf.used = c("none", "unknown"),
strict.range = getOption("photobiology.strict.range", default = FALSE),
multiple.wl = 1L,
idfactor = NULL

)

setChromaSpct(x, multiple.wl = 1L, idfactor = NULL)

Arguments

x data.frame, list or generic_spct and derived classes

multiple.wl numeric Maximum number of repeated w.length entries with same value.

idfactor character Name of factor distinguishing multiple spectra when stored longitudi-
nally (required if mulitple.wl > 1).

strict.range logical Flag indicating whether off-range values result in an error instead of a
warning.

time.unit character string indicating the time unit used for spectral irradiance or exposure
("second", "day" or "exposure") or an object of class duration as defined in
package lubridate.

Tfr.type character Either "total" or "internal".

Rfr.constant numeric The value of the reflection factor [/1].

thickness numeric The thickness of the material.
attenuation.mode

character One of "reflection", "absorption" or "mixed".

K.type character A string, either "attenuation", "absorption" or "scattering".
name, solvent.name

character The names of the substance and of the solvent. A named character
vector, with member names such as "IUPAC" for the authority.

mass numeric The mass in Dalton (Da = g/mol).

setGenericSpct 313

formula character The molecular formula.

structure raster A bitmap of the structure.

ID, solvent.ID character The IDs of the substance and of the solvent. A named character vector,
with member names such as "ChemSpider" or "PubChen" for the authority.

Rfr.type character A string, either "total" or "specular".

response.type a character string, either "response" or "action".

bswf.used character A string, either "none" or the name of a BSWF. (Users seldom need
to change the default, as this metadata value is in normal use set by operators or
functions that apply a BSWF.)

Details

This method alters x itself by reference and in addition returns the modified x invisibly. The wave-
length values and data are checked for validity and out-of-range values trigger warnings. These
checks are done during construction by means of the matching check_spct methods, unless checks
have been disabled by setting the corresponding option (see enable_check_spct).

Value

x

Functions

• setCalibrationSpct(): Set class of a an object to "calibration_spct".

• setRawSpct(): Set class of a an object to "raw_spct".

• setCpsSpct(): Set class of a an object to "cps_spct".

• setFilterSpct(): Set class of an object to "filter_spct".

• setSoluteSpct(): Set class of an object to "solute_spct".

• setReflectorSpct(): Set class of a an object to "reflector_spct".

• setObjectSpct(): Set class of an object to "object_spct".

• setResponseSpct(): Set class of an object to "response_spct".

• setSourceSpct(): Set class of an object to "source_spct".

• setChromaSpct(): Set class of an object to "chroma_spct".

Warning!

Not entering metadata when creating an object will limit the available operations!

Note

"internal" transmittance is defined as the transmittance of the material body itself, while "total"
transmittance includes the effects of surface reflectance on the amount of light transmitted. For non-
diffusing materials like glass an approximate Rfr.constant value can be used to inter-convert total
and internal transmittance values. Use NA if the the mode is not known, or not applicable, e.g.,

314 setHowMeasured

for materials subject to internal scattering. The validity of computations related to thickness of the
material or length of the light path depends on the availability and accuracy of the metadata.

Particles in suspension unlike dissolved solutes scatter light. Thus two different processes can
attenuate light in liquid media: absorption and scattering. Coefficients of attenuation are always
based on measurements of internal absorbance or internal transmittance. In practice this is achieved
by using as reference pure solvent in a vessel, such as a spectrometer cuvette, called blank. The
measurement of the blank is done sequentially, before or after the sample of interest in single beam
spectrophotometers and concurrently in double beam spectrophotometers. K.type describes the
process of attenuation: "attenuation", "absorption" or "scattering", with "attenuation"
used for cases of mixed modes of attenuation. Set K.type = NA if not available or unknown, or not
applicable.

"specular" reflectance is defined as that measured by collecting the light reflected by the surface
at the “mirror” of the angle of incidence; i.e., using a probe with a narrow angle of aperture. Usually
measured close to normal angle of incidence. "total" reflectance is defined as that measured by
collecting all the light reflected by the surface; i.e., using an integrating sphere. In a mirror, re-
flectance is mostly specular, while on the white surface of a sheet of paper scattering predominates.
In the first case the value for total reflectance is not much more than for specular reflectance, while
in the second case the difference is much larger as the "specular" component is much smaller.

See Also

Other set and unset spectral class functions: rmDerivedSpct()

Examples

my.df <- data.frame(w.length = 300:309, s.e.irrad = rep(100, 10))
is.source_spct(my.df)
setSourceSpct(my.df)
is.source_spct(my.df)

setHowMeasured Set the "how.measured" attribute

Description

Method to set the "how.measured" attribute of an R object.

Usage

setHowMeasured(x, ...)

how_measured(x) <- value

Default S3 method:
setHowMeasured(x, how.measured, ...)

setHowMeasured 315

S3 method for class 'generic_spct'
setHowMeasured(x, how.measured, ...)

S3 method for class 'summary_generic_spct'
setHowMeasured(x, how.measured, ...)

S3 method for class 'data.frame'
setHowMeasured(x, how.measured, ...)

S3 method for class 'generic_mspct'
setHowMeasured(x, how.measured, ...)

Arguments

x a R object.

... Allows use of additional arguments in methods for other classes.

how.measured, value
a list or a character string.

Value

x modified by reference.

Methods (by class)

• setHowMeasured(default): default

• setHowMeasured(generic_spct): generic_spct

• setHowMeasured(summary_generic_spct): summary_generic_spct

• setHowMeasured(data.frame): data.frame

• setHowMeasured(generic_mspct): generic_mspct

Note

This function alters x itself by reference and in addition returns x invisibly. If x is not an object of
a supported class, x is silently returned unchanged.

See Also

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrDesc(), getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(),
getWhereMeasured(), get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),
setFilterProperties(), setInstrDesc(), setInstrSettings(), setSoluteProperties(), setWhatMeasured(),
setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(), subset_attributes(),
trimInstrDesc(), trimInstrSettings()

316 setIdFactor

Examples

my.spct <- sun.spct
how_measured(my.spct)
how_measured(my.spct) <- "Simulated with a radiation transfer model"
how_measured(my.spct)
how_measured(my.spct) <- NULL
how_measured(my.spct)

setIdFactor Set the "idfactor" attribute

Description

Function to set, rename or unset by reference the "idfactor" attribute of an existing object of class
generic_spct or an object of a class derived from generic_spct.

Usage

setIdFactor(x, idfactor)

id_factor(x) <- value

Arguments

x a generic_spct object.

idfactor, value character The name of a factor identifying multiple spectra stored longitudinally.

Details

If the attribute idfactor is already set, and a variable with name equal to the value passed as
argument to idfactor does not exist in x, the currently set variable is renamed and the attribute
value updated. If a variable named as the argument passed to idfactor exists in x, it will be set
as id by storing this name in the attribute. If the value passed as argument to idfactor is NULL the
attribute will be unset. If the attribute is not already set and there is no member variable in x with a
name matching the argument passed to idfactor, an error is triggered.

Value

x

Note

This function alters x itself by reference and in addition returns x invisibly. If x is not a generic_spct
or an object of a class derived from generic_spct, x is not modified.

setInstrDesc 317

See Also

Other idfactor attribute functions: getIdFactor()

Examples

my.spct <- sun_evening.spct

inspecting
id_factor(sun.spct) # no idfactor set

id_factor(my.spct)
colnames(my.spct)

renaming
id_factor(my.spct) <- "time"
getIdFactor(my.spct)
colnames(my.spct)

removing
setIdFactor(my.spct, NULL)
getIdFactor(my.spct)
colnames(my.spct)

setInstrDesc Set the "instr.desc" attribute

Description

Function to set by reference the "instr.desc" attribute of an existing generic_spct or derived-
class object, or of a summary_generic_spct or derived-class object.

Usage

setInstrDesc(x, instr.desc)

instr_descriptor(x) <- value

Arguments

x a generic_spct object or a summary_generic_spct object.
instr.desc, value

a list, instr_desc object, or NULL.

Details

This function alters x itself by reference and in addition returns x invisibly. If x is not a generic_spct
object, x is not modified, silently. If inst.desc = NULL is passed in the call, the attribute "instr.desc"
is removed. This function is very rarely called from user code.

318 setInstrSettings

Value

x, with the value of its "instr.desc" attribute set to the value of the argument passed to instr.desc
or to value.

Note

The fields to be passed in the list instr.desc in part vary depending on the instrument brand and
model.

See Also

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrDesc(), getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(),
getWhereMeasured(), get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),
setFilterProperties(), setHowMeasured(), setInstrSettings(), setSoluteProperties(),
setWhatMeasured(), setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(),
subset_attributes(), trimInstrDesc(), trimInstrSettings()

setInstrSettings Set the "instr.settings" attribute

Description

Function to set by reference the "what.measured" attribute of a generic_spct, or of a summary_generic_spct
object.

Usage

setInstrSettings(x, instr.settings)

instr_settings(x) <- value

Arguments

x a generic_spct object or a summary_generic_spct object.
instr.settings, value

a list or a instr_settings object.

Details

This function alters x itself by reference and in addition returns x invisibly. If x is not a generic_spct
object or a summary_generic_spct object, x is not modified, silently. If inst.desc = NULL is
passed in the call, the attribute instr.settings is removed. This function is very rarely called
from user code.

Value

x

setKType 319

See Also

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrDesc(), getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(),
getWhereMeasured(), get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),
setFilterProperties(), setHowMeasured(), setInstrDesc(), setSoluteProperties(), setWhatMeasured(),
setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(), subset_attributes(),
trimInstrDesc(), trimInstrSettings()

setKType Set the "K.type" attribute

Description

Function to set by reference the "K.type" attribute of an existing solute_spct object

Usage

setKType(x, K.type = c("attenuation", "absorption", "scattering"))

Arguments

x a solute_spct or a summary_solute_spct object.

K.type character A string, either "attenuation", "absorption" or "scattering".

Value

x

Note

This function alters x itself by reference and in addition returns x invisibly. If x is not a solute_spct
object, x is not modified The behaviour of this function is ’unusual’ in that the default for parameter
K.type is used only if x does not already have this attribute set.

See Also

Other K attribute functions: getKType()

Examples

print("missing example")

320 setMultipleWl

setMultipleWl Set the "multiple.wl" attribute

Description

Function to set by reference the multiple.wl attribute of an existing generic_spct object or an
object of a class derived from generic_spct.

Usage

setMultipleWl(x, multiple.wl = NULL)

multiple_wl(x) <- value

Arguments

x a generic_spct object
multiple.wl, value

numeric >= 1 If multiple.wl = NULL, the default, the value is guessed.

Details

These methods set the attribute multiple.wl and if the argument of multiple.wl or value is
NULL, they call findMultipleWl to obtain a guess. Pathological cases where multiple spectra in
long form do not share any wavelength value underestimate the number of spectra, and require an
explicit numeric argument. Calling these methods is very rarely needed in user code.

Value

x, modified in place by reference. If x is not a generic_spct or an object of a class derived from
generic_spct, x is not modified.

See Also

Other multiple.wl attribute functions: getMultipleWl()

Examples

my.spct <- sun.spct
setMultipleWl(my.spct) # default is to search x, here my.spct
getMultipleWl(my.spct)

multiple_wl(my.spct) <- 1L # must be a valid value or NULL!
multiple_wl(my.spct)

multiple_wl(my.spct) <- NULL # must be a valid value or NULL!
multiple_wl(my.spct)

setNormalized 321

setNormalized Set the "normalized" and "normalization" attributes

Description

Function to write the "normalized" attribute of an existing generic_spct object.

Usage

setNormalized(
x,
norm = FALSE,
norm.type = NA_character_,
norm.factors = NA_real_,
norm.cols = NA_character_,
norm.range = rep(NA_real_, 2),
verbose = getOption("verbose_as_default", default = FALSE)

)

setNormalised(
x,
norm = FALSE,
norm.type = NA_character_,
norm.factors = NA_real_,
norm.cols = NA_character_,
norm.range = rep(NA_real_, 2),
verbose = getOption("verbose_as_default", default = FALSE)

)

Arguments

x a generic_spct object.

norm numeric (or logical) Normalization wavelength (nanometres).

norm.type character Type of normalization applied.

norm.factors numeric The scaling factor(s) so that dividing the spectral values by this factor
reverts the normalization.

norm.cols character The name(s) of the data columns normalized.

norm.range numeric The wavelength range used for normalization (nm).

verbose logical Flag enabling or silencing informative warnings.

Details

This function is used internally, although occasionally users may want to use it to "pretend" that
spectral data have not been normalized. Use normalize() methods to apply a normalization and
set the attributes accordingly. Function setNormalized() only sets the attributes that store the

322 setResponseType

metadata corresponding to an already applied normalization. Thus a trace of the transformations
applied to spectral data is kept, which currently is used to renormalize the spectra when the quantity
used for expression is changed with a conversion function. It is also used in other packages like
’ggspectra’ when generating automatically axis labels. If x is not a generic_spct object, x is not
modified.

Note

Passing a logical as argument to norm is deprecated but accepted silently for backwards compati-
bility.

setNormalised() is a synonym for this setNormalized() method.

See Also

Other rescaling functions: fscale(), fshift(), getNormalized(), getScaled(), is_normalized(),
is_scaled(), normalize(), setScaled()

setResponseType Set the "response.type" attribute

Description

Functions to set by reference the "response.type" attribute of an existing response_spct object,
and to query its value.

Usage

setResponseType(x, response.type = c("response", "action"))

getResponseType(x)

Arguments

x a response_spct object

response.type a character string, either "response" or "action"

Details

Objects of class response_spct() can contain data for a response spectrum or an action spectrum.
Response spectra are measured using the same photon (or energy) irradiance at each wavelength.
Action spectra are derived from dose response curves at each wavelength, and responsivity at each
wavelength is expressed as the reciprocal of the photon fluence required to obtain a fixed level of
response. In the case of biological systems the action and response spectra frequently differ in their
shape and spectral values. This is a property inherent to a data set and not subject to conversions,
thus normally set when a response_spct object is created and never modified.

setRfrType 323

Value

x

Note

This function alters x itself by reference and in addition returns x invisibly. If x is not a re-
sponse_spct object, x is not modified The behaviour of this function is ’unusual’ in that the default
for parameter response.type is used only if x does not already have this attribute set.

Examples

my.spct <- ccd.spct
setResponseType(my.spct, "action")
getResponseType(ccd.spct)
getResponseType(sun.spct)

setRfrType The "Rfr.type" attribute

Description

Function to set by reference the "Rfr.type" attribute of an existing reflector_spct or object_spct
object, and function to query its current status.

Usage

setRfrType(x, Rfr.type = c("total", "specular"))

getRfrType(x)

Arguments

x a reflector_spct or an object_spct object.

Rfr.type character String, either "total" or "specular".

Details

Reflectance can be measured by collecting the light reflected out of a surface in all directions, using
an integrating sphere, obtaining a quantity called total reflectance. If instead, the reflected light
is collected at a narrow angle mirroring the incident angle, only part of the reflected radiation is
collected, corresponding to mirror-like reflection, called specular. Thus,

ρ = ρs + ρd

where, ρ is total reflectance, and its components, ρs, specular reflectance, and ρd, diffuse or scat-
tered reflectance. When strong scattering takes place, total reflectance can be much more than the
specular component. In most cases ρd is not measured directly.

324 setScaled

The distinction depends on the measuring procedure, and this information is stored as metadata in
an attribute of objects of classes reflector_spct or an object_spct.

When converting between internal and total transmittance, or computing absorptance by difference
based on transmittance and reflectance, only total reflectance can be meaningfully used (if the object
does not noticeably scatter light, it may be possible to assume that specular reflectance represents
most of the total reflectance.) Consequently, checking the stored value of this attribute is used as a
safeguard in these compuations.

This attribute is normally set when the source_spct object is created.

Value

x, with the modified attribute in the case of setRfrType() or the character value, "total" or
"specular", stored in the "Rfr.type" attribute of x in the case of getRfrType(). If x is not a
reflector_spct or an object_spct object, NA is returned.

Note

Function setRfrType() alters x itself by reference and in addition returns x invisibly. If x is not
a reflector_spct or an object_spct object, x is not modified. The behaviour of this function
is ’unusual’ in that the default for parameter Rfr.type is used only if x does not already have this
attribute set.

See Also

reflector_spct and object_spct.

Examples

my.spct <- reflector_spct(w.length = 400:409, Rfr = 0.1)
getRfrType(my.spct)
setRfrType(my.spct, "specular")
getRfrType(my.spct)

setScaled Set the "scaled" attribute

Description

Function to write the "scaled" attribute of an existing generic_spct object.

Usage

setScaled(x, ...)

Default S3 method:
setScaled(x, ...)

setScaled 325

S3 method for class 'generic_spct'
setScaled(x, ..., scaled = FALSE)

S3 method for class 'summary_generic_spct'
setScaled(x, ..., scaled = FALSE)

S3 method for class 'generic_mspct'
setScaled(x, ..., scaled = FALSE)

Arguments

x a generic_spct object.

... currently ignored.

scaled logical with FALSE meaning that values are expressed in absolute physical units
and TRUE meaning that relative units are used. If NULL the attribute is not modi-
fied.

Value

a new object of the same class as x.

a new object of the same class as x.

a new object of the same class as x.

a new object of the same class as x.

Methods (by class)

• setScaled(default): Default for generic function

• setScaled(generic_spct): Specialization for generic_spct

• setScaled(summary_generic_spct): Specialization for summary_generic_spct

• setScaled(generic_mspct): Specialization for generic_mspct

Note

if x is not a generic_spct object, x is not modified.

See Also

Other rescaling functions: fscale(), fshift(), getNormalized(), getScaled(), is_normalized(),
is_scaled(), normalize(), setNormalized()

326 setSoluteProperties

setSoluteProperties Set the "solute.properties" attribute

Description

Function to set by reference the "solute.properties" attribute of an existing solute_spct ob-
ject.

Usage

setSoluteProperties(
x,
solute.properties = NULL,
pass.null = FALSE,
mass = NA_real_,
formula = NULL,
structure = grDevices::as.raster(matrix()),
name = NA_character_,
ID = NA_character_,
solvent.name = NA_character_,
solvent.ID = NA_character_,
verbose = TRUE

)

solute_properties(x) <- value

Arguments

x solute_spct A spectrum of coefficients of attenuation.
solute.properties, value

a list with fields named "mass", "formula", "structure", "name" and "ID".

pass.null logical If TRUE, the parameters to the next three parameters will be always ig-
nored, otherwise they will be used to build an object of class "solute.properties"
when the argument to solute.properties is NULL.

mass numeric The mass in Dalton [Da = gmol−1].

formula character The molecular formula.

structure raster A bitmap of the structure.
name, solvent.name

character The name of the substance and the name of the solvent. A named
character vector, with member names such as "IUPAC" for the authority.

ID, solvent.ID character The names of the substance and of the solvent. A named character
vector, with member names such as "ChemSpider" or "PubChen" for the author-
ity.

verbose logical Flag to enable warning when applied to object of unsuported class.

setSoluteProperties 327

Details

Storing solute properties allows inter-conversion between bases of expression, and ensures the un-
ambiguous identification of the substances to which the spectral data refer. These properties make
it possible to compute filter_spct objects for solutions of the solute, i.e., absorption spectra of
liquid filters. The parameter pass.null makes it possible to remove the attribute. The solvent used
for the determination of the attenuation coefficient is important metadata as the solvent can alter the
spectral ansorption properties of the solute.

Value

x

Note

This function alters x itself by reference and in addition returns x invisibly. If x is not a filter_spct
object, x is not modified.

See Also

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrDesc(), getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(),
getWhereMeasured(), get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),
setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setWhatMeasured(),
setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(), subset_attributes(),
trimInstrDesc(), trimInstrSettings()

Examples

solute.properties <-
list(formula = c(text = "H2O", html = "H₂", TeX = "H_2O"),

name = c("water", IUPAC = "oxidane"),
structure = grDevices::as.raster(matrix()),
mass = 18.015, # Da
ID = c(ChemSpider = "917", CID = "962"),
solvent.name = NA_character_,
solvent.ID = NA_character_)

my.spct <- solute_spct()
solute_properties(my.spct) <- solute.properties
solute_properties(my.spct)
solute_properties(my.spct) <- NULL
solute_properties(my.spct)
solute_properties(my.spct, return.null = TRUE)
solute_properties(my.spct)

328 setTfrType

setTfrType The "Tfr.type" attribute

Description

Function to set by reference the "Tfr.type" attribute of an existing filter_spct or object_spct
object, and function to query its current status.

Usage

setTfrType(x, Tfr.type = c("total", "internal"))

getTfrType(x)

Arguments

x a filter_spct or an object_spct object.

Tfr.type character string, either "total" or "internal".

Details

Transmittance, T or τ , has two different definitions that differ in how reflectance is taken into
account: "total" transmittance and "internal" transmittance. They are both in widespread use, and
rather frequently the interconversion is approximate or even not possible.

T =
Iz
I0

τ =
Iz

I0 − ρ

where T is total transmittance and τ is internal transmittance; I0 is the radiant power incident on
an object and Iz is the radiant power at depth z, in most cases measured below the non-illuminated
side of the object, and ρ is the total reflectance at the illuminated surface.

The transmittance of an object as a whole depends on the length of the light path within the object
and reflectance on the angle of incidence of the light on the surface. When the light beam is near-
normal to the surface, both quantities are at their minimum.

Thus, the interconversion of total spectral transmittance, T (λ), into internal spectral transmittance,
τ(λ), is strictly possible only if the spectral reflectance ρ(λ) is known. In practice, the spectral
reflectance is approximated by a constant value that is assumed independent of wavelength.

Objects of class object_spct contain spectral data for both spectral transmittance and spectral
reflectance or spectral absorptance, making conversion possible. Objects of class filter_spct do
not contain spectral reflectance data, but may have a known approximate value for a reflectance
constant, but this is frequently not the case.

The type of transmittance data stored in an object of these classes is recorded as metadata in attribute
Tfr.Type. The functions described here set and query this attribute. Contrary to directly accessing

setTfrType 329

the attribute, the query function consistently returns NA both when the attribute is set to NA and
when the attribute has not been set, as can be the case of objects created with early versions of the
package.

Absorptance, α, and absorbance, A, are normally given as "internal", and this is the assumption
in this package. However, as in some cases strict enforcement would prevent conversions, this is not
strictly enforced. (IUPAC, recommends use of the name attenuance (formerly extinction) instead of
absorbance when light attenuation involves processes other than pure absorption, such as scattering
and luminescence.)

1 = α+ ρ+ τ

A10 = log10
1

α
= − log10 α

When a solvent-only blank is used when measuring the absorbance of a solution, the absorbance
is not only "internal" to the solution (discounting reflections at the cuvette boundaries) but also
discounts the effect of the solvent itself. When measuring solid samples, like a sheet of glass, in
most cases a blank is not available.

For semitransparent objects like glass, it is important to take into account that reflections occur at
each interface between substances with different refractive index.

This attribute is normally set when the source_spct object is created. But convertTfrType()
updates it when it changes due to a conversion.

Value

x, with the modified attribute in the case of setTfrType() or the character value, "total" or
internal, stored in the "Tfr.type" attribute of x in the case of getTfrType(). If x is not a
filter_spct or an object_spct object, NA is returned.

Note

Function setTfrType() alters x itself by reference and in addition returns x invisibly. If x is not
a filter_spct or an object_spct object, x is not modified. The behaviour of this function is
’unusual’ in that the default for parameter Tfr.type is used only if x does not already have this
attribute set.

See Also

convertTfrType, filter_spct, and object_spct.

Examples

my.spct <- polyester.spct
getTfrType(my.spct)
setTfrType(my.spct, "internal")
getTfrType(my.spct)

330 setTimeUnit

setTimeUnit Set the "time.unit" attribute of an existing source_spct object

Description

Function to set by reference the "time.unit" attribute

Usage

setTimeUnit(
x,
time.unit = c("second", "hour", "day", "exposure", "none"),
override.ok = FALSE

)

Arguments

x a source_spct object

time.unit character string indicating the time unit used for spectral irradiance or exposure
("second" , "day" or "exposure") or an object of class duration as defined in
package lubridate.

override.ok logical Flag that can be used to silence warning when overwriting an existing
attribute value (used internally)

Value

x

Note

This function alters x itself by reference and in addition returns x invisibly. If x is not a source_spct
or response_spct object, x is not modified. The behaviour of this function is ’unusual’ in that the
default for parameter time.unit is used only if x does not already have this attribute set. time.unit
= "hour" is currently not fully supported.

See Also

Other time attribute functions: checkTimeUnit(), convertThickness(), convertTimeUnit(),
getTimeUnit()

Examples

my.spct <- sun.spct
setTimeUnit(my.spct, time.unit = "second")
setTimeUnit(my.spct, time.unit = lubridate::duration(1, "seconds"))

setWhatMeasured 331

setWhatMeasured Set the "what.measured" attribute

Description

Method to set by reference the "what.measured" attribute of an R object.

Usage

setWhatMeasured(x, ...)

what_measured(x) <- value

Default S3 method:
setWhatMeasured(x, what.measured, ...)

S3 method for class 'generic_spct'
setWhatMeasured(x, what.measured, ...)

S3 method for class 'summary_generic_spct'
setWhatMeasured(x, what.measured, ...)

S3 method for class 'data.frame'
setWhatMeasured(x, what.measured, ...)

S3 method for class 'generic_mspct'
setWhatMeasured(x, what.measured, ...)

Arguments

x an R object.

... Allows use of additional arguments in methods for other classes.

what.measured, value
a list

Details

This function alters x itself by reference and in addition returns x invisibly. If x does not belong to
one of the supported classes, x is not modified.

Value

x

332 setWhenMeasured

Methods (by class)

• setWhatMeasured(default): default

• setWhatMeasured(generic_spct): generic_spct

• setWhatMeasured(summary_generic_spct): summary_generic_spct

• setWhatMeasured(data.frame): data.frame

• setWhatMeasured(generic_mspct): generic_mspct

See Also

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrDesc(), getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(),
getWhereMeasured(), get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),
setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setSoluteProperties(),
setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(), subset_attributes(),
trimInstrDesc(), trimInstrSettings()

Examples

my.spct <- sun.spct
what_measured(my.spct)
what_measured(my.spct) <- "Sun"
what_measured(my.spct)
what_measured(my.spct) <- NULL
what_measured(my.spct)

setWhenMeasured Set the "when.measured" attribute

Description

Method to set by reference the "when.measured" attribute of an R object.

Usage

setWhenMeasured(x, when.measured, ...)

when_measured(x) <- value

Default S3 method:
setWhenMeasured(x, when.measured, ...)

S3 method for class 'generic_spct'
setWhenMeasured(x, when.measured = lubridate::now(tzone = "UTC"), ...)

S3 method for class 'summary_generic_spct'

setWhenMeasured 333

setWhenMeasured(x, when.measured = lubridate::now(tzone = "UTC"), ...)

S3 method for class 'data.frame'
setWhenMeasured(x, when.measured = lubridate::now(tzone = "UTC"), ...)

S3 method for class 'generic_mspct'
setWhenMeasured(x, when.measured = lubridate::now(tzone = "UTC"), ...)

Arguments

x an R object
when.measured, value

POSIXct to add as attribute, or a list of POSIXct.

... Allows use of additional arguments in methods for other classes.

Details

This method alters x itself by reference and in addition returns x invisibly. If x is not an object
of a supported class, x is not modified. If the arguments to "when.measured" or value are not a
POSIXct object or NULL an error is triggered. A POSIXct describes an instant in time (date plus
time-of-day plus time zone).

Be aware that lubridate::ymd() returns an incompatible Date object while lubridate::ymd_h(),
lubridate::ymd_hm() and lubridate::ymd_hms() and similar functions return objects of class
POSIXct acceptable as arguments for parameter when.measured.

Value

x, with its "when.measured" set.

Methods (by class)

• setWhenMeasured(default): default

• setWhenMeasured(generic_spct): generic_spct

• setWhenMeasured(summary_generic_spct): summary_generic_spct

• setWhenMeasured(data.frame): data.frame

• setWhenMeasured(generic_mspct): generic_mspct

See Also

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrDesc(), getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(),
getWhereMeasured(), get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),
setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setSoluteProperties(),
setWhatMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(), subset_attributes(),
trimInstrDesc(), trimInstrSettings()

334 setWhereMeasured

Examples

my.spct <- sun.spct
when_measured(my.spct)
when_measured(my.spct) <- lubridate::ymd_hms("2020-01-01 08:00:00")
when_measured(my.spct)
when_measured(my.spct) <- NULL
when_measured(my.spct)

setWhereMeasured Set the "where.measured" attribute

Description

Method to set by reference the "where.measured" attribute of an R object.

Usage

setWhereMeasured(x, where.measured, lat, lon, address, ...)

where_measured(x) <- value

Default S3 method:
setWhereMeasured(x, where.measured, lat, lon, address, ...)

S3 method for class 'generic_spct'
setWhereMeasured(x, where.measured = NA, lat = NA, lon = NA, address = NA, ...)

S3 method for class 'summary_generic_spct'
setWhereMeasured(x, where.measured = NA, lat = NA, lon = NA, address = NA, ...)

S3 method for class 'data.frame'
setWhereMeasured(x, where.measured = NA, lat = NA, lon = NA, address = NA, ...)

S3 method for class 'generic_mspct'
setWhereMeasured(x, where.measured = NA, lat = NA, lon = NA, address = NA, ...)

Arguments

x an R object
where.measured, value

A one row data.frame with the same format as returned by function geocode
from package ’ggmap’ for a location search.

lat numeric Latitude in decimal degrees North.

lon numeric Longitude in decimal degrees West.

address character Human readable address.

... Allows use of additional arguments in methods for other classes.

shared_member_class 335

Value

x, with the "where.measured" attribute set.

Methods (by class)

• setWhereMeasured(default): default

• setWhereMeasured(generic_spct): generic_spct

• setWhereMeasured(summary_generic_spct): summary_generic_spct

• setWhereMeasured(data.frame): data.frame

• setWhereMeasured(generic_mspct): generic_mspct

Note

This method alters x itself by reference and in addition returns x invisibly. If x is not an object of
a supported class, x is not modified. If the argument to where.measured is not a POSIXct object
or NULL an error is triggered. A POSIXct describes an instant in time (date plus time-of-day plus
time zone). As with attr() passing NULL as argument for parameter where.measured unsets the
attribute.

Method for collections of spectra recycles the location information only if it is a one row data.frame.

See Also

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrDesc(), getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(),
getWhereMeasured(), get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),
setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setSoluteProperties(),
setWhatMeasured(), setWhenMeasured(), spct_attr2tb(), spct_metadata(), subset_attributes(),
trimInstrDesc(), trimInstrSettings()

Examples

my.spct <- sun.spct
where_measured(my.spct)
where_measured(my.spct) <- data.frame(lon = 0, lat = -60)
where_measured(my.spct)
where_measured(my.spct) <- NULL
where_measured(my.spct)

shared_member_class Classes common to all collection members.

Description

Finds the set intersection among the class attributes of all collection member as a target set of class
names.

336 sign

Usage

shared_member_class(l, target.set = spct_classes())

Arguments

l a list or a generic_mspct object or of a derived class.

target.set character The target set of classes within which to search for classes common to
all members.

Value

A character vector containing the class attribute values.

See Also

Other set and unset ’multi spectral’ class functions: rmDerivedMspct()

sign Sign

Description

sign returns a vector with the signs of the corresponding elements of x (the sign of a real number
is 1, 0, or -1 if the number is positive, zero, or negative, respectively).

Usage

S3 method for class 'generic_spct'
sign(x)

Arguments

x an object of class "generic_spct"

See Also

Other math operators and functions: MathFun, ^.generic_spct(), convolve_each(), div-.generic_spct,
log(), minus-.generic_spct, mod-.generic_spct, plus-.generic_spct, round(), slash-.generic_spct,
times-.generic_spct

slash-.generic_spct 337

slash-.generic_spct Arithmetic Operators

Description

Division operator for generic spectra.

Usage

S3 method for class 'generic_spct'
e1 / e2

Arguments

e1 an object of class "generic_spct"

e2 an object of class "generic_spct"

See Also

Other math operators and functions: MathFun, ^.generic_spct(), convolve_each(), div-.generic_spct,
log(), minus-.generic_spct, mod-.generic_spct, plus-.generic_spct, round(), sign(),
times-.generic_spct

smooth_spct Smooth a spectrum

Description

These functions implement one original methods and acts as a wrapper for other common R smooth-
ing functions. The advantage of using this function for smoothing spectral objects is that it simplifies
the user interface and sets, when needed, defaults suitable for spectral data.

Usage

smooth_spct(x, method, strength, wl.range, ...)

Default S3 method:
smooth_spct(x, method, strength, wl.range, ...)

S3 method for class 'source_spct'
smooth_spct(
x,
method = "custom",
strength = 1,
wl.range = NULL,

338 smooth_spct

na.rm = FALSE,
...

)

S3 method for class 'filter_spct'
smooth_spct(
x,
method = "custom",
strength = 1,
wl.range = NULL,
na.rm = FALSE,
...

)

S3 method for class 'reflector_spct'
smooth_spct(
x,
method = "custom",
strength = 1,
wl.range = NULL,
na.rm = FALSE,
...

)

S3 method for class 'solute_spct'
smooth_spct(
x,
method = "custom",
strength = 1,
wl.range = NULL,
na.rm = FALSE,
...

)

S3 method for class 'response_spct'
smooth_spct(
x,
method = "custom",
strength = 1,
wl.range = NULL,
na.rm = FALSE,
...

)

S3 method for class 'cps_spct'
smooth_spct(
x,
method = "custom",

smooth_spct 339

strength = 1,
wl.range = NULL,
na.rm = FALSE,
...

)

S3 method for class 'generic_mspct'
smooth_spct(
x,
method = "custom",
strength = 1,
wl.range = NULL,
na.rm = FALSE,
...

)

Arguments

x an R object.

method a character string "custom", "lowess", "supsmu" or "skip"..

strength numeric value to adjust the degree of smoothing. Ignored if method-specific
parameters are passed through

wl.range any R object on which applying the method range() yields a vector of two nu-
meric values, describing a range of wavelengths (nm) within which spectral data
is to be smoothed. NA is interpreted as the min or max value of x[[w.length]].

... other parameters passed to the underlying smoothing functions.

na.rm logical A flag indicating whether NA values should be stripped before the com-
putation proceeds.

Value

A copy of x with spectral data values replaced by smoothed ones.

Methods (by class)

• smooth_spct(default): Default for generic function

• smooth_spct(source_spct): Smooth a source spectrum

• smooth_spct(filter_spct): Smooth a filter spectrum

• smooth_spct(reflector_spct): Smooth a reflector spectrum

• smooth_spct(solute_spct): Smooth a solute attenuation spectrum

• smooth_spct(response_spct): Smooth a response spectrum

• smooth_spct(cps_spct): Smooth a counts per second spectrum

• smooth_spct(generic_mspct):

340 source_spct

Note

Method "custom" is our home-brewed method which applies strong smoothing to low signal regions
of the spectral data, and weaker or no smoothing to the high signal areas. Values very close to zero
are set to zero with a limit which depends on the local variation. This method is an ad-hock method
suitable for smoothing spectral data obtained with spectrometers. In the cased of methods "lowess"
and "supsmu" the current function behaves like a wrapper of the functions of the same names from
base R. Method "skip" returns x unchanged.

Examples

my.spct <- clip_wl(sun.spct, c(400, 500))
smooth_spct(my.spct)
smooth_spct(my.spct, method = "custom", strength = 1)
smooth_spct(my.spct, method = "custom", strength = 4)
smooth_spct(my.spct, method = "supsmu", strength = 4)

source_spct Spectral-object constructors

Description

These constructor functions can be used to create spectral objects derived from generic_spct.
They take as arguments numeric vectors for the wavelengths and spectral data, and numeric, char-
acter, and logical values for metadata attributes to be saved to the objects created and options con-
trolling the creation process.

Usage

source_spct(
w.length = NULL,
s.e.irrad = NULL,
s.q.irrad = NULL,
...,
time.unit = c("second", "day", "exposure"),
bswf.used = c("none", "unknown"),
comment = NULL,
strict.range = getOption("photobiology.strict.range", default = FALSE),
multiple.wl = 1L,
idfactor = NULL

)

calibration_spct(
w.length = NULL,
irrad.mult = NA_real_,
...,
comment = NULL,

source_spct 341

instr.desc = NA,
multiple.wl = 1L,
idfactor = NULL

)

raw_spct(
w.length = NULL,
counts = NA_real_,
...,
comment = NULL,
instr.desc = NA,
instr.settings = NA,
multiple.wl = 1L,
idfactor = NULL

)

cps_spct(
w.length = NULL,
cps = NA_real_,
...,
comment = NULL,
instr.desc = NA,
instr.settings = NA,
multiple.wl = 1L,
idfactor = NULL

)

generic_spct(
w.length = NULL,
...,
comment = NULL,
multiple.wl = 1L,
idfactor = NULL

)

response_spct(
w.length = NULL,
s.e.response = NULL,
s.q.response = NULL,
...,
time.unit = c("second", "day", "exposure"),
response.type = c("response", "action"),
comment = NULL,
multiple.wl = 1L,
idfactor = NULL

)

filter_spct(

342 source_spct

w.length = NULL,
Tfr = NULL,
Tpc = NULL,
Afr = NULL,
A = NULL,
...,
Tfr.type = c("total", "internal"),
Rfr.constant = NA_real_,
thickness = NA_real_,
attenuation.mode = NA,
comment = NULL,
strict.range = getOption("photobiology.strict.range", default = FALSE),
multiple.wl = 1L,
idfactor = NULL

)

reflector_spct(
w.length = NULL,
Rfr = NULL,
Rpc = NULL,
...,
Rfr.type = c("total", "specular"),
comment = NULL,
strict.range = getOption("photobiology.strict.range", default = FALSE),
multiple.wl = 1L,
idfactor = NULL

)

solute_spct(
w.length = NULL,
K.mole = NULL,
K.mass = NULL,
attenuation.XS = NULL,
...,
log.base = 10,
K.type = c("attenuation", "absorption", "scattering"),
name = NA_character_,
mass = NA_character_,
formula = NULL,
structure = grDevices::as.raster(matrix()),
ID = NA_character_,
solvent.name = NA_character_,
solvent.ID = NA_character_,
comment = NULL,
strict.range = getOption("photobiology.strict.range", default = FALSE),
multiple.wl = 1L,
idfactor = NULL

)

source_spct 343

object_spct(
w.length = NULL,
Rfr = NULL,
Tfr = NULL,
Afr = NULL,
...,
Tfr.type = c("total", "internal"),
Rfr.type = c("total", "specular"),
comment = NULL,
strict.range = getOption("photobiology.strict.range", default = FALSE),
multiple.wl = 1L,
idfactor = NULL

)

chroma_spct(
w.length = NULL,
x,
y,
z,
...,
comment = NULL,
strict.range = getOption("photobiology.strict.range", default = FALSE),
multiple.wl = 1L,
idfactor = NULL

)

Arguments

w.length numeric vector with wavelengths in nanometres [nm].
s.e.irrad numeric vector with spectral energy irradiance in [W m−2 nm−1] or [J d−1 m−2 nm−1].
s.q.irrad numeric A vector with spectral photon irradiance in [mol s−1 m−2 nm−1] or

[mol d−1 m−2 nm−1].
... other arguments passed to tibble() such as vectors or factors to be added as

additional columns.
time.unit character string indicating the time unit used for spectral irradiance or exposure

("second", "day" or "exposure") or an object of class duration as defined in
package lubridate.

bswf.used character A string indicating the BSWF used, if any, for spectral effective irra-
diance or exposure ("none" or the name of the BSWF).

comment character A string to be added as a comment attribute to the object created.
strict.range logical Flag indicating whether off-range values result in an error instead of a

warning.
multiple.wl numeric Maximum number of repeated w.length entries with same value. (As

with multiple spectra stored in long from).
idfactor character Name of factor distinguishing multiple spectra when stored longitudi-

nally (required if multiple.wl > 1).

344 source_spct

irrad.mult numeric vector with multipliers for each detector pixel expressed in units of
W m−2 nm−1 n−1 s, where n s−1 are detector counts per second.

instr.desc a list describing the spectrometer used to acquire the data.

counts numeric vector with raw counts expressed per scan.

instr.settings a list describing the settings used to acquire the data.

cps numeric vector with linearized raw counts expressed per second [n s−1]

s.e.response numeric vector with a biological, chemical or physical response expressed per
unit spectral energy irradiance [W m−2 nm−1 or J d−1 m−2 nm−1].

s.q.response numeric vector with a biological, chemical or physical response expressed per
unit spectral photon irradiance in [mol s−1 m−2 nm−1 or mol d−1 m−2 nm−1].

response.type a character string, either "response" or "action".

Tfr numeric vector with spectral transmittance as fraction of one [/1].

Tpc numeric vector with spectral transmittance as percent values

Afr numeric vector of absorptance as fraction of one [/1].

A numeric vector of absorbance values (log10-base a.u.)

Tfr.type character string indicating whether transmittance and absorptance values are
"total" or "internal" values

Rfr.constant numeric The value of the reflection factor [/1].

thickness numeric The thickness of the material.
attenuation.mode

character One of "reflection", "absorption" or "mixed".

Rfr numeric vector with spectral reflectance as fraction of one [/1].

Rpc numeric vector with spectral reflectance as percent values.

Rfr.type character A string, either "total" or "specular".

K.mole numeric vector with molar attenuation coefficient in SI units [m2 mol−1].

K.mass numeric vector with mass attenuation coefficient in SI units [m2 g−1].

attenuation.XS numeric vector with attenuation cross section values (Converted during object
construction into K.mole.)

log.base numeric Normally one of e or 10. Data are stored always on base 10 correspond-
ing to decadal absorbance as used in chemistry.

K.type character A string, either "attenuation", "absorption" or "scattering".
name, solvent.name

character The names of the substance and of the solvent. A named character
vector, with member names such as "IUPAC" for the authority.

mass numeric The molar mass in Dalton [Da] (Da = gmol−1).

formula character The molecular formula.

structure raster A bitmap of the structure.

ID, solvent.ID character The ID of the substance and of the solvent. A named character vector,
with member names such as "ChemSpider" or "PubChem" for the authority.

x, y, z numeric colour coordinates

spct_attr2tb 345

Details

Constructors can be used to create spectral objects from spectral quantities expressed on a single
base or unit. Some of the functions have different formal parameters accepting a quantity expressed
in different units, however, an argument can be passed to only one of these formal parameters in a
given call. The constructors object_spct() and chroma_spct() require arguments to be passed
for multiple but distinct spectral quantities.

Value

A object of class generic_spct or a class derived from it, depending on the function used. In other
words an object of a class with the same name as the constructor function.

Warning for filter_spct!

Not entering metadata when creating an object will limit the available operations! While "inter-
nal" transmittance is defined as the transmittance of the material body itself, "total" transmittance
includes the effects of surface reflectance on the amount of light transmitted. For non-diffusing
materials like glass an approximate Rfr.constant value can be used to convert "total" into "inter-
nal" transmittance values and vice versa. Use NA if not known, or not applicable, e.g., for materials
subject to internal scattering.

Warning for solute_spct!

You should always set the base for logarithms to match that on which the absorbance data are
expressed. Failing to do this will result in bad data and all further computation will be wrong.
Not entering metadata when creating an object will limit the available operations! Mass should be
indicated in daltons or gmol−1. The SI unit of molar attenuation coefficient is the square metre
per mole (m2 mol1), but in practice, quantities are usually expressed in terms of M−1 cm−1 or
l mol−1 cm−1 (the latter two units are both equal to 0.1 m2 mol−1 and quantities expressed in
them need to be divided by 10 when passed as arguments to K.mole.).

See Also

setFilterProperties

setSoluteProperties

Other constructors of spectral objects: as.calibration_spct(), as.chroma_spct(), as.cps_spct(),
as.filter_spct(), as.generic_spct(), as.object_spct(), as.raw_spct(), as.reflector_spct(),
as.response_spct(), as.solute_spct(), as.source_spct()

spct_attr2tb Copy attributes into a tibble

Description

Method returning attributes of an object of class generic_spct or derived, or of class waveband.
Only attributes defined and/or set by package ’photobiology’ for objects of the corresponding class
are returned.

346 spct_classes

Usage

spct_attr2tb(
x,
which = c("-", "names", "row.names", "spct.tags", "spct.version", "comment"),
...

)

Arguments

x a generic_spct object.

which character vector Names of attributes to retrieve.

... currently ignored

Value

A tibble with the values stored in the attributes whose names were selected through the argument to
which if present in x.

See Also

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrDesc(), getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(),
getWhereMeasured(), get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),
setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setSoluteProperties(),
setWhatMeasured(), setWhenMeasured(), setWhereMeasured(), spct_metadata(), subset_attributes(),
trimInstrDesc(), trimInstrSettings()

spct_classes Function returning a vector containing the names of spectra classes.

Description

Function returning a vector containing the names of spectra classes.

Usage

spct_classes()

Value

A character vector of class names.

Examples

spct_classes()

spct_metadata 347

spct_metadata Access metadata

Description

Return metadata attributes from a single spectrum or a collection of spectra as a data.frame. A
wrapper on add_attr2tb providing an alternative order of formal parameters and constrained func-
tionality.

Usage

spct_metadata(
x,
col.names = NULL,
idx = "spct.idx",
na.rm = is.null(col.names),
unnest = TRUE

)

Arguments

x generic_mspct or generic_spct Any collection of spectra or spectrum.

col.names named character vector Name(s) of column(s) to create.

idx character Name of the column with the names of the members of the collection
of spectra.

na.rm logical Flag controlling deletion of columns containing only NA values.

unnest logical Flag controlling if metadata attributes that are lists of values should be
returned in a list column or in separate columns.

Details

Each attribute is by default copied to a column in a tibble or a data.frame. If the argument for tb
is NULL, as by default, a new tibble will be created. If an existing data.frame or tibble is passed
as argument, new columns are added to it. However, the number of rows in the argument passed to
tb must match the number of spectra in the argument passed to mspct. Only in the case of methods
add_attr2tb() and spct_metadata() if the argument to col.names is a named vector, the names
of members are used as names for the columns created. This permits setting any valid name for the
new columns. If the members of the vector passed to col.names have no names, then the value is
interpreted as the name of the attributes to add, and also used as name for the new column.

Valid values accepted as argument to col.names are NULL, or a vector containing one or more
of the following character strings: "lon", "lat", "address", "geocode", "where.measured",
"when.measured", "what.measured", "how.measured", "comment", "normalised", "normalized",
"scaled", "bswf.used", "instr.desc", "instr.settings", solute.properties, "filter.properties",
"Tfr.type", "Rfr.type", "time.unit".

348 spct_wide2long

Value

A data.frame or a tibble With the metadata attributes in separate new variables.

Note

The order of the first two arguments is reversed in add_attr2tb(), when_measured2tb(), what_measured2tb(),
etc., compared to attribute query functions, such as spct_metadata, when_measured(), what_measured(),
how_measured(), etc. This is to allow the use of add_attr2tb() in ’pipes’ to add metadata to sum-
maries computed at earlier steps in the pipe.

See Also

add_attr2tb for more details.

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrDesc(), getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(),
getWhereMeasured(), get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),
setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setSoluteProperties(),
setWhatMeasured(), setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), subset_attributes(),
trimInstrDesc(), trimInstrSettings()

Examples

collection of spectra
spct_metadata(sun_evening.mspct)

spct_metadata(sun_evening.mspct, na.rm = FALSE)

spct_metadata(sun_evening.mspct,
col.names = "geocode",
unnest = FALSE)

spct_metadata(sun_evening.mspct,
col.names = c(when.measured = "time", "what.measured"))

multiple spectra in long form
spct_metadata(sun_evening.spct,

col.names = c("geocode", "when.measured"))

single spectrum
spct_metadata(sun.spct,

col.names = c("geocode", "when.measured"))

spct_wide2long Convert spectrum from wide to long form

Description

Convert spectrum from wide to long form

spct_wide2long 349

Usage

spct_wide2long(
spct,
fixed.cols = "w.length",
idfactor = "spct.idx",
rm.spct.class = FALSE,
...

)

Arguments

spct An object with spectral data.

fixed.cols character Names of variables that should be copied unchanged for each spec-
trum.

idfactor character The name of the factor to be added to the long-form object and used
to store the original name of the columns as an index to the different spectra.

rm.spct.class logical If true the returned object is a data frame.

... Currently ignored.

Details

Only objects of classes raw_spct, cps_spct, and object_spct normally contain multiple columns of
spectral data. These are supported as well as generic_spct. Is the wide spectra contain multiple
spectra in long form, the original idfactor is preserved.

Spectra that are already in long form, if passed as argument, are returned unchanged.

Because the classes defined for spectra have a well defined format, and known column names we
can define a rather simple function for this operation.

Value

An object of the same class as spct or a data.frame with derived classes removed.

Examples

spct_wide2long(white_led.raw_spct)
spct_wide2long(white_led.cps_spct)
spct_wide2long(Ler_leaf.spct)

350 spikes

spikes Spikes

Description

Function that returns a subset of an R object with observations corresponding to spikes. Spikes are
values in spectra that are unusually high compared to neighbors. They are usually individual values
or very short runs of similar "unusual" values. Spikes caused by cosmic radiation are a frequent
problem in Raman spectra. Another source of spikes are "hot pixels" in CCD and diode arrays.

Usage

spikes(x, z.threshold, max.spike.width, na.rm, ...)

Default S3 method:
spikes(x, z.threshold = NA, max.spike.width = 8, na.rm = FALSE, ...)

S3 method for class 'numeric'
spikes(x, z.threshold = NA, max.spike.width = 8, na.rm = FALSE, ...)

S3 method for class 'data.frame'
spikes(
x,
z.threshold = 9,
max.spike.width = 8,
na.rm = FALSE,
...,
y.var.name = NULL,
var.name = y.var.name

)

S3 method for class 'generic_spct'
spikes(
x,
z.threshold = 9,
max.spike.width = 8,
na.rm = FALSE,
var.name = NULL,
...

)

S3 method for class 'source_spct'
spikes(
x,
z.threshold = 9,
max.spike.width = 8,
na.rm = FALSE,

spikes 351

unit.out = getOption("photobiology.radiation.unit", default = "energy"),
...

)

S3 method for class 'response_spct'
spikes(
x,
z.threshold = 9,
max.spike.width = 8,
na.rm = FALSE,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
...

)

S3 method for class 'filter_spct'
spikes(
x,
z.threshold = 9,
max.spike.width = 8,
na.rm = FALSE,
filter.qty = getOption("photobiology.filter.qty", default = "transmittance"),
...

)

S3 method for class 'reflector_spct'
spikes(x, z.threshold = 9, max.spike.width = 8, na.rm = FALSE, ...)

S3 method for class 'solute_spct'
spikes(x, z.threshold = 9, max.spike.width = 8, na.rm = FALSE, ...)

S3 method for class 'cps_spct'
spikes(
x,
z.threshold = 9,
max.spike.width = 8,
na.rm = FALSE,
var.name = "cps",
...

)

S3 method for class 'raw_spct'
spikes(
x,
z.threshold = 9,
max.spike.width = 8,
na.rm = FALSE,
var.name = "counts",
...

352 spikes

)

S3 method for class 'generic_mspct'
spikes(
x,
z.threshold = 9,
max.spike.width = 8,
na.rm = FALSE,
...,
var.name = NULL,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'source_mspct'
spikes(
x,
z.threshold = 9,
max.spike.width = 8,
na.rm = FALSE,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'response_mspct'
spikes(
x,
z.threshold = 9,
max.spike.width = 8,
na.rm = FALSE,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'filter_mspct'
spikes(
x,
z.threshold = 9,
max.spike.width = 8,
na.rm = FALSE,
filter.qty = getOption("photobiology.filter.qty", default = "transmittance"),
...,
.parallel = FALSE,
.paropts = NULL

spikes 353

)

S3 method for class 'reflector_mspct'
spikes(
x,
z.threshold = 9,
max.spike.width = 8,
na.rm = FALSE,
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'solute_mspct'
spikes(
x,
z.threshold = 9,
max.spike.width = 8,
na.rm = FALSE,
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'cps_mspct'
spikes(
x,
z.threshold = 9,
max.spike.width = 8,
na.rm = FALSE,
...,
var.name = "cps",
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'raw_mspct'
spikes(
x,
z.threshold = 9,
max.spike.width = 8,
na.rm = FALSE,
...,
var.name = "counts",
.parallel = FALSE,
.paropts = NULL

)

354 spikes

Arguments

x an R object

z.threshold numeric Modified Z values larger than z.threshold are considered to corre-
spond to spikes.

max.spike.width

integer Wider regions with high Z values are not detected as spikes.

na.rm logical indicating whether NA values should be stripped before searching for
spikes.

... ignored
var.name, y.var.name

character Name of column where to look for spikes.

unit.out character One of "energy" or "photon"

filter.qty character One of "transmittance" or "absorbance"

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Details

Spikes are detected based on a modified Z score calculated from the differenced spectrum. The Z
threshold used should be adjusted to the characteristics of the input and desired sensitivity. The
lower the threshold the more stringent the test becomes, resulting in most cases in more spikes
being detected. A modified version of the algorithm is used if a value different from NULL is passed
as argument to max.spike.width. In such a case, an additional step filters out broader spikes (or
falsely detected steep slopes) from the returned values.

When the argument passed to x contains multiple spectra, the spikes are searched for in each spec-
trum independently of other spectra.

Value

A subset of the object passed as argument to x with rows corresponding to spikes.

Methods (by class)

• spikes(default): Default returning always NA.

• spikes(numeric): Default function usable on numeric vectors.

• spikes(data.frame): Method for "data.frame" objects.

• spikes(generic_spct): Method for "generic_spct" objects.

• spikes(source_spct): Method for "source_spct" objects.

• spikes(response_spct): Method for "response_spct" objects.

• spikes(filter_spct): Method for "filter_spct" objects.

• spikes(reflector_spct): Method for "reflector_spct" objects.

split2mspct 355

• spikes(solute_spct): Method for "solute_spct" objects.

• spikes(cps_spct): Method for "cps_spct" objects.

• spikes(raw_spct): Method for "raw_spct" objects.

• spikes(generic_mspct): Method for "generic_mspct" objects.

• spikes(source_mspct): Method for "source_mspct" objects.

• spikes(response_mspct): Method for "cps_mspct" objects.

• spikes(filter_mspct): Method for "filter_mspct" objects.

• spikes(reflector_mspct): Method for "reflector_mspct" objects.

• spikes(solute_mspct): Method for "solute_mspct" objects.

• spikes(cps_mspct): Method for "cps_mspct" objects.

• spikes(raw_mspct): Method for "raw_mspct" objects.

See Also

See the documentation for find_spikes for details of the algorithm and implementation.

Other peaks and valleys functions: find_peaks(), find_spikes(), get_peaks(), peaks(), replace_bad_pixs(),
valleys(), wls_at_target()

Examples

spikes(sun.spct)

split2mspct Convert a ’wide’ or untidy data frame into a collection of spectra

Description

Convert a data frame object into a "multi spectrum" object by constructing a an object of a multi-spct
class, converting numeric columns other than wavelength into individual spct objects.

Usage

split2mspct(
x,
member.class = NULL,
spct.data.var = NULL,
w.length.var = "w.length",
idx.var = NULL,
ncol = 1,
byrow = FALSE,
...

)

356 split2mspct

split2source_mspct(
x,
spct.data.var = "s.e.irrad",
w.length.var = "w.length",
idx.var = NULL,
ncol = 1,
byrow = FALSE,
...

)

split2response_mspct(
x,
spct.data.var = "s.e.response",
w.length.var = "w.length",
idx.var = NULL,
ncol = 1,
byrow = FALSE,
...

)

split2filter_mspct(
x,
spct.data.var = "Tfr",
w.length.var = "w.length",
idx.var = NULL,
ncol = 1,
byrow = FALSE,
...

)

split2reflector_mspct(
x,
spct.data.var = "Rfr",
w.length.var = "w.length",
idx.var = NULL,
ncol = 1,
byrow = FALSE,
...

)

split2solute_mspct(
x,
spct.data.var = "K.mole",
w.length.var = "w.length",
idx.var = NULL,
ncol = 1,
byrow = FALSE,
...

split2mspct 357

)

split2cps_mspct(
x,
spct.data.var = "cps",
w.length.var = "w.length",
idx.var = NULL,
ncol = 1,
byrow = FALSE,
...

)

split2raw_mspct(
x,
spct.data.var = "count",
w.length.var = "w.length",
idx.var = NULL,
ncol = 1,
byrow = FALSE,
...

)

split2calibration_mspct(
x,
spct.data.var = "irrad.mult",
w.length.var = "w.length",
idx.var = NULL,
ncol = 1,
byrow = FALSE,
...

)

Arguments

x data frame
member.class character Class of the collection members
spct.data.var character Name of the spectral data argument in the object constructor for member.class
w.length.var character Name of column containing wavelength data in nanometres
idx.var character Name of column containing data to be copied unchanged to each spct

object
ncol integer Number of ’virtual’ columns in data
byrow logical If ncol > 1 how to read in the data
... additional named arguments passed to the member constructor function.

See Also

Other Coercion methods for collections of spectra: as.calibration_mspct(), as.chroma_mspct(),
as.cps_mspct(), as.filter_mspct(), as.generic_mspct(), as.object_mspct(), as.raw_mspct(),

358 split_bands

as.reflector_mspct(), as.response_mspct(), as.solute_mspct(), as.source_mspct(), subset2mspct()

split_bands List-of-wavebands constructor

Description

Build a list of unweighted "waveband" objects that can be used as input when calculating irradi-
ances.

Usage

split_bands(
x,
list.names = NULL,
short.names = is.null(list.names),
length.out = NULL

)

Arguments

x a numeric vector of wavelengths to split at (nm), or a range of wavelengths or a
generic_spct or a waveband.

list.names character vector with names for the component wavebands in the returned list
(in order of increasing wavelength)

short.names logical indicating whether to use short or long names for wavebands

length.out numeric giving the number of regions to split the range into (ignored if w.length
is not numeric).

Value

an un-named list of waveband objects

Note

list.names is used to assign names to the elements of the list, while the waveband objects them-
selves always retain their wb.label and wb.name as generated during their creation.

See Also

Other waveband constructors: waveband()

split_energy_irradiance 359

Examples

split_bands(c(400,500,600))
split_bands(list(c(400,500),c(550,650)))
split_bands(list(A=c(400,500),B=c(550,650)))
split_bands(c(400,500,600), short.names=FALSE)
split_bands(c(400,500,600), list.names=c("a","b"))
split_bands(c(400,700), length.out=6)
split_bands(400:700, length.out=3)
split_bands(sun.spct, length.out=10)
split_bands(waveband(c(400,700)), length.out=5)

split_energy_irradiance

Energy irradiance for split spectrum regions

Description

This function returns the energy irradiance for a series of contiguous wavebands from a radiation-
source spectrum. The returned values can be either absolute or relative to their sum.

Usage

split_energy_irradiance(
w.length,
s.irrad,
cut.w.length = range(w.length),
unit.in = "energy",
scale = "absolute",
check.spectrum = TRUE,
use.cached.mult = FALSE,
use.hinges = getOption("photobiology.use.hinges", default = NULL)

)

Arguments

w.length numeric vector of wavelengths (nm).

s.irrad numeric vector of spectral (energy or photon) irradiance values (W m-2 nm-1)
or (mol s-1 m-2 nm-1).

cut.w.length numeric vector of wavelengths (nm).

unit.in character string with allowed values "energy", and "photon", or its alias "quan-
tum".

scale character string indicating the scale used for the returned values ("absolute",
"relative", "percent").

check.spectrum logical indicating whether to sanity check input data, default is TRUE.

360 split_irradiance

use.cached.mult

logical Flag indicating whether multiplier values should be cached between
calls.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

Value

a numeric vector of irradiances with no change in scale factor: [W m-2 nm-1] -> [W m-2] or [mol
s-1 m-2] -> [W m-2] or relative values (fraction of one) if scale = "relative" or scale = "percent".

Note

The last three parameters control speed optimizations. The defaults should be suitable in most
cases. If you set check.spectrum=FALSE then you should call check_spectrum at least once for
your spectrum before using any of the other functions. If you will use repeatedly the same SWFs
on many spectra measured at exactly the same wavelengths you may obtain some speed up by
setting use.cached.mult=TRUE. However, be aware that you are responsible for ensuring that the
wavelengths are the same in each call, as the only test done is for the length of the w.length vector.

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(),
photon_ratio(), photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_photon_irradiance(),
subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(), v_replace_hinges()

Examples

with(sun.data,
split_energy_irradiance(w.length, s.e.irrad,

cut.w.length = c(300, 400, 500, 600, 700)))

split_irradiance Energy or photon irradiance for split spectrum regions

Description

This function returns the energy or photon irradiance for a series of contiguous wavebands from a
radiation spectrum. The returned values can be either absolute or relative to their sum.

split_irradiance 361

Usage

split_irradiance(
w.length,
s.irrad,
cut.w.length = range(w.length),
unit.out = getOption("photobiology.base.unit", default = "energy"),
unit.in = "energy",
scale = "absolute",
check.spectrum = TRUE,
use.cached.mult = FALSE,
use.hinges = getOption("photobiology.use.hinges", default = NULL)

)

Arguments

w.length numeric Vector of wavelengths [nm].

s.irrad numeric vector of spectral irradiances in [W m−2 nm−1] or [mol s−1 sm−2 nm−1]
as indicated by the argument pased to unit.in.

cut.w.length numeric Vector of wavelengths [nm].
unit.out, unit.in

character Allowed values "energy", and "photon", or its alias "quantum".

scale a character A string indicating the scale used for the returned values ("absolute",
"relative" or "percent").

check.spectrum logical Flag indicating whether to sanity check input data, default is TRUE.
use.cached.mult

logical Flag indicating whether multiplier values should be cached between
calls.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

Value

A numeric vector of irradiances with no change in scale factor if scale == "absolute", [W m−2]
or [mol s−1 sm−2] depending on the argument passed to unit.out or relative values (as fraction of
one if scale == "relative" or percentages if scale == "percent" of photons or energy depending
on the argument passed to unit.out.

Note

The last three parameters control speed optimizations. The defaults should be suitable in most
cases. If you set check.spectrum=FALSE then you should call check_spectrum at least once for
your spectrum before using any of the other functions. If you will use repeatedly the same SWFs
on many spectra measured at exactly the same wavelengths you may obtain some speed up by
setting use.cached.mult=TRUE. However, be aware that you are responsible for ensuring that the
wavelengths are the same in each call, as the only test done is for the length of the w.length vector.

362 split_photon_irradiance

Examples

with(sun.data,
split_irradiance(w.length, s.e.irrad,

cut.w.length = c(300, 400, 500, 600, 700),
unit.out = "photon"))

split_photon_irradiance

Photon irradiance for split spectrum regions

Description

This function returns the photon irradiance for a series of contiguous wavebands from a radiation
spectrum. The returned values can be either absolute or relative to their sum.

Usage

split_photon_irradiance(
w.length,
s.irrad,
cut.w.length = range(w.length),
unit.in = "energy",
scale = "absolute",
check.spectrum = TRUE,
use.cached.mult = FALSE,
use.hinges = getOption("photobiology.use.hinges", default = NULL)

)

Arguments

w.length numeric vector of wavelengths (nm).

s.irrad numeric vector of spectral (energy or photon) irradiance values (W m-2 nm-1).

cut.w.length numeric vector of wavelengths (nm).

unit.in character Allowed values "energy", and "photon", or its alias "quantum".

scale a character A string indicating the scale used for the returned values ("absolute",
"relative", "percent").

check.spectrum logical Flag indicating whether to sanity check input data, default is TRUE.
use.cached.mult

logical Flag indicating whether multiplier values should be cached between
calls.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

spread 363

Value

a numeric vector of photon irradiances with no change in scale factor: [W m-2 nm-1] -> [mol s-1
m-2], [mol s-1 m-2 nm-1] -> [mol s-1 m-2] or relative values (fraction of one based on photon units)
if scale = "relative" or scale = "percent".

Note

The last three parameters control speed optimizations. The defaults should be suitable in most
cases. If you set check.spectrum=FALSE then you should call check_spectrum at least once for
your spectrum before using any of the other functions. If you will use repeatedly the same SWFs
on many spectra measured at exactly the same wavelengths you may obtain some speed up by
setting use.cached.mult=TRUE. However, be aware that you are responsible for ensuring that the
wavelengths are the same in each call, as the only test done is for the length of the w.length vector.

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(),
photon_ratio(), photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(), v_replace_hinges()

Examples

with(sun.data,
split_photon_irradiance(w.length, s.e.irrad,

cut.w.length = c(300, 400, 500, 600, 700)))
with(sun.data,

split_photon_irradiance(w.length, s.e.irrad))

spread Expanse

Description

A method that returns the expanse (max(x)−min(x)) for R objects. In particular the wavelength
[nm] expanse of the wavelength range of objects of classes waveband or of class generic_spct or
derived (or the expanse of values in a numeric vector).

Usage

spread(x, ...)

wl_expanse(x, ...)

expanse(x, ...)

364 spread

Default S3 method:
expanse(x, ...)

S3 method for class 'numeric'
expanse(x, ...)

S3 method for class 'waveband'
expanse(x, ...)

S3 method for class 'generic_spct'
expanse(x, ...)

S3 method for class 'generic_mspct'
expanse(x, ..., idx = "spct.idx")

Arguments

x an R object

... not used in current version

idx character Name of the column with the names of the members of the collection
of spectra.

Value

A numeric value equal to max(x) - min(x). In the case of spectral objects wavelength difference
[nm]. For any other R object, according to available specialised methods of min and max.

Methods (by class)

• expanse(default): Default method for generic function

• expanse(numeric): Method for "numeric"

• expanse(waveband): Method for "waveband"

• expanse(generic_spct): Method for "generic_spct"

• expanse(generic_mspct): Method for "generic_mspct" objects.

Examples

expanse(10:20)
expanse(sun.spct)
wl_expanse(sun.spct)

expanse(sun.spct)

Subset 365

Subset Subsetting spectra

Description

Return subsets of spectra stored in class generic_spct or derived from it.

Usage

S3 method for class 'generic_spct'
subset(x, subset, select, drop = FALSE, ...)

Arguments

x object to be subsetted.

subset logical expression indicating elements or rows to keep: missing values are taken
as false.

select expression, indicating columns to select from a spectrum.

drop passed on to [indexing operator.

... further arguments to be passed to or from other methods.

Value

An object similar to x containing just the selected rows and columns. Depending on the columns
remaining after subsetting the class of the object will be simplified to the most derived parent class.

Note

This method is copied from base::subset.data.frame() but ensures that all metadata stored in
attributes of spectral objects are copied to the returned value.

Examples

subset(sun.spct, w.length > 400)

366 subset2mspct

subset2mspct Convert ’long’ or tidy spectral data into a collection of spectra

Description

Convert a data frame object or spectral object into a collection of spectra object of the matching
class. For data frames converting numeric columns other than wavelength into individual spct
objects. For collection of spectra objects, subset/expand long-form members into multiple members
of the same collection.

Usage

subset2mspct(
x,
member.class = NULL,
idx.var = NULL,
drop.idx = TRUE,
ncol = 1,
byrow = FALSE,
...

)

Arguments

x a generic_spct object or of a derived class, or a data frame, or a generic_mspct
object or of a derived class.

member.class character string.

idx.var character Name of column containing data to be copied unchanged to each spct
object or used for member names. If NULL, the default, the name is retrieved
from x or its members when possible.

drop.idx logical Flag indicating whether to drop or keep idx.var in the collection mem-
bers.

ncol integer Number of ’virtual’ columns in data.

byrow logical If ncol > 1 how to read in the data.

... additional named arguments passed to the member constructor function.

Value

A collection of spectral objects, each with attributes set if x is a spectral object in long form with
metadata attributes. If this object was created by row binding with ’photobiology’ 0.9.14 or later
then all metadata for each individual spectrum will be preserved, except for unique comments which
are merged.

Note

A non-null value for member.class is mandatory only when x is a data frame.

subt_spectra 367

See Also

Other Coercion methods for collections of spectra: as.calibration_mspct(), as.chroma_mspct(),
as.cps_mspct(), as.filter_mspct(), as.generic_mspct(), as.object_mspct(), as.raw_mspct(),
as.reflector_mspct(), as.response_mspct(), as.solute_mspct(), as.source_mspct(), split2mspct()

subt_spectra Subtract two spectra

Description

The wavelength vectors of the two spectra are merged, and the missing spectral values are calculated
by interpolation. After this, the two spectral values at each wavelength are added. This is ’parallel’
operation between two spectra.

Usage

subt_spectra(
w.length1,
w.length2 = NULL,
s.irrad1,
s.irrad2,
trim = "union",
na.rm = FALSE

)

Arguments

w.length1 numeric vector of wavelength (nm).

w.length2 numeric vector of wavelength (nm).

s.irrad1 a numeric vector of spectral values.

s.irrad2 a numeric vector of spectral values.

trim a character string with value "union" or "intersection".

na.rm a logical value, if TRUE, not the default, NAs in the input are replaced with
zeros.

Details

If trim=="union" spectral values are calculated for the whole range of wavelengths covered by at
least one of the input spectra, and missing values are set in each input spectrum to zero before
addition. If trim=="intersection" then the range of wavelengths covered by both input spectra is
returned, and the non-overlapping regions discarded. If w.length2==NULL, it is assumed that both
spectra are measured at the same wavelengths, and a simple addition is used, ensuring fast calcula-
tion.

368 summary.generic_spct

Value

a data frame with two numeric variables

w.length A numeric vector with the wavelengths (nm) obtained by "fusing" w.length1 and
w.length2. w.length contains all the unique vales, sorted in ascending order.

s.irrad A numeric vector with the sum of the two spectral values at each wavelength.

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(),
photon_ratio(), photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), sum_spectra(), trim_tails(), v_insert_hinges(), v_replace_hinges()

Examples

head(sun.data)
zero.data <- with(sun.data, subt_spectra(w.length, w.length, s.e.irrad, s.e.irrad))
head(zero.data)
tail(zero.data)

summary.generic_spct Summary of one or more spectra

Description

Methods of generic function summary for objects of spectral classes and of classes for collections
of spectra.

Usage

S3 method for class 'generic_spct'
summary(
object,
maxsum = 7,
digits = max(3, getOption("digits") - 3),
...,
expand = "none"

)

S3 method for class 'generic_mspct'
summary(
object,
maxsum = 7,
digits = max(3, getOption("digits") - 3),

summary.generic_spct 369

idx = "spct.idx",
which.metadata = NULL,
expand = "none",
...

)

Arguments

object An object of one of the spectral classes for which a summary is desired.

maxsum integer Indicates how many levels should be shown for factors.

digits integer Used for number formatting with format().

... additional arguments affecting the summary produced, ignored in current ver-
sion.

expand character One of "none", "collection", "each" or "auto" indicating if mul-
tiple spectra in long form should be summarized as a collection or individually.

idx character Name of the column with the names of the members of the collection
of spectra.

which.metadata character vector Names of attributes to retrieve, or "none" or "all". Obeyed if
expand = "collection", its default.

Details

Objects are summarized as is, ignoring the current settings of R options photobiology.radiation.unit
and photobiology.filter.qty. Unlike R’s summary, these methods can optionally summarize
each spectrum stored in long form returning a list of summaries. Although this is frequently the
most informative approach, the default remains similar to summary() method from R: to summa-
rize object as a whole. Alternatively, multiple spectra stored in long form, can optionally be
summarized also as a collection of spectra. Passing "auto" in the call, is equivalent to passing
"each" or "collection" depending on the number of spectra contained in the object.

Value

A summary object matching the class of object, or a list of such objects or a summary object
for a matching collection of spectra. Metadata stored in attributes are copied to identical attributes
in the returned summary objects except when object is a collection of spectra or if expand =
"collection" is passed in the call. In this two cases, a condensed summary is returned as a data
frame and attributes from each member can be copied to variables in it.

Functions

• summary(generic_mspct):

See Also

print.summary_generic_spct

370 summary_spct_classes

Examples

summary(sun.spct)
class(summary(sun.spct))

summary(two_filters.spct)
class(summary(two_filters.spct))

summary(sun_evening.spct)
summary(two_filters.spct, expand = "none")
summary(two_filters.spct, expand = "each")
summary(two_filters.spct, expand = "collection")
summary(two_filters.spct, expand = "auto") # <= 4 spectra
summary(sun_evening.spct, expand = "auto") # > 4 spectra

where_measured(sun.spct)
where_measured(summary(sun.spct))
what_measured(summary(two_filters.spct))
what_measured(summary(two_filters.spct, expand = "each")[[1]])

summary(sun_evening.mspct)
summary(sun_evening.mspct, which.metadata = "when.measured")
summary(two_filters.mspct, which.metadata = "what.measured")
summary(two_filters.mspct, expand = "each")

summary_spct_classes Function that returns a vector containing the names of spectral sum-
mary classes.

Description

Function that returns a vector containing the names of spectral summary classes.

Usage

summary_spct_classes()

Value

A character vector of class names.

sum_spectra 371

sum_spectra Add two spectra

Description

Merge wavelength vectors of two spectra, and compute the missing spectral values by interpolation
within each spectrum. After this, the spectral values at each wavelength are added. This is a
’parallel’ operation between two spectra.

Usage

sum_spectra(
w.length1,
w.length2 = NULL,
s.irrad1,
s.irrad2,
trim = "union",
na.rm = FALSE

)

Arguments

w.length1 numeric vector of wavelength (nm).

w.length2 numeric vector of wavelength (nm).

s.irrad1 a numeric vector of spectral values.

s.irrad2 a numeric vector of spectral values.

trim a character string with value "union" or "intersection".

na.rm a logical value, if TRUE, not the default, NAs in the input are replaced with
zeros.

Details

If trim=="union" spectral values are calculated for the whole range of wavelengths covered by at
least one of the input spectra, and missing values are set in each input spectrum to zero before
addition. If trim=="intersection" then the range of wavelengths covered by both input spectra is
returned, and the non-overlapping regions discarded. If w.length2 = NULL, it is assumed that both
spectra are measured at the same wavelengths, and a simple addition is used, ensuring fast calcula-
tion.

Value

a data.frame with two numeric variables

w.length A numeric vector with the wavelengths (nm) obtained by "fusing" w.length1 and
w.length2. w.length contains all the unique vales, sorted in ascending order.

s.irrad A numeric vector with the sum of the two spectral values at each wavelength.

372 sun.spct

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(),
photon_ratio(), photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), trim_tails(), v_insert_hinges(), v_replace_hinges()

Examples

head(sun.data)
twice.sun.data <- with(sun.data, sum_spectra(w.length, w.length, s.e.irrad, s.e.irrad))
head(twice.sun.data)
tail(twice.sun.data)

sun.spct Solar spectral irradiance (simulated)

Description

A dataset containing the wavelengths at a 1 nm interval and the corresponding spectral (energy)
irradiance and spectral photon irradiance. Values simulated for 22 June 2010, near midday, at
Helsinki, under partly cloudy conditions. The variables are as follows:

Usage

sun.spct

sun.data

Format

A source_spct object and a data.frame, each with 511 rows and 3 variables

An object of class data.frame with 508 rows and 3 columns.

Details

• w.length (nm), range 293 to 800 nm.

• s.e.irrad (W m-2 nm-1)

• s.q.irrad (mol m-2 nm-1)

Note

Package ’photobiologySun’ contains data sets for the daylight spectrum under different conditions
in and outside vegetation, stored in objects of these same classes, ready to be used with package
’photobiology’.

sun_daily.spct 373

Author(s)

Anders K. Lindfors (data)

References

Lindfors, A.; Heikkilä, A.; Kaurola, J.; Koskela, T. & Lakkala, K. (2009) Reconstruction of So-
lar Spectral Surface UV Irradiances Using Radiative Transfer Simulations. Photochemistry and
Photobiology, 85: 1233-1239

See Also

Other Spectral data examples: A.illuminant.spct, D50.illuminant.spct, D65.illuminant.spct,
Ler_leaf.spct, black_body.spct, ccd.spct, clear.spct, filter_cps.mspct, green_leaf.spct,
phenylalanine.spct, photodiode.spct, sun_daily.spct, sun_evening.spct, two_filters.spct,
two_sensors.mspct, water.spct, white_led.source_spct

Examples

sun.spct
summary(sun.spct)

sun_daily.spct Daily solar spectral irradiance (simulated)

Description

A dataset containing the wavelengths at a 1 nm interval and the corresponding spectral (energy)
irradiance. Values simulated for 2 June 2012, at Helsinki, under clear sky conditions. The variables
are as follows:

Usage

sun_daily.spct

sun_daily.data

sun.daily.spct

sun.daily.data

Format

A source_spct object and a data.frame, each with 511 rows and 3 variables

An object of class tbl_df (inherits from tbl, data.frame) with 511 rows and 3 columns.

An object of class source_spct (inherits from generic_spct, tbl_df, tbl, data.frame) with
522 rows and 3 columns.

An object of class tbl_df (inherits from tbl, data.frame) with 511 rows and 3 columns.

374 sun_daily.spct

Details

• w.length (nm), range 290 to 800 nm.

• s.e.irrad (J d-1 m-2 nm-1)

• s.q.irrad (mol d-1 m-2 nm-1)

Deprecation!

Objects sun.daily.spct and sun.daily.data have been renamed into sun_daily.spct and
sun_daily.data, for consistency with other data sets in the package. Please, use the new names
for new code.

Note

The simulations are based on libRadTran using hourly mean global radiation measurements to es-
timate cloud cover. The simulations were for each hour and the results integrated for the whole
day.

Author(s)

Anders K. Lindfors (data)

References

Lindfors, A.; Heikkilä, A.; Kaurola, J.; Koskela, T. & Lakkala, K. (2009) Reconstruction of So-
lar Spectral Surface UV Irradiances Using Radiative Transfer Simulations. Photochemistry and
Photobiology, 85: 1233-1239

See Also

Other Spectral data examples: A.illuminant.spct, D50.illuminant.spct, D65.illuminant.spct,
Ler_leaf.spct, black_body.spct, ccd.spct, clear.spct, filter_cps.mspct, green_leaf.spct,
phenylalanine.spct, photodiode.spct, sun.spct, sun_evening.spct, two_filters.spct,
two_sensors.mspct, water.spct, white_led.source_spct

Examples

sun.daily.spct
summary(sun.daily.spct)

sun_evening.spct 375

sun_evening.spct Time series of solar spectral irradiance (measured)

Description

Two data objects containing containing the same time series of five spectra. Values measured in
Viikki, Helsinki, under nearly clear sky in a summer evening.

Usage

sun_evening.spct

sun_evening.mspct

Format

A source_spct object and a source_mspct object.

An object of class source_mspct (inherits from generic_mspct, list) with 5 rows and 1 columns.

Details

The variables are as follows:

• w.length (nm), range 290 to 1000 nm.

• s.e.irrad (J d-1 m-2 nm-1)

• s.q.irrad (mol d-1 m-2 nm-1)

Author(s)

Pedro J. Aphalo (data)

See Also

Other Spectral data examples: A.illuminant.spct, D50.illuminant.spct, D65.illuminant.spct,
Ler_leaf.spct, black_body.spct, ccd.spct, clear.spct, filter_cps.mspct, green_leaf.spct,
phenylalanine.spct, photodiode.spct, sun.spct, sun_daily.spct, two_filters.spct, two_sensors.mspct,
water.spct, white_led.source_spct

Examples

summary(sun_evening.mspct)
colnames(sun_evening.spct)

376 s_e_irrad2rgb

s_e_irrad2rgb Spectral irradiance to rgb color conversion

Description

Calculates rgb values from spectra based on human color matching functions (CMF) or chromaticity
coordinates (CC). A CMF takes into account luminous sensitivity, while a CC only the color hue.
This function, in contrast to that in package pavo does not normalize the values to equal luminosity,
so using a CMF as input gives the expected result. Another difference is that it allows the user to
choose the chromaticity data to be used. The data used by default is different, and it corresponds to
the whole range of CIE standard, rather than the reduced range 400 nm to 700 nm. The wavelength
limits are not hard coded, so the function could be used to simulate vision in other organisms as
long as pseudo CMF or CC data are available for the simulation.

Usage

s_e_irrad2rgb(
w.length,
s.e.irrad,
sens = photobiology::ciexyzCMF2.spct,
color.name = NULL,
check = TRUE

)

Arguments

w.length numeric vector of wavelengths (nm).

s.e.irrad numeric vector of spectral irradiance values.

sens a chroma_spct object with variables w.length, x, y, and z, giving the CC or CMF
definition (default is the proposed human CMF according to CIE 2006.).

color.name character string for naming the rgb color definition.

check logical indicating whether to check or not spectral data.

Value

A color defined using rgb. The numeric values of the RGB components can be obtained using
function col2rgb.

Note

Very heavily modified from Chad Eliason’s <cme16@zips.uakron.edu> spec2rgb function in pack-
age Pavo.

s_mean 377

References

CIE(1932). Commission Internationale de l’Eclairage Proceedings, 1931. Cambridge: Cambridge
University Press.

Color matching functions obtained from Colour and Vision Research Laboratory online data repos-
itory at http://www.cvrl.org/.

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(),
photon_ratio(), photons_energy_ratio(), prod_spectra(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges(),
v_replace_hinges()

Examples

my.color <-
with(sun.data,

s_e_irrad2rgb(w.length, s.e.irrad, color.name = "sunWhite"))
col2rgb(my.color)

s_mean Mean from collection of spectra

Description

Method to compute the "parallel" mean of values across members of a collection of spectra or of a
spectral object containing multiple spectra in long form.

Usage

s_mean(x, trim, na.rm, ...)

Default S3 method:
s_mean(x, trim = 0, na.rm = FALSE, ...)

S3 method for class 'generic_spct'
s_mean(x, trim = 0, na.rm = FALSE, ...)

S3 method for class 'source_mspct'
s_mean(x, trim = 0, na.rm = FALSE, ...)

S3 method for class 'response_mspct'
s_mean(x, trim = 0, na.rm = FALSE, ...)

http://www.cvrl.org/

378 s_mean

S3 method for class 'filter_mspct'
s_mean(x, trim = 0, na.rm = FALSE, ...)

S3 method for class 'reflector_mspct'
s_mean(x, trim = 0, na.rm = FALSE, ...)

S3 method for class 'calibration_mspct'
s_mean(x, trim = 0, na.rm = FALSE, ...)

S3 method for class 'cps_mspct'
s_mean(x, trim = 0, na.rm = FALSE, ...)

S3 method for class 'raw_mspct'
s_mean(x, trim = 0, na.rm = FALSE, ...)

Arguments

x An R object.

trim numeric The fraction (0 to 0.5) of observations to be trimmed from each end of
x before the mean is computed. Values of trim outside that range are taken as
the nearest endpoint.

na.rm logical A value indicating whether NA values should be stripped before the com-
putation proceeds.

... Further arguments passed to or from other methods.

Details

Method specializations compute the mean at each wavelength across a group of spectra stored in
an object of one of the classes defined in package ’photobiolgy’. Trimming of extreme values is
possible (trimmed mean) and omission of NAs is done separately at each wavelength. Interpolation
is not applied, so all spectra in x must share the same set of wavelengths. An error is triggered if
this condition is nor fulfilled.

Value

If x is a collection spectral of objects, such as a "filter_mspct" object, the returned object is
of same class as the members of the collection, such as "filter_spct", containing the summary
spectrum, with variables with names tagged for summaries other than mean or median.

Methods (by class)

• s_mean(default):

• s_mean(generic_spct):

• s_mean(source_mspct):

• s_mean(response_mspct):

• s_mean(filter_mspct):

• s_mean(reflector_mspct):

s_mean_se 379

• s_mean(calibration_mspct):

• s_mean(cps_mspct):

• s_mean(raw_mspct):

Note

Objects of classes raw_spct and cps_spct can contain data from multiple scans in multiple vari-
ables or "columns". The methods accept as arguments objects of these classes only if spectra con-
tain data for a single spectrometer scan. In the case of cps_spct objects, a single column can also
contain data from multiple scans spliced into a single variable.

See Also

See mean for the mean() method used for the computations.

Examples

s_mean(sun_evening.mspct)

s_mean_se Mean and standard error from collection of spectra

Description

Method to compute the "parallel" mean and the SEM. The spectral values are summarised across
members of a collection of spectra or of a spectral object containing multiple spectra in long form.

Usage

s_mean_se(x, na.rm, mult, ...)

Default S3 method:
s_mean_se(x, na.rm = FALSE, mult = 1, ...)

S3 method for class 'generic_spct'
s_mean_se(x, na.rm = FALSE, mult = 1, ...)

S3 method for class 'filter_mspct'
s_mean_se(x, na.rm = FALSE, mult = 1, ...)

S3 method for class 'source_mspct'
s_mean_se(x, na.rm = FALSE, mult = 1, ...)

S3 method for class 'response_mspct'
s_mean_se(x, na.rm = FALSE, mult = 1, ...)

380 s_mean_se

S3 method for class 'reflector_mspct'
s_mean_se(x, na.rm = FALSE, mult = 1, ...)

S3 method for class 'calibration_mspct'
s_mean_se(x, na.rm = FALSE, mult = 1, ...)

S3 method for class 'cps_mspct'
s_mean_se(x, na.rm = FALSE, mult = 1, ...)

S3 method for class 'raw_mspct'
s_mean_se(x, na.rm = FALSE, mult = 1, ...)

Arguments

x An R object Currently this package defines methods for collections of spectral
objects.

na.rm logical A value indicating whether NA values should be stripped before the com-
putation proceeds.

mult numeric number of multiples of standard error.

... Further arguments passed to or from other methods.

Details

Method specializations compute the mean and SEM at each wavelength across a group of spectra
stored in an object of one of the classes defined in package ’photobiology’. Omission of NAs is
done separately at each wavelength. Interpolation is not applied, so all spectra in x must share the
same set of wavelengths. An error is triggered if this condition is nor fulfilled. The value passed as
argument to ‘mult‘

Value

If x is a collection spectral of objects, such as a "filter_mspct" object, the returned object is
of same class as the members of the collection, such as "filter_spct", containing the summary
spectrum, with variables with names tagged for summaries other than mean or median.

Methods (by class)

• s_mean_se(default):

• s_mean_se(generic_spct):

• s_mean_se(filter_mspct):

• s_mean_se(source_mspct):

• s_mean_se(response_mspct):

• s_mean_se(reflector_mspct):

• s_mean_se(calibration_mspct):

• s_mean_se(cps_mspct):

• s_mean_se(raw_mspct):

s_mean_se_band 381

Note

Objects of classes raw_spct and cps_spct can contain data from multiple scans in multiple vari-
ables or "columns". The methods accept as arguments objects of these classes only if spectra con-
tain data for a single spectrometer scan. In the case of cps_spct objects, a single column can also
contain data from multiple scans spliced into a single variable.

See Also

See mean for the mean() method to compute the mean and se for the method used to compute the
standard error of the mean.

Examples

s_mean_se(sun_evening.mspct)

s_mean_se_band Mean plus and minus standard error from collection of spectra

Description

Method to compute the "parallel" mean and limits based on SEM. The spectral values are sum-
marised across members of a collection of spectra or of a spectral object containing multiple spectra
in long form.

Usage

s_mean_se_band(x, na.rm, mult, ...)

Default S3 method:
s_mean_se_band(x, na.rm = FALSE, mult = 1, ...)

S3 method for class 'generic_spct'
s_mean_se_band(x, na.rm = FALSE, mult = 1, ...)

S3 method for class 'filter_mspct'
s_mean_se_band(x, na.rm = FALSE, mult = 1, ...)

S3 method for class 'source_mspct'
s_mean_se_band(x, na.rm = FALSE, mult = 1, ...)

S3 method for class 'response_mspct'
s_mean_se_band(x, na.rm = FALSE, mult = 1, ...)

S3 method for class 'reflector_mspct'
s_mean_se_band(x, na.rm = FALSE, mult = 1, ...)

382 s_mean_se_band

S3 method for class 'calibration_mspct'
s_mean_se_band(x, na.rm = FALSE, mult = 1, ...)

S3 method for class 'cps_mspct'
s_mean_se_band(x, na.rm = FALSE, mult = 1, ...)

S3 method for class 'raw_mspct'
s_mean_se_band(x, na.rm = FALSE, mult = 1, ...)

Arguments

x An R object.

na.rm logical A value indicating whether NA values should be stripped before the com-
putation proceeds.

mult numeric number of multiples of standard error.

... Further arguments passed to or from other methods.

Details

Method specializations compute the mean and limits based on SEM at each wavelength across
a group of spectra stored in an object of one of the classes defined in package ’photobiology’.
Omission of NAs is done separately at each wavelength. Interpolation is not applied, so all spectra
in x must share the same set of wavelengths. An error is triggered if this condition is nor fulfilled.
The value passed as argument to ‘mult‘ can be used to estimate a confidence interval for each mean
value.

Value

If x is a collection spectral of objects, such as a "filter_mspct" object, the returned object is
of same class as the members of the collection, such as "filter_spct", containing the summary
spectrum, with variables with names tagged for summaries other than mean or median.

Methods (by class)

• s_mean_se_band(default):

• s_mean_se_band(generic_spct):

• s_mean_se_band(filter_mspct):

• s_mean_se_band(source_mspct):

• s_mean_se_band(response_mspct):

• s_mean_se_band(reflector_mspct):

• s_mean_se_band(calibration_mspct):

• s_mean_se_band(cps_mspct):

• s_mean_se_band(raw_mspct):

s_median 383

Note

Objects of classes raw_spct and cps_spct can contain data from multiple scans in multiple vari-
ables or "columns". The methods accept as arguments objects of these classes only if spectra con-
tain data for a single spectrometer scan. In the case of cps_spct objects, a single column can also
contain data from multiple scans spliced into a single variable.

See Also

See mean for the mean() method used for the computations.

Examples

s_mean_se_band(sun_evening.mspct)

s_median Median of a collection of spectra

Description

Method to compute the "parallel" median of values across members of a collection of spectra or of
a spectral object containing multiple spectra in long form.

Usage

s_median(x, na.rm, ...)

Default S3 method:
s_median(x, na.rm = FALSE, ...)

S3 method for class 'generic_spct'
s_median(x, na.rm = FALSE, ...)

S3 method for class 'source_mspct'
s_median(x, na.rm = FALSE, ...)

S3 method for class 'response_mspct'
s_median(x, na.rm = FALSE, ...)

S3 method for class 'filter_mspct'
s_median(x, na.rm = FALSE, ...)

S3 method for class 'reflector_mspct'
s_median(x, na.rm = FALSE, ...)

S3 method for class 'calibration_mspct'
s_median(x, na.rm = FALSE, ...)

384 s_median

S3 method for class 'cps_mspct'
s_median(x, na.rm = FALSE, ...)

S3 method for class 'raw_mspct'
s_median(x, na.rm = FALSE, ...)

Arguments

x An R object. Currently this package defines methods for collections of spectral
objects.

na.rm logical. A value indicating whether NA values should be stripped before the
computation proceeds.

... Further arguments passed to or from other methods.

Details

Method specializations compute the median at each wavelength across a group of spectra stored
in an object of one of the classes defined in package ’photobiology’. Omission of NAs is done
separately at each wavelength. Interpolation is not applied, so all spectra in x must share the same
set of wavelengths. An error is triggered if this condition is nor fulfilled.

Value

If x is a collection spectral of objects, such as a "filter_mspct" object, the returned object is
of same class as the members of the collection, such as "filter_spct", containing the summary
spectrum, with variables with names tagged for summaries other than mean or median.

Methods (by class)

• s_median(default):

• s_median(generic_spct):

• s_median(source_mspct):

• s_median(response_mspct):

• s_median(filter_mspct):

• s_median(reflector_mspct):

• s_median(calibration_mspct):

• s_median(cps_mspct):

• s_median(raw_mspct):

Note

Objects of classes raw_spct and cps_spct can contain data from multiple scans in multiple vari-
ables or "columns". The methods accept as arguments objects of these classes only if spectra con-
tain data for a single spectrometer scan. In the case of cps_spct objects, a single column can also
contain data from multiple scans spliced into a single variable.

s_prod 385

See Also

See median for the median() method used for the computations.

Examples

s_median(sun_evening.mspct)

s_prod Product from collection of spectra

Description

Method to compute the "parallel" product of values across members of a collection of spectra or of
a spectral object containing multiple spectra in long form.

Usage

s_prod(x, na.rm, ...)

Default S3 method:
s_prod(x, na.rm = FALSE, ...)

S3 method for class 'generic_spct'
s_prod(x, na.rm = FALSE, ...)

S3 method for class 'source_mspct'
s_prod(x, na.rm = FALSE, ...)

S3 method for class 'response_mspct'
s_prod(x, na.rm = FALSE, ...)

S3 method for class 'filter_mspct'
s_prod(x, na.rm = FALSE, ...)

S3 method for class 'reflector_mspct'
s_prod(x, na.rm = FALSE, ...)

S3 method for class 'calibration_mspct'
s_prod(x, na.rm = FALSE, ...)

S3 method for class 'cps_mspct'
s_prod(x, na.rm = FALSE, ...)

S3 method for class 'raw_mspct'
s_prod(x, na.rm = FALSE, ...)

386 s_prod

Arguments

x An R object. Currently this package defines methods for collections of spectral
objects.

na.rm logical. A value indicating whether NA values should be stripped before the
computation proceeds.

... Further arguments passed to or from other methods.

Details

Method specializations compute the product at each wavelength across a group of spectra stored
in an object of one of the classes defined in package ’photobiology’. Omission of NAs is done
separately at each wavelength. Interpolation is not applied, so all spectra in x must share the same
set of wavelengths. An error is triggered if this condition is nor fulfilled.

Value

If x is a collection spectral of objects, such as a "filter_mspct" object, the returned object is
of same class as the members of the collection, such as "filter_spct", containing the summary
spectrum, with variables with names tagged for summaries other than mean or median.

Methods (by class)

• s_prod(default):

• s_prod(generic_spct):

• s_prod(source_mspct):

• s_prod(response_mspct):

• s_prod(filter_mspct):

• s_prod(reflector_mspct):

• s_prod(calibration_mspct):

• s_prod(cps_mspct):

• s_prod(raw_mspct):

Note

Objects of classes raw_spct and cps_spct can contain data from multiple scans in multiple vari-
ables or "columns". The methods accept as arguments objects of these classes only if spectra con-
tain data for a single spectrometer scan. In the case of cps_spct objects, a single column can also
contain data from multiple scans spliced into a single variable.

The product operation is meaningful only for certain physical quantities or bases of expression.

See Also

See prod for the prod() method used for the computations.

s_range 387

Examples

s_prod(two_filters.mspct)

s_range Range of a collection of spectra

Description

Method to compute the "parallel" range of values across members of a collection of spectra or of a
spectral object containing multiple spectra in long form.

Usage

s_range(x, na.rm, ...)

Default S3 method:
s_range(x, na.rm = FALSE, ...)

S3 method for class 'generic_spct'
s_range(x, na.rm = FALSE, ...)

S3 method for class 'filter_mspct'
s_range(x, na.rm = FALSE, ...)

S3 method for class 'source_mspct'
s_range(x, na.rm = FALSE, ...)

S3 method for class 'response_mspct'
s_range(x, na.rm = FALSE, ...)

S3 method for class 'reflector_mspct'
s_range(x, na.rm = FALSE, ...)

S3 method for class 'calibration_mspct'
s_range(x, na.rm = FALSE, ...)

S3 method for class 'cps_mspct'
s_range(x, na.rm = FALSE, ...)

S3 method for class 'raw_mspct'
s_range(x, na.rm = FALSE, ...)

Arguments

x An R object. Currently this package defines methods for collections of spectral
objects.

388 s_range

na.rm logical. A value indicating whether NA values should be stripped before the
computation proceeds.

... Further arguments passed to or from other methods.

Details

Method specializations compute the range at each wavelength across a group of spectra stored in an
object of one of the classes defined in package ’photobiology’. Omission of NAs is done separately
at each wavelength. Interpolation is not applied, so all spectra in x must share the same set of
wavelengths. An error is triggered if this condition is nor fulfilled.

Value

If x is a collection spectral of objects, such as a "filter_mspct" object, the returned object is
of same class as the members of the collection, such as "filter_spct", containing the summary
spectrum, with variables with names tagged for summaries other than mean or median.

Methods (by class)

• s_range(default):

• s_range(generic_spct):

• s_range(filter_mspct):

• s_range(source_mspct):

• s_range(response_mspct):

• s_range(reflector_mspct):

• s_range(calibration_mspct):

• s_range(cps_mspct):

• s_range(raw_mspct):

Note

Objects of classes raw_spct and cps_spct can contain data from multiple scans in multiple vari-
ables or "columns". The methods accept as arguments objects of these classes only if spectra con-
tain data for a single spectrometer scan. In the case of cps_spct objects, a single column can also
contain data from multiple scans spliced into a single variable.

See Also

See Extremes details on the min() and max() methods used for the computations.

Examples

s_range(sun_evening.mspct)

s_sd 389

s_sd Standard Deviation of a collection of spectra

Description

Method to compute the "parallel" standard deviation of values across members of a collection of
spectra or of a spectral object containing multiple spectra in long form.

Usage

s_sd(x, na.rm, ...)

Default S3 method:
s_sd(x, na.rm = FALSE, ...)

S3 method for class 'generic_spct'
s_sd(x, na.rm = FALSE, ...)

S3 method for class 'filter_mspct'
s_sd(x, na.rm = FALSE, ...)

S3 method for class 'source_mspct'
s_sd(x, na.rm = FALSE, ...)

S3 method for class 'response_mspct'
s_sd(x, na.rm = FALSE, ...)

S3 method for class 'reflector_mspct'
s_sd(x, na.rm = FALSE, ...)

S3 method for class 'calibration_mspct'
s_sd(x, na.rm = FALSE, ...)

S3 method for class 'cps_mspct'
s_sd(x, na.rm = FALSE, ...)

S3 method for class 'raw_mspct'
s_sd(x, na.rm = FALSE, ...)

Arguments

x An R object. Currently this package defines methods for collections of spectral
objects.

na.rm logical. A value indicating whether NA values should be stripped before the
computation proceeds.

... Further arguments passed to or from other methods.

390 s_sd

Details

Method specializations compute the standard deviation at each wavelength across a group of spectra
stored in an object of one of the classes defined in package ’photobiology’. Omission of NAs is done
separately at each wavelength. Interpolation is not applied, so all spectra in x must share the same
set of wavelengths. An error is triggered if this condition is nor fulfilled.

Value

If x is a collection spectral of objects, such as a "filter_mspct" object, the returned object is
of same class as the members of the collection, such as "filter_spct", containing the summary
spectrum, with variables with names tagged for summaries other than mean or median.

Methods (by class)

• s_sd(default):

• s_sd(generic_spct):

• s_sd(filter_mspct):

• s_sd(source_mspct):

• s_sd(response_mspct):

• s_sd(reflector_mspct):

• s_sd(calibration_mspct):

• s_sd(cps_mspct):

• s_sd(raw_mspct):

Note

Objects of classes raw_spct and cps_spct can contain data from multiple scans in multiple vari-
ables or "columns". The methods accept as arguments objects of these classes only if spectra con-
tain data for a single spectrometer scan. In the case of cps_spct objects, a single column can also
contain data from multiple scans spliced into a single variable.

See Also

See sd for details about sd() methods for other classes.

Examples

s_sd(sun_evening.mspct)

s_se 391

s_se Standard Error of a collection of spectra

Description

Method to compute the "parallel" standard error of the mean across members of a collection of
spectra or of a spectral object containing multiple spectra in long form.

Usage

s_se(x, na.rm, ...)

Default S3 method:
s_se(x, na.rm = FALSE, ...)

S3 method for class 'generic_spct'
s_se(x, na.rm = FALSE, ...)

S3 method for class 'source_mspct'
s_se(x, na.rm = FALSE, ...)

S3 method for class 'response_mspct'
s_se(x, na.rm = FALSE, ...)

S3 method for class 'filter_mspct'
s_se(x, na.rm = FALSE, ...)

S3 method for class 'reflector_mspct'
s_se(x, na.rm = FALSE, ...)

S3 method for class 'calibration_mspct'
s_se(x, na.rm = FALSE, ...)

S3 method for class 'cps_mspct'
s_se(x, na.rm = FALSE, ...)

S3 method for class 'raw_mspct'
s_se(x, na.rm = FALSE, ...)

Arguments

x An R object. Currently this package defines methods for collections of spectral
objects.

na.rm logical. A value indicating whether NA values should be stripped before the
computation proceeds.

... Further arguments passed to or from other methods.

392 s_sum

Details

Method specializations compute the standard error of the mean at each wavelength across a group
of spectra stored in an object of one of the classes defined in package ’photobiology’. Omission
of NAs is done separately at each wavelength. Interpolation is not applied, so all spectra in x must
share the same set of wavelengths. An error is triggered if this condition is nor fulfilled.

Value

If x is a collection spectral of objects, such as a "filter_mspct" object, the returned object is
of same class as the members of the collection, such as "filter_spct", containing the summary
spectrum, with variables with names tagged for summaries other than mean or median.

Methods (by class)

• s_se(default):

• s_se(generic_spct):

• s_se(source_mspct):

• s_se(response_mspct):

• s_se(filter_mspct):

• s_se(reflector_mspct):

• s_se(calibration_mspct):

• s_se(cps_mspct):

• s_se(raw_mspct):

Note

Objects of classes raw_spct and cps_spct can contain data from multiple scans in multiple vari-
ables or "columns". The methods accept as arguments objects of these classes only if spectra con-
tain data for a single spectrometer scan. In the case of cps_spct objects, a single column can also
contain data from multiple scans spliced into a single variable.

Examples

s_se(sun_evening.mspct)

s_sum Sum from collection of spectra

Description

Method to compute the "parallel" sum of values across members of a collection of spectra or of a
spectral object containing multiple spectra in long form.

s_sum 393

Usage

s_sum(x, na.rm, ...)

Default S3 method:
s_sum(x, na.rm = FALSE, ...)

S3 method for class 'generic_spct'
s_sum(x, na.rm = FALSE, ...)

S3 method for class 'filter_mspct'
s_sum(x, na.rm = FALSE, ...)

S3 method for class 'source_mspct'
s_sum(x, na.rm = FALSE, ...)

S3 method for class 'response_mspct'
s_sum(x, na.rm = FALSE, ...)

S3 method for class 'reflector_mspct'
s_sum(x, na.rm = FALSE, ...)

S3 method for class 'calibration_mspct'
s_sum(x, na.rm = FALSE, ...)

S3 method for class 'cps_mspct'
s_sum(x, na.rm = FALSE, ...)

S3 method for class 'raw_mspct'
s_sum(x, na.rm = FALSE, ...)

Arguments

x An R object.

na.rm logical A value indicating whether NA values should be stripped before the com-
putation proceeds.

... Further arguments passed to or from other methods.

Details

Method specializations compute the sum at each wavelength across a group of spectra stored in an
object of one of the classes defined in package ’photobiology’. Omission of NAs is done separately
at each wavelength. Interpolation is not applied, so all spectra in x must share the same set of
wavelengths. An error is triggered if this condition is nor fulfilled.

Value

If x is a collection spectral of objects, such as a "filter_mspct" object, the returned object is
of same class as the members of the collection, such as "filter_spct", containing the summary

394 s_var

spectrum, with variables with names tagged for summaries other than mean or median.

Methods (by class)

• s_sum(default):

• s_sum(generic_spct):

• s_sum(filter_mspct):

• s_sum(source_mspct):

• s_sum(response_mspct):

• s_sum(reflector_mspct):

• s_sum(calibration_mspct):

• s_sum(cps_mspct):

• s_sum(raw_mspct):

Note

Objects of classes raw_spct and cps_spct can contain data from multiple scans in multiple vari-
ables or "columns". The methods accept as arguments objects of these classes only if spectra con-
tain data for a single spectrometer scan. In the case of cps_spct objects, a single column can also
contain data from multiple scans spliced into a single variable.

The sum operation is meaningful only for certain physical quantities or bases of expression.

See Also

See sum for the sum() method used for the computations.

Examples

s_sum(sun_evening.mspct)

s_var Variance of a collection of spectra

Description

Method to compute the "parallel" variance of values across members of a collections of spectra or
of a spectral object containing multiple spectra in long form.

s_var 395

Usage

s_var(x, na.rm, ...)

Default S3 method:
s_var(x, na.rm = FALSE, ...)

S3 method for class 'generic_spct'
s_var(x, na.rm = FALSE, ...)

S3 method for class 'filter_mspct'
s_var(x, na.rm = FALSE, ...)

S3 method for class 'source_mspct'
s_var(x, na.rm = FALSE, ...)

S3 method for class 'response_mspct'
s_var(x, na.rm = FALSE, ...)

S3 method for class 'reflector_mspct'
s_var(x, na.rm = FALSE, ...)

S3 method for class 'calibration_mspct'
s_var(x, na.rm = FALSE, ...)

S3 method for class 'cps_mspct'
s_var(x, na.rm = FALSE, ...)

S3 method for class 'raw_mspct'
s_var(x, na.rm = FALSE, ...)

Arguments

x An R object. Currently this package defines methods for collections of spectral
objects.

na.rm logical. A value indicating whether NA values should be stripped before the
computation proceeds.

... Further arguments passed to or from other methods.

Details

Method specializations compute the variance at each wavelength across a group of spectra stored
in an object of one of the classes defined in package ’photobiology’. Omission of NAs is done
separately at each wavelength. Interpolation is not applied, so all spectra in x must share the same
set of wavelengths. An error is triggered if this condition is nor fulfilled.

396 T2A

Value

If x is a collection spectral of objects, such as a "filter_mspct" object, the returned object is
of same class as the members of the collection, such as "filter_spct", containing the summary
spectrum, with variables with names tagged for summaries other than mean or median.

Methods (by class)

• s_var(default):

• s_var(generic_spct):

• s_var(filter_mspct):

• s_var(source_mspct):

• s_var(response_mspct):

• s_var(reflector_mspct):

• s_var(calibration_mspct):

• s_var(cps_mspct):

• s_var(raw_mspct):

Note

Objects of classes raw_spct and cps_spct can contain data from multiple scans in multiple vari-
ables or "columns". The methods accept as arguments objects of these classes only if spectra con-
tain data for a single spectrometer scan. In the case of cps_spct objects, a single column can also
contain data from multiple scans spliced into a single variable.

See Also

See cor for details about var(), which is used for the computations.

Examples

s_var(sun_evening.mspct)

T2A Convert transmittance into absorbance.

Description

Function that converts transmittance (fraction) into log10-based absorbance (a.u.).

T2A 397

Usage

T2A(x, action, byref, clean, ...)

Default S3 method:
T2A(x, action = NULL, byref = FALSE, ...)

S3 method for class 'numeric'
T2A(x, action = NULL, byref = FALSE, clean = TRUE, ...)

S3 method for class 'filter_spct'
T2A(x, action = "add", byref = FALSE, clean = TRUE, strict.A = FALSE, ...)

S3 method for class 'filter_mspct'
T2A(
x,
action = "add",
byref = FALSE,
clean = TRUE,
strict.A = TRUE,
...,
.parallel = FALSE,
.paropts = NULL

)

Arguments

x an R object.

action character Allowed values "replace" and "add".

byref logical indicating if new object will be created by reference or by copy of x.

clean logical replace off-boundary values before conversion

... not used in current version

strict.A logical Attempt to compute a true internal absorbance even if "total" transmit-
tance is stored in x.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach.

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Details

Absorbance, A, is frequently used in chemistry as it is linearly related to the concentration of a
solute dissolved in a solvent.

A = − log10 τ

398 T2A

where, A absorbance and τ is internal transmittance. By default, if total transmittance, T , is stored
in x, the returned value computed as

A = − log10 T

is not strictly absorbance. In this case and in cases when the measured light attenuation is the result
of scattering, or when part of measured light is re-emitted after absorption the use of attenuance is
the IUPAC-recommended name for this quantity.

If strict.A = TRUE is passed in the call and total transmittance, T , and total reflectance, ρ, are both
available, absorbance is computed as:

A = − log10(T − ρ)/(1− ρ)

where ρ can be either spectral total reflectance stored in x as data or a single approximate Rfr.constant
value stored as part of the metadata.

Value

A copy of x with a column A added and other columns possibly deleted except for w.length. If
action = "replace", in all cases, the additional columns are removed, even if no column needs to
be added.

Methods (by class)

• T2A(default): Default method for generic function

• T2A(numeric): Method for numeric vectors

• T2A(filter_spct): Method for filter spectra

• T2A(filter_mspct): Method for collections of filter spectra

Note

The default A.strict = FALSE ensures indentical behaviour as in ’photobiology’ (<= 0.11.0).

See Also

Other quantity conversion functions: A2T(), Afr2T(), T2Afr(), any2T(), as_quantum(), e2q(),
e2qmol_multipliers(), e2quantum_multipliers(), q2e()

T2Afr 399

T2Afr Convert transmittance into absorptance.

Description

Function that converts transmittance (fraction) into absorptance (fraction). If reflectance (fraction)
is available, it also allows conversions between internal and total absorptance.

Usage

T2Afr(x, action, byref, clean, ...)

Default S3 method:
T2Afr(x, action = NULL, byref = FALSE, clean = FALSE, ...)

S3 method for class 'numeric'
T2Afr(x, action = NULL, byref = FALSE, clean = FALSE, Rfr = NA_real_, ...)

S3 method for class 'filter_spct'
T2Afr(x, action = "add", byref = FALSE, clean = FALSE, ...)

S3 method for class 'object_spct'
T2Afr(x, action = "add", byref = FALSE, clean = FALSE, ...)

S3 method for class 'filter_mspct'
T2Afr(
x,
action = "add",
byref = FALSE,
clean = FALSE,
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'object_mspct'
T2Afr(
x,
action = "add",
byref = FALSE,
clean = FALSE,
...,
.parallel = FALSE,
.paropts = NULL

)

400 T2Afr

Arguments

x an R object.

action character Allowed values "replace" and "add".

byref logical indicating if new object will be created by reference or by copy of x.

clean logical replace off-boundary values before conversion.

... not used in current version.

Rfr numeric vector. Spectral reflectance o reflectance factor. Set to zero if x is
internal reflectance,

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Details

Absorptance, internal transmittance and total reflectance when expressed as fractions, add up to
one:

1 = α+ τ + ρ

where, α is absorptance, τ is internal transmittance and ρ is total reflectance. If any two of these
quantities are known, the third one can be computed from them.

On the other hand:

1 = α′+ T

where, α′ = α + ρ, measured together. In this case, there is not enough information available to
compute α.

Thus, method T2Afr() computes either α or α′, depending on whether τ or T are contained in the
argument passed to x, but neither of them when only τ is known. To know which quantity has been
computed, use getTfrType() to query whether the computations were based on τ or T .

The R names used are: Tfr for τ and T are Tfr, Afr for α and α′, and Rfr for rho. The distinction
between τ and T and between α and α′ is made based on metadata attributes.

Value

A copy of x with a column Afr added and other columns possibly deleted except for w.length. If
action = "replace", in all cases, the redundant columns are removed, even when column Afr was
present in the argument passed to x.

tag 401

Methods (by class)

• T2Afr(default): Default method for generic function

• T2Afr(numeric): Default method for generic function

• T2Afr(filter_spct): Method for filter spectra

• T2Afr(object_spct): Method for object spectra

• T2Afr(filter_mspct): Method for collections of filter spectra

• T2Afr(object_mspct): Method for collections of object spectra

See Also

Other quantity conversion functions: A2T(), Afr2T(), T2A(), any2T(), as_quantum(), e2q(),
e2qmol_multipliers(), e2quantum_multipliers(), q2e()

Examples

T2Afr(Ler_leaf.spct)

tag Tag a spectrum

Description

Spectra are tagged by adding variables and attributes containing color definitions, labels, and a
factor following the wavebands given in w.band. This methods are most useful for plotting realistic
computed colors from spectral data.

Usage

tag(x, ...)

Default S3 method:
tag(x, ...)

S3 method for class 'generic_spct'
tag(
x,
w.band = NULL,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = TRUE,
short.names = TRUE,
chroma.type = "CMF",
byref = FALSE,
...

)

402 tag

S3 method for class 'generic_mspct'
tag(
x,
w.band = NULL,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = TRUE,
short.names = TRUE,
chroma.type = "CMF",
byref = FALSE,
...,
.parallel = FALSE,
.paropts = NULL

)

Arguments

x an R object.
... ignored (possibly used by derived methods).
w.band waveband or list of waveband objects. The waveband(s) determine the region(s)

of the spectrum that are tagged
wb.trim logical Flag telling if wavebands crossing spectral data boundaries are trimmed

or ignored
use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before

integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

short.names logical Flag indicating whether to use short or long names for wavebands
chroma.type character telling whether "CMF", "CC", or "both" should be returned for human

vision, or an object of class chroma_spct for any other trichromic visual system.
byref logical Flag indicating if new object will be created by reference or by copy of x
.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts a list of additional options passed into the foreach function when parallel compu-

tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Value

A copy of x expanded with additional columns with color-related information.

Methods (by class)

• tag(default): Default method for generic
• tag(generic_spct): Tag one of generic_spct, and derived classes including source_spct,
filter_spct, reflector_spct, object_spct, and response_spct.

• tag(generic_mspct): Tag one of generic_mspct, and derived classes including source_mspct,
filter_mspct, reflector_mspct, object_mspct, and response_mspct.

Tfr_fraction 403

Note

NULL as w.band argument does not add any new tags, instead it removes existing tags if present. NA,
the default, as w.band argument removes existing waveband tags if present and sets the wl.color
variable. If a waveband object or a list of wavebands is supplied as argument then tagging is based
on them, and wl.color is also set.

See Also

Other tagging and related functions: is_tagged(), untag(), wb2rect_spct(), wb2spct(), wb2tagged_spct()

Examples

tag(sun.spct)
tag(sun.spct, list(A = waveband(c(300,3005))))

Tfr_fraction transmittance:transmittance fraction

Description

Transmittance fraction for a given pair of wavebands of a filter spectrum.

Usage

Tfr_fraction(
spct,
w.band.num,
w.band.denom,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
...

)

Default S3 method:
Tfr_fraction(
spct,
w.band.num,
w.band.denom,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
...

)

404 Tfr_fraction

S3 method for class 'filter_spct'
Tfr_fraction(
spct,
w.band.num = NULL,
w.band.denom = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
quantity = "mean",
naming = "short",
name.tag = NULL,
...

)

S3 method for class 'filter_mspct'
Tfr_fraction(
spct,
w.band.num = NULL,
w.band.denom = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
quantity = "mean",
naming = "short",
name.tag = NULL,
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct an object of class "filter_spct".
w.band.num waveband object or a list of waveband objects used to compute the numerator(s)

and denominator(s) of the fraction(s).
w.band.denom waveband object or a list of waveband objects used to compute the denomina-

tor(s) of the fraction(s).
scale.factor numeric vector of length 1, or length equal to that of w.band. Numeric multiplier

applied to returned values.
wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if

FALSE, they are discarded
use.cached.mult

logical indicating whether multiplier values should be cached between calls

Tfr_fraction 405

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

... other arguments (possibly ignored)
quantity character One of "total", "average" or "mean".
naming character one of "long", "default", "short" or "none". Used to select the type of

names to assign to returned value.
name.tag character Used to tag the name of the returned values.
attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to

formal parameter col.names.
idx character Name of the column with the names of the members of the collection

of spectra.
.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts a list of additional options passed into the foreach function when parallel compu-

tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Details

With the default quantity = "mean" or quantity = "average" the ratio is based on two mean
spectral transmittance, one computed for each waveband.

Tfrλ(s, wbnum)

Tfrλ(s, wbdenom) + Tfrλ(s, wbnum)

If the argument is set to quantity = "total" the fraction is based on two integrated transmit-
tance, one computed for each waveband.

Tfr(s, wbnum)

Tfr(s, wbdenom) + Tfr(s, wbnum)

Only if the wavelength expanse of the two wavebands is the same, these two ratios are numerically
identical.

Value

In the case of methods for individual spectra, a numeric vector with name attribute set. The name
is based on the name of the wavebands unless a named list of wavebands is supplied in which
case the names of the list elements are used. "[Tfr:Tfr]" is appended if quantity = "total" and
"[Tfr(wl):Tfr(wl)]" if quantity = "mean" or quantity = "average".

A data.frame is returned in the case of collections of spectra, containing one column for each frac-
tion definition, an index column with the names of the spectra, and optionally additional columns
with metadata values retrieved from the attributes of the member spectra.

Fraction definitions are "assembled" from the arguments passed to w.band.num and w.band.denom.
If both arguments are lists of waveband definitions, with an equal number of members, then the
wavebands are paired to obtain as many fractions as the number of wavebands in each list. Recy-
cling for wavebands takes place when the number of denominator and numerator wavebands differ.

406 Tfr_normdiff

Methods (by class)

• Tfr_fraction(default): Default for generic function

• Tfr_fraction(filter_spct): Method for filter_spct objects

• Tfr_fraction(filter_mspct): Calculates Tfr:Tfr from a filter_mspct object.

Note

The last two parameters control speed optimizations. The defaults should be suitable in most cases.
If you will use repeatedly the same SWFs on many spectra measured at exactly the same wave-
lengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that
you are responsible for ensuring that the wavelengths are the same in each call, as the only test done
is for the length of the w.length vector.

See Also

Other transmittance ratio functions: Tfr_normdiff(), Tfr_ratio()

Examples

Tfr_fraction(Ler_leaf_rflt.spct,
waveband(c(400,500), wb.name = "Blue"),
waveband(c(600,700), wb.name = "Red"))

Tfr_fraction(Ler_leaf_rflt.spct,
waveband(c(400,500), wb.name = "Blue"),
waveband(c(600,700), wb.name = "Red"),
quantity = "total")

Tfr_fraction(Ler_leaf_rflt.spct,
waveband(c(400,500), wb.name = "Blue"),
waveband(c(600,700), wb.name = "Red"),
quantity = "mean")

Tfr_normdiff transmittance:transmittance normalised difference

Description

Transmittance normalized difference index for a given pair of wavebands computed from a filter
spectrum.

Usage

Tfr_normdiff(
spct,
w.band.plus,
w.band.minus,
scale.factor,

Tfr_normdiff 407

wb.trim,
use.cached.mult,
use.hinges,
...

)

Default S3 method:
Tfr_normdiff(
spct,
w.band.plus,
w.band.minus,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
...

)

S3 method for class 'filter_spct'
Tfr_normdiff(
spct,
w.band.plus = NULL,
w.band.minus = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
quantity = "mean",
naming = "short",
name.tag = NULL,
...

)

S3 method for class 'filter_mspct'
Tfr_normdiff(
spct,
w.band.plus = NULL,
w.band.minus = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
quantity = "mean",
naming = "short",
name.tag = NULL,
...,
attr2tb = NULL,
idx = "spct.idx",

408 Tfr_normdiff

.parallel = FALSE,

.paropts = NULL
)

Arguments

spct an object of class "filter_spct".
w.band.plus, w.band.minus

waveband object(s) or a list(s) of waveband objects used to compute the additive
and subtractive transmittance terms of the normalized difference index.

scale.factor numeric vector of length 1, or length equal to that of w.band. Numeric multiplier
applied to returned values.

wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if
FALSE, they are discarded

use.cached.mult

logical indicating whether multiplier values should be cached between calls

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

... other arguments (possibly ignored)

quantity character One of "total", "average" or "mean".

naming character one of "long", "default", "short" or "none". Used to select the type of
names to assign to returned value.

name.tag character Used to tag the name of the returned values.

attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to
formal parameter col.names.

idx character Name of the column with the names of the members of the collection
of spectra.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Details

With the default quantity = "mean" or quantity = "average" the ratio is based on two mean
spectral photon transmittances, one computed for each waveband.

Tfrλ(s, wbplus)− Tfrλ(s, wbminus)

Tfrλ(s, wbplus) + Tfrλ(s, wbminus)

If the argument is set to quantity = "total" the fraction is based on two photon transmittances,
one computed for each waveband.

Tfr_normdiff 409

Tfr(s, wbplus)− Tfr(s, wbminus)

Tfr(s, wbplus) + Tfr(s, wbminus)

Only if the wavelength expanse of the two wavebands is the same, these two ratios are numerically
identical.

Value

In the case of methods for individual spectra, a numeric vector with name attribute set. The name
is based on the name of the wavebands unless a named list of wavebands is supplied in which
case the names of the list elements are used. "[Tfr:Tfr]" is appended if quantity= "total" and
"[Tfr(wl):Tfr(wl)]" if quantity = "mean" or quantity = "average".

A data.frame is returned in the case of collections of spectra, containing one column for each frac-
tion definition, an index column with the names of the spectra, and optionally additional columns
with metadata values retrieved from the attributes of the member spectra.

Fraction definitions are "assembled" from the arguments passed to w.band.num and w.band.denom.
If both arguments are lists of waveband definitions, with an equal number of members, then the
wavebands are paired to obtain as many fractions as the number of wavebands in each list. Recy-
cling for wavebands takes place when the number of denominator and numerator wavebands differ.

Methods (by class)

• Tfr_normdiff(default): Default for generic function

• Tfr_normdiff(filter_spct): Method for filter_spct objects

• Tfr_normdiff(filter_mspct): Calculates Tfr:Tfr from a filter_mspct object.

Note

The last two parameters control speed optimizations. The defaults should be suitable in most cases.
If you will use repeatedly the same SWFs on many spectra measured at exactly the same wave-
lengths you may obtain some speed up by setting use.cached.mult =T RUE. However, be aware
that you are responsible for ensuring that the wavelengths are the same in each call, as the only test
done is for the length of the w.length vector.

See Also

normalized_diff_ind, accepts different summary functions.

Other transmittance ratio functions: Tfr_fraction(), Tfr_ratio()

Examples

Tfr_normdiff(Ler_leaf_rflt.spct,
waveband(c(400,500), wb.name = "Blue"),
waveband(c(600,700), wb.name = "Red"))

Tfr_normdiff(Ler_leaf_rflt.spct,
waveband(c(400,500), wb.name = "Blue"),
waveband(c(600,700), wb.name = "Red"),
quantity = "total")

410 Tfr_ratio

Tfr_normdiff(Ler_leaf_rflt.spct,
waveband(c(400,500), wb.name = "Blue"),
waveband(c(600,700), wb.name = "Red"),
quantity = "mean")

Tfr_ratio transmittance:transmittance ratio

Description

Transmittance ratio for a given pair of wavebands of a filter spectrum.

Usage

Tfr_ratio(
spct,
w.band.num,
w.band.denom,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
...

)

Default S3 method:
Tfr_ratio(
spct,
w.band.num,
w.band.denom,
scale.factor,
wb.trim,
use.cached.mult,
use.hinges,
...

)

S3 method for class 'filter_spct'
Tfr_ratio(
spct,
w.band.num = NULL,
w.band.denom = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,

Tfr_ratio 411

quantity = "mean",
naming = "short",
name.tag = NULL,
...

)

S3 method for class 'filter_mspct'
Tfr_ratio(
spct,
w.band.num = NULL,
w.band.denom = NULL,
scale.factor = 1,
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.cached.mult = FALSE,
use.hinges = NULL,
quantity = "mean",
naming = "short",
name.tag = NULL,
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct an object of class "filter_spct".

w.band.num waveband object or a list of waveband objects used to compute the numerator(s)
and denominator(s) of the ratio(s).

w.band.denom waveband object or a list of waveband objects used to compute the denomina-
tor(s) of the ratio(s).

scale.factor numeric vector of length 1, or length equal to that of w.band. Numeric multiplier
applied to returned values.

wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if
FALSE, they are discarded

use.cached.mult

logical indicating whether multiplier values should be cached between calls

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

... other arguments (possibly ignored)

quantity character One of "total", "average" or "mean".

naming character one of "long", "default", "short" or "none". Used to select the type of
names to assign to returned value.

name.tag character Used to tag the name of the returned values.

412 Tfr_ratio

attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to
formal parameter col.names.

idx character Name of the column with the names of the members of the collection
of spectra.

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Details

With the default quantity = "mean" or quantity = "average" the ratio is based on two mean
spectral transmittance, one computed for each waveband.

Tfrλ(s, wbnum)

Tfrλ(s, wbdenom))

If the argument is set to quantity = "total" the ratio is based on two integrated transmittance,
one computed for each waveband.

Tfr(s, wbnum)

Tfr(s, wbdenom)

Only if the wavelength expanse of the two wavebands is the same, these two ratios are numerically
identical.

Value

In the case of methods for individual spectra, a numeric vector with name attribute set. The name
is based on the name of the wavebands unless a named list of wavebands is supplied in which case
the names of the list elements are used. "[Tfr:Tfr]" is appended if quantity = "mean" or quantity
= "average".

A data.frame is returned in the case of collections of spectra, containing one column for each frac-
tion definition, an index column with the names of the spectra, and optionally additional columns
with metadata values retrieved from the attributes of the member spectra.

Fraction definitions are "assembled" from the arguments passed to w.band.num and w.band.denom.
If both arguments are lists of waveband definitions, with an equal number of members, then the
wavebands are paired to obtain as many fractions as the number of wavebands in each list. Recy-
cling for wavebands takes place when the number of denominator and numerator wavebands differ.

Methods (by class)

• Tfr_ratio(default): Default for generic function

• Tfr_ratio(filter_spct): Method for filter_spct objects

• Tfr_ratio(filter_mspct): Calculates Tfr:Tfr from a filter_mspct object.

thin_wl 413

Note

The last two parameters control speed optimizations. The defaults should be suitable in most cases.
If you will use repeatedly the same SWFs on many spectra measured at exactly the same wave-
lengths you may obtain some speed up by setting use.cached.mult=TRUE. However, be aware that
you are responsible for ensuring that the wavelengths are the same in each call, as the only test done
is for the length of the w.length vector.

See Also

Other transmittance ratio functions: Tfr_fraction(), Tfr_normdiff()

Examples

Tfr_ratio(Ler_leaf_rflt.spct,
waveband(c(400,500), wb.name = "Blue"),
waveband(c(600,700), wb.name = "Red"))

Tfr_ratio(Ler_leaf_rflt.spct,
waveband(c(400,500), wb.name = "Blue"),
waveband(c(600,700), wb.name = "Red"),
quantity = "total")

Tfr_ratio(Ler_leaf_rflt.spct,
waveband(c(400,500), wb.name = "Blue"),
waveband(c(600,700), wb.name = "Red"),
quantity = "mean")

thin_wl Thin the density of wavelength values

Description

Increase the wavelength step in stored spectral data in featureless regions to save storage space.

Usage

thin_wl(x, ...)

Default S3 method:
thin_wl(x, ...)

S3 method for class 'generic_spct'
thin_wl(
x,
max.wl.step = 10,
max.slope.delta = 0.001,
span = 21,
col.names,
...

414 thin_wl

)

S3 method for class 'source_spct'
thin_wl(
x,
max.wl.step = 10,
max.slope.delta = 0.001,
span = 21,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
...

)

S3 method for class 'response_spct'
thin_wl(
x,
max.wl.step = 10,
max.slope.delta = 0.001,
span = 21,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
...

)

S3 method for class 'filter_spct'
thin_wl(
x,
max.wl.step = 10,
max.slope.delta = 0.001,
span = 21,
qty.out = getOption("photobiology.filter.qty", default = "transmittance"),
...

)

S3 method for class 'reflector_spct'
thin_wl(x, max.wl.step = 10, max.slope.delta = 0.001, span = 21, ...)

S3 method for class 'solute_spct'
thin_wl(x, max.wl.step = 10, max.slope.delta = 0.001, span = 21, ...)

S3 method for class 'raw_spct'
thin_wl(
x,
max.wl.step = 10,
max.slope.delta = 0.001,
span = 21,
col.names,
...

)

thin_wl 415

S3 method for class 'cps_spct'
thin_wl(
x,
max.wl.step = 10,
max.slope.delta = 0.001,
span = 21,
col.names,
...

)

S3 method for class 'object_spct'
thin_wl(
x,
max.wl.step = 10,
max.slope.delta = 0.001,
span = 21,
col.names,
...

)

S3 method for class 'chroma_spct'
thin_wl(x, ...)

S3 method for class 'calibration_spct'
thin_wl(x, ...)

S3 method for class 'generic_mspct'
thin_wl(x, max.wl.step = 10, max.slope.delta = 0.001, span = 21, ...)

S3 method for class 'chroma_mspct'
thin_wl(x, ...)

S3 method for class 'calibration_mspct'
thin_wl(x, ...)

Arguments

x An R object

... additional named arguments passed down to f.

max.wl.step numeric. Largest allowed wavelength difference between adjacent spectral val-
ues in nanometres (nm).

max.slope.delta

numeric in 0 to 1. Largest allowed change in relative slope of the spectral quan-
tity per nm between adjacent pairs of values.

span integer A peak (or valley) is defined as an element in a sequence which is greater
(or smaller) than all other elements within a window of width span centred at
that element. Use NULL for the global peak.

416 thin_wl

col.names character. Name of the column of x containing the spectral data to check against
max.slope.delta. Currently only one column supported.

unit.out character Allowed values "energy", and "photon", or its alias "quantum".

qty.out character Allowed values "transmittance", and "absorbance".

Details

The algorithm used for spectra is "naive" in an effort to keep it efficient. It works by iteratively
attempting to delete every other observation along wavelengths, based on the criteria for maximum
wavelength step and maximum relative step in the spectral variable between adjacent data values.

Value

An object of the same class as x but with a reduced density of wavelength values in those regions
were slope is shallow and featureless.

Methods (by class)

• thin_wl(default): Default for generic function

• thin_wl(generic_spct):

• thin_wl(source_spct):

• thin_wl(response_spct):

• thin_wl(filter_spct):

• thin_wl(reflector_spct):

• thin_wl(solute_spct):

• thin_wl(raw_spct):

• thin_wl(cps_spct):

• thin_wl(object_spct):

• thin_wl(chroma_spct):

• thin_wl(calibration_spct):

• thin_wl(generic_mspct):

• thin_wl(chroma_mspct):

• thin_wl(calibration_mspct):

Note

The value of max.slope.delta is expressed as relative change in the slope of spectral variable per
nanometre. This means that values between 0.0005 and 0.005 tend to work reasonably well. The
best value will depend on the wavelength step of the input and noise in data. A moderate smoothing
before thinning can sometimes help in the case of noisy data.

The amount of thinning is almost always less than the value of criteria passed as argument as it
is based on existing wavelength values. For example if we start with a spectrum with a uniform
wavelength step of 1 nm, possible steps in the thinned spectrum are 2, 4, 8, 16, 32, etc. nm. The
algorithm, does work with any step sizes, regular or variable in the input. Thinning is most effective

times-.generic_spct 417

for spectra with large "featureless" regions as the algorithm attempts not to discard information,
contrary to smoothing or interpolation.

Local peaks and valleys are always preserved, using by default a span of 21 to search for them. See
find_peaks.

See Also

Other experimental utility functions: collect2mspct(), drop_user_cols(), uncollect2spct()

Examples

nrow(yellow_gel.spct)
wl_stepsize(yellow_gel.spct)
thinned.spct <- thin_wl(yellow_gel.spct)
nrow(thinned.spct)
wl_stepsize(thinned.spct)

times-.generic_spct Arithmetic Operators

Description

Multiplication operator for spectra.

Usage

S3 method for class 'generic_spct'
e1 * e2

Arguments

e1 an object of class "generic_spct"

e2 an object of class "generic_spct"

See Also

Other math operators and functions: MathFun, ^.generic_spct(), convolve_each(), div-.generic_spct,
log(), minus-.generic_spct, mod-.generic_spct, plus-.generic_spct, round(), sign(),
slash-.generic_spct

418 transmittance

transmittance Transmittance

Description

Summary transmittance for supplied wavebands from filter or object spectrum.

Usage

transmittance(spct, w.band, quantity, wb.trim, use.hinges, ...)

Default S3 method:
transmittance(spct, w.band, quantity, wb.trim, use.hinges, ...)

S3 method for class 'filter_spct'
transmittance(
spct,
w.band = NULL,
quantity = "average",
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = NULL,
naming = "default",
...

)

S3 method for class 'object_spct'
transmittance(
spct,
w.band = NULL,
quantity = "average",
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = NULL,
naming = "default",
...

)

S3 method for class 'filter_mspct'
transmittance(
spct,
w.band = NULL,
quantity = "average",
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = getOption("photobiology.use.hinges", default = NULL),
naming = "default",
...,
attr2tb = NULL,
idx = "spct.idx"

transmittance 419

)

S3 method for class 'object_mspct'
transmittance(
spct,
w.band = NULL,
quantity = "average",
wb.trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = getOption("photobiology.use.hinges", default = NULL),
naming = "default",
...,
attr2tb = NULL,
idx = "spct.idx",
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct an R object.
w.band waveband or list of waveband objects or a numeric vector of length two. The

waveband(s) determine the region(s) of the spectrum that are summarized. If a
numeric range is supplied a waveband object is constructed on the fly from it.

quantity character string One of "average" or "mean", "total", "contribution", "contribution.pc",
"relative" or "relative.pc".

wb.trim logical if TRUE wavebands crossing spectral data boundaries are trimmed, if
FALSE, they are discarded.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

... ignored (possibly used by derived methods).
naming character one of "long", "default", "short" or "none". Used to select the

type of names to assign to returned value.
attr2tb character vector, see add_attr2tb for the syntax for attr2tb passed as is to

formal parameter col.names.
idx character Name of the column with the names of the members of the collection

of spectra.
.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts a list of additional options passed into the foreach function when parallel compu-

tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Value

A named numeric vector in the case of methods for individual spectra, with one value for each
waveband passed to parameter w.band. A data.frame in the case of collections of spectra, con-

420 Trig

taining one column for each waveband object, an index column with the names of the spectra, and
optionally additional columns with metadata values retrieved from the attributes of the member
spectra.

By default values are only integrated, but depending on the argument passed to parameter quantity
they can be re-expressed as relative fractions or percentages. In the case of vector output, names
attribute is set to the name of the corresponding waveband unless a named list is supplied in which
case the names of the list members are used.

Methods (by class)

• transmittance(default): Default method

• transmittance(filter_spct): Method for filter spectra

• transmittance(object_spct): Method for object spectra

• transmittance(filter_mspct): Calculates transmittance from a filter_mspct

• transmittance(object_mspct): Calculates transmittance from a object_mspct

Note

The use.hinges parameter controls speed optimization. The defaults should be suitable in most
cases. Only the range of wavelengths in the wavebands is used and all BSWFs are ignored.

Examples

transmittance(polyester.spct, waveband(c(280, 315)))
transmittance(polyester.spct, waveband(c(315, 400)))
transmittance(polyester.spct, waveband(c(400, 700)))

Trig Trigonometric Functions

Description

Trigonometric functions for object of generic_spct and derived classes. \ The functions are ap-
plied to the spectral data, not the wavelengths. The quantity in the spectrum to which the function
is applied depends on the class of x and the current value of output options.

Usage

S3 method for class 'generic_spct'
cos(x)

S3 method for class 'generic_spct'
sin(x)

S3 method for class 'generic_spct'

trimInstrDesc 421

tan(x)

S3 method for class 'generic_spct'
acos(x)

S3 method for class 'generic_spct'
asin(x)

S3 method for class 'generic_spct'
atan(x)

Arguments

x an object of class "generic_spct" or a derived class.

trimInstrDesc Trim the "instr.desc" attribute

Description

Function to trim the "instr.desc" attribute of a generic_spct or a summary_generic_spct ob-
ject, by default discarding all fields except for spectrometer.name, spectrometer.sn, bench.grating,
bench.slit, and entrance.optics.

Usage

trimInstrDesc(
x,
fields = c("time", "spectrometer.name", "spectrometer.sn", "bench.grating",
"bench.slit", "entrance.optics")

)

Arguments

x a generic_spct object or a summary_generic_spct object.

fields a character vector with the names of the fields to keep, or if first member is "-",
the names of fields to delete; "*" as the first member of the vector makes the
function a no-op, leaving the spectrum object unaltered.

Details

This function alters x itself by reference and in addition returns x invisibly. If x is not a generic_spct
object or a summary_generic_spct object, or if the "instr.desc" attribute is not present in a
generic_spct object, x is not modified.

Attempts to remove or keep fields that are not present in the attribute are ignored silently. The value
of fields in the attribute is never modified, fields are either kept unchanged or removed.

422 trimInstrSettings

Value

x, possibly with the "instr.desc" attribute modified.

Note

Some of the spectrometer-specific metadata can be large, as they can include calibration coefficients.
In the case of R package ’ooacquire’ also pointers to Java objects may need to be deleted.

See Also

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrDesc(), getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(),
getWhereMeasured(), get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),
setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setSoluteProperties(),
setWhatMeasured(), setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(),
subset_attributes(), trimInstrSettings()

Examples

my.spct <- white_led.cps_spct
names(instr_descriptor(my.spct))
trimInstrDesc(my.spct) # modified by reference!
names(instr_descriptor(my.spct))

trimInstrSettings Trim the "instr.settings" attribute

Description

Trim the "instr.settings" attribute of an existing generic_spct object or of a summary_generic_spct
object, by discarding some fields.

Usage

trimInstrSettings(x, fields = "*")

Arguments

x a generic_spct object or a summary_generic_spct object.

fields a character vector with the names of the fields to keep, or if first member is
"-", the names of fields to delete; "*" as first member of the vector makes the
function a no-op, leaving the spectrum object unaltered.

trim_spct 423

Details

This function alters x itself by reference and in addition returns x invisibly. If x is not a generic_spct
object or a summary_generic_spct object, or if the "instr.settings" attribute is not present in
x, x is not modified.

Attempts to remove or keep fields that are not present in the attribute are ignored silently. The value
of fields in the attribute is never modified, fields are either kept unchanged or removed.

Value

x, possibly with the "instr.settings" attribute modified.

See Also

Other measurement metadata functions: add_attr2tb(), getFilterProperties(), getHowMeasured(),
getInstrDesc(), getInstrSettings(), getSoluteProperties(), getWhatMeasured(), getWhenMeasured(),
getWhereMeasured(), get_attributes(), isValidInstrDesc(), isValidInstrSettings(), select_spct_attributes(),
setFilterProperties(), setHowMeasured(), setInstrDesc(), setInstrSettings(), setSoluteProperties(),
setWhatMeasured(), setWhenMeasured(), setWhereMeasured(), spct_attr2tb(), spct_metadata(),
subset_attributes(), trimInstrDesc()

Examples

my.spct <- white_led.cps_spct
names(instr_settings(my.spct))
trimInstrSettings(my.spct, fields = c("-", "pix.selector")) # by reference!
names(instr_settings(my.spct))

trim_spct Trim (or expand) head and/or tail of a spectrum

Description

Trim head and tail of a spectrum based on wavelength limits, interpolating the values at the bound-
aries of the range. Trimming is needed for example to remove short wavelength noise when the
measured spectrum extends beyond the known emission spectrum of the measured light source.
Occasionally one may want also to expand the wavelength range.

Usage

trim_spct(
spct,
range = NULL,
low.limit = NULL,
high.limit = NULL,
use.hinges = TRUE,
fill = NULL,

424 trim_spct

byref = FALSE,
verbose = getOption("photobiology.verbose")

)

trim_mspct(
mspct,
range = NULL,
low.limit = NULL,
high.limit = NULL,
use.hinges = TRUE,
fill = NULL,
byref = FALSE,
verbose = getOption("photobiology.verbose"),
.parallel = FALSE,
.paropts = NULL

)

trim2overlap(
mspct,
use.hinges = TRUE,
verbose = getOption("photobiology.verbose"),
.parallel = FALSE,
.paropts = NULL

)

extend2extremes(
mspct,
use.hinges = TRUE,
fill = NA,
verbose = getOption("photobiology.verbose"),
.parallel = FALSE,
.paropts = NULL

)

Arguments

spct an object of class "generic_spct".

range a numeric vector of length two, or any other object for which method range()
will return a numeric vector of length two.

low.limit shortest wavelength to be kept (defaults to shortest w.length value).

high.limit longest wavelength to be kept (defaults to longest w.length value).

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

fill if fill==NULL then tails are deleted, otherwise tails or s.irrad are filled with the
value of fill.

byref logical indicating if new object will be created by reference or by copy of spct.

trim_tails 425

verbose logical.

mspct an object of class "generic_mspct"

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Value

a spectrum object or a collection of spectral objects of the same class as x with wavelength heads
and tails clipped or extended.

Note

When expanding a spectrum, if fill==NULL, then expansion is not performed. Range can be "wave-
band" object, a numeric vector or a list of numeric vectors, or any other user-defined or built-in
object for which range() returns a numeric vector of length two, that can be interpreted as wave-
lengths expressed in nm.

See Also

Other trim functions: clip_wl(), trim_waveband(), trim_wl()

Examples

trim_spct(sun.spct, low.limit=300)
trim_spct(sun.spct, low.limit=300, fill=NULL)
trim_spct(sun.spct, low.limit=300, fill=NA)
trim_spct(sun.spct, low.limit=300, fill=0.0)
trim_spct(sun.spct, range = c(300, 400))
trim_spct(sun.spct, range = c(300, NA))
trim_spct(sun.spct, range = c(NA, 400))

trim_tails Trim (or expand) head and/or tail

Description

Trim tails of a spectrum based on wavelength limits, interpolating the values at the boundaries.Trimming
is needed for example to remove short wavelength noise when the measured spectrum extends be-
yond the known emission spectrum of the measured light source. Occasionally one may want also
to expand the wavelength range.

426 trim_tails

Usage

trim_tails(
x,
y,
low.limit = min(x),
high.limit = max(x),
use.hinges = TRUE,
fill = NULL,
verbose = TRUE

)

Arguments

x numeric vector of wavelengths.
y numeric vector of values for a spectral quantity.
low.limit smallest x-value to be kept (defaults to smallest x-value in input).
high.limit largest x-value to be kept (defaults to largest x-value in input).
use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before

integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

fill if fill == NULL then tails are deleted, otherwise tails of y are filled with the
value of fill.

verbose logical Use to suppress warnings.

Value

A data.frame with variables x and y.

Note

When expanding a spectrum, if fill == NULL, expansion is not performed with a warning.

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(),
photon_ratio(), photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), v_insert_hinges(), v_replace_hinges()

Examples

head(sun.data)
head(with(sun.data,

trim_tails(w.length, s.e.irrad, low.limit=300)))
head(with(sun.data,

trim_tails(w.length, s.e.irrad, low.limit=300, fill=NULL)))

trim_waveband 427

trim_waveband Trim (or expand) head and/or tail

Description

Trimming of waveband boundaries can be needed when the spectral data do not cover the whole
waveband, or wavebands may have to be removed altogether.

Usage

trim_waveband(
w.band,
range = NULL,
low.limit = 0,
high.limit = Inf,
trim = getOption("photobiology.waveband.trim", default = TRUE),
use.hinges = TRUE,
trunc.labels = getOption("photobiology.brief.trunc.names", default = c("]", "["))

)

Arguments

w.band an object of class "waveband" or a list of such objects.
range a numeric vector of length two, or any other object for which function range()

will return a numeric vector of two wavelengths (nm).
low.limit shortest wavelength to be kept (defaults to 0 nm).
high.limit longest wavelength to be kept (defaults to Inf nm).
trim logical (default is TRUE which trims the wavebands at the boundary, while

FALSE discards wavebands that are partly off-boundary).
use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before

integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

trunc.labels character vector of length one or two. The first string will be prepended to the
waveband name and label on left truncation and the second appended on right
truncation. If the vector is of length one, the same string will be used in both
cases.

Details

This function will accept both individual wavebands or list of wavebands. When the input is a list,
wavebands outside the range of the range will be removed from the list, and those partly outside the
target range either "trimmed" to this edge truncated if trim = TRUE is passed or excluded if trim
= FALSE). Waveband objects contain a name and a label that are used to label the returned values
of calculations that make use of them. When a waveband object is truncated so that the definition
changes, the name and label are also modified so that the change is visible when they are used. The
name and label have a string prepended or appended, and what strings are used can be set with an
R option.

428 trim_wl

Value

The returned value is a waveband object or a list of waveband objects depending on whether a
single waveband object or a list of waveband objects was supplied as argument to formal parameter
w.band. If no waveband is retained, in the first case, a NULL waveband object is returned, and in
the second case, a list of length zero is returned. If the input is a named, list, names are preserved
in the returned list.

Note

Modification of the name and label stored in the wavebands passed as input is done so that sum-
maries produced with the modified objects can be recognized as different from those computed
using the original definitions when the waveband objects are used. When the input is a named list,
the names of the retained members of the list are not modified as these are not part of the definitions.

See Also

Other trim functions: clip_wl(), trim_spct(), trim_wl()

Examples

VIS <- waveband(c(380, 760)) # manometers

trim_waveband(VIS, c(400,700))
trim_waveband(VIS, low.limit = 400)
trim_waveband(VIS, high.limit = 700)
trim_waveband(VIS, c(400,700), trunc.labels = c(">", "<"))
trim_waveband(VIS, c(400,700), trunc.labels = "!")

trim_wl Trim head and/or tail of a spectrum

Description

Trim head and tail of a spectrum based on wavelength limits, with interpolation at range boundaries
used by default. Expansion is also possible.

Usage

trim_wl(x, range, use.hinges, fill, ...)

Default S3 method:
trim_wl(x, range, use.hinges, fill, ...)

S3 method for class 'generic_spct'
trim_wl(x, range = NULL, use.hinges = TRUE, fill = NULL, ...)

S3 method for class 'generic_mspct'

trim_wl 429

trim_wl(
x,
range = NULL,
use.hinges = TRUE,
fill = NULL,
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'waveband'
trim_wl(
x,
range = NULL,
use.hinges = TRUE,
fill = NULL,
trim = getOption("photobiology.waveband.trim", default = TRUE),
...

)

S3 method for class 'list'
trim_wl(
x,
range = NULL,
use.hinges = TRUE,
fill = NULL,
trim = getOption("photobiology.waveband.trim", default = TRUE),
...

)

Arguments

x an R object.

range a numeric vector of length two, or any other object for which function range()
will return two.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

fill if fill == NULL then tails are deleted, otherwise tails are filled with the value of
fill.

... ignored (possibly used by derived methods).

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

430 two_filters.spct

trim logical (default is TRUE which trims the wavebands at the boundary, while
FALSE discards wavebands that are partly off-boundary).

Value

A copy of x, usually trimmed or expanded to a different length, either shorter or longer. Possibly
with some of the original spectral data values replaced with fill.

Methods (by class)

• trim_wl(default): Default for generic function

• trim_wl(generic_spct): Trim an object of class "generic_spct" or derived.

• trim_wl(generic_mspct): Trim an object of class "generic_mspct" or derived.

• trim_wl(waveband): Trim an object of class "waveband".

• trim_wl(list): Trim a list (of "waveband" objects).

Note

By default the w.length values for the first and last rows in the returned object are the values
supplied as range.

trim_wl when applied to waveband objects always inserts hinges when trimming.

trim_wl when applied to waveband objects always inserts hinges when trimming.

See Also

Other trim functions: clip_wl(), trim_spct(), trim_waveband()

Examples

trim_wl(sun.spct, range = c(400, 500))
trim_wl(sun.spct, range = c(NA, 500))
trim_wl(sun.spct, range = c(400, NA))

trim_wl(sun_evening.spct)
trim_wl(sun_evening.mspct)

two_filters.spct Transmittance spectrum of plastic films

Description

Datasets containing the wavelengths at a 1 nm interval and fractional total transmittance for a clear
polyester film and a yellow theatrical "gel".

two_filters.spct 431

Usage

two_filters.spct

two_filters.mspct

polyester.spct

yellow_gel.spct

Format

A filter_spct object with 611 rows and 2 variables. Individually as filter_spct objects, and
together as a collection stored in a filter_mspct object and in a long-form filter_spct object.

An object of class filter_mspct (inherits from generic_mspct, list) with 2 rows and 1 columns.

An object of class filter_spct (inherits from generic_spct, tbl_df, tbl, data.frame) with
561 rows and 2 columns.

An object of class filter_spct (inherits from generic_spct, tbl_df, tbl, data.frame) with
611 rows and 2 columns.

Details

• w.length (nm).

• Tfr (0..1).

• spct.idx (names, only in two_filters.spct).

Note

Package ’photobiologyFilters’ contains data sets for hundreds of optical filters and materials in
objects of these same classes, ready to be used with package ’photobiology’.

See Also

Other Spectral data examples: A.illuminant.spct, D50.illuminant.spct, D65.illuminant.spct,
Ler_leaf.spct, black_body.spct, ccd.spct, clear.spct, filter_cps.mspct, green_leaf.spct,
phenylalanine.spct, photodiode.spct, sun.spct, sun_daily.spct, sun_evening.spct, two_sensors.mspct,
water.spct, white_led.source_spct

Examples

polyester.spct
yellow_gel.spct
summary(two_filters.mspct)

432 two_sensors.mspct

two_sensors.mspct Spectral response of two light sensors.

Description

A dataset containing a collection of two spectra.

Usage

two_sensors.mspct

two_sensors.spct

Format

A response_spct object with 186 rows and 2 variables

An object of class response_spct (inherits from generic_spct, tbl_df, tbl, data.frame) with
280 rows and 4 columns.

Details

The spectra in photodiode.spct and ccd.spct stored as a collection in a response_mspct ob-
ject named response.mspct with members photodiode and ccd, and and in long form in a
link{response_spct} object named response.mspct identified bit the levels of factor spct.idx.

See Also

photodiode.spct and ccd.spct.

Other Spectral data examples: A.illuminant.spct, D50.illuminant.spct, D65.illuminant.spct,
Ler_leaf.spct, black_body.spct, ccd.spct, clear.spct, filter_cps.mspct, green_leaf.spct,
phenylalanine.spct, photodiode.spct, sun.spct, sun_daily.spct, sun_evening.spct, two_filters.spct,
water.spct, white_led.source_spct

Examples

two_sensors.mspct
two_sensors.spct

uncollect2spct 433

uncollect2spct Extract all members from a collection

Description

Extract all members from a collection into separate objects in the parent frame of the call.

Usage

uncollect2spct(x, ...)

Default S3 method:
uncollect2spct(x, ...)

S3 method for class 'generic_mspct'
uncollect2spct(
x,
name.tag = ".spct",
ignore.case = FALSE,
check.names = TRUE,
check.overwrite = TRUE,
...

)

Arguments

x An R object

... additional named arguments passed down to f.

name.tag character. A string used as tag for the names of the objects. If of length zero,
names of members are used as named of objects. Otherwise the tag is appended,
unless already present in the member name.

ignore.case logical. If FALSE, the pattern matching used for name.tag is case sensitive and
if TRUE, case is ignored during matching.

check.names logical. If TRUE then the names of the objects created are checked to ensure
that they are syntactically valid variable names and unique. If necessary they are
adjusted (by make.names) so that they are, and if FALSE names are used as is.

check.overwrite

logical. If TRUE trigger an error if an exisitng object would be overwritten, and
if FALSE silently overwrite objects.

Value

Utility used for its side effects, invisibly returns a character vector with the names of the objects
created.

434 untag

Methods (by class)

• uncollect2spct(default): Default for generic function

• uncollect2spct(generic_mspct):

See Also

Other experimental utility functions: collect2mspct(), drop_user_cols(), thin_wl()

Examples

my.mscpt <- source_mspct(list(sun1.spct = sun.spct, sun2.spct = sun.spct))
uncollect2spct(my.mscpt)
ls(pattern = "*.spct")

untag Remove tags

Description

Remove tags from an R object if present, otherwise return the object unchanged.

Usage

untag(x, ...)

Default S3 method:
untag(x, ...)

S3 method for class 'generic_spct'
untag(x, byref = FALSE, ...)

S3 method for class 'generic_mspct'
untag(x, byref = FALSE, ...)

Arguments

x an R object.

... ignored (possibly used by derived methods).

byref logical indicating if new object will be created by reference or by copy of x

Value

if x contains tag data they are removed and the "spct.tags" attribute is set to NA, while if x has no
tags, it is not modified. In either case, the byref argument is respected: in all cases if byref = FALSE
a copy of x is returned.

upgrade_spct 435

Methods (by class)

• untag(default): Default for generic function

• untag(generic_spct): Specialization for generic_spct

• untag(generic_mspct): Specialization for generic_spct

See Also

Other tagging and related functions: is_tagged(), tag(), wb2rect_spct(), wb2spct(), wb2tagged_spct()

upgrade_spct Upgrade one spectral object

Description

Update the spectral class names of objects to those used in photobiology (>= 0.6.0) and add ’version’
attribute as used in photobiology (>= 0.70).

Usage

upgrade_spct(object)

Arguments

object generic.spct A single object to upgrade

Value

The modified object (invisibly).

Note

The object is modified by reference. The class names with ending ".spct" replaced by their new
equivalents ending in "_spct".

See Also

Other upgrade from earlier versions: is.old_spct(), upgrade_spectra()

436 using_Tfr

upgrade_spectra Upgrade one or more spectral objects

Description

Update the spectral class names of objects to those used in photobiology (>= 0.6.0).

Usage

upgrade_spectra(obj.names = ls(parent.frame()))

Arguments

obj.names char Names of objects to upgrade as a vector of character strings

Value

The modified object (invisibly).

Note

The objects are modified by reference. The class names with ending ".spct" are replaced by their
new equivalents ending in "_spct". object.names can safely include names of any R object. Names
of objects which do not belong to any the old .spct classes are ignored. This makes it possible to
supply as argument the output from ls, the default, or its equivalent objects.

See Also

Other upgrade from earlier versions: is.old_spct(), upgrade_spct()

using_Tfr Use photobiology options

Description

Execute an R expression, possibly compound, using a certain setting for spectral data related op-
tions.

valleys 437

Usage

using_Tfr(expr)

using_Afr(expr)

using_A(expr)

using_energy(expr)

using_photon(expr)

using_quantum(expr)

Arguments

expr an R expression to execute.

Value

The value returned by the execution of expression.

References

Based on withOptions() as offered by Thomas Lumley, and listed in https://www.burns-stat.
com/the-options-mechanism-in-r/, section Deep End, of "The Options mechanism in R" by
Patrick Burns.

valleys Valleys or local minima

Description

Function that returns a subset of an R object with observations corresponding to local maxima.

Usage

valleys(
x,
span,
global.threshold,
local.threshold,
local.reference,
threshold.range,
strict,
...

)

https://www.burns-stat.com/the-options-mechanism-in-r/
https://www.burns-stat.com/the-options-mechanism-in-r/

438 valleys

Default S3 method:
valleys(
x,
span,
global.threshold = NA,
local.threshold = NA,
local.reference = NA,
threshold.range = NA,
strict,
...

)

S3 method for class 'numeric'
valleys(
x,
span = 5,
global.threshold = NULL,
local.threshold = NULL,
local.reference = "median",
threshold.range = NULL,
strict = FALSE,
na.rm = FALSE,
...

)

S3 method for class 'data.frame'
valleys(
x,
span = 5,
global.threshold = NULL,
local.threshold = NULL,
local.reference = "median",
threshold.range = NULL,
strict = FALSE,
na.rm = FALSE,
x.var.name = NULL,
y.var.name = NULL,
var.name = y.var.name,
refine.wl = FALSE,
method = "spline",
...

)

S3 method for class 'generic_spct'
valleys(
x,
span = 5,
global.threshold = NULL,

valleys 439

local.threshold = NULL,
local.reference = "median",
threshold.range = NULL,
strict = FALSE,
na.rm = FALSE,
var.name = NULL,
refine.wl = FALSE,
method = "spline",
...

)

S3 method for class 'source_spct'
valleys(
x,
span = 5,
global.threshold = NULL,
local.threshold = NULL,
local.reference = "median",
threshold.range = NULL,
strict = FALSE,
na.rm = FALSE,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
refine.wl = FALSE,
method = "spline",
...

)

S3 method for class 'response_spct'
valleys(
x,
span = 5,
global.threshold = NULL,
local.threshold = NULL,
local.reference = "minimum",
threshold.range = NULL,
strict = FALSE,
na.rm = FALSE,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
refine.wl = FALSE,
method = "spline",
...

)

S3 method for class 'filter_spct'
valleys(
x,
span = 5,
global.threshold = NULL,

440 valleys

local.threshold = NULL,
local.reference = "minimum",
threshold.range = NULL,
strict = FALSE,
na.rm = FALSE,
filter.qty = getOption("photobiology.filter.qty", default = "transmittance"),
refine.wl = FALSE,
method = "spline",
...

)

S3 method for class 'reflector_spct'
valleys(
x,
span = 5,
global.threshold = NULL,
local.threshold = NULL,
local.reference = "minimum",
threshold.range = NULL,
strict = FALSE,
na.rm = FALSE,
refine.wl = FALSE,
method = "spline",
...

)

S3 method for class 'solute_spct'
valleys(
x,
span = 5,
global.threshold = NULL,
local.threshold = NULL,
local.reference = "minimum",
threshold.range = NULL,
strict = FALSE,
na.rm = FALSE,
refine.wl = FALSE,
method = "spline",
...

)

S3 method for class 'cps_spct'
valleys(
x,
span = 5,
global.threshold = NULL,
local.threshold = NULL,
local.reference = "minimum",

valleys 441

threshold.range = NULL,
strict = FALSE,
na.rm = FALSE,
var.name = "cps",
refine.wl = FALSE,
method = "spline",
...

)

S3 method for class 'raw_spct'
valleys(
x,
span = 5,
global.threshold = NULL,
local.threshold = NULL,
local.reference = "minimum",
threshold.range = NULL,
strict = FALSE,
na.rm = FALSE,
var.name = "counts",
refine.wl = FALSE,
method = "spline",
...

)

S3 method for class 'generic_mspct'
valleys(
x,
span = 5,
global.threshold = NULL,
local.threshold = NULL,
local.reference = "minimum",
threshold.range = NULL,
strict = FALSE,
na.rm = FALSE,
var.name = NULL,
refine.wl = FALSE,
method = "spline",
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'source_mspct'
valleys(
x,
span = 5,
global.threshold = NULL,

442 valleys

local.threshold = NULL,
local.reference = "minimum",
threshold.range = NULL,
strict = FALSE,
na.rm = FALSE,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
refine.wl = FALSE,
method = "spline",
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'response_mspct'
valleys(
x,
span = 5,
global.threshold = NULL,
local.threshold = NULL,
local.reference = "minimum",
threshold.range = NULL,
strict = FALSE,
na.rm = FALSE,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
refine.wl = FALSE,
method = "spline",
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'filter_mspct'
valleys(
x,
span = 5,
global.threshold = NULL,
local.threshold = NULL,
local.reference = "minimum",
threshold.range = NULL,
strict = FALSE,
na.rm = FALSE,
filter.qty = getOption("photobiology.filter.qty", default = "transmittance"),
refine.wl = FALSE,
method = "spline",
...,
.parallel = FALSE,
.paropts = NULL

)

valleys 443

S3 method for class 'reflector_mspct'
valleys(
x,
span = 5,
global.threshold = NULL,
local.threshold = NULL,
local.reference = "minimum",
threshold.range = NULL,
strict = FALSE,
na.rm = FALSE,
refine.wl = FALSE,
method = "spline",
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'solute_mspct'
valleys(
x,
span = 5,
global.threshold = NULL,
local.threshold = NULL,
local.reference = "minimum",
threshold.range = NULL,
strict = FALSE,
na.rm = FALSE,
refine.wl = FALSE,
method = "spline",
...,
.parallel = FALSE,
.paropts = NULL

)

S3 method for class 'cps_mspct'
valleys(
x,
span = 5,
global.threshold = NULL,
local.threshold = NULL,
local.reference = "minimum",
threshold.range = NULL,
strict = FALSE,
na.rm = FALSE,
var.name = "cps",
refine.wl = FALSE,
method = "spline",

444 valleys

...,

.parallel = FALSE,

.paropts = NULL
)

S3 method for class 'raw_mspct'
valleys(
x,
span = 5,
global.threshold = NULL,
local.threshold = NULL,
local.reference = "minimum",
threshold.range = NULL,
strict = FALSE,
na.rm = FALSE,
var.name = "counts",
refine.wl = FALSE,
method = "spline",
...,
.parallel = FALSE,
.paropts = NULL

)

Arguments

x numeric vector. Hint: to find valleys, change the sign of the argument with the
unnary operator -.

span odd positive integer A peak is defined as an element in a sequence which is
greater than all other elements within a moving window of width span centred
at that element. The default value is 5, meaning that a peak is taller than its four
nearest neighbours. span = NULL extends the span to the whole length of x.

global.threshold

numeric A value belonging to class "AsIs" is interpreted as an absolute mini-
mum height or depth expressed in data units. A bare numeric value (normally
between 0.0 and 1.0), is interpreted as relative to threshold.range. In both
cases it sets a global height (depth) threshold below which peaks (valleys) are
ignored. A bare negative numeric value indicates the global height (depth)
threshold below which peaks (valleys) are be ignored. If global.threshold =
NULL, no threshold is applied and all peaks returned.

local.threshold

numeric A value belonging to class "AsIs" is interpreted as an absolute min-
imum height (depth) expressed in data units relative to a within-window com-
puted reference value. A bare numeric value (normally between 0.0 and 1.0),
is interpreted as expressed in units relative to threshold.range. In both cases
local.threshold sets a local height (depth) threshold below which peaks (val-
leys) are ignored. If local.threshold = NULL or if span spans the whole of x,
no threshold is applied.

valleys 445

local.reference

character One of "median" or "farthest". The reference used to assess the
height of the peak, either the minimum/maximum value within the window or
the median of all values in the window.

threshold.range

numeric vector If of length 2 or a longer vector range(threshold.range) is
used to scale both thresholds. With NULL, the default, range(x) is used, and with
a vector of length one range(threshold.range, x) is used, i.e., the range is
expanded.

strict logical flag: if TRUE, an element must be strictly greater than all other values in
its window to be considered a peak. Default: FALSE (since version 0.13.1).

... ignored

na.rm logical indicating whether NA values should be stripped before searching for
peaks.

var.name, x.var.name, y.var.name
character Name of column where to look for valleys.

refine.wl logical Flag indicating if valley location should be refined by fitting a function.

method character String with the name of a method. Currently only spline interpolation
is implemented.

unit.out character One of "energy" or "photon"

filter.qty character One of "transmittance" or "absorbance"

.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach

.paropts a list of additional options passed into the foreach function when parallel compu-
tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Details

Function find_peaks is a wrapper built onto function peaks from splus2R, adds support for peak
height thresholds and handles span = NULL and non-finite (including NA) values differently than
splus2R::peaks. Instead of giving an error when na.rm = FALSE and x contains NA values, NA
values are replaced with the smallest finite value in x. span = NULL is treated as a special case and
selects max(x). Passing ‘strict = TRUE‘ ensures that multiple global and within window maxima
are ignored, and can result in no peaks being returned.

Two tests make it possible to ignore irrelevant peaks. One test (global.threshold) is based on
the absolute height of the peaks and can be used in all cases to ignore globally low peaks. A
second test (local.threshold) is available when the window defined by ‘span‘ does not include all
observations and can be used to ignore peaks that are not locally prominent. In this second approach
the height of each peak is compared to a summary computed from other values within the window
of width equal to span where it was found. In this second case, the reference value used within each
window containing a peak is given by local.reference. Parameter threshold.range determines
how the values passed as argument to global.threshold and local.threshold are scaled. The
default, NULL uses the range of x. Thresholds for ignoring too small peaks are applied after peaks
are searched for, and threshold values can in some cases result in no peaks being returned.

446 valleys

While functions find_peaks and find_valleys() accept as input a numeric vector and return a
logical vector, methods peaks and valleys accept as input different R objects, including spectra
and collections of spectra and return a subset of the object. These methods are implemented using
calls to functions find_peaks and fit_peaks.

Value

A subset of x with rows corresponding to local minima or global minimum.

Methods (by class)

• valleys(default): Default returning always NA.

• valleys(numeric): Default function usable on numeric vectors.

• valleys(data.frame): Method for "data.frame" objects.

• valleys(generic_spct): Method for "generic_spct" objects.

• valleys(source_spct): Method for "source_spct" objects.

• valleys(response_spct): Method for "response_spct" objects.

• valleys(filter_spct): Method for "filter_spct" objects.

• valleys(reflector_spct): Method for "reflector_spct".

• valleys(solute_spct): Method for "solute_spct" objects.

• valleys(cps_spct): Method for "cps_spct" objects.

• valleys(raw_spct): Method for "raw_spct" objects.

• valleys(generic_mspct): Method for "generic_mspct" objects.

• valleys(source_mspct): Method for "source_mspct" objects.

• valleys(response_mspct): Method for "cps_mspct" objects.

• valleys(filter_mspct): Method for "filter_mspct" objects.

• valleys(reflector_mspct): Method for "reflector_mspct" objects.

• valleys(solute_mspct): Method for "solute_mspct" objects.

• valleys(cps_mspct): Method for "cps_mspct" objects.

• valleys(raw_mspct): Method for "raw_mspct" objects.

Note

The default for parameter strict is FALSE in functions peaks() and find_peaks(), as in stat_peaks()
and in stat_valleys(), while the default in peaks is strict = FALSE.

See Also

Other peaks and valleys functions: find_peaks(), find_spikes(), get_peaks(), peaks(), replace_bad_pixs(),
spikes(), wls_at_target()

verbose_as_default 447

Examples

default span = 5
valleys(sun.spct)
global minimum
valleys(sun.spct, span = NULL)
valleys(sun.spct, span = NULL, strict = FALSE)
a wider window
valleys(sun.spct, span = 51)
global threshold relative to the range of s.e.irrad values
valleys(sun.spct, global.threshold = -0.2)
global threshold in actual s.e.irrad values
valleys(sun.spct, global.threshold = -0.2, threshold.range = c(0, 1))
local threshold relative to the range of s.e.irrad values
valleys(sun.spct, local.threshold = 0.1)
local threshold in actual s.e.irrad values
valleys(sun.spct, local.threshold = 0.1, threshold.range = c(0, 1))
local threshold relative to the range of s.e.irrad values, using window
median instead of window minimum
valleys(sun.spct, local.threshold = 0.1, local.reference = "median")
minimum, the default.
valleys(sun.spct, local.threshold = 0.1, local.reference = "farthest")

valleys(sun.spct)

verbose_as_default Set error reporting options

Description

Set error reporting related options easily.

Usage

verbose_as_default(flag = TRUE)

strict_range_as_default(flag = TRUE)

Arguments

flag logical.

Value

Previous value of the modified option.

448 v_replace_hinges

v_insert_hinges Insert spectral data values at new wavelength values.

Description

Inserting wavelengths values immediately before and after a discontinuity in the SWF, greatly re-
duces the errors caused by interpolating the weighted irradiance during integration of the effective
spectral irradiance. This is specially true when data have a relatively large wavelength step size
and/or when the weighting function used has discontinuities in its value or slope. This function
differs from insert_hinges() in that it returns a vector of y values instead of a tibble.

Usage

v_insert_hinges(x, y, h)

Arguments

x numeric vector (sorted in increasing order).

y numeric vector.

h a numeric vector giving the wavelengths at which the y values should be in-
serted by interpolation, no interpolation is indicated by an empty numeric vector
(numeric(0)).

Value

A numeric vector with the numeric values of y, but longer. Unless the hinge values were already
present in y, each inserted hinge, expands the vector by two values.

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(),
photon_ratio(), photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_replace_hinges()

v_replace_hinges Overwrite spectral data values at existing wavelength values.

Description

Overwriting spectral data with interpolated values at wavelengths values containing bad data is
needed when cleaning spectral data. This function differs from insert_hinges() in that it returns
a vector of y values instead of a tibble.

water.spct 449

Usage

v_replace_hinges(x, y, h)

Arguments

x numeric vector (sorted in increasing order).

y numeric vector.

h a numeric vector giving the wavelengths at which the y values should be re-
placed by interpolation, no interpolation is indicated by an empty numeric vector
(numeric(0)).

Value

A numeric vector with the numeric values of y with values at the hinges replaced by interpolation
of neighbours.

See Also

Other low-level functions operating on numeric vectors.: as_energy(), as_quantum_mol(), calc_multipliers(),
div_spectra(), energy_irradiance(), energy_ratio(), insert_hinges(), integrate_xy(),
interpolate_spectrum(), irradiance(), l_insert_hinges(), oper_spectra(), photon_irradiance(),
photon_ratio(), photons_energy_ratio(), prod_spectra(), s_e_irrad2rgb(), split_energy_irradiance(),
split_photon_irradiance(), subt_spectra(), sum_spectra(), trim_tails(), v_insert_hinges()

water.spct Molar spectral attenuation coefficient of water

Description

A dataset containing the wavelengths at a 2 nm interval and the corresponding attenuation coeffi-
cients.

Usage

water.spct

Format

A solute_spct object with 251 rows and 2 variables

Details

• w.length (nm), range 300 to 800 nm.

• K.mole (cm-1/M)

450 waveband

Author(s)

Buiteveld et al. (1994) (original data)

References

H. Buiteveld and J. M. H. Hakvoort and M. Donze (1994) "The optical properties of pure water," in
SPIE Proceedings on Ocean Optics XII, edited by J. S. Jaffe, 2258, 174–183.

https://omlc.org/spectra/water/

See Also

Other Spectral data examples: A.illuminant.spct, D50.illuminant.spct, D65.illuminant.spct,
Ler_leaf.spct, black_body.spct, ccd.spct, clear.spct, filter_cps.mspct, green_leaf.spct,
phenylalanine.spct, photodiode.spct, sun.spct, sun_daily.spct, sun_evening.spct, two_filters.spct,
two_sensors.mspct, white_led.source_spct

Examples

head(water.spct)
summary(water.spct)
solute_properties(water.spct)
cat(comment(water.spct))

waveband Waveband constructor method

Description

Constructor for "waveband" objects that can be used as input when calculating irradiances.

Usage

waveband(
x = NULL,
weight = NULL,
SWF.e.fun = NULL,
SWF.q.fun = NULL,
norm = NULL,
SWF.norm = NULL,
hinges = NULL,
wb.name = NULL,
wb.label = wb.name

)

new_waveband(
w.low,

https://omlc.org/spectra/water/

waveband 451

w.high,
weight = NULL,
SWF.e.fun = NULL,
SWF.q.fun = NULL,
norm = NULL,
SWF.norm = NULL,
hinges = NULL,
wb.name = NULL,
wb.label = wb.name

)

Arguments

x any R object on which applying the method range() yields an vector of two
numeric values, describing a range of wavelengths [nm].

weight a character string "SWF" or "BSWF", use NULL (the default) to indicate no weight-
ing used when calculating irradiance.

SWF.e.fun, SWF.q.fun
a functions giving multipliers for a spectral weighting function (energy and
quantum, respectively) as a function of wavelength [nm].

norm a single numeric value indicating the wavelength [nm] at which the SWF should
be normalized to 1.0; NULL is interpreted as no normalization.

SWF.norm a numeric value giving the native normalization wavelength [nm] used by SWF.e.fun
and SWF.q.fun.

hinges a numeric vector giving the wavelengths at which values in s.irrad should be
inserted by interpolation before integration is attempted. No interpolation is
indicated by an empty vector (numeric(0)), while interpolation at both bound-
aries of the band is indicated by NULL.

wb.name character string giving the name for the waveband defined, default is NULL for
an automatically generated name.

wb.label character string giving the label of the waveband to be used for labelling com-
puted summaries or plots, default is wb.name. (This is usually a shorter character
string than wb.name.)

w.low, w.high numeric value, wavelengths at the short end and long ends of the wavelength
band [nm].

Details

Objects of class waveband are used to store the different bits of information needed to compute sum-
maries from spectral data by integration over wavelengths. The wavelength ranges, possible spectral
weighting functions (SWF) or biological spectral weighting functions (BSWF), their normalization
wavelengths and names and labels used for reporting the results are all stored in waveband objects.
This facilitates the use of functions that compute summaries, as well as ensures consistency in com-
putations and labelling, as all the bits of information are passed together. Class "waveband" is
derived from R class list.

452 waveband_ratio

Value

a waveband object

Functions

• new_waveband(): A less flexible variant

See Also

Other waveband constructors: split_bands()

Examples

waveband(c(400,700))

new_waveband(400,700)

waveband_ratio Photon or energy ratio

Description

This function gives the (energy or photon) irradiance ratio between two given wavebands of a radi-
ation spectrum.

Usage

waveband_ratio(
w.length,
s.irrad,
w.band.num = NULL,
w.band.denom = NULL,
unit.out.num = NULL,
unit.out.denom = unit.out.num,
unit.in = "energy",
check.spectrum = TRUE,
use.cached.mult = FALSE,
use.hinges = getOption("photobiology.use.hinges", default = NULL)

)

Arguments

w.length numeric Vector of wavelengths [nm].

s.irrad numeric vector of spectral irradiances in [W m−2 nm−1] or [mol s−1 sm−2 nm−1]
as indicated by the argument pased to unit.in.

waveband_ratio 453

w.band.num, w.band.denom
waveband objects used to compute the numerator and denominator of the ratio.

unit.out.num, unit.out.denom
character Base of expression used to compute the numerator and denominator
of the ratio. Allowed values "energy", and "photon", or its alias "quantum".

unit.in character Allowed values "energy", and "photon", or its alias "quantum".
check.spectrum logical Flag indicating whether to sanity check input data, default is TRUE.
use.cached.mult

logical Flag indicating whether multiplier values should be cached between
calls.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

Value

a single numeric value giving the ratio

Note

The default for both w.band parameters is a waveband covering the whole range of w.length. From
version 0.9.19 onwards use of this default does not trigger a warning, but instead is used silently.

Examples

photon:photon ratio
with(sun.data,

waveband_ratio(w.length, s.e.irrad,
new_waveband(400,500),
new_waveband(400,700), "photon"))

energy:energy ratio
with(sun.data,

waveband_ratio(w.length, s.e.irrad,
new_waveband(400,500),
new_waveband(400,700), "energy"))

energy:photon ratio
with(sun.data,

waveband_ratio(w.length, s.e.irrad,
new_waveband(400,700),
new_waveband(400,700),
"energy", "photon"))

photon:photon ratio waveband : whole spectrum
with(sun.data,

waveband_ratio(w.length, s.e.irrad,
new_waveband(400,500),
unit.out.num="photon"))

photon:photon ratio of whole spectrum should be equal to 1.0
with(sun.data,

waveband_ratio(w.length, s.e.irrad,
unit.out.num="photon"))

454 wb2rect_spct

wb2rect_spct Create tagged spectrum from wavebands

Description

Create a generic_spct object with wavelengths from the range of wavebands in a list. The spectrum
is suitable for plotting labels, symbols, rectangles or similar, as the midpoint of each waveband is
added to the spectrum.

Usage

wb2rect_spct(w.band, short.names = TRUE, chroma.type = "CMF")

fast_wb2rect_spct(w.band, chroma.type = "CMF", simplify = TRUE)

Arguments

w.band waveband or list of waveband objects The waveband(s) determine the wave-
lengths in variable w.length of the returned spectrum

short.names logical Flag indicating whether to use short or long names for wavebands

chroma.type character telling whether "CMF", "CC", or "both" should be returned for human
vision, or an object of class chroma_spct for any other trichromic visual system.

simplify logical Flag indicating whether to merge neighboring rectangles of equal color.
Simplification is done only for narrow wavebands.

Value

A generic.spectrum object, with columns w.length, wl.low, wl.hi, wl.color, wb.color and wb.name.
The w.length values are the midpoint of the wavebands, wl.low and wl.high give the boundaries of
the wavebands, wl.color the color definition corresponding to the wavelength at the center of the
waveband and wb.color the color of the waveband as a whole (assuming a flat energy irradiance
spectrum). Different spectral data variables are set to zero and added making the returned value
compatible with classes derived from generic_spct.

Note

Function fast_wb2rect_spct() differs from wb2rect_spct() in that it computes colors for nar-
row wavebands based on the midpoint wavelength and uses vectorization when possible. It always
returns color definitions with short names, which are also used as waveband names for narrow
wavebands and merged wavebands. The purpose of merging of rectangles is to speed up rendering
and to reduce the size of vector graphics output. This function should be used with care as the color
definitions returned are only approximate and original waveband names can be lost.

See Also

Other tagging and related functions: is_tagged(), tag(), untag(), wb2spct(), wb2tagged_spct()

wb2spct 455

wb2spct Create spectrum from wavebands

Description

Create a generic_spct object with wavelengths from wavebands in a list.

Usage

wb2spct(w.band)

Arguments

w.band waveband or list of waveband objects The waveband(s) determine the wave-
lengths in variable w.length of the returned spectrum

Value

A generic.spectrum object, with columns w.length set to the union of all boundaries and hinges
defined in the waveband(s). Different spectral data variables are set to zero and added making the
returned value compatible with classes derived from generic_spct.

See Also

Other tagging and related functions: is_tagged(), tag(), untag(), wb2rect_spct(), wb2tagged_spct()

wb2tagged_spct Create tagged spectrum from wavebands

Description

Create a tagged generic_spct object with wavelengths from the range of wavebands in a list, and
names of the same bands as factor levels, and corresponding color definitions. The spectrum is not
suitable for plotting labels, symbols, rectangles or similar, as the midpoint of each waveband is not
added to the spectrum.

Usage

wb2tagged_spct(
w.band,
use.hinges = TRUE,
short.names = TRUE,
chroma.type = "CMF",
...

)

456 wb_trim_as_default

Arguments

w.band waveband or list of waveband objects The waveband(s) determine the region(s)
of the spectrum that are tagged and the wavelengths returned in variable w.length.

use.hinges logical Flag indicating whether to insert "hinges" into the spectral data before
integration so as to reduce interpolation errors at the boundaries of the wave-
bands.

short.names logical Flag indicating whether to use short or long names for wavebands.

chroma.type character telling whether "CMF", "CC", or "both" should be returned for human
vision, or an object of class chroma_spct for any other trichromic visual system.

... ignored (possibly used by derived methods).

Value

A spectrum as returned by wb2spct but additionally tagged using function tag

See Also

Other tagging and related functions: is_tagged(), tag(), untag(), wb2rect_spct(), wb2spct()

wb_trim_as_default Set computation options

Description

Set computation related options easily.

Usage

wb_trim_as_default(flag = TRUE)

use_cached_mult_as_default(flag = TRUE)

Arguments

flag logical.

Value

Previous value of the modified option.

white_led.source_spct 457

white_led.source_spct White led bulb spectrum

Description

Datasets containing wavelengths and the corresponding spectral irradiance data for an Osram warm
white led lamp, and the corresponding raw instrument counts and counts per second data underlying
them.

Usage

white_led.source_spct

white_led.cps_spct

white_led.raw_spct

Format

A source_spct object with 1421 rows and 2 columns, a cps_spct object with 2068 rows and 2
columns, and a raw_spct object with 2068 rows and 4 columns.

An object of class cps_spct (inherits from generic_spct, tbl_df, tbl, data.frame) with 2068
rows and 2 columns.

An object of class raw_spct (inherits from generic_spct, tbl_df, tbl, data.frame) with 2068
rows and 4 columns.

Details

• w.length (nm), range 250 to 900 nm.

• s.e.irrad (W m-2 nm-1)

or

• w.length (nm), range 188 to 1117 nm.

• cps

or

• w.length (nm), range 188 to 1117 nm.

• counts_1

• counts_2

• counts_3

458 wl2wavenumber

See Also

Other Spectral data examples: A.illuminant.spct, D50.illuminant.spct, D65.illuminant.spct,
Ler_leaf.spct, black_body.spct, ccd.spct, clear.spct, filter_cps.mspct, green_leaf.spct,
phenylalanine.spct, photodiode.spct, sun.spct, sun_daily.spct, sun_evening.spct, two_filters.spct,
two_sensors.mspct, water.spct

Examples

white_led.source_spct

wl2wavenumber Wavelength conversions

Description

Convert wavelength (nm) into wave number, frequency (Hz) or energy per photon (J, or eV) and
back.

Usage

wl2wavenumber(w.length, unit.exponent = 0)

wavenumber2wl(wavenumber, unit.exponent = 0)

wl2frequency(w.length, unit.exponent = 0)

frequency2wl(frequency, unit.exponent = 0)

wl2energy(w.length, unit.exponent = 0, unit = "joule")

energy2wl(photon.energy, unit.exponent = 0, unit = "joule")

Arguments

w.length numeric wavelength (nm)

unit.exponent integer Exponent of the scale multiplier implicit in result, e.g., use 3 for kJ.

wavenumber numeric Wave number in waves per metre, possibly with a scale factor according
to unit.exponent.

frequency numeric Frequency in Hz, possibly with the scale factor according to unit.exponent.

unit character One of "joule" or "eV".

photon.energy numeric Energy of one photon in joule or eV, possibly with a scale factor ac-
cording to unit.exponent.

wls_at_target 459

Details

These functions always expect as input and return wavelengths expressed in nanometres (nm) as
all other functions in the R for photobiology suite of packages. Conversions depend on Plank’s
constant, h, the speed of light in vacuum, c, and Avogadro’s number, NA. The values used for these
constants have at least nine significant digits.

Examples

wl2wavenumber(600) # wavelength in nm -> wave number
wavenumber2wl(1666666.66) # wave number -> wavelength in nm
wl2frequency(600) # wavelength in nm -> wave frequency (Hz)
frequency2wl(499654096666667) # wave frequency (Hz) -> wavelength in nm
wl2energy(600) # wavelength in nm -> energy of one photon (J)
wl2energy(600, unit = "eV") # wavelength in nm -> energy of one photon (eV)
wl2energy(600,

unit.exponent = -3,
unit = "eV") # wavelength in nm -> energy of one photon (meV)

energy2wl(2066.40330,
unit.exponent = -3,
unit = "eV") # energy of one photon (meV) -> wavelength (nm)

wls_at_target Find wavelengths values corresponding to a target spectral value

Description

Find wavelength values corresponding to a target spectral value in a spectrum. The name of the
column of the spectral data to be used is inferred from the class of x and the argument passed to
unit.out or filter.qty or their defaults that depend on R options set.

Usage

wls_at_target(x, target, interpolate, idfactor, na.rm, ...)

Default S3 method:
wls_at_target(
x,
target = NULL,
interpolate = FALSE,
idfactor = length(target) > 1,
na.rm = FALSE,
...

)

S3 method for class 'data.frame'
wls_at_target(
x,

460 wls_at_target

target = "0.5max",
interpolate = FALSE,
idfactor = length(target) > 1,
na.rm = FALSE,
x.var.name = NULL,
y.var.name = NULL,
...

)

S3 method for class 'generic_spct'
wls_at_target(
x,
target = "0.5max",
interpolate = FALSE,
idfactor = length(target) > 1,
na.rm = FALSE,
col.name = NULL,
y.var.name = col.name,
...

)

S3 method for class 'source_spct'
wls_at_target(
x,
target = "0.5max",
interpolate = FALSE,
idfactor = length(target) > 1,
na.rm = FALSE,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
...

)

S3 method for class 'response_spct'
wls_at_target(
x,
target = "0.5max",
interpolate = FALSE,
idfactor = length(target) > 1,
na.rm = FALSE,
unit.out = getOption("photobiology.radiation.unit", default = "energy"),
...

)

S3 method for class 'filter_spct'
wls_at_target(
x,
target = "0.5max",
interpolate = FALSE,

wls_at_target 461

idfactor = length(target) > 1,
na.rm = FALSE,
filter.qty = getOption("photobiology.filter.qty", default = "transmittance"),
...

)

S3 method for class 'reflector_spct'
wls_at_target(
x,
target = "0.5max",
interpolate = FALSE,
idfactor = length(target) > 1,
na.rm = FALSE,
...

)

S3 method for class 'solute_spct'
wls_at_target(
x,
target = "0.5max",
interpolate = FALSE,
idfactor = length(target) > 1,
na.rm = FALSE,
...

)

S3 method for class 'cps_spct'
wls_at_target(
x,
target = "0.5max",
interpolate = FALSE,
idfactor = length(target) > 1,
na.rm = FALSE,
...

)

S3 method for class 'raw_spct'
wls_at_target(
x,
target = "0.5max",
interpolate = FALSE,
idfactor = length(target) > 1,
na.rm = FALSE,
...

)

S3 method for class 'generic_mspct'
wls_at_target(

462 wls_at_target

x,
target = "0.5max",
interpolate = FALSE,
idfactor = length(target) > 1,
na.rm = FALSE,
...,
.parallel = FALSE,
.paropts = NULL

)

Arguments

x data.frame or spectrum object.
target numeric or character vector. A numeric value indicates the spectral quantity

value for which wavelengths are to be searched. A character string represent-
ing a number is converted to numeric. A character value representing a num-
ber followed by a function name, will be also accepted and decoded, such that
"0.1max" is interpreted as targeting one tenth of the maximum value in the
column. The character strings "half.maximum" and "HM" are synonyms for
"0.5max" while "half.range" and "HR" are synonyms for "0.5range".

interpolate logical Indicating whether the nearest wavelength value in x should be returned
or a value calculated by linear interpolation between wavelength values strad-
dling the target.

idfactor logical or character Generates an index column of factor type. If idfactor =
TRUE then the column is auto named target.idx. Alternatively the column name
can be directly passed as argument to idfactor as a character string.

na.rm logical indicating whether NA values should be stripped before searching for the
target.

... currently ignored.
x.var.name, y.var.name, col.name

character The name of the columns in which to search for the target value. Use
of col.name is deprecated, and is a synonym for y.var.name.

unit.out character One of "energy" or "photon"
filter.qty character One of "transmittance" or "absorbance"
.parallel if TRUE, apply function in parallel, using parallel backend provided by foreach
.paropts a list of additional options passed into the foreach function when parallel compu-

tation is enabled. This is important if (for example) your code relies on external
data or packages: use the .export and .packages arguments to supply them so
that all cluster nodes have the correct environment set up for computing.

Value

A data.frame, a spectrum object or a collection of spectra object of the same class as x with fewer
rows, possibly even no rows. If FALSE is passed to interpolate a subset of x is returned, other-
wise a new object of the same class containing interpolated wavelengths for the target value is
returned. As ‘target‘ accepts a vector or list as argument, a factor can be added to the output with
the corresponding target value.

wl_max 463

Methods (by class)

• wls_at_target(default): Default returning always an empty object of the same class as x.

• wls_at_target(data.frame): Method for "data.frame" objects.

• wls_at_target(generic_spct): Method for "generic_spct" objects.

• wls_at_target(source_spct): Method for "source_spct" objects.

• wls_at_target(response_spct): Method for "response_spct" objects.

• wls_at_target(filter_spct): Method for "filter_spct" objects.

• wls_at_target(reflector_spct): Method for "reflector_spct" objects.

• wls_at_target(solute_spct): Method for "solute_spct" objects.

• wls_at_target(cps_spct): Method for "cps_spct" objects.

• wls_at_target(raw_spct): Method for "raw_spct" objects.

• wls_at_target(generic_mspct): Method for "generic_mspct" objects.

Note

When interpolation is used, only column w.length and the column against which the target value
was compared are included in the returned object, otherwise, all columns in x are returned. We
implement support for data.frame to simplify the coding of ’ggplot2’ stats using this function.

See Also

Other peaks and valleys functions: find_peaks(), find_spikes(), get_peaks(), peaks(), replace_bad_pixs(),
spikes(), valleys()

Examples

wls_at_target(sun.spct, target = 0.1)
wls_at_target(sun.spct, target = 2e-6, unit.out = "photon")
wls_at_target(polyester.spct, target = "HM")
wls_at_target(polyester.spct, target = "HM", interpolate = TRUE)
wls_at_target(polyester.spct, target = "HM", idfactor = "target")
wls_at_target(polyester.spct, target = "HM", filter.qty = "absorbance")

wl_max Wavelength maximum

Description

A method specialization that returns the wavelength maximum [nm] from objects of classes waveband
or of class generic_spct or derived.

464 wl_midpoint

Usage

wl_max(x, na.rm = FALSE)

S3 method for class 'waveband'
max(..., na.rm = FALSE)

S3 method for class 'generic_spct'
max(..., na.rm = FALSE)

S3 method for class 'generic_mspct'
max(..., na.rm = FALSE, idx = "spct.idx")

Arguments

x generic_spct, generic_mspct or waveband object.

na.rm ignored

... numeric, waveband or generic_spct arguments.

idx character Name of the column with the names of the members of the collection
of spectra.

Value

a length-one vector for individual objects or numeric vectors or a data frame for collections of
spectra.

Methods (by class)

• max(generic_spct):

• max(generic_mspct):

Examples

max(sun.spct)
wl_max(sun.spct)

wl_midpoint Midpoint

Description

A method that returns the wavelength [nm] (or value) at the center of the wavelength range of
objects of classes waveband or of class generic_spct or derived (or the midpoint from a numeric
vector).

wl_midpoint 465

Usage

wl_midpoint(x, ...)

midpoint(x, ...)

Default S3 method:
midpoint(x, ...)

S3 method for class 'numeric'
midpoint(x, ...)

S3 method for class 'waveband'
midpoint(x, ...)

S3 method for class 'generic_spct'
midpoint(x, ...)

S3 method for class 'generic_mspct'
midpoint(x, ..., idx = "spct.idx")

Arguments

x an R object

... not used in current version

idx character Name of the column with the names of the members of the collection
of spectra.

Value

A numeric value equal to max(x) - min(x)) / 2. In the case of spectral objects a wavelength [nm].
For any other R object, according to available definitions of min and max.

Methods (by class)

• midpoint(default): Default method for generic function

• midpoint(numeric): Default method for generic function

• midpoint(waveband): Wavelength at center of a "waveband".

• midpoint(generic_spct): Method for "generic_spct".

• midpoint(generic_mspct): Method for "generic_mspct" objects.

See Also

Other wavelength summaries: wl_min(), wl_range(), wl_stepsize()

Other wavelength summaries: wl_min(), wl_range(), wl_stepsize()

Other wavelength summaries: wl_min(), wl_range(), wl_stepsize()

466 wl_min

Examples

midpoint(10:20)
midpoint(sun.spct)
wl_midpoint(sun.spct)

midpoint(sun.spct)

wl_min Wavelength minimum

Description

A method specialization that returns the wavelength minimum [nm] from objects of classes waveband
or of class generic_spct or derived.

Usage

wl_min(x, na.rm = FALSE)

S3 method for class 'waveband'
min(..., na.rm = FALSE)

S3 method for class 'generic_spct'
min(..., na.rm = FALSE)

S3 method for class 'generic_mspct'
min(..., na.rm = FALSE, idx = "spct.idx")

Arguments

x generic_spct, generic_mspct or waveband object.

na.rm ignored

... not used in current version

idx character Name of the column with the names of the members of the collection
of spectra.

Value

a length-one vector for individual objects or numeric vectors or a data frame for collections of
spectra.

Methods (by class)

• min(generic_spct):

• min(generic_mspct):

wl_range 467

See Also

Other wavelength summaries: wl_midpoint(), wl_range(), wl_stepsize()

Examples

min(sun.spct)
wl_min(sun.spct)

wl_range Wavelength range

Description

A method specialization that returns the wavelength range [nm] from objects of classes waveband
or of class generic_spct or derived.

Usage

wl_range(x, na.rm = FALSE)

S3 method for class 'waveband'
range(..., na.rm = FALSE)

S3 method for class 'generic_spct'
range(..., na.rm = FALSE)

S3 method for class 'generic_mspct'
range(..., na.rm = FALSE, idx = "spct.idx")

Arguments

x generic_spct, generic_mspct or waveband object.

na.rm ignored

... a single R object

idx character Name of the column with the names of the members of the collection
of spectra.

Value

a length-two vector for individual objects or numeric vectors or a data frame for collections of
spectra.

Methods (by class)

• range(generic_spct):

• range(generic_mspct):

468 wl_stepsize

See Also

Other wavelength summaries: wl_midpoint(), wl_min(), wl_stepsize()

Examples

range(sun.spct)
wl_range(sun.spct)

range(sun.spct)

wl_stepsize Stepsize

Description

Method returning the range of step sizes in an object; i.e., the Range of differences between succes-
sive sorted values. In particular the wavelength step sizes [nm] of objects of class generic_spct
or derived (or the step sizes of values in a numeric vector).

Usage

wl_stepsize(x, ...)

stepsize(x, ...)

Default S3 method:
stepsize(x, ...)

S3 method for class 'numeric'
stepsize(x, ...)

S3 method for class 'generic_spct'
stepsize(x, ...)

S3 method for class 'generic_mspct'
stepsize(x, ..., idx = "spct.idx")

Arguments

x an R object
... not used in current version
idx character Name of the column with the names of the members of the collection

of spectra.

Value

A numeric vector of length 2 with min and maximum stepsize values.

w_length2rgb 469

Methods (by class)

• stepsize(default): Default function usable on numeric vectors.

• stepsize(numeric): Method for numeric vectors.

• stepsize(generic_spct): Method for "generic_spct" objects.

• stepsize(generic_mspct): Method for "generic_mspct" objects.

See Also

Other wavelength summaries: wl_midpoint(), wl_min(), wl_range()

Examples

stepsize(sun.spct)
wl_stepsize(sun.spct)

stepsize(sun.spct)

w_length2rgb Wavelength to rgb color conversion

Description

Calculates rgb values from spectra based on human color matching functions

Usage

w_length2rgb(w.length, sens = photobiology::ciexyzCMF2.spct, color.name = NULL)

Arguments

w.length numeric Vector of wavelengths [nm].

sens chroma_spct Used as chromaticity definition.

color.name character Used for naming the rgb color definition.

Value

A vector of colors defined using rgb(). The numeric values of the RGB components can be ob-
tained using function col2rgb().

See Also

Other color functions: rgb_spct(), w_length_range2rgb()

470 w_length_range2rgb

Examples

col2rgb(w_length2rgb(580))
col2rgb(w_length2rgb(c(400, 500, 600, 700)))
col2rgb(w_length2rgb(c(400, 500, 600, 700), color.name=c("a","b","c","d")))
col2rgb(w_length2rgb(c(400, 500, 600, 700), color.name="a"))

w_length_range2rgb Wavelength range to rgb color conversion

Description

Calculates rgb values from spectra based on human color matching functions

Usage

w_length_range2rgb(
w.length,
sens = photobiology::ciexyzCMF2.spct,
color.name = NULL

)

Arguments

w.length numeric vector of wavelengths (nm) of length 2. If longer, its range is used.

sens chroma_spct Used as the chromaticity definition.

color.name character Used for naming the rgb color definition(s) returned.

Value

A vector of colors defined using rgb(). The numeric values of the RGB components can be ob-
tained by calling function col2rgb.

See Also

Other color functions: rgb_spct(), w_length2rgb()

Examples

col2rgb(w_length_range2rgb(c(500,600)))
col2rgb(w_length_range2rgb(550))
col2rgb(w_length_range2rgb(500:600))

^.generic_spct 471

^.generic_spct Arithmetic Operators

Description

Power operator for spectra.

Usage

S3 method for class 'generic_spct'
e1 ^ e2

Arguments

e1 an object of class "generic_spct"

e2 a numeric vector. possibly of length one.

See Also

Other math operators and functions: MathFun, convolve_each(), div-.generic_spct, log(),
minus-.generic_spct, mod-.generic_spct, plus-.generic_spct, round(), sign(), slash-.generic_spct,
times-.generic_spct

Index

∗ Coercion methods for collections of
spectra

as.calibration_mspct, 24
as.chroma_mspct, 26
as.cps_mspct, 28
as.filter_mspct, 31
as.generic_mspct, 34
as.object_mspct, 38
as.raw_mspct, 40
as.reflector_mspct, 42
as.response_mspct, 45
as.solute_mspct, 48
as.source_mspct, 52
split2mspct, 355
subset2mspct, 366

∗ K attribute functions
getKType, 169
setKType, 319

∗ Reflectance ratio functions
Rfr_fraction, 292
Rfr_normdiff, 296
Rfr_ratio, 300

∗ Spectral data examples
A.illuminant.spct, 10
black_body.spct, 58
ccd.spct, 62
clear.spct, 80
D50.illuminant.spct, 96
D65.illuminant.spct, 97
green_leaf.spct, 184
Ler_leaf.spct, 215
phenylalanine.spct, 250
photodiode.spct, 251
sun.spct, 372
sun_daily.spct, 373
sun_evening.spct, 375
two_filters.spct, 430
two_sensors.mspct, 432
water.spct, 449

white_led.source_spct, 457
∗ Visual response data examples

beesxyzCMF.spct, 57
ciev10.spct, 69
ciev2.spct, 70
ciexyzCC10.spct, 71
ciexyzCC2.spct, 72
ciexyzCMF10.spct, 73
ciexyzCMF2.spct, 74
cone_fundamentals10.spct, 88

∗ auxiliary functions
normalize_range_arg, 238

∗ collections of spectra classes family
generic_mspct, 162

∗ color functions
rgb_spct, 303
w_length2rgb, 469
w_length_range2rgb, 470

∗ constructors of spectral objects
as.calibration_spct, 26
as.chroma_spct, 28
as.cps_spct, 30
as.filter_spct, 33
as.generic_spct, 36
as.object_spct, 39
as.raw_spct, 42
as.reflector_spct, 44
as.response_spct, 47
as.solute_spct, 50
as.source_spct, 54
source_spct, 340

∗ conversion of collections of spectra
join_mspct, 213

∗ data validity check functions
check_spct, 63
check_spectrum, 67
check_w.length, 68
enable_check_spct, 114

∗ datasets

472

INDEX 473

A.illuminant.spct, 10
beesxyzCMF.spct, 57
black_body.spct, 58
ccd.spct, 62
ciev10.spct, 69
ciev2.spct, 70
ciexyzCC10.spct, 71
ciexyzCC2.spct, 72
ciexyzCMF10.spct, 73
ciexyzCMF2.spct, 74
clear.spct, 80
cone_fundamentals10.spct, 88
D2.UV653, 95
D50.illuminant.spct, 96
D65.illuminant.spct, 97
green_leaf.spct, 184
Ler_leaf.spct, 215
phenylalanine.spct, 250
photodiode.spct, 251
r4p_pkgs, 283
sun.spct, 372
sun_daily.spct, 373
sun_evening.spct, 375
two_filters.spct, 430
two_sensors.mspct, 432
water.spct, 449
white_led.source_spct, 457

∗ despike and valleys functions
despike, 99

∗ experimental utility functions
collect2mspct, 83
drop_user_cols, 110
thin_wl, 413
uncollect2spct, 433

∗ idfactor attribute functions
getIdFactor, 166
setIdFactor, 316

∗ illumination functions
illuminance, 187

∗ internal.
v_insert_hinges, 448
v_replace_hinges, 448

∗ interpolate functions
interpolate_wl, 194

∗ irradiance functions
e_fluence, 124
e_irrad, 130
fluence, 148

irrad, 196
q_fluence, 267
q_irrad, 273

∗ low-level functions operating on numeric
vectors.

as_energy, 55
as_quantum_mol, 56
calc_multipliers, 59
div_spectra, 108
energy_irradiance, 116
energy_ratio, 117
insert_hinges, 189
integrate_xy, 191
interpolate_spectrum, 193
irradiance, 199
oper_spectra, 239
photon_irradiance, 253
photon_ratio, 254
photons_energy_ratio, 252
prod_spectra, 260
s_e_irrad2rgb, 376
split_energy_irradiance, 359
split_photon_irradiance, 362
subt_spectra, 367
sum_spectra, 371
trim_tails, 425
v_insert_hinges, 448
v_replace_hinges, 448

∗ math operators and functions
^.generic_spct, 471
convolve_each, 92
div-.generic_spct, 108
log, 217
MathFun, 220
minus-.generic_spct, 222
mod-.generic_spct, 223
plus-.generic_spct, 256
round, 305
sign, 336
slash-.generic_spct, 337
times-.generic_spct, 417

∗ measurement metadata functions
add_attr2tb, 18
get_attributes, 181
getFilterProperties, 163
getHowMeasured, 165
getInstrDesc, 167
getInstrSettings, 168

474 INDEX

getSoluteProperties, 173
getWhatMeasured, 176
getWhenMeasured, 177
getWhereMeasured, 179
isValidInstrDesc, 205
isValidInstrSettings, 206
select_spct_attributes, 306
setFilterProperties, 308
setHowMeasured, 314
setInstrDesc, 317
setInstrSettings, 318
setSoluteProperties, 326
setWhatMeasured, 331
setWhenMeasured, 332
setWhereMeasured, 334
spct_attr2tb, 345
spct_metadata, 347
trimInstrDesc, 421
trimInstrSettings, 422

∗ multiple.wl attribute functions
getMultipleWl, 170
setMultipleWl, 320

∗ peaks and valleys functions
find_peaks, 141
find_spikes, 143
get_peaks, 182
peaks, 240
replace_bad_pixs, 288
spikes, 350
valleys, 437
wls_at_target, 459

∗ photon and energy ratio functions
e_fraction, 127
e_ratio, 133
eq_ratio, 118
q_fraction, 270
q_ratio, 277
qe_ratio, 265

∗ quantity conversion functions
A2T, 11
Afr2T, 21
any2T, 23
as_quantum, 55
e2q, 111
e2qmol_multipliers, 113
e2quantum_multipliers, 113
q2e, 263
T2A, 396

T2Afr, 399
∗ query units functions

is_absorbance_based, 207
is_mole_based, 209
is_photon_based, 210

∗ rescaling functions
fscale, 151
fshift, 157
getNormalized, 171
getScaled, 172
is_normalized, 210
is_scaled, 211
normalize, 230
setNormalized, 321
setScaled, 324

∗ response functions
e_response, 137
q_response, 280
response, 289

∗ set and unset ’multi spectral’ class
functions

rmDerivedMspct, 304
shared_member_class, 335

∗ set and unset spectral class functions
rmDerivedSpct, 304
setGenericSpct, 310

∗ split a spectrum into regions functions
split_irradiance, 360

∗ tagging and related functions
is_tagged, 212
tag, 401
untag, 434
wb2rect_spct, 454
wb2spct, 455
wb2tagged_spct, 455

∗ time attribute functions
checkTimeUnit, 63
convertThickness, 90
convertTimeUnit, 91
getTimeUnit, 175
setTimeUnit, 330

∗ transmittance ratio functions
Tfr_fraction, 403
Tfr_normdiff, 406
Tfr_ratio, 410

∗ trim functions
clip_wl, 81
trim_spct, 423

INDEX 475

trim_waveband, 427
trim_wl, 428

∗ upgrade from earlier versions
is.old_spct, 203
upgrade_spct, 435
upgrade_spectra, 436

∗ waveband attributes
is_effective, 208
labels, 215
normalization, 228

∗ waveband constructors
split_bands, 358
waveband, 450

∗ wavelength summaries
wl_midpoint, 464
wl_min, 466
wl_range, 467
wl_stepsize, 468

*.generic_spct (times-.generic_spct),
417

+.generic_spct (plus-.generic_spct), 256
-.generic_spct (minus-.generic_spct),

222
/.generic_spct (slash-.generic_spct),

337
[.chroma_spct (Extract), 121
[.cps_spct (Extract), 121
[.filter_spct (Extract), 121
[.generic_mspct (Extract_mspct), 123
[.generic_spct (Extract), 121
[.object_spct (Extract), 121
[.raw_spct (Extract), 121
[.reflector_spct (Extract), 121
[.response_spct (Extract), 121
[.solute_spct (Extract), 121
[.source_spct (Extract), 121
[<-.generic_mspct (Extract_mspct), 123
[<-.generic_spct (Extract), 121
[[<-.generic_mspct (Extract_mspct), 123
$<-.generic_mspct (Extract_mspct), 123
$<-.generic_spct (Extract), 121
%/%.generic_spct (div-.generic_spct),

108
%%.generic_spct (mod-.generic_spct), 223
^.generic_spct, 92, 108, 217, 220, 223, 256,

306, 336, 337, 417, 471

A.illuminant.spct, 10, 58, 62, 81, 97, 98,
185, 216, 251, 252, 373–375, 431,

432, 450, 458
A2T, 11, 23, 24, 56, 113, 114, 264, 398, 401
A_as_default (energy_as_default), 115
abs.generic_spct (MathFun), 220
absorbance, 12, 237
absorptance, 15
acos.generic_spct (Trig), 420
add_attr2tb, 14, 17, 18, 119, 126, 128, 132,

135, 138, 150, 164, 166–168, 174,
177, 179, 180, 182, 188, 198, 206,
266, 269, 272, 275, 278, 282, 287,
291, 294, 298, 301, 307, 310, 315,
318, 319, 327, 332, 333, 335, 346,
348, 405, 408, 412, 419, 422, 423

address2tb (add_attr2tb), 18
Afr2T, 12, 21, 24, 56, 113, 114, 264, 398, 401
Afr_as_default (energy_as_default), 115
any2A (any2T), 23
any2Afr (any2T), 23
any2T, 12, 23, 23, 56, 113, 114, 264, 398, 401
as.calibration_mspct, 24, 27, 30, 32, 36,

39, 41, 44, 47, 50, 53, 357, 367
as.calibration_spct, 26, 28, 31, 34, 37, 40,

42, 45, 48, 51, 54, 345
as.chroma_mspct, 25, 26, 30, 32, 36, 39, 41,

44, 47, 50, 53, 357, 367
as.chroma_spct, 26, 28, 31, 34, 37, 40, 42,

45, 48, 51, 54, 345
as.cps_mspct, 25, 27, 28, 32, 36, 39, 41, 44,

47, 50, 53, 357, 367
as.cps_spct, 26, 28, 30, 34, 37, 40, 42, 45,

48, 51, 54, 345
as.filter_mspct, 25, 27, 30, 31, 36, 39, 41,

44, 47, 50, 53, 357, 367
as.filter_spct, 26, 28, 31, 33, 37, 40, 42,

45, 48, 51, 54, 345
as.generic_mspct, 25, 27, 30, 32, 34, 39, 41,

44, 47, 50, 53, 357, 367
as.generic_spct, 26, 28, 31, 34, 36, 40, 42,

45, 48, 51, 54, 345
as.matrix-mspct, 37
as.matrix.generic_mspct

(as.matrix-mspct), 37
as.object_mspct, 25, 27, 30, 32, 36, 38, 41,

44, 47, 50, 53, 357, 367
as.object_spct, 26, 28, 31, 34, 37, 39, 42,

45, 48, 51, 54, 345
as.raw_mspct, 25, 27, 30, 32, 36, 39, 40, 44,

476 INDEX

47, 50, 53, 357, 367
as.raw_spct, 26, 28, 31, 34, 37, 40, 42, 45,

48, 51, 54, 345
as.reflector_mspct, 25, 27, 30, 32, 36, 39,

41, 42, 47, 50, 53, 358, 367
as.reflector_spct, 26, 28, 31, 34, 37, 40,

42, 44, 48, 51, 54, 345
as.response_mspct, 25, 27, 30, 32, 36, 39,

41, 44, 45, 50, 53, 358, 367
as.response_spct, 26, 28, 31, 34, 37, 40, 42,

45, 47, 51, 54, 345
as.solute_mspct, 25, 27, 30, 32, 36, 39, 41,

44, 47, 48, 53, 358, 367
as.solute_spct, 26, 28, 31, 34, 37, 40, 42,

45, 48, 50, 54, 345
as.source_mspct, 25, 27, 30, 32, 36, 39, 41,

44, 47, 50, 52, 358, 367
as.source_spct, 26, 28, 31, 34, 37, 40, 42,

45, 48, 51, 54, 345
as_energy, 55, 56, 60, 109, 116, 118, 190,

192, 194, 200, 240, 253–255, 261,
360, 363, 368, 372, 377, 426, 448,
449

as_quantum, 12, 23, 24, 55, 113, 114, 264,
398, 401

as_quantum_mol, 55, 56, 60, 109, 116, 118,
190, 192, 194, 200, 240, 253–255,
261, 360, 363, 368, 372, 377, 426,
448, 449

asin.generic_spct (Trig), 420
atan.generic_spct (Trig), 420
average_spct, 57

beesxyzCMF.spct, 57, 70–74, 89
black_body.spct, 11, 58, 62, 81, 97, 98, 185,

216, 251, 252, 373–375, 431, 432,
450, 458

BSWF_used2tb (add_attr2tb), 18

c, 59
calc_filter_multipliers (defunct), 98
calc_multipliers, 55, 56, 59, 109, 116, 118,

190, 192, 194, 200, 240, 253–255,
261, 360, 363, 368, 372, 377, 426,
448, 449

calc_source_output, 60
calibration_mspct (generic_mspct), 162
calibration_spct (source_spct), 340

ccd.spct, 11, 58, 62, 81, 97, 98, 185, 216,
251, 252, 373–375, 431, 432, 450,
458

ceiling.generic_spct (round), 305
check_spct, 63, 67, 68, 115, 313
check_spectrum, 66, 67, 68, 115, 360, 361,

363
check_w.length, 66, 67, 68, 115
check_wl_stepsize, 68
checkTimeUnit, 63, 91, 176, 330
chroma_mspct (generic_mspct), 162
chroma_spct (source_spct), 340
ciev10.spct, 58, 69, 71–74, 89
ciev2.spct, 58, 70, 70, 71–74, 89
ciexyzCC10.spct, 58, 70, 71, 71, 72–74, 89
ciexyzCC2.spct, 58, 70, 71, 72, 73, 74, 89
ciexyzCMF10.spct, 58, 70–72, 73, 74, 89
ciexyzCMF2.spct, 58, 70–73, 74, 89
class_spct, 75
clean, 75
clear.spct, 11, 58, 62, 80, 97, 98, 185, 216,

251, 252, 373–375, 431, 432, 450,
458

clear_body.spct (black_body.spct), 58
clip_wl, 81, 425, 428, 430
col2rgb, 376, 470
collect2mspct, 83, 111, 417, 434
color (color_of), 84
color_of, 84
colour_of (color_of), 84
comment2tb (add_attr2tb), 18
compare_spct, 86
cone_fundamentals10.mspct

(cone_fundamentals10.spct), 88
cone_fundamentals10.spct, 58, 70–74, 88
convertTfrType, 89, 90, 329
convertThickness, 63, 90, 91, 176, 330
convertTimeUnit, 63, 91, 91, 176, 330
convolve_each, 92, 108, 217, 220, 223, 256,

306, 336, 337, 417, 471
copy_attributes, 93
cor, 396
cos.generic_spct (Trig), 420
cps2irrad, 94
cps2Rfr (cps2irrad), 94
cps2Tfr (cps2irrad), 94
cps_mspct (generic_mspct), 162
cps_spct (source_spct), 340

INDEX 477

D2.UV586 (D2.UV653), 95
D2.UV653, 95
D2.UV654 (D2.UV653), 95
D2_spectrum, 95, 95
D50.illuminant.spct, 11, 58, 62, 81, 96, 98,

185, 216, 251, 252, 373–375, 431,
432, 450, 458

D65.illuminant.spct, 11, 58, 62, 81, 97, 97,
185, 216, 251, 252, 373–375, 431,
432, 450, 458

defunct, 98
despike, 99
diffraction_double_slit

(diffraction_single_slit), 106
diffraction_single_slit, 106
dim.generic_mspct, 107
dim<-.generic_mspct

(dim.generic_mspct), 107
disable_check_spct, 66
disable_check_spct (enable_check_spct),

114
div-.generic_spct, 108
div_spectra, 55, 56, 60, 108, 116, 118, 190,

192, 194, 200, 240, 253–255, 261,
360, 363, 368, 372, 377, 426, 448,
449

drop_user_cols, 84, 110, 417, 434

e2q, 12, 23, 24, 56, 111, 113, 114, 264, 398,
401

e2qmol_multipliers, 12, 23, 24, 56, 113,
113, 114, 264, 398, 401

e2quantum_multipliers, 12, 23, 24, 56, 113,
113, 264, 398, 401

e_fluence, 124, 133, 150, 199, 270, 276
e_fraction, 121, 127, 136, 267, 273, 280
e_irrad, 126, 130, 150, 199, 270, 276
e_ratio, 121, 130, 133, 267, 273, 280
e_response, 137, 282, 292
enable_check_spct, 66–68, 114, 313
energy2wl (wl2wavenumber), 458
energy_as_default, 115
energy_irradiance, 55, 56, 60, 109, 116,

118, 190, 192, 194, 200, 240,
253–255, 261, 360, 363, 368, 372,
377, 426, 448, 449

energy_ratio, 55, 56, 60, 109, 116, 117, 190,
192, 194, 200, 240, 253–255, 261,

360, 363, 368, 372, 377, 426, 448,
449

eq_ratio, 118, 130, 136, 267, 273, 280
exp.generic_spct (log), 217
expanse (spread), 363
extend2extremes (trim_spct), 423
Extract, 121, 122, 123
Extract_mspct, 123
Extremes, 388

f_mspct (defunct), 98
fast_color_of_wb (color_of), 84
fast_color_of_wl (color_of), 84
fast_wb2rect_spct (wb2rect_spct), 454
FEL.BN.9101.165 (D2.UV653), 95
FEL_spectrum, 95, 139
filter_cps.mspct, 11, 58, 62, 81, 97, 98,

185, 216, 251, 252, 373–375, 431,
432, 450, 458

filter_mspct (generic_mspct), 162
filter_properties

(getFilterProperties), 163
filter_properties2tb (add_attr2tb), 18
filter_properties<-

(setFilterProperties), 308
filter_spct, 90, 329
filter_spct (source_spct), 340
find_peaks, 141, 144, 184, 249, 289, 355,

417, 446, 463
find_spikes, 106, 143, 143, 184, 249, 289,

355, 446, 463
find_valleys (find_peaks), 141
find_wls, 145
findMultipleWl, 140, 320
fit_peaks, 142, 146, 184, 249, 446
fit_valleys (fit_peaks), 146
floor.generic_spct (round), 305
fluence, 126, 133, 148, 199, 270, 276
format, 151, 369
formatted_range, 151
formatting, 259
frequency2wl (wl2wavenumber), 458
fscale, 151, 161, 172, 173, 210, 212, 236,

322, 325
fshift, 157, 157, 172, 173, 210, 212, 236,

322, 325

generic_mspct, 162, 229
generic_spct, 229

478 INDEX

generic_spct (source_spct), 340
geocode2tb (add_attr2tb), 18
get_attributes, 20, 164, 166–168, 174, 177,

179, 180, 181, 206, 307, 310, 315,
318, 319, 327, 332, 333, 335, 346,
348, 422, 423

get_peaks, 143, 144, 182, 249, 289, 355, 446,
463

get_valleys (get_peaks), 182
getAfrType (defunct), 98
getBSWFUsed (setBSWFUsed), 307
getFilterProperties, 20, 163, 166–168,

174, 177, 179, 180, 182, 206, 307,
310, 315, 318, 319, 327, 332, 333,
335, 346, 348, 422, 423

getHowMeasured, 20, 164, 165, 167, 168, 174,
177, 179, 180, 182, 206, 307, 310,
315, 318, 319, 327, 332, 333, 335,
346, 348, 422, 423

getIdFactor, 166, 317
getInstrDesc, 20, 164, 166, 167, 168, 174,

177, 179, 180, 182, 206, 307, 310,
315, 318, 319, 327, 332, 333, 335,
346, 348, 422, 423

getInstrSettings, 20, 164, 166, 167, 168,
174, 177, 179, 180, 182, 206, 307,
310, 315, 318, 319, 327, 332, 333,
335, 346, 348, 422, 423

getKType, 169, 319
getMspctVersion, 170
getMultipleWl, 170, 320
getNormalisation (getNormalized), 171
getNormalised (getNormalized), 171
getNormalization (getNormalized), 171
getNormalized, 157, 161, 171, 173, 210, 212,

236, 322, 325
getResponseType (setResponseType), 322
getRfrType (setRfrType), 323
getScaled, 157, 161, 172, 172, 210, 212, 236,

322, 325
getScaling (getScaled), 172
getSoluteProperties, 20, 164, 166–168,

173, 177, 179, 180, 182, 206, 307,
310, 315, 318, 319, 327, 332, 333,
335, 346, 348, 422, 423

getSpctVersion, 175
getTfrType (setTfrType), 328
getTimeUnit, 63, 91, 175, 330

getWhatMeasured, 20, 164, 166–168, 174,
176, 179, 180, 182, 206, 307, 310,
315, 318, 319, 327, 332, 333, 335,
346, 348, 422, 423

getWhenMeasured, 20, 164, 166–168, 174,
177, 177, 180, 182, 206, 307, 310,
315, 318, 319, 327, 332, 333, 335,
346, 348, 422, 423

getWhereMeasured, 20, 164, 166–168, 174,
177, 179, 179, 182, 206, 307, 310,
315, 318, 319, 327, 332, 333, 335,
346, 348, 422, 423

green_leaf.spct, 11, 58, 62, 81, 97, 98, 184,
216, 251, 252, 373–375, 431, 432,
450, 458

head, 186
head_tail, 185
how_measured (getHowMeasured), 165
how_measured2tb (add_attr2tb), 18
how_measured<- (setHowMeasured), 314

id_factor (getIdFactor), 166
id_factor<- (setIdFactor), 316
illuminance, 187
insert_hinges, 55, 56, 60, 109, 116, 118,

189, 192, 194, 200, 240, 253–255,
261, 360, 363, 368, 372, 377, 426,
448, 449

insert_spct_hinges, 190
instr_desc2tb (add_attr2tb), 18
instr_descriptor (getInstrDesc), 167
instr_descriptor<- (setInstrDesc), 317
instr_settings (getInstrSettings), 168
instr_settings2tb (add_attr2tb), 18
instr_settings<- (setInstrSettings), 318
integrate_spct, 191
integrate_xy, 55, 56, 60, 109, 116, 118, 190,

191, 194, 200, 240, 253–255, 261,
360, 363, 368, 372, 377, 426, 448,
449

interpolate_mspct (interpolate_spct),
192

interpolate_spct, 192
interpolate_spectrum, 55, 56, 60, 109, 116,

118, 190, 192, 193, 200, 240,
253–255, 261, 360, 363, 368, 372,
377, 426, 448, 449

interpolate_wl, 194

INDEX 479

irrad, 126, 133, 150, 196, 270, 276
irradiance, 55, 56, 60, 109, 116, 118, 190,

192, 194, 199, 237, 240, 253–255,
261, 360, 363, 368, 372, 377, 426,
448, 449

is.any_mspct (is.generic_mspct), 201
is.any_spct (is.generic_spct), 202
is.any_summary_spct

(is.summary_generic_spct), 204
is.calibration_mspct

(is.generic_mspct), 201
is.calibration_spct (is.generic_spct),

202
is.chroma_mspct (is.generic_mspct), 201
is.chroma_spct (is.generic_spct), 202
is.cps_mspct (is.generic_mspct), 201
is.cps_spct (is.generic_spct), 202
is.filter_mspct (is.generic_mspct), 201
is.filter_spct (is.generic_spct), 202
is.generic_mspct, 201
is.generic_spct, 202
is.object_mspct (is.generic_mspct), 201
is.object_spct (is.generic_spct), 202
is.old_spct, 203, 435, 436
is.raw_mspct (is.generic_mspct), 201
is.raw_spct (is.generic_spct), 202
is.reflector_mspct (is.generic_mspct),

201
is.reflector_spct (is.generic_spct), 202
is.response_mspct (is.generic_mspct),

201
is.response_spct (is.generic_spct), 202
is.solute_mspct (is.generic_mspct), 201
is.solute_spct (is.generic_spct), 202
is.source_mspct (is.generic_mspct), 201
is.source_spct (is.generic_spct), 202
is.summary_chroma_spct

(is.summary_generic_spct), 204
is.summary_cps_spct

(is.summary_generic_spct), 204
is.summary_filter_spct

(is.summary_generic_spct), 204
is.summary_generic_spct, 204
is.summary_object_spct

(is.summary_generic_spct), 204
is.summary_raw_spct

(is.summary_generic_spct), 204
is.summary_reflector_spct

(is.summary_generic_spct), 204
is.summary_response_spct

(is.summary_generic_spct), 204
is.summary_solute_spct

(is.summary_generic_spct), 204
is.summary_source_spct

(is.summary_generic_spct), 204
is.waveband, 205
is_absorbance_based, 207, 209, 211
is_absorptance_based

(is_absorbance_based), 207
is_effective, 208, 215, 229
is_energy_based (is_photon_based), 210
is_mass_based (is_mole_based), 209
is_mole_based, 207, 209, 211
is_normalised (is_normalized), 210
is_normalized, 157, 161, 172, 173, 210, 212,

236, 322, 325
is_photon_based, 207, 209, 210
is_scaled, 157, 161, 172, 173, 210, 211, 236,

322, 325
is_tagged, 212, 403, 435, 454–456
is_transmittance_based

(is_absorbance_based), 207
isValidInstrDesc, 20, 164, 166–168, 174,

177, 179, 180, 182, 205, 206, 307,
310, 315, 318, 319, 327, 332, 333,
335, 346, 348, 422, 423

isValidInstrSettings, 20, 164, 166–168,
174, 177, 179, 180, 182, 206, 206,
307, 310, 315, 318, 319, 327, 332,
333, 335, 346, 348, 422, 423

join, 221
join_mspct, 213

l_insert_hinges, 55, 56, 60, 109, 116, 118,
190, 192, 194, 200, 240, 253–255,
261, 360, 363, 368, 372, 377, 426,
448, 449

labels, 209, 215, 229
lat2tb (add_attr2tb), 18
Ler_leaf.spct, 11, 58, 62, 81, 97, 98, 185,

215, 251, 252, 373–375, 431, 432,
450, 458

Ler_leaf_rflt.spct (Ler_leaf.spct), 215
Ler_leaf_trns.spct (Ler_leaf.spct), 215
Ler_leaf_trns_i.spct (Ler_leaf.spct),

215

480 INDEX

log, 92, 108, 217, 220, 223, 256, 306, 336,
337, 417, 471

log10.generic_spct (log), 217
log2.generic_spct (log), 217
lon2tb (add_attr2tb), 18
lonlat2tb (add_attr2tb), 18

make.names, 214
make_var_labels, 218
mat2mspct (as.generic_mspct), 34
MathFun, 92, 108, 217, 220, 223, 256, 306,

336, 337, 417, 471
max, 364, 465
max (wl_max), 463
mean, 379, 381, 383
median, 385
merge2object_spct, 220
merge_attributes, 221
midpoint (wl_midpoint), 464
min, 364, 465
min (wl_min), 466
minus-.generic_spct, 222
mod-.generic_spct, 223
msaply (msmsply), 224
msdply (msmsply), 224
mslply (msmsply), 224
msmsply, 224
mspct2mat (as.matrix-mspct), 37
mspct_classes, 225
multiple_wl (getMultipleWl), 170
multiple_wl2tb (add_attr2tb), 18
multiple_wl<- (setMultipleWl), 320
mutate_mspct (defunct), 98

NA, 151
na.action, 227
na.exclude.chroma_spct (na.omit), 225
na.exclude.cps_spct (na.omit), 225
na.exclude.filter_spct (na.omit), 225
na.exclude.generic_mspct (na.omit), 225
na.exclude.generic_spct (na.omit), 225
na.exclude.object_spct (na.omit), 225
na.exclude.raw_spct (na.omit), 225
na.exclude.reflector_spct (na.omit), 225
na.exclude.response_spct (na.omit), 225
na.exclude.solute_spct (na.omit), 225
na.exclude.source_spct (na.omit), 225
na.fail, 227
na.omit, 225

NDxI (normalized_diff_ind), 236
new_waveband (waveband), 450
normalise (normalize), 230
normalised_diff_ind

(normalized_diff_ind), 236
normalization, 209, 215, 228
normalize, 157, 161, 172, 173, 210, 212, 230,

321, 322, 325
normalize_range_arg, 238
normalized2tb (add_attr2tb), 18
normalized_diff_ind, 236, 299, 409

object_mspct (generic_mspct), 162
object_spct, 324, 329
object_spct (source_spct), 340
opaque.spct (clear.spct), 80
oper_spectra, 55, 56, 60, 109, 116, 118, 190,

192, 194, 200, 239, 253–255, 261,
360, 363, 368, 372, 377, 426, 448,
449

paste, 151
peaks, 142–144, 184, 240, 248, 249, 289, 355,

445, 446, 463
phenylalanine.spct, 11, 58, 62, 81, 97, 98,

185, 216, 250, 252, 373–375, 431,
432, 450, 458

photobiology (photobiology-package), 8
photobiology-package, 8
photodiode.spct, 11, 58, 62, 81, 97, 98, 185,

216, 251, 251, 373–375, 431, 432,
450, 458

photon_as_default (energy_as_default),
115

photon_irradiance, 55, 56, 60, 109, 116,
118, 190, 192, 194, 200, 240, 253,
253, 255, 261, 360, 363, 368, 372,
377, 426, 448, 449

photon_ratio, 55, 56, 60, 109, 116, 118, 190,
192, 194, 200, 240, 253, 254, 254,
261, 360, 363, 368, 372, 377, 426,
448, 449

photons_energy_ratio, 55, 56, 60, 109, 116,
118, 190, 192, 194, 200, 240, 252,
254, 255, 261, 360, 363, 368, 372,
377, 426, 448, 449

plus-.generic_spct, 256
polyester.spct (two_filters.spct), 430

INDEX 481

print.filter_properties
(print.metadata), 258

print.generic_mspct
(print.generic_spct), 256

print.generic_spct, 256
print.instr_desc (print.metadata), 258
print.instr_settings (print.metadata),

258
print.metadata, 258
print.solute_properties

(print.metadata), 258
print.summary_generic_mspct

(print.summary_generic_spct),
259

print.summary_generic_spct, 259, 369
print.waveband, 260
prod, 386
prod_spectra, 55, 56, 60, 109, 116, 118, 190,

192, 194, 200, 240, 253–255, 260,
360, 363, 368, 372, 377, 426, 448,
449

pull_sample, 261

q2e, 12, 23, 24, 56, 113, 114, 263, 398, 401
q_fluence, 126, 133, 150, 199, 267, 276
q_fraction, 121, 130, 136, 267, 270, 280
q_irrad, 126, 133, 150, 199, 270, 273
q_ratio, 121, 130, 136, 267, 273, 277
q_response, 139, 280, 292
qe_ratio, 121, 130, 136, 265, 273, 280
quantum_as_default (energy_as_default),

115

r4p_pkgs, 283
range, 151
range (wl_range), 467
raw_mspct (generic_mspct), 162
raw_spct (source_spct), 340
rbindspct, 283
reflectance, 237, 285
reflector_mspct (generic_mspct), 162
reflector_spct, 324
reflector_spct (source_spct), 340
replace_bad_pixs, 106, 143, 144, 184, 249,

288, 355, 446, 463
response, 139, 237, 282, 289
response_mspct, 432
response_mspct (generic_mspct), 162
response_spct (source_spct), 340

Rfr_fraction, 292, 299, 303
Rfr_from_n, 295
Rfr_normdiff, 238, 295, 296, 303
Rfr_p_from_n (Rfr_from_n), 295
Rfr_ratio, 295, 299, 300
Rfr_s_from_n (Rfr_from_n), 295
Rfr_type2tb (add_attr2tb), 18
rgb, 376
rgb_spct, 303, 469, 470
rmDerivedMspct, 304, 336
rmDerivedSpct, 304, 314
round, 92, 108, 217, 220, 223, 256, 305, 336,

337, 417, 471

s_e_irrad2rgb, 55, 56, 60, 109, 116, 118,
190, 192, 194, 200, 240, 253–255,
261, 360, 363, 368, 372, 376, 426,
448, 449

s_mean, 377
s_mean_se, 379
s_mean_se_band, 381
s_median, 383
s_prod, 385
s_range, 387
s_sd, 389
s_se, 391
s_sum, 392
s_var, 394
sample, 263
sample_mspct (defunct), 98
sample_spct (defunct), 98
scaled2tb (add_attr2tb), 18
sd, 390
se, 381
select_spct_attributes, 20, 164, 166–168,

174, 177, 179, 180, 182, 206, 306,
310, 315, 318, 319, 327, 332, 333,
335, 346, 348, 422, 423

set_check_spct (enable_check_spct), 114
setAfrType (defunct), 98
setBSWFUsed, 307
setCalibrationSpct (setGenericSpct), 310
setChromaSpct (setGenericSpct), 310
setCpsSpct (setGenericSpct), 310
setFilterProperties, 21, 164, 166–168,

174, 177, 179, 180, 182, 206, 307,
308, 315, 318, 319, 327, 332, 333,
335, 345, 346, 348, 422, 423

setFilterSpct (setGenericSpct), 310

482 INDEX

setGenericSpct, 26, 28, 31, 34, 37, 40, 42,
45, 48, 54, 305, 310

setHowMeasured, 21, 164, 166–168, 174, 177,
179, 180, 182, 206, 307, 310, 314,
318, 319, 327, 332, 333, 335, 346,
348, 422, 423

setIdFactor, 167, 316
setInstrDesc, 21, 164, 166–168, 174, 177,

179, 180, 182, 206, 307, 310, 315,
317, 319, 327, 332, 333, 335, 346,
348, 422, 423

setInstrSettings, 21, 164, 166–168, 174,
177, 179, 180, 182, 206, 307, 310,
315, 318, 318, 327, 332, 333, 335,
346, 348, 422, 423

setKType, 169, 319
setMultipleWl, 171, 320
setNormalised (setNormalized), 321
setNormalized, 157, 161, 171–173, 210, 212,

236, 321, 325
setObjectSpct (setGenericSpct), 310
setRawSpct (setGenericSpct), 310
setReflectorSpct (setGenericSpct), 310
setResponseSpct (setGenericSpct), 310
setResponseType, 322
setRfrType, 323
setScaled, 157, 161, 172, 173, 210, 212, 236,

322, 324
setSoluteProperties, 21, 164, 166–168,

174, 177, 179, 180, 182, 206, 307,
310, 315, 318, 319, 326, 332, 333,
335, 345, 346, 348, 422, 423

setSoluteSpct, 51
setSoluteSpct (setGenericSpct), 310
setSourceSpct (setGenericSpct), 310
setTfrType, 90, 328
setTimeUnit, 63, 91, 176, 330
setWhatMeasured, 21, 164, 166–168, 174,

177, 179, 180, 182, 206, 307, 310,
315, 318, 319, 327, 331, 333, 335,
346, 348, 422, 423

setWhenMeasured, 21, 164, 166–168, 174,
177, 179, 180, 182, 206, 307, 310,
315, 318, 319, 327, 332, 332, 335,
346, 348, 422, 423

setWhereMeasured, 21, 164, 166–168, 174,
177, 179, 180, 182, 206, 307, 310,
315, 318, 319, 327, 332, 333, 334,

346, 348, 422, 423
shared_member_class, 304, 335
sign, 92, 108, 217, 220, 223, 256, 306, 336,

337, 417, 471
signif.generic_spct (round), 305
sin.generic_spct (Trig), 420
slash-.generic_spct, 337
smooth_spct, 337
solute_mspct (generic_mspct), 162
solute_properties

(getSoluteProperties), 173
solute_properties2tb (add_attr2tb), 18
solute_properties<-

(setSoluteProperties), 326
solute_spct (source_spct), 340
source_mspct (generic_mspct), 162
source_spct, 26, 28, 31, 34, 37, 40, 42, 45,

48, 51, 54, 340
spct_attr2tb, 21, 164, 166–168, 174, 177,

179, 180, 182, 206, 307, 310, 315,
318, 319, 327, 332, 333, 335, 345,
348, 422, 423

spct_attributes
(select_spct_attributes), 306

spct_classes, 75, 346
spct_metadata, 21, 164, 166–168, 174, 177,

179, 180, 182, 206, 307, 310, 315,
318, 319, 327, 332, 333, 335, 346,
347, 422, 423

spct_wide2long, 348
spikes, 143, 144, 184, 249, 289, 350, 446, 463
splinefun, 147, 194
split2calibration_mspct (split2mspct),

355
split2cps_mspct (split2mspct), 355
split2filter_mspct (split2mspct), 355
split2mspct, 25, 27, 30, 32, 36, 39, 41, 44,

47, 50, 53, 355, 367
split2raw_mspct (split2mspct), 355
split2reflector_mspct (split2mspct), 355
split2response_mspct (split2mspct), 355
split2solute_mspct (split2mspct), 355
split2source_mspct (split2mspct), 355
split_bands, 358, 452
split_energy_irradiance, 55, 56, 60, 109,

116, 118, 190, 192, 194, 200, 240,
253–255, 261, 359, 363, 368, 372,
377, 426, 448, 449

INDEX 483

split_irradiance, 360
split_photon_irradiance, 55, 56, 60, 109,

116, 118, 190, 192, 194, 200, 240,
253–255, 261, 360, 362, 368, 372,
377, 426, 448, 449

spread, 363
sqrt.generic_spct (MathFun), 220
stepsize (wl_stepsize), 468
strict_range_as_default

(verbose_as_default), 447
Subset, 365
subset, 123
subset.generic_spct (Subset), 365
subset2mspct, 25, 27, 30, 32, 36, 39, 41, 44,

47, 50, 53, 358, 366
subset_attributes, 21, 164, 166–168, 174,

177, 179, 180, 182, 206, 307, 310,
315, 318, 319, 327, 332, 333, 335,
346, 348, 422, 423

subt_spectra, 55, 56, 60, 109, 116, 118, 190,
192, 194, 200, 240, 253–255, 261,
360, 363, 367, 372, 377, 426, 448,
449

sum, 394
sum_spectra, 55, 56, 60, 109, 116, 118, 190,

192, 194, 200, 240, 253–255, 261,
360, 363, 368, 371, 377, 426, 448,
449

summary.generic_mspct
(summary.generic_spct), 368

summary.generic_spct, 229, 368
summary_spct_classes, 370
sun.daily.data (sun_daily.spct), 373
sun.daily.spct (sun_daily.spct), 373
sun.data (sun.spct), 372
sun.spct, 11, 58, 62, 81, 97, 98, 185, 216,

251, 252, 372, 374, 375, 431, 432,
450, 458

sun_daily.data (sun_daily.spct), 373
sun_daily.spct, 11, 58, 62, 81, 97, 98, 185,

216, 251, 252, 373, 373, 375, 431,
432, 450, 458

sun_evening.mspct (sun_evening.spct),
375

sun_evening.spct, 11, 58, 62, 81, 97, 98,
185, 216, 251, 252, 373, 374, 375,
431, 432, 450, 458

T2A, 12, 23, 24, 56, 113, 114, 264, 396, 401

T2Afr, 12, 23, 24, 56, 113, 114, 264, 398, 399
T2T (defunct), 98
tag, 87, 212, 401, 435, 454–456
tan.generic_spct (Trig), 420
Tfr_as_default (energy_as_default), 115
Tfr_fraction, 403, 409, 413
Tfr_normdiff, 406, 406, 413
Tfr_ratio, 406, 409, 410
Tfr_type2tb (add_attr2tb), 18
thin_wl, 84, 111, 413, 434
time_unit2tb (add_attr2tb), 18
times-.generic_spct, 417
transmittance, 237, 418
Trig, 420
trim2overlap (trim_spct), 423
trim_mspct (trim_spct), 423
trim_spct, 82, 123, 423, 428, 430
trim_tails, 55, 56, 60, 109, 116, 118, 190,

192, 194, 200, 240, 253–255, 261,
360, 363, 368, 372, 377, 425, 448,
449

trim_waveband, 82, 425, 427, 430
trim_wl, 82, 425, 428, 428
trimInstrDesc, 21, 164, 166–168, 174, 177,

179, 180, 182, 206, 307, 310, 315,
318, 319, 327, 332, 333, 335, 346,
348, 421, 423

trimInstrSettings, 21, 164, 166–168, 174,
177, 179, 180, 182, 206, 307, 310,
315, 318, 319, 327, 332, 333, 335,
346, 348, 422, 422

trunc.generic_spct (round), 305
two_filters.mspct (two_filters.spct),

430
two_filters.spct, 11, 58, 62, 81, 97, 98,

185, 216, 251, 252, 373–375, 430,
432, 450, 458

two_sensors.mspct, 11, 58, 62, 81, 97, 98,
185, 216, 251, 252, 373–375, 431,
432, 450, 458

two_sensors.spct (two_sensors.mspct),
432

uncollect2spct, 84, 111, 417, 433
unset_filter_qty_default

(energy_as_default), 115
unset_radiation_unit_default

(energy_as_default), 115

484 INDEX

unset_user_defaults
(energy_as_default), 115

untag, 212, 403, 434, 454–456
upgrade_spct, 203, 435, 436
upgrade_spectra, 203, 435, 436
use_cached_mult_as_default

(wb_trim_as_default), 456
using_A (using_Tfr), 436
using_Afr (using_Tfr), 436
using_energy (using_Tfr), 436
using_photon (using_Tfr), 436
using_quantum (using_Tfr), 436
using_Tfr, 436

v_insert_hinges, 55, 56, 60, 109, 116, 118,
190, 192, 194, 200, 240, 253–255,
261, 360, 363, 368, 372, 377, 426,
448, 449

v_replace_hinges, 55, 56, 60, 109, 116, 118,
190, 192, 194, 200, 240, 253–255,
261, 360, 363, 368, 372, 377, 426,
448, 448

valleys, 142–144, 184, 249, 289, 355, 437,
446, 463

verbose_as_default, 447

w_length2rgb, 303, 469, 470
w_length_range2rgb, 303, 469, 470
water.spct, 11, 58, 62, 81, 97, 98, 185, 216,

251, 252, 373–375, 431, 432, 449,
458

waveband, 85, 229, 358, 450
waveband_ratio, 452
wavenumber2wl (wl2wavenumber), 458
wb2rect_spct, 212, 403, 435, 454, 455, 456
wb2spct, 212, 403, 435, 454, 455, 456
wb2tagged_spct, 212, 403, 435, 454, 455, 455
wb_trim_as_default, 456
what_measured (getWhatMeasured), 176
what_measured2tb (add_attr2tb), 18
what_measured<- (setWhatMeasured), 331
when_measured (getWhenMeasured), 177
when_measured2tb (add_attr2tb), 18
when_measured<- (setWhenMeasured), 332
where_measured (getWhereMeasured), 179
where_measured<- (setWhereMeasured), 334
white_body.spct (black_body.spct), 58
white_led.cps_spct

(white_led.source_spct), 457

white_led.raw_spct
(white_led.source_spct), 457

white_led.source_spct, 11, 58, 62, 81, 97,
98, 185, 216, 251, 252, 373–375,
431, 432, 450, 457

wl2energy (wl2wavenumber), 458
wl2frequency (wl2wavenumber), 458
wl2wavenumber, 458
wl_expanse (spread), 363
wl_max, 463
wl_midpoint, 464, 467–469
wl_min, 465, 466, 468, 469
wl_range, 465, 467, 467, 469
wl_stepsize, 465, 467, 468, 468
wls_at_target, 143, 144, 184, 249, 289, 355,

446, 459

yellow_gel.spct (two_filters.spct), 430

	photobiology-package
	A.illuminant.spct
	A2T
	absorbance
	absorptance
	add_attr2tb
	Afr2T
	any2T
	as.calibration_mspct
	as.calibration_spct
	as.chroma_mspct
	as.chroma_spct
	as.cps_mspct
	as.cps_spct
	as.filter_mspct
	as.filter_spct
	as.generic_mspct
	as.generic_spct
	as.matrix-mspct
	as.object_mspct
	as.object_spct
	as.raw_mspct
	as.raw_spct
	as.reflector_mspct
	as.reflector_spct
	as.response_mspct
	as.response_spct
	as.solute_mspct
	as.solute_spct
	as.source_mspct
	as.source_spct
	as_energy
	as_quantum
	as_quantum_mol
	average_spct
	beesxyzCMF.spct
	black_body.spct
	c
	calc_multipliers
	calc_source_output
	ccd.spct
	checkTimeUnit
	check_spct
	check_spectrum
	check_w.length
	check_wl_stepsize
	ciev10.spct
	ciev2.spct
	ciexyzCC10.spct
	ciexyzCC2.spct
	ciexyzCMF10.spct
	ciexyzCMF2.spct
	class_spct
	clean
	clear.spct
	clip_wl
	collect2mspct
	color_of
	compare_spct
	cone_fundamentals10.spct
	convertTfrType
	convertThickness
	convertTimeUnit
	convolve_each
	copy_attributes
	cps2irrad
	D2.UV653
	D2_spectrum
	D50.illuminant.spct
	D65.illuminant.spct
	defunct
	despike
	diffraction_single_slit
	dim.generic_mspct
	div-.generic_spct
	div_spectra
	drop_user_cols
	e2q
	e2qmol_multipliers
	e2quantum_multipliers
	enable_check_spct
	energy_as_default
	energy_irradiance
	energy_ratio
	eq_ratio
	Extract
	Extract_mspct
	e_fluence
	e_fraction
	e_irrad
	e_ratio
	e_response
	FEL_spectrum
	findMultipleWl
	find_peaks
	find_spikes
	find_wls
	fit_peaks
	fluence
	formatted_range
	fscale
	fshift
	generic_mspct
	getFilterProperties
	getHowMeasured
	getIdFactor
	getInstrDesc
	getInstrSettings
	getKType
	getMspctVersion
	getMultipleWl
	getNormalized
	getScaled
	getSoluteProperties
	getSpctVersion
	getTimeUnit
	getWhatMeasured
	getWhenMeasured
	getWhereMeasured
	get_attributes
	get_peaks
	green_leaf.spct
	head_tail
	illuminance
	insert_hinges
	insert_spct_hinges
	integrate_spct
	integrate_xy
	interpolate_spct
	interpolate_spectrum
	interpolate_wl
	irrad
	irradiance
	is.generic_mspct
	is.generic_spct
	is.old_spct
	is.summary_generic_spct
	is.waveband
	isValidInstrDesc
	isValidInstrSettings
	is_absorbance_based
	is_effective
	is_mole_based
	is_normalized
	is_photon_based
	is_scaled
	is_tagged
	join_mspct
	labels
	Ler_leaf.spct
	log
	make_var_labels
	MathFun
	merge2object_spct
	merge_attributes
	minus-.generic_spct
	mod-.generic_spct
	msmsply
	mspct_classes
	na.omit
	normalization
	normalize
	normalized_diff_ind
	normalize_range_arg
	oper_spectra
	peaks
	phenylalanine.spct
	photodiode.spct
	photons_energy_ratio
	photon_irradiance
	photon_ratio
	plus-.generic_spct
	print.generic_spct
	print.metadata
	print.summary_generic_spct
	print.waveband
	prod_spectra
	pull_sample
	q2e
	qe_ratio
	q_fluence
	q_fraction
	q_irrad
	q_ratio
	q_response
	r4p_pkgs
	rbindspct
	reflectance
	replace_bad_pixs
	response
	Rfr_fraction
	Rfr_from_n
	Rfr_normdiff
	Rfr_ratio
	rgb_spct
	rmDerivedMspct
	rmDerivedSpct
	round
	select_spct_attributes
	setBSWFUsed
	setFilterProperties
	setGenericSpct
	setHowMeasured
	setIdFactor
	setInstrDesc
	setInstrSettings
	setKType
	setMultipleWl
	setNormalized
	setResponseType
	setRfrType
	setScaled
	setSoluteProperties
	setTfrType
	setTimeUnit
	setWhatMeasured
	setWhenMeasured
	setWhereMeasured
	shared_member_class
	sign
	slash-.generic_spct
	smooth_spct
	source_spct
	spct_attr2tb
	spct_classes
	spct_metadata
	spct_wide2long
	spikes
	split2mspct
	split_bands
	split_energy_irradiance
	split_irradiance
	split_photon_irradiance
	spread
	Subset
	subset2mspct
	subt_spectra
	summary.generic_spct
	summary_spct_classes
	sum_spectra
	sun.spct
	sun_daily.spct
	sun_evening.spct
	s_e_irrad2rgb
	s_mean
	s_mean_se
	s_mean_se_band
	s_median
	s_prod
	s_range
	s_sd
	s_se
	s_sum
	s_var
	T2A
	T2Afr
	tag
	Tfr_fraction
	Tfr_normdiff
	Tfr_ratio
	thin_wl
	times-.generic_spct
	transmittance
	Trig
	trimInstrDesc
	trimInstrSettings
	trim_spct
	trim_tails
	trim_waveband
	trim_wl
	two_filters.spct
	two_sensors.mspct
	uncollect2spct
	untag
	upgrade_spct
	upgrade_spectra
	using_Tfr
	valleys
	verbose_as_default
	v_insert_hinges
	v_replace_hinges
	water.spct
	waveband
	waveband_ratio
	wb2rect_spct
	wb2spct
	wb2tagged_spct
	wb_trim_as_default
	white_led.source_spct
	wl2wavenumber
	wls_at_target
	wl_max
	wl_midpoint
	wl_min
	wl_range
	wl_stepsize
	w_length2rgb
	w_length_range2rgb
	^.generic_spct
	Index

